CINXE.COM

Statistics Nov 2018

<!DOCTYPE html> <html lang="en"> <head> <title>Statistics Nov 2018</title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" sizes="180x180" href="/static/browse/0.3.4/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="/static/browse/0.3.4/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="/static/browse/0.3.4/images/icons/favicon-16x16.png"> <link rel="manifest" href="/static/browse/0.3.4/images/icons/site.webmanifest"> <link rel="mask-icon" href="/static/browse/0.3.4/images/icons/safari-pinned-tab.svg" color="#5bbad5"> <meta name="msapplication-TileColor" content="#da532c"> <meta name="theme-color" content="#ffffff"> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/arXiv.css?v=20241206" /> <link rel="stylesheet" type="text/css" media="print" href="/static/browse/0.3.4/css/arXiv-print.css?v=20200611" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/browse_search.css" /> <script language="javascript" src="/static/browse/0.3.4/js/accordion.js" /></script> <script src="/static/browse/0.3.4/js/mathjaxToggle.min.js" type="text/javascript"></script> <script type="text/javascript" language="javascript">mathjaxToggle();</script> </head> <body class="with-cu-identity"> <div class="flex-wrap-footer"> <header> <a href="#content" class="is-sr-only">Skip to main content</a> <!-- start desktop header --> <div class="columns is-vcentered is-hidden-mobile" id="cu-identity"> <div class="column" id="cu-logo"> <a href="https://www.cornell.edu/"><img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University" /></a> </div><div class="column" id="support-ack"> <span id="support-ack-url">We gratefully acknowledge support from the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors.</span> <a href="https://info.arxiv.org/about/donate.html" class="btn-header-donate">Donate</a> </div> </div> <div id="header" class="is-hidden-mobile"> <a aria-hidden="true" tabindex="-1" href="/IgnoreMe"></a> <div class="header-breadcrumbs"> <a href="/"><img src="/static/browse/0.3.4/images/arxiv-logo-one-color-white.svg" alt="arxiv logo" style="height:40px;"/></a> <span>&gt;</span> <a href="/list/stat/recent">stat</a> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div><!-- /end desktop header --> <div class="mobile-header"> <div class="columns is-mobile"> <div class="column logo-arxiv"><a href="https://arxiv.org/"><img src="/static/browse/0.3.4/images/arxiv-logomark-small-white.svg" alt="arXiv logo" style="height:60px;" /></a></div> <div class="column logo-cornell"><a href="https://www.cornell.edu/"> <picture> <source media="(min-width: 501px)" srcset="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg 400w" sizes="400w" /> <source srcset="/static/browse/0.3.4/images/icons/cu/cornell_seal_simple_black.svg 2x" /> <img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University Logo" /> </picture> </a></div> <div class="column nav" id="toggle-container" role="menubar"> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-white"><title>open search</title><path d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"/></svg></button> <div class="mobile-toggle-block toggle-target"> <form class="mobile-search-form" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <input class="input" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <input type="hidden" name="source" value="header"> <input type="hidden" name="searchtype" value="all"> <button class="button">GO</button> </div> </form> </div> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-white" role="menu"><title>open navigation menu</title><path d="M16 132h416c8.837 0 16-7.163 16-16V76c0-8.837-7.163-16-16-16H16C7.163 60 0 67.163 0 76v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16z"/ ></svg></button> <div class="mobile-toggle-block toggle-target"> <nav class="mobile-menu" aria-labelledby="mobilemenulabel"> <h2 id="mobilemenulabel">quick links</h2> <ul> <li><a href="https://arxiv.org/login">Login</a></li> <li><a href="https://info.arxiv.org/help">Help Pages</a></li> <li><a href="https://info.arxiv.org/about">About</a></li> </ul> </nav> </div> </div> </div> </div><!-- /end mobile-header --> </header> <main> <div id="content"> <div id='content-inner'> <div id='dlpage'> <h1>Statistics</h1> <h2>Authors and titles for November 2018 </h2> <div class='paging'>Total of 1260 entries : <span>1-50</span> <a href=/list/stat/2018-11?skip=50&amp;show=50>51-100</a> <a href=/list/stat/2018-11?skip=100&amp;show=50>101-150</a> <a href=/list/stat/2018-11?skip=150&amp;show=50>151-200</a> <span>...</span> <a href=/list/stat/2018-11?skip=1250&amp;show=50>1251-1260</a> </div> <div class='morefewer'>Showing up to 50 entries per page: <a href=/list/stat/2018-11?skip=0&amp;show=25 rel="nofollow"> fewer</a> | <a href=/list/stat/2018-11?skip=0&amp;show=100 rel="nofollow"> more</a> | <a href=/list/stat/2018-11?skip=0&amp;show=2000 rel="nofollow"> all</a> </div> <dl id='articles'> <dt> <a name='item1'>[1]</a> <a href ="/abs/1811.00007" title="Abstract" id="1811.00007"> arXiv:1811.00007 </a> [<a href="/pdf/1811.00007" title="Download PDF" id="pdf-1811.00007" aria-labelledby="pdf-1811.00007">pdf</a>, <a href="/format/1811.00007" title="Other formats" id="oth-1811.00007" aria-labelledby="oth-1811.00007">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Suter,+R">Raphael Suter</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Miladinovi%C4%87,+%C4%90">膼or膽e Miladinovi膰</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Sch%C3%B6lkopf,+B">Bernhard Sch枚lkopf</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bauer,+S">Stefan Bauer</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item2'>[2]</a> <a href ="/abs/1811.00062" title="Abstract" id="1811.00062"> arXiv:1811.00062 </a> [<a href="/pdf/1811.00062" title="Download PDF" id="pdf-1811.00062" aria-labelledby="pdf-1811.00062">pdf</a>, <a href="/format/1811.00062" title="Other formats" id="oth-1811.00062" aria-labelledby="oth-1811.00062">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Tax,+N">Niek Tax</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Teinemaa,+I">Irene Teinemaa</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=van+Zelst,+S+J">Sebastiaan J. van Zelst</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Computation and Language (cs.CL); Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item3'>[3]</a> <a href ="/abs/1811.00074" title="Abstract" id="1811.00074"> arXiv:1811.00074 </a> [<a href="/pdf/1811.00074" title="Download PDF" id="pdf-1811.00074" aria-labelledby="pdf-1811.00074">pdf</a>, <a href="/format/1811.00074" title="Other formats" id="oth-1811.00074" aria-labelledby="oth-1811.00074">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Efficient Collection of Connected Vehicles Data with Precision Guarantees </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Alemazkoor,+N">Negin Alemazkoor</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Meidani,+H">Hadi Meidani</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span>; Signal Processing (eess.SP) </div> </div> </dd> <dt> <a name='item4'>[4]</a> <a href ="/abs/1811.00097" title="Abstract" id="1811.00097"> arXiv:1811.00097 </a> [<a href="/pdf/1811.00097" title="Download PDF" id="pdf-1811.00097" aria-labelledby="pdf-1811.00097">pdf</a>, <a href="/format/1811.00097" title="Other formats" id="oth-1811.00097" aria-labelledby="oth-1811.00097">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=McNicholas,+S+M">Sharon M. McNicholas</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=McNicholas,+P+D">Paul D. McNicholas</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ashlock,+D+A">Daniel A. Ashlock</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span>; Machine Learning (stat.ML) </div> </div> </dd> <dt> <a name='item5'>[5]</a> <a href ="/abs/1811.00115" title="Abstract" id="1811.00115"> arXiv:1811.00115 </a> [<a href="/pdf/1811.00115" title="Download PDF" id="pdf-1811.00115" aria-labelledby="pdf-1811.00115">pdf</a>, <a href="/format/1811.00115" title="Other formats" id="oth-1811.00115" aria-labelledby="oth-1811.00115">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Dimensionality Reduction has Quantifiable Imperfections: Two Geometric Bounds </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Lui,+K+Y+C">Kry Yik Chau Lui</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ding,+G+W">Gavin Weiguang Ding</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Huang,+R">Ruitong Huang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=McCann,+R+J">Robert J. McCann</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montreal, Canada </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Neural Information Processing Systems (NIPS 2018) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item6'>[6]</a> <a href ="/abs/1811.00153" title="Abstract" id="1811.00153"> arXiv:1811.00153 </a> [<a href="/pdf/1811.00153" title="Download PDF" id="pdf-1811.00153" aria-labelledby="pdf-1811.00153">pdf</a>, <a href="/format/1811.00153" title="Other formats" id="oth-1811.00153" aria-labelledby="oth-1811.00153">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A Sequential Design Approach for Calibrating a Dynamic Population Growth Model </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhang,+R">Ru Zhang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Lin,+C+D">Chunfang Devon Lin</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ranjan,+P">Pritam Ranjan</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 36 pages </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> SIAM/ASA J. Uncertainty Quantification, 7(4), 1245 -1274, 2019 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Computation (stat.CO) </div> </div> </dd> <dt> <a name='item7'>[7]</a> <a href ="/abs/1811.00183" title="Abstract" id="1811.00183"> arXiv:1811.00183 </a> [<a href="/pdf/1811.00183" title="Download PDF" id="pdf-1811.00183" aria-labelledby="pdf-1811.00183">pdf</a>, <a href="/format/1811.00183" title="Other formats" id="oth-1811.00183" aria-labelledby="oth-1811.00183">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Designing an Effective Metric Learning Pipeline for Speaker Diarization </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Narayanaswamy,+V+S">Vivek Sivaraman Narayanaswamy</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Thiagarajan,+J+J">Jayaraman J. Thiagarajan</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Song,+H">Huan Song</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Spanias,+A">Andreas Spanias</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG); Sound (cs.SD); Audio and Speech Processing (eess.AS) </div> </div> </dd> <dt> <a name='item8'>[8]</a> <a href ="/abs/1811.00203" title="Abstract" id="1811.00203"> arXiv:1811.00203 </a> [<a href="/pdf/1811.00203" title="Download PDF" id="pdf-1811.00203" aria-labelledby="pdf-1811.00203">pdf</a>, <a href="/format/1811.00203" title="Other formats" id="oth-1811.00203" aria-labelledby="oth-1811.00203">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Latent Gaussian Count Time Series </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Jia,+Y">Yisu Jia</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kechagias,+S">Stefanos Kechagias</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Livsey,+J">James Livsey</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Lund,+R">Robert Lund</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Pipiras,+V">Vladas Pipiras</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Two previous versions of this paper appeared on arxiv under the title, the first under the title &#34;Latent Gaussian Count Time Series Modeling&#34; and the second under the title &#34;Count Time Series Modeling with Gaussian Copulas&#34; </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item9'>[9]</a> <a href ="/abs/1811.00255" title="Abstract" id="1811.00255"> arXiv:1811.00255 </a> [<a href="/pdf/1811.00255" title="Download PDF" id="pdf-1811.00255" aria-labelledby="pdf-1811.00255">pdf</a>, <a href="/format/1811.00255" title="Other formats" id="oth-1811.00255" aria-labelledby="oth-1811.00255">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> HMLasso: Lasso with High Missing Rate </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Takada,+M">Masaaki Takada</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Fujisawa,+H">Hironori Fujisawa</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Nishikawa,+T">Takeichiro Nishikawa</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item10'>[10]</a> <a href ="/abs/1811.00293" title="Abstract" id="1811.00293"> arXiv:1811.00293 </a> [<a href="/pdf/1811.00293" title="Download PDF" id="pdf-1811.00293" aria-labelledby="pdf-1811.00293">pdf</a>, <a href="/format/1811.00293" title="Other formats" id="oth-1811.00293" aria-labelledby="oth-1811.00293">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Critical initialisation for deep signal propagation in noisy rectifier neural networks </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Pretorius,+A">Arnu Pretorius</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Van+Biljon,+E">Elan Van Biljon</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kroon,+S">Steve Kroon</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kamper,+H">Herman Kamper</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages, 11 figures, accepted at the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item11'>[11]</a> <a href ="/abs/1811.00306" title="Abstract" id="1811.00306"> arXiv:1811.00306 </a> [<a href="/pdf/1811.00306" title="Download PDF" id="pdf-1811.00306" aria-labelledby="pdf-1811.00306">pdf</a>, <a href="/format/1811.00306" title="Other formats" id="oth-1811.00306" aria-labelledby="oth-1811.00306">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Consistent estimation of high-dimensional factor models when the factor number is over-estimated </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Barigozzi,+M">Matteo Barigozzi</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Cho,+H">Haeran Cho</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item12'>[12]</a> <a href ="/abs/1811.00314" title="Abstract" id="1811.00314"> arXiv:1811.00314 </a> [<a href="/pdf/1811.00314" title="Download PDF" id="pdf-1811.00314" aria-labelledby="pdf-1811.00314">pdf</a>, <a href="/format/1811.00314" title="Other formats" id="oth-1811.00314" aria-labelledby="oth-1811.00314">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Spatial Functional Linear Model and its Estimation Method </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Huang,+T">Tingting Huang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Saporta,+G">Gilbert Saporta</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+H">Huiwen Wang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+S">Shanshan Wang</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span> </div> </div> </dd> <dt> <a name='item13'>[13]</a> <a href ="/abs/1811.00410" title="Abstract" id="1811.00410"> arXiv:1811.00410 </a> [<a href="/pdf/1811.00410" title="Download PDF" id="pdf-1811.00410" aria-labelledby="pdf-1811.00410">pdf</a>, <a href="/format/1811.00410" title="Other formats" id="oth-1811.00410" aria-labelledby="oth-1811.00410">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Dilated DenseNets for Relational Reasoning </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Antoniou,+A">Antreas Antoniou</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=S%C5%82owik,+A">Agnieszka S艂owik</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Crowley,+E+J">Elliot J. Crowley</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Storkey,+A">Amos Storkey</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Extended Abstract </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item14'>[14]</a> <a href ="/abs/1811.00423" title="Abstract" id="1811.00423"> arXiv:1811.00423 </a> [<a href="/pdf/1811.00423" title="Download PDF" id="pdf-1811.00423" aria-labelledby="pdf-1811.00423">pdf</a>, <a href="/format/1811.00423" title="Other formats" id="oth-1811.00423" aria-labelledby="oth-1811.00423">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Multiplicative Latent Force Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Tait,+D+J">Daniel J. Tait</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Worton,+B+J">Bruce J. Worton</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item15'>[15]</a> <a href ="/abs/1811.00439" title="Abstract" id="1811.00439"> arXiv:1811.00439 </a> [<a href="/pdf/1811.00439" title="Download PDF" id="pdf-1811.00439" aria-labelledby="pdf-1811.00439">pdf</a>, <a href="/format/1811.00439" title="Other formats" id="oth-1811.00439" aria-labelledby="oth-1811.00439">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Exact parametric causal mediation analysis for a binary outcome with a binary mediator </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Doretti,+M">Marco Doretti</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Raggi,+M">Martina Raggi</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Stanghellini,+E">Elena Stanghellini</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 24 pages, 5 figures </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Statistical Methods &amp; Applications (2021) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item16'>[16]</a> <a href ="/abs/1811.00450" title="Abstract" id="1811.00450"> arXiv:1811.00450 </a> [<a href="/pdf/1811.00450" title="Download PDF" id="pdf-1811.00450" aria-labelledby="pdf-1811.00450">pdf</a>, <a href="/format/1811.00450" title="Other formats" id="oth-1811.00450" aria-labelledby="oth-1811.00450">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> R friendly multi-threading in C++ </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Nagler,+T">Thomas Nagler</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span> </div> </div> </dd> <dt> <a name='item17'>[17]</a> <a href ="/abs/1811.00457" title="Abstract" id="1811.00457"> arXiv:1811.00457 </a> [<a href="/pdf/1811.00457" title="Download PDF" id="pdf-1811.00457" aria-labelledby="pdf-1811.00457">pdf</a>, <a href="/format/1811.00457" title="Other formats" id="oth-1811.00457" aria-labelledby="oth-1811.00457">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Test &amp; Roll: Profit-Maximizing A/B Tests </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Feit,+E+M">Elea McDonnell Feit</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Berman,+R">Ron Berman</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span>; Methodology (stat.ME) </div> </div> </dd> <dt> <a name='item18'>[18]</a> <a href ="/abs/1811.00462" title="Abstract" id="1811.00462"> arXiv:1811.00462 </a> [<a href="/pdf/1811.00462" title="Download PDF" id="pdf-1811.00462" aria-labelledby="pdf-1811.00462">pdf</a>, <a href="/format/1811.00462" title="Other formats" id="oth-1811.00462" aria-labelledby="oth-1811.00462">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Score-Matching Representative Approach for Big Data Analysis with Generalized Linear Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Li,+K">Keren Li</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Yang,+J">Jie Yang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 44 pages, 11 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item19'>[19]</a> <a href ="/abs/1811.00465" title="Abstract" id="1811.00465"> arXiv:1811.00465 </a> [<a href="/pdf/1811.00465" title="Download PDF" id="pdf-1811.00465" aria-labelledby="pdf-1811.00465">pdf</a>, <a href="/format/1811.00465" title="Other formats" id="oth-1811.00465" aria-labelledby="oth-1811.00465">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Learning Signed Determinantal Point Processes through the Principal Minor Assignment Problem </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Brunel,+V">Victor-Emmanuel Brunel</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Shorter version accepted at NIPS (Neural Information Processing Systems) 2018 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item20'>[20]</a> <a href ="/abs/1811.00488" title="Abstract" id="1811.00488"> arXiv:1811.00488 </a> [<a href="/pdf/1811.00488" title="Download PDF" id="pdf-1811.00488" aria-labelledby="pdf-1811.00488">pdf</a>, <a href="/format/1811.00488" title="Other formats" id="oth-1811.00488" aria-labelledby="oth-1811.00488">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Sparse Model Identification and Learning for Ultra-high-dimensional Additive Partially Linear Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Li,+X">Xinyi Li</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+L">Li Wang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Nettleton,+D">Dan Nettleton</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Journal of Multivariate Analysis, 2019 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item21'>[21]</a> <a href ="/abs/1811.00512" title="Abstract" id="1811.00512"> arXiv:1811.00512 </a> [<a href="/pdf/1811.00512" title="Download PDF" id="pdf-1811.00512" aria-labelledby="pdf-1811.00512">pdf</a>, <a href="/format/1811.00512" title="Other formats" id="oth-1811.00512" aria-labelledby="oth-1811.00512">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Learning Beam Search Policies via Imitation Learning </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Negrinho,+R">Renato Negrinho</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Gormley,+M+R">Matthew R. Gormley</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Gordon,+G+J">Geoffrey J. Gordon</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Published in NIPS 2018 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Artificial Intelligence (cs.AI); Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item22'>[22]</a> <a href ="/abs/1811.00535" title="Abstract" id="1811.00535"> arXiv:1811.00535 </a> [<a href="/pdf/1811.00535" title="Download PDF" id="pdf-1811.00535" aria-labelledby="pdf-1811.00535">pdf</a>, <a href="/format/1811.00535" title="Other formats" id="oth-1811.00535" aria-labelledby="oth-1811.00535">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> High Dimensional Robust Inference for Cox Regression Models </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Kong,+S">Shengchun Kong</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Yu,+Z">Zhuqing Yu</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Zhang,+X">Xianyang Zhang</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Cheng,+G">Guang Cheng</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item23'>[23]</a> <a href ="/abs/1811.00542" title="Abstract" id="1811.00542"> arXiv:1811.00542 </a> [<a href="/pdf/1811.00542" title="Download PDF" id="pdf-1811.00542" aria-labelledby="pdf-1811.00542">pdf</a>, <a href="/format/1811.00542" title="Other formats" id="oth-1811.00542" aria-labelledby="oth-1811.00542">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Pymc-learn: Practical Probabilistic Machine Learning in Python </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Emaasit,+D">Daniel Emaasit</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item24'>[24]</a> <a href ="/abs/1811.00591" title="Abstract" id="1811.00591"> arXiv:1811.00591 </a> [<a href="/pdf/1811.00591" title="Download PDF" id="pdf-1811.00591" aria-labelledby="pdf-1811.00591">pdf</a>, <a href="/format/1811.00591" title="Other formats" id="oth-1811.00591" aria-labelledby="oth-1811.00591">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Defining a Metric Space of Host Logs and Operational Use Cases </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Verma,+M+E">Miki E. Verma</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bridges,+R+A">Robert A. Bridges</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span>; Cryptography and Security (cs.CR) </div> </div> </dd> <dt> <a name='item25'>[25]</a> <a href ="/abs/1811.00596" title="Abstract" id="1811.00596"> arXiv:1811.00596 </a> [<a href="/pdf/1811.00596" title="Download PDF" id="pdf-1811.00596" aria-labelledby="pdf-1811.00596">pdf</a>, <a href="/format/1811.00596" title="Other formats" id="oth-1811.00596" aria-labelledby="oth-1811.00596">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Variational Dropout via Empirical Bayes </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kharitonov,+V">Valery Kharitonov</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Molchanov,+D">Dmitry Molchanov</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Vetrov,+D">Dmitry Vetrov</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item26'>[26]</a> <a href ="/abs/1811.00628" title="Abstract" id="1811.00628"> arXiv:1811.00628 </a> [<a href="/pdf/1811.00628" title="Download PDF" id="pdf-1811.00628" aria-labelledby="pdf-1811.00628">pdf</a>, <a href="/format/1811.00628" title="Other formats" id="oth-1811.00628" aria-labelledby="oth-1811.00628">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Independent Vector Analysis for Data Fusion Prior to Molecular Property Prediction with Machine Learning </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Boukouvalas,+Z">Zois Boukouvalas</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Elton,+D+C">Daniel C. Elton</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Chung,+P+W">Peter W. Chung</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Fuge,+M+D">Mark D. Fuge</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Materials Science (cond-mat.mtrl-sci); Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item27'>[27]</a> <a href ="/abs/1811.00631" title="Abstract" id="1811.00631"> arXiv:1811.00631 </a> [<a href="/pdf/1811.00631" title="Download PDF" id="pdf-1811.00631" aria-labelledby="pdf-1811.00631">pdf</a>, <a href="/format/1811.00631" title="Other formats" id="oth-1811.00631" aria-labelledby="oth-1811.00631">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> MDFS - MultiDimensional Feature Selection </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Piliszek,+R">Rados艂aw Piliszek</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Mnich,+K">Krzysztof Mnich</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Migacz,+S">Szymon Migacz</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Tabaszewski,+P">Pawe艂 Tabaszewski</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Su%C5%82ecki,+A">Andrzej Su艂ecki</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Polewko-Klim,+A">Aneta Polewko-Klim</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Rudnicki,+W">Witold Rudnicki</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 12 pages, 3 figures, 5 tables, license: CC-BY </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Artificial Intelligence (cs.AI); Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item28'>[28]</a> <a href ="/abs/1811.00638" title="Abstract" id="1811.00638"> arXiv:1811.00638 </a> [<a href="/pdf/1811.00638" title="Download PDF" id="pdf-1811.00638" aria-labelledby="pdf-1811.00638">pdf</a>, <a href="/format/1811.00638" title="Other formats" id="oth-1811.00638" aria-labelledby="oth-1811.00638">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Simple Sensitivity Analysis for Differential Measurement Error </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=VanderWeele,+T+J">Tyler J. VanderWeele</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Li,+Y">Yige Li</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item29'>[29]</a> <a href ="/abs/1811.00645" title="Abstract" id="1811.00645"> arXiv:1811.00645 </a> [<a href="/pdf/1811.00645" title="Download PDF" id="pdf-1811.00645" aria-labelledby="pdf-1811.00645">pdf</a>, <a href="/format/1811.00645" title="Other formats" id="oth-1811.00645" aria-labelledby="oth-1811.00645">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The Holdout Randomization Test for Feature Selection in Black Box Models </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Tansey,+W">Wesley Tansey</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Veitch,+V">Victor Veitch</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhang,+H">Haoran Zhang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Rabadan,+R">Raul Rabadan</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Blei,+D+M">David M. Blei</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> New algorithms and simulations; accepted for publication at JCGS </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item30'>[30]</a> <a href ="/abs/1811.00673" title="Abstract" id="1811.00673"> arXiv:1811.00673 </a> [<a href="/pdf/1811.00673" title="Download PDF" id="pdf-1811.00673" aria-labelledby="pdf-1811.00673">pdf</a>, <a href="/format/1811.00673" title="Other formats" id="oth-1811.00673" aria-labelledby="oth-1811.00673">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Ludometrics: Luck, and How to Measure It </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Gilbert,+D+E">Daniel E. Gilbert</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wells,+M+T">Martin T. Wells</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span> </div> </div> </dd> <dt> <a name='item31'>[31]</a> <a href ="/abs/1811.00683" title="Abstract" id="1811.00683"> arXiv:1811.00683 </a> [<a href="/pdf/1811.00683" title="Download PDF" id="pdf-1811.00683" aria-labelledby="pdf-1811.00683">pdf</a>, <a href="/format/1811.00683" title="Other formats" id="oth-1811.00683" aria-labelledby="oth-1811.00683">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Quasi-random sampling for multivariate distributions via generative neural networks </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Hofert,+M">Marius Hofert</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Prasad,+A">Avinash Prasad</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhu,+M">Mu Zhu</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item32'>[32]</a> <a href ="/abs/1811.00686" title="Abstract" id="1811.00686"> arXiv:1811.00686 </a> [<a href="/pdf/1811.00686" title="Download PDF" id="pdf-1811.00686" aria-labelledby="pdf-1811.00686">pdf</a>, <a href="/format/1811.00686" title="Other formats" id="oth-1811.00686" aria-labelledby="oth-1811.00686">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Closed Form Variational Objectives For Bayesian Neural Networks with a Single Hidden Layer </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Jankowiak,+M">Martin Jankowiak</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Bayesian Deep Learning Workshop @ NeurIPS 2018; 11 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item33'>[33]</a> <a href ="/abs/1811.00722" title="Abstract" id="1811.00722"> arXiv:1811.00722 </a> [<a href="/pdf/1811.00722" title="Download PDF" id="pdf-1811.00722" aria-labelledby="pdf-1811.00722">pdf</a>, <a href="/format/1811.00722" title="Other formats" id="oth-1811.00722" aria-labelledby="oth-1811.00722">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Adaptive MCMC for Generalized Method of Moments with Many Moment Conditions </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Tanaka,+M">Masahiro Tanaka</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span> </div> </div> </dd> <dt> <a name='item34'>[34]</a> <a href ="/abs/1811.00724" title="Abstract" id="1811.00724"> arXiv:1811.00724 </a> [<a href="/pdf/1811.00724" title="Download PDF" id="pdf-1811.00724" aria-labelledby="pdf-1811.00724">pdf</a>, <a href="/format/1811.00724" title="Other formats" id="oth-1811.00724" aria-labelledby="oth-1811.00724">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Bayesian Hierarchical Modeling on Covariance Valued Data </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Acharyya,+S">Satwik Acharyya</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Zhang,+Z">Zhengwu Zhang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bhattacharya,+A">Anirban Bhattacharya</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Pati,+D">Debdeep Pati</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Some key references are missing in the old version which are corrected in this version </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span> </div> </div> </dd> <dt> <a name='item35'>[35]</a> <a href ="/abs/1811.00731" title="Abstract" id="1811.00731"> arXiv:1811.00731 </a> [<a href="/pdf/1811.00731" title="Download PDF" id="pdf-1811.00731" aria-labelledby="pdf-1811.00731">pdf</a>, <a href="/format/1811.00731" title="Other formats" id="oth-1811.00731" aria-labelledby="oth-1811.00731">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The age of secrecy and unfairness in recidivism prediction </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Rudin,+C">Cynthia Rudin</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+C">Caroline Wang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Coker,+B">Beau Coker</a></div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Harvard Data Science Review 2(1), 2020 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span>; Computers and Society (cs.CY) </div> </div> </dd> <dt> <a name='item36'>[36]</a> <a href ="/abs/1811.00741" title="Abstract" id="1811.00741"> arXiv:1811.00741 </a> [<a href="/pdf/1811.00741" title="Download PDF" id="pdf-1811.00741" aria-labelledby="pdf-1811.00741">pdf</a>, <a href="/format/1811.00741" title="Other formats" id="oth-1811.00741" aria-labelledby="oth-1811.00741">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Stronger Data Poisoning Attacks Break Data Sanitization Defenses </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Koh,+P+W">Pang Wei Koh</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Steinhardt,+J">Jacob Steinhardt</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Liang,+P">Percy Liang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> This paper was first published on arXiv in 2018 and has since been edited for clarity </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Machine Learning, 2021 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Cryptography and Security (cs.CR); Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item37'>[37]</a> <a href ="/abs/1811.00781" title="Abstract" id="1811.00781"> arXiv:1811.00781 </a> [<a href="/pdf/1811.00781" title="Download PDF" id="pdf-1811.00781" aria-labelledby="pdf-1811.00781">pdf</a>, <a href="/format/1811.00781" title="Other formats" id="oth-1811.00781" aria-labelledby="oth-1811.00781">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Non-Asymptotic Guarantees For Sampling by Stochastic Gradient Descent </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Karagulyan,+A">Avetik Karagulyan</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item38'>[38]</a> <a href ="/abs/1811.00782" title="Abstract" id="1811.00782"> arXiv:1811.00782 </a> [<a href="/pdf/1811.00782" title="Download PDF" id="pdf-1811.00782" aria-labelledby="pdf-1811.00782">pdf</a>, <a href="/format/1811.00782" title="Other formats" id="oth-1811.00782" aria-labelledby="oth-1811.00782">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The Multiplicative Mixed Model with the mumm R package as a General and Easy Random Interaction Model Tool </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=P%C3%B8denphant,+S">Sofie P酶denphant</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Kristensen,+K">Kasper Kristensen</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Brockhoff,+P+B">Per B. Brockhoff</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span> </div> </div> </dd> <dt> <a name='item39'>[39]</a> <a href ="/abs/1811.00908" title="Abstract" id="1811.00908"> arXiv:1811.00908 </a> [<a href="/pdf/1811.00908" title="Download PDF" id="pdf-1811.00908" aria-labelledby="pdf-1811.00908">pdf</a>, <a href="/format/1811.00908" title="Other formats" id="oth-1811.00908" aria-labelledby="oth-1811.00908">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Single-Model Uncertainties for Deep Learning </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Tagasovska,+N">Natasa Tagasovska</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Lopez-Paz,+D">David Lopez-Paz</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> To appear in NeurIPS 2019 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item40'>[40]</a> <a href ="/abs/1811.00928" title="Abstract" id="1811.00928"> arXiv:1811.00928 </a> [<a href="/pdf/1811.00928" title="Download PDF" id="pdf-1811.00928" aria-labelledby="pdf-1811.00928">pdf</a>, <a href="/format/1811.00928" title="Other formats" id="oth-1811.00928" aria-labelledby="oth-1811.00928">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Foundations of Comparison-Based Hierarchical Clustering </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ghoshdastidar,+D">Debarghya Ghoshdastidar</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Perrot,+M">Micha毛l Perrot</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=von+Luxburg,+U">Ulrike von Luxburg</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 26 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item41'>[41]</a> <a href ="/abs/1811.00934" title="Abstract" id="1811.00934"> arXiv:1811.00934 </a> [<a href="/pdf/1811.00934" title="Download PDF" id="pdf-1811.00934" aria-labelledby="pdf-1811.00934">pdf</a>, <a href="/format/1811.00934" title="Other formats" id="oth-1811.00934" aria-labelledby="oth-1811.00934">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Nonparametric identification in the dynamic stochastic block model </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Becker,+A">Ann-Kristin Becker</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Holzmann,+H">Hajo Holzmann</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item42'>[42]</a> <a href ="/abs/1811.00956" title="Abstract" id="1811.00956"> arXiv:1811.00956 </a> [<a href="/pdf/1811.00956" title="Download PDF" id="pdf-1811.00956" aria-labelledby="pdf-1811.00956">pdf</a>, <a href="/format/1811.00956" title="Other formats" id="oth-1811.00956" aria-labelledby="oth-1811.00956">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A Fast Algorithm for Clustering High Dimensional Feature Vectors </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Rahman,+S">Shahina Rahman</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Johnson,+V+E">Valen E. Johnson</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item43'>[43]</a> <a href ="/abs/1811.00964" title="Abstract" id="1811.00964"> arXiv:1811.00964 </a> [<a href="/pdf/1811.00964" title="Download PDF" id="pdf-1811.00964" aria-labelledby="pdf-1811.00964">pdf</a>, <a href="/format/1811.00964" title="Other formats" id="oth-1811.00964" aria-labelledby="oth-1811.00964">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The X Factor: A Robust and Powerful Approach to X-chromosome-Inclusive Whole-genome Association Studies </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Chen,+B">Bo Chen</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Craiu,+R+V">Radu V. Craiu</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Strug,+L+J">Lisa J. Strug</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Sun,+L">Lei Sun</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Applications (stat.AP)</span> </div> </div> </dd> <dt> <a name='item44'>[44]</a> <a href ="/abs/1811.00974" title="Abstract" id="1811.00974"> arXiv:1811.00974 </a> [<a href="/pdf/1811.00974" title="Download PDF" id="pdf-1811.00974" aria-labelledby="pdf-1811.00974">pdf</a>, <a href="/format/1811.00974" title="Other formats" id="oth-1811.00974" aria-labelledby="oth-1811.00974">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Neural Likelihoods via Cumulative Distribution Functions </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Chilinski,+P">Pawel Chilinski</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Silva,+R">Ricardo Silva</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 10 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item45'>[45]</a> <a href ="/abs/1811.01061" title="Abstract" id="1811.01061"> arXiv:1811.01061 </a> [<a href="/pdf/1811.01061" title="Download PDF" id="pdf-1811.01061" aria-labelledby="pdf-1811.01061">pdf</a>, <a href="/format/1811.01061" title="Other formats" id="oth-1811.01061" aria-labelledby="oth-1811.01061">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The Goldenshluger-Lepski Method for Constrained Least-Squares Estimators over RKHSs </div> <div class='list-authors'><a href="https://arxiv.org/search/math?searchtype=author&amp;query=Page,+S">Stephen Page</a>, <a href="https://arxiv.org/search/math?searchtype=author&amp;query=Gr%C3%BCnew%C3%A4lder,+S">Steffen Gr眉new盲lder</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 50 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Statistics Theory (math.ST)</span> </div> </div> </dd> <dt> <a name='item46'>[46]</a> <a href ="/abs/1811.01076" title="Abstract" id="1811.01076"> arXiv:1811.01076 </a> [<a href="/pdf/1811.01076" title="Download PDF" id="pdf-1811.01076" aria-labelledby="pdf-1811.01076">pdf</a>, <a href="/format/1811.01076" title="Other formats" id="oth-1811.01076" aria-labelledby="oth-1811.01076">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation under Latent Confounding </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Shah,+R+D">Rajen D. Shah</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Frot,+B">Benjamin Frot</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Thanei,+G">Gian-Andrea Thanei</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Meinshausen,+N">Nicolai Meinshausen</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 49 pages; to appear in JRSSB </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span>; Statistics Theory (math.ST) </div> </div> </dd> <dt> <a name='item47'>[47]</a> <a href ="/abs/1811.01091" title="Abstract" id="1811.01091"> arXiv:1811.01091 </a> [<a href="/pdf/1811.01091" title="Download PDF" id="pdf-1811.01091" aria-labelledby="pdf-1811.01091">pdf</a>, <a href="/format/1811.01091" title="Other formats" id="oth-1811.01091" aria-labelledby="oth-1811.01091">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Efficient Marginalization-based MCMC Methods for Hierarchical Bayesian Inverse Problems </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Saibaba,+A+K">Arvind K. Saibaba</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Bardsley,+J">Johnathan Bardsley</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Brown,+D+A">D. Andrew Brown</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Alexanderian,+A">Alen Alexanderian</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 27 pages, 8 figures, 5 tables </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Computation (stat.CO)</span>; Numerical Analysis (math.NA) </div> </div> </dd> <dt> <a name='item48'>[48]</a> <a href ="/abs/1811.01117" title="Abstract" id="1811.01117"> arXiv:1811.01117 </a> [<a href="/pdf/1811.01117" title="Download PDF" id="pdf-1811.01117" aria-labelledby="pdf-1811.01117">pdf</a>, <a href="/format/1811.01117" title="Other formats" id="oth-1811.01117" aria-labelledby="oth-1811.01117">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Semiparametric Mixture Regression with Unspecified Error Distributions </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ma,+Y">Yanyuan Ma</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+S">Shaoli Wang</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Xu,+L">Lin Xu</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Yao,+W">Weixin Yao</a></div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Methodology (stat.ME)</span> </div> </div> </dd> <dt> <a name='item49'>[49]</a> <a href ="/abs/1811.01159" title="Abstract" id="1811.01159"> arXiv:1811.01159 </a> [<a href="/pdf/1811.01159" title="Download PDF" id="pdf-1811.01159" aria-labelledby="pdf-1811.01159">pdf</a>, <a href="/format/1811.01159" title="Other formats" id="oth-1811.01159" aria-labelledby="oth-1811.01159">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Understanding and Comparing Scalable Gaussian Process Regression for Big Data </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Liu,+H">Haitao Liu</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Cai,+J">Jianfei Cai</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ong,+Y">Yew-Soon Ong</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Wang,+Y">Yi Wang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 25 pages, 15 figures, preprint submitted to KBS </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> <dt> <a name='item50'>[50]</a> <a href ="/abs/1811.01179" title="Abstract" id="1811.01179"> arXiv:1811.01179 </a> [<a href="/pdf/1811.01179" title="Download PDF" id="pdf-1811.01179" aria-labelledby="pdf-1811.01179">pdf</a>, <a href="/format/1811.01179" title="Other formats" id="oth-1811.01179" aria-labelledby="oth-1811.01179">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Large-scale Heteroscedastic Regression via Gaussian Process </div> <div class='list-authors'><a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Liu,+H">Haitao Liu</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Ong,+Y">Yew-Soon Ong</a>, <a href="https://arxiv.org/search/stat?searchtype=author&amp;query=Cai,+J">Jianfei Cai</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 14 pages, 15 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Machine Learning (stat.ML)</span>; Machine Learning (cs.LG) </div> </div> </dd> </dl> <div class='paging'>Total of 1260 entries : <span>1-50</span> <a href=/list/stat/2018-11?skip=50&amp;show=50>51-100</a> <a href=/list/stat/2018-11?skip=100&amp;show=50>101-150</a> <a href=/list/stat/2018-11?skip=150&amp;show=50>151-200</a> <span>...</span> <a href=/list/stat/2018-11?skip=1250&amp;show=50>1251-1260</a> </div> <div class='morefewer'>Showing up to 50 entries per page: <a href=/list/stat/2018-11?skip=0&amp;show=25 rel="nofollow"> fewer</a> | <a href=/list/stat/2018-11?skip=0&amp;show=100 rel="nofollow"> more</a> | <a href=/list/stat/2018-11?skip=0&amp;show=2000 rel="nofollow"> all</a> </div> </div> </div> </div> </main> <footer style="clear: both;"> <div class="columns is-desktop" role="navigation" aria-label="Secondary" style="margin: -0.75em -0.75em 0.75em -0.75em"> <!-- Macro-Column 1 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- End Macro-Column 1 --> <!-- Macro-Column 2 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> <!-- End Macro-Column 2 --> </div> </footer> </div> <script src="/static/base/1.0.1/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10