CINXE.COM

Conv1D layer

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/api/layers/convolution_layers/convolution1d/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: Conv1D layer"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: Conv1D layer"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>Conv1D layer</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link active" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-sublink" href="/api/models/">Models API</a> <a class="nav-sublink active" href="/api/layers/">Layers API</a> <a class="nav-sublink2" href="/api/layers/base_layer/">The base Layer class</a> <a class="nav-sublink2" href="/api/layers/activations/">Layer activations</a> <a class="nav-sublink2" href="/api/layers/initializers/">Layer weight initializers</a> <a class="nav-sublink2" href="/api/layers/regularizers/">Layer weight regularizers</a> <a class="nav-sublink2" href="/api/layers/constraints/">Layer weight constraints</a> <a class="nav-sublink2" href="/api/layers/core_layers/">Core layers</a> <a class="nav-sublink2 active" href="/api/layers/convolution_layers/">Convolution layers</a> <a class="nav-sublink2" href="/api/layers/pooling_layers/">Pooling layers</a> <a class="nav-sublink2" href="/api/layers/recurrent_layers/">Recurrent layers</a> <a class="nav-sublink2" href="/api/layers/preprocessing_layers/">Preprocessing layers</a> <a class="nav-sublink2" href="/api/layers/normalization_layers/">Normalization layers</a> <a class="nav-sublink2" href="/api/layers/regularization_layers/">Regularization layers</a> <a class="nav-sublink2" href="/api/layers/attention_layers/">Attention layers</a> <a class="nav-sublink2" href="/api/layers/reshaping_layers/">Reshaping layers</a> <a class="nav-sublink2" href="/api/layers/merging_layers/">Merging layers</a> <a class="nav-sublink2" href="/api/layers/activation_layers/">Activation layers</a> <a class="nav-sublink2" href="/api/layers/backend_specific_layers/">Backend-specific layers</a> <a class="nav-sublink" href="/api/callbacks/">Callbacks API</a> <a class="nav-sublink" href="/api/ops/">Ops API</a> <a class="nav-sublink" href="/api/optimizers/">Optimizers</a> <a class="nav-sublink" href="/api/metrics/">Metrics</a> <a class="nav-sublink" href="/api/losses/">Losses</a> <a class="nav-sublink" href="/api/data_loading/">Data loading</a> <a class="nav-sublink" href="/api/datasets/">Built-in small datasets</a> <a class="nav-sublink" href="/api/applications/">Keras Applications</a> <a class="nav-sublink" href="/api/mixed_precision/">Mixed precision</a> <a class="nav-sublink" href="/api/distribution/">Multi-device distribution</a> <a class="nav-sublink" href="/api/random/">RNG API</a> <a class="nav-sublink" href="/api/utils/">Utilities</a> <a class="nav-sublink" href="/api/keras_tuner/">KerasTuner</a> <a class="nav-sublink" href="/api/keras_cv/">KerasCV</a> <a class="nav-sublink" href="/api/keras_nlp/">KerasNLP</a> <a class="nav-sublink" href="/api/keras_hub/">KerasHub</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparameter Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> <a class="nav-link" href="/keras_cv/" role="tab" aria-selected="">KerasCV: Computer Vision Workflows</a> <a class="nav-link" href="/keras_nlp/" role="tab" aria-selected="">KerasNLP: Natural Language Workflows</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/api/'>Keras 3 API documentation</a> / <a href='/api/layers/'>Layers API</a> / <a href='/api/layers/convolution_layers/'>Convolution layers</a> / Conv1D layer </div> <div class='k-content'> <h1 id="conv1d-layer">Conv1D layer</h1> <p><span style="float:right;"><a href="https://github.com/keras-team/keras/tree/v3.6.0/keras/src/layers/convolutional/conv1d.py#L6">[source]</a></span></p> <h3 id="conv1d-class"><code>Conv1D</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv1D</span><span class="p">(</span> <span class="n">filters</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">,</span> <span class="n">strides</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="s2">&quot;valid&quot;</span><span class="p">,</span> <span class="n">data_format</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">dilation_rate</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">use_bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">kernel_initializer</span><span class="o">=</span><span class="s2">&quot;glorot_uniform&quot;</span><span class="p">,</span> <span class="n">bias_initializer</span><span class="o">=</span><span class="s2">&quot;zeros&quot;</span><span class="p">,</span> <span class="n">kernel_regularizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">bias_regularizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">activity_regularizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">kernel_constraint</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">bias_constraint</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span> <span class="p">)</span> </code></pre></div> <p>1D convolution layer (e.g. temporal convolution).</p> <p>This layer creates a convolution kernel that is convolved with the layer input over a single spatial (or temporal) dimension to produce a tensor of outputs. If <code>use_bias</code> is True, a bias vector is created and added to the outputs. Finally, if <code>activation</code> is not <code>None</code>, it is applied to the outputs as well.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>filters</strong>: int, the dimension of the output space (the number of filters in the convolution).</li> <li><strong>kernel_size</strong>: int or tuple/list of 1 integer, specifying the size of the convolution window.</li> <li><strong>strides</strong>: int or tuple/list of 1 integer, specifying the stride length of the convolution. <code>strides &gt; 1</code> is incompatible with <code>dilation_rate &gt; 1</code>.</li> <li><strong>padding</strong>: string, <code>"valid"</code>, <code>"same"</code> or <code>"causal"</code>(case-insensitive). <code>"valid"</code> means no padding. <code>"same"</code> results in padding evenly to the left/right or up/down of the input. When <code>padding="same"</code> and <code>strides=1</code>, the output has the same size as the input. <code>"causal"</code> results in causal(dilated) convolutions, e.g. <code>output[t]</code> does not depend on<code>input[t+1:]</code>. Useful when modeling temporal data where the model should not violate the temporal order. See <a href="https://arxiv.org/abs/1609.03499">WaveNet: A Generative Model for Raw Audio, section2.1</a>.</li> <li><strong>data_format</strong>: string, either <code>"channels_last"</code> or <code>"channels_first"</code>. The ordering of the dimensions in the inputs. <code>"channels_last"</code> corresponds to inputs with shape <code>(batch, steps, features)</code> while <code>"channels_first"</code> corresponds to inputs with shape <code>(batch, features, steps)</code>. It defaults to the <code>image_data_format</code> value found in your Keras config file at <code>~/.keras/keras.json</code>. If you never set it, then it will be <code>"channels_last"</code>.</li> <li><strong>dilation_rate</strong>: int or tuple/list of 1 integers, specifying the dilation rate to use for dilated convolution.</li> <li><strong>groups</strong>: A positive int specifying the number of groups in which the input is split along the channel axis. Each group is convolved separately with <code>filters // groups</code> filters. The output is the concatenation of all the <code>groups</code> results along the channel axis. Input channels and <code>filters</code> must both be divisible by <code>groups</code>.</li> <li><strong>activation</strong>: Activation function. If <code>None</code>, no activation is applied.</li> <li><strong>use_bias</strong>: bool, if <code>True</code>, bias will be added to the output.</li> <li><strong>kernel_initializer</strong>: Initializer for the convolution kernel. If <code>None</code>, the default initializer (<code>"glorot_uniform"</code>) will be used.</li> <li><strong>bias_initializer</strong>: Initializer for the bias vector. If <code>None</code>, the default initializer (<code>"zeros"</code>) will be used.</li> <li><strong>kernel_regularizer</strong>: Optional regularizer for the convolution kernel.</li> <li><strong>bias_regularizer</strong>: Optional regularizer for the bias vector.</li> <li><strong>activity_regularizer</strong>: Optional regularizer function for the output.</li> <li><strong>kernel_constraint</strong>: Optional projection function to be applied to the kernel after being updated by an <code>Optimizer</code> (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.</li> <li><strong>bias_constraint</strong>: Optional projection function to be applied to the bias after being updated by an <code>Optimizer</code>.</li> </ul> <p><strong>Input shape</strong></p> <ul> <li>If <code>data_format="channels_last"</code>: A 3D tensor with shape: <code>(batch_shape, steps, channels)</code></li> <li>If <code>data_format="channels_first"</code>: A 3D tensor with shape: <code>(batch_shape, channels, steps)</code></li> </ul> <p><strong>Output shape</strong></p> <ul> <li>If <code>data_format="channels_last"</code>: A 3D tensor with shape: <code>(batch_shape, new_steps, filters)</code></li> <li>If <code>data_format="channels_first"</code>: A 3D tensor with shape: <code>(batch_shape, filters, new_steps)</code></li> </ul> <p><strong>Returns</strong></p> <p>A 3D tensor representing <code>activation(conv1d(inputs, kernel) + bias)</code>.</p> <p><strong>Raises</strong></p> <ul> <li><strong>ValueError</strong>: when both <code>strides &gt; 1</code> and <code>dilation_rate &gt; 1</code>.</li> </ul> <p><strong>Example</strong></p> <div class="codehilite"><pre><span></span><code><span class="o">&gt;&gt;&gt;</span> <span class="c1"># The inputs are 128-length vectors with 10 timesteps, and the</span> <span class="o">&gt;&gt;&gt;</span> <span class="c1"># batch size is 4.</span> <span class="o">&gt;&gt;&gt;</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="mi">128</span><span class="p">)</span> <span class="o">&gt;&gt;&gt;</span> <span class="n">y</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Conv1D</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s1">&#39;relu&#39;</span><span class="p">)(</span><span class="n">x</span><span class="p">)</span> <span class="o">&gt;&gt;&gt;</span> <span class="nb">print</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">32</span><span class="p">)</span> </code></pre></div> <hr /> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#conv1d-layer'>Conv1D layer</a> </div> <div class='k-outline-depth-3'> <a href='#conv1d-class'><code>Conv1D</code> class</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>

Pages: 1 2 3 4 5 6 7 8 9 10