CINXE.COM
Search results for: BSREM reconstruction
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: BSREM reconstruction</title> <meta name="description" content="Search results for: BSREM reconstruction"> <meta name="keywords" content="BSREM reconstruction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="BSREM reconstruction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="BSREM reconstruction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 636</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: BSREM reconstruction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Phantom and Clinical Evaluation of Block Sequential Regularized Expectation Maximization Reconstruction Algorithm in Ga-PSMA PET/CT Studies Using Various Relative Difference Penalties and Acquisition Durations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Sadeghi">Fatemeh Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Sheikhzadeh"> Peyman Sheikhzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Block Sequential Regularized Expectation Maximization (BSREM) reconstruction algorithm was recently developed to suppress excessive noise by applying a relative difference penalty. The aim of this study was to investigate the effect of various strengths of noise penalization factor in the BSREM algorithm under different acquisition duration and lesion sizes in order to determine an optimum penalty factor by considering both quantitative and qualitative image evaluation parameters in clinical uses. Materials and Methods: The NEMA IQ phantom and 15 clinical whole-body patients with prostate cancer were evaluated. Phantom and patients were injected withGallium-68 Prostate-Specific Membrane Antigen(68 Ga-PSMA)and scanned on a non-time-of-flight Discovery IQ Positron Emission Tomography/Computed Tomography(PET/CT) scanner with BGO crystals. The data were reconstructed using BSREM with a β-value of 100-500 at an interval of 100. These reconstructions were compared to OSEM as a widely used reconstruction algorithm. Following the standard NEMA measurement procedure, background variability (BV), recovery coefficient (RC), contrast recovery (CR) and residual lung error (LE) from phantom data and signal-to-noise ratio (SNR), signal-to-background ratio (SBR) and tumor SUV from clinical data were measured. Qualitative features of clinical images visually were ranked by one nuclear medicine expert. Results: The β-value acts as a noise suppression factor, so BSREM showed a decreasing image noise with an increasing β-value. BSREM, with a β-value of 400 at a decreased acquisition duration (2 min/ bp), made an approximately equal noise level with OSEM at an increased acquisition duration (5 min/ bp). For the β-value of 400 at 2 min/bp duration, SNR increased by 43.7%, and LE decreased by 62%, compared with OSEM at a 5 min/bp duration. In both phantom and clinical data, an increase in the β-value is translated into a decrease in SUV. The lowest level of SUV and noise were reached with the highest β-value (β=500), resulting in the highest SNR and lowest SBR due to the greater noise reduction than SUV reduction at the highest β-value. In compression of BSREM with different β-values, the relative difference in the quantitative parameters was generally larger for smaller lesions. As the β-value decreased from 500 to 100, the increase in CR was 160.2% for the smallest sphere (10mm) and 12.6% for the largest sphere (37mm), and the trend was similar for SNR (-58.4% and -20.5%, respectively). BSREM visually was ranked more than OSEM in all Qualitative features. Conclusions: The BSREM algorithm using more iteration numbers leads to more quantitative accuracy without excessive noise, which translates into higher overall image quality and lesion detectability. This improvement can be used to shorter acquisition time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction" title="BSREM reconstruction">BSREM reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20imaging" title=" PET/CT imaging"> PET/CT imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20penalization" title=" noise penalization"> noise penalization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification%20accuracy" title=" quantification accuracy"> quantification accuracy</a> </p> <a href="https://publications.waset.org/abstracts/155591/phantom-and-clinical-evaluation-of-block-sequential-regularized-expectation-maximization-reconstruction-algorithm-in-ga-psma-petct-studies-using-various-relative-difference-penalties-and-acquisition-durations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Parametric Template-Based 3D Reconstruction of the Human Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu">Jiahe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Qian"> Feng Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Linhang%20Zhu"> Linhang Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20human%20body%20templates" title="parametric human body templates">parametric human body templates</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20of%20the%20human%20body" title=" reconstruction of the human body"> reconstruction of the human body</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-view" title=" multi-view"> multi-view</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a> </p> <a href="https://publications.waset.org/abstracts/173775/parametric-template-based-3d-reconstruction-of-the-human-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Pour%20Yazdanpanah">Ali Pour Yazdanpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Farideh%20Foroozandeh%20Shahraki"> Farideh Foroozandeh Shahraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Regentova"> Emma Regentova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=non-convex" title=" non-convex"> non-convex</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse-view%20reconstruction" title=" sparse-view reconstruction"> sparse-view reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=L1-L2%20minimization" title=" L1-L2 minimization"> L1-L2 minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20of%20convex%20functions" title=" difference of convex functions"> difference of convex functions</a> </p> <a href="https://publications.waset.org/abstracts/70473/sparse-view-ct-reconstruction-based-on-nonconvex-l1-l2-regularizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Image Reconstruction Method Based on L0 Norm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang">Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Xiang"> Hao Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang"> Linyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoothed%20L0" title="smoothed L0">smoothed L0</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20reconstruction" title=" sparse reconstruction"> sparse reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/155598/image-reconstruction-method-based-on-l0-norm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> Synthetic Dermal Template Use in the Reconstruction of a Chronic Scalp Wound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Cornish">Stephanie Cornish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of synthetic dermal templates, also known as dermal matrices, such as PolyNovo® Biodegradable Temporising Matrix (BTM), has been well established in the reconstruction of acute wounds with a full thickness defect of the skin. Its use has become common place in the treatment of full thickness burns and is not unfamiliar in the realm of necrotising fasciitis, free flap donor site reconstruction, and the management of acute traumatic wounds. However, the use of dermal templates for more chronic wounds is rare. The authors present the successful use of BTM in the reconstruction of a chronic scalp wound following the excision of a malignancy and multiple previous failed attempts at repair, thus demonstrating the potential for an increased scope of use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dermal%20template" title="dermal template">dermal template</a>, <a href="https://publications.waset.org/abstracts/search?q=BTM" title=" BTM"> BTM</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic" title=" chronic"> chronic</a>, <a href="https://publications.waset.org/abstracts/search?q=scalp%20wound" title=" scalp wound"> scalp wound</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/152147/synthetic-dermal-template-use-in-the-reconstruction-of-a-chronic-scalp-wound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> Development of a Few-View Computed Tomographic Reconstruction Algorithm Using Multi-Directional Total Variation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia%20Jui%20Hsieh">Chia Jui Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh%20Cheng%20Chen"> Jyh Cheng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih%20Wei%20Kuo"> Chih Wei Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruei%20Teng%20Wang"> Ruei Teng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Woei%20Chyn%20Chu"> Woei Chyn Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) based computed tomographic (CT) reconstruction algorithm utilizes total variation (TV) to transform CT image into sparse domain and minimizes L1-norm of sparse image for reconstruction. Different from the traditional CS based reconstruction which only calculates x-coordinate and y-coordinate TV to transform CT images into sparse domain, we propose a multi-directional TV to transform tomographic image into sparse domain for low-dose reconstruction. Our method considers all possible directions of TV calculations around a pixel, so the sparse transform for CS based reconstruction is more accurate. In 2D CT reconstruction, we use eight-directional TV to transform CT image into sparse domain. Furthermore, we also use 26-directional TV for 3D reconstruction. This multi-directional sparse transform method makes CS based reconstruction algorithm more powerful to reduce noise and increase image quality. To validate and evaluate the performance of this multi-directional sparse transform method, we use both Shepp-Logan phantom and a head phantom as the targets for reconstruction with the corresponding simulated sparse projection data (angular sampling interval is 5 deg and 6 deg, respectively). From the results, the multi-directional TV method can reconstruct images with relatively less artifacts compared with traditional CS based reconstruction algorithm which only calculates x-coordinate and y-coordinate TV. We also choose RMSE, PSNR, UQI to be the parameters for quantitative analysis. From the results of quantitative analysis, no matter which parameter is calculated, the multi-directional TV method, which we proposed, is better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing%20%28CS%29" title="compressed sensing (CS)">compressed sensing (CS)</a>, <a href="https://publications.waset.org/abstracts/search?q=low-dose%20CT%20reconstruction" title=" low-dose CT reconstruction"> low-dose CT reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20variation%20%28TV%29" title=" total variation (TV)"> total variation (TV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-directional%20gradient%20operator" title=" multi-directional gradient operator"> multi-directional gradient operator</a> </p> <a href="https://publications.waset.org/abstracts/77716/development-of-a-few-view-computed-tomographic-reconstruction-algorithm-using-multi-directional-total-variation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Social Capital in Housing Reconstruction Post Disaster Case of Yogyakarta Post Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikaputra">Ikaputra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will focus on the concept of social capital for especially housing reconstruction Post Disaster. The context of the study is Indonesia and Yogyakarta Post Earthquake 2006 as a case, but it is expected that the concept can be adopted in general post disaster reconstruction. The discussion will begin by addressing issues on House Reconstruction Post Disaster in Indonesia and Yogyakarta; defining Social Capital as a concept for effective management capacity based on community; Social Capital Post Java Earthquake utilizing <em>Gotong Royong</em>—community mutual self-help, and Approach and Strategy towards Community-based Reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20empowerment" title="community empowerment">community empowerment</a>, <a href="https://publications.waset.org/abstracts/search?q=Gotong%20Royong" title=" Gotong Royong"> Gotong Royong</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20disaster" title=" post disaster"> post disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capital" title=" social capital"> social capital</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogyakarta-Indonesia" title=" Yogyakarta-Indonesia"> Yogyakarta-Indonesia</a> </p> <a href="https://publications.waset.org/abstracts/73027/social-capital-in-housing-reconstruction-post-disaster-case-of-yogyakarta-post-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> Operative Tips of Strattice Based Breast Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cho%20Ee%20Ng">Cho Ee Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Khout"> Hazem Khout</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarannum%20Fasih"> Tarannum Fasih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acellular dermal matrices are increasingly used to reinforce the lower pole of the breast during implant breast reconstruction. There is no standard technique described in literature for the use of this product. In this article, we share our operative method of fixation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strattice" title="strattice">strattice</a>, <a href="https://publications.waset.org/abstracts/search?q=acellular%20dermal%20matric" title=" acellular dermal matric"> acellular dermal matric</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20reconstruction" title=" breast reconstruction"> breast reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=implant" title=" implant"> implant</a> </p> <a href="https://publications.waset.org/abstracts/24838/operative-tips-of-strattice-based-breast-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> 3D Reconstruction of Human Body Based on Gender Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu">Jiahe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Qian"> Feng Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SMPL-X was a powerful parametric human body model that included male, neutral, and female models, with significant gender differences between these three models. During the process of 3D human body reconstruction, the correct selection of standard templates was crucial for obtaining accurate results. To address this issue, we developed an efficient gender classification algorithm to automatically select the appropriate template for 3D human body reconstruction. The key to this gender classification algorithm was the precise analysis of human body features. By using the SMPL-X model, the algorithm could detect and identify gender features of the human body, thereby determining which standard template should be used. The accuracy of this algorithm made the 3D reconstruction process more accurate and reliable, as it could adjust model parameters based on individual gender differences. SMPL-X and the related gender classification algorithm have brought important advancements to the field of 3D human body reconstruction. By accurately selecting standard templates, they have improved the accuracy of reconstruction and have broad potential in various application fields. These technologies continue to drive the development of the 3D reconstruction field, providing us with more realistic and accurate human body models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20classification" title="gender classification">gender classification</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20detection" title=" joint detection"> joint detection</a>, <a href="https://publications.waset.org/abstracts/search?q=SMPL-X" title=" SMPL-X"> SMPL-X</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/173842/3d-reconstruction-of-human-body-based-on-gender-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> The Impact of COVID-19 on Reconstructive Breast Surgery and Future Prospective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amenah%20Galo">Amenah Galo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Farid"> Mohammed Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kareem%20%20Alsharkawy"> Kareem Alsharkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Warner"> Robert Warner</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthikeyan%20Srinivasan"> Karthikeyan Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20Khalil"> Haitham Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Waters"> Ruth Waters</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The cessation of elective surgery, particularly breast reconstruction, continue to be affected by the COVID-19 pandemic. The restructuring of medical services and staff redeployment severely affected the ability to return to normality for surgical specialties. The aim of this study is to determine the decline in breast reconstruction affected by the COVID-19 pandemic in a tertiary center. Methods: A retrospective review of breast reconstruction cases (autologous, non-autologous) or mastectomies Pre- COVID (March 2019-March 2020) and during COVID (March 2020- March 2021) at Queen Elizabeth Hospital, Birmingham, were collated. Data included patient demographics, BMI, previous and recent reconstruction, length of hospital stay, and mastectomies, including risk-reducing. Results: The number of patients who had breast reconstruction was significantly lower during COVID (n=62) compared to pre-COVID (n=199). The mean age (pre-COVID 51, COVID 59 years), BMI (Pre-COVID and COVID = 27), previous reconstruction (pre-COVID n=101, 51%, COVID n=33, 53%) and length hospital stay was less during COVID (3 days) compared to Pre-COVID (4 days). The proportion of risk-reducing mastectomies and reconstruction during COVID (32%, n=20) were higher than pre-COVID (21%, n=41). A higher proportion rate of autologous reconstruction (DIEP 56, TRAM 17) Pre-COVID compared to COVID (DIEP 22, TRAM 7). Implant reconstructions were higher during COVID (n=19, 31%) than pre-COVID (n=31, 16%). Conclusion: The lack of regular provision for breast reconstruction continues to decline during the pandemic. This will have a tremendous impact on waiting lists without a timeline for reconstruction to offer patients. An international survey highlights the disparities in offering breast reconstruction and strategies to rectify this issue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20reconstruction" title="breast reconstruction">breast reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20pandemic" title=" COVID-19 pandemic"> COVID-19 pandemic</a>, <a href="https://publications.waset.org/abstracts/search?q=mastectomy" title=" mastectomy"> mastectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=autologous" title=" autologous"> autologous</a>, <a href="https://publications.waset.org/abstracts/search?q=implant" title=" implant"> implant</a> </p> <a href="https://publications.waset.org/abstracts/141759/the-impact-of-covid-19-on-reconstructive-breast-surgery-and-future-prospective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> Complex Technology of Virtual Reconstruction: The Case of Kazan Imperial University of XIX-Early XX Centuries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20K.%20Karimova">L. K. Karimova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Shariukova"> K. I. Shariukova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Kirpichnikova"> A. A. Kirpichnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Razuvalova"> E. A. Razuvalova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deals with technology of virtual reconstruction of Kazan Imperial University of XIX - early XX centuries. The paper describes technologies of 3D-visualization of high-resolution models of objects of university space, creation of multi-agent system and connected with these objects organized database of historical sources, variants of use of technologies of immersion into the virtual environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D-reconstruction" title="3D-reconstruction">3D-reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20space" title=" university space"> university space</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reconstruction" title=" virtual reconstruction"> virtual reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20heritage" title=" virtual heritage"> virtual heritage</a> </p> <a href="https://publications.waset.org/abstracts/41436/complex-technology-of-virtual-reconstruction-the-case-of-kazan-imperial-university-of-xix-early-xx-centuries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> 3D Human Body Reconstruction Based on Multiple Viewpoints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu">Jiahe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=HongyangYu"> HongyangYu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Qian"> Feng Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20human%20reconstruction" title="3D human reconstruction">3D human reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-view" title=" multi-view"> multi-view</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20point" title=" joint point"> joint point</a>, <a href="https://publications.waset.org/abstracts/search?q=SMPL-X" title=" SMPL-X"> SMPL-X</a> </p> <a href="https://publications.waset.org/abstracts/173747/3d-human-body-reconstruction-based-on-multiple-viewpoints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> 3D Object Model Reconstruction Based on Polywogs Wavelet Network Parametrization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Othmani">Mohamed Othmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassine%20Khlifi"> Yassine Khlifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a technique for compact three dimensional (3D) object model reconstruction using wavelet networks. It consists to transform an input surface vertices into signals,and uses wavelet network parameters for signal approximations. To prove this, we use a wavelet network architecture founded on several mother wavelet families. POLYnomials WindOwed with Gaussians (POLYWOG) wavelet families are used to maximize the probability to select the best wavelets which ensure the good generalization of the network. To achieve a better reconstruction, the network is trained several iterations to optimize the wavelet network parameters until the error criterion is small enough. Experimental results will shown that our proposed technique can effectively reconstruct an irregular 3D object models when using the optimized wavelet network parameters. We will prove that an accurateness reconstruction depends on the best choice of the mother wavelets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3d%20object" title="3d object">3d object</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=parametrization" title=" parametrization"> parametrization</a>, <a href="https://publications.waset.org/abstracts/search?q=polywog%20wavelets" title=" polywog wavelets"> polywog wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20networks" title=" wavelet networks"> wavelet networks</a> </p> <a href="https://publications.waset.org/abstracts/49814/3d-object-model-reconstruction-based-on-polywogs-wavelet-network-parametrization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omer%20Cahana">Omer Cahana</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofer%20Levi"> Ofer Levi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Herman"> Maya Herman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title="magnetic resonance imaging">magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=pyramid%20network" title=" pyramid network"> pyramid network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/150838/end-to-end-pyramid-based-method-for-magnetic-resonance-imaging-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Accidental Electrocution, Reconstruction of Events</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20P.%20Raghavendra%20Babu">Y. P. Raghavendra Babu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocution is a common cause of morbidity and mortality as electricity is an indispensible part of today’s World. Deaths due to electrocution which are witnessed do not pose a problem at the manner and cause of death. However un-witnessed deaths can raise suspicion of manner of death. A case of fatal electrocution is reported here which was diagnosed to be accidental in manner with the help of reconstruction of events by proper investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocution" title="electrocution">electrocution</a>, <a href="https://publications.waset.org/abstracts/search?q=manner%20of%20death" title=" manner of death"> manner of death</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20of%20events" title=" reconstruction of events"> reconstruction of events</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20information" title=" health information"> health information</a> </p> <a href="https://publications.waset.org/abstracts/3221/accidental-electrocution-reconstruction-of-events" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Riazifar">Negar Riazifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20G.%20Stocks"> Nigel G. Stocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20crossing%20sampling" title="level crossing sampling">level crossing sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20stability" title=" numerical stability"> numerical stability</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20processing" title=" speech processing"> speech processing</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20polynomial" title=" trigonometric polynomial"> trigonometric polynomial</a> </p> <a href="https://publications.waset.org/abstracts/134973/efficient-high-fidelity-signal-reconstruction-based-on-level-crossing-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaa%20I.%20Abu%20Alasal">Sanaa I. Abu Alasal</a>, <a href="https://publications.waset.org/abstracts/search?q=Madleen%20M.%20Esbeih"> Madleen M. Esbeih</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20R.%20Fayyad"> Eman R. Fayyad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rami%20S.%20Gharaibeh"> Rami S. Gharaibeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Z.%20Ali"> Mostafa Z. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Freewan"> Ahmed A. Freewan</a>, <a href="https://publications.waset.org/abstracts/search?q=Monther%20M.%20Jamhawi"> Monther M. Jamhawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meshes" title="meshes">meshes</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds" title=" point clouds"> point clouds</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20reconstruction%20protocols" title=" surface reconstruction protocols"> surface reconstruction protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title=" 3D reconstruction"> 3D reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/14504/a-fast-and-robust-protocol-for-reconstruction-and-re-enactment-of-historical-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> The Effect of the Acquisition and Reconstruction Parameters in Quality of Spect Tomographic Images with Attenuation and Scatter Correction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Boutaghane">N. Boutaghane</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Tounsi"> F. Z. Tounsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many physical and technological factors degrade the SPECT images, both qualitatively and quantitatively. For this, it is not always put into leading technological advances to improve the performance of tomographic gamma camera in terms of detection, collimation, reconstruction and correction of tomographic images methods. We have to master firstly the choice of various acquisition and reconstruction parameters, accessible to clinical cases and using the attenuation and scatter correction methods to always optimize quality image and minimized to the maximum dose received by the patient. In this work, an evaluation of qualitative and quantitative tomographic images is performed based on the acquisition parameters (counts per projection) and reconstruction parameters (filter type, associated cutoff frequency). In addition, methods for correcting physical effects such as attenuation and scatter degrading the image quality and preventing precise quantitative of the reconstructed slices are also presented. Two approaches of attenuation and scatter correction are implemented: the attenuation correction by CHANG method with a filtered back projection reconstruction algorithm and scatter correction by the subtraction JASZCZAK method. Our results are considered as such recommandation, which permits to determine the origin of the different artifacts observed both in quality control tests and in clinical images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=scatter" title=" scatter"> scatter</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20filter" title=" reconstruction filter"> reconstruction filter</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title=" image quality"> image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=acquisition%20and%20reconstruction%20parameters" title=" acquisition and reconstruction parameters"> acquisition and reconstruction parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=SPECT" title=" SPECT"> SPECT</a> </p> <a href="https://publications.waset.org/abstracts/38755/the-effect-of-the-acquisition-and-reconstruction-parameters-in-quality-of-spect-tomographic-images-with-attenuation-and-scatter-correction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Non-Invasive Imaging of Human Tissue Using NIR Light</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar">Ashwani Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NIR%20light" title="NIR light">NIR light</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue" title=" tissue"> tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=blurring" title=" blurring"> blurring</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/33453/non-invasive-imaging-of-human-tissue-using-nir-light" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> Digital Reconstruction of Museum's Statue Using 3D Scanner for Cultural Preservation in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Zaini">Ahmad Zaini</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Muhammad%20Reza%20Hadafi"> F. Muhammad Reza Hadafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Surya%20Sumpeno"> Surya Sumpeno</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhtadin"> Muhtadin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mochamad%20Hariadi"> Mochamad Hariadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lack of information about museum’s collection reduces the number of visits of museum. Museum’s revitalization is an urgent activity to increase the number of visits. The research's roadmap is building a web-based application that visualizes museum in the virtual form including museum's statue reconstruction in the form of 3D. This paper describes implementation of three-dimensional model reconstruction method based on light-strip pattern on the museum statue using 3D scanner. Noise removal, alignment, meshing and refinement model's processes is implemented to get a better 3D object reconstruction. Model’s texture derives from surface texture mapping between object's images with reconstructed 3D model. Accuracy test of dimension of the model is measured by calculating relative error of virtual model dimension compared against the original object. The result is realistic three-dimensional model textured with relative error around 4.3% to 5.8%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20reconstruction" title="3D reconstruction">3D reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20pattern%20structure" title=" light pattern structure"> light pattern structure</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20mapping" title=" texture mapping"> texture mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=museum" title=" museum"> museum</a> </p> <a href="https://publications.waset.org/abstracts/8469/digital-reconstruction-of-museums-statue-using-3d-scanner-for-cultural-preservation-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Impact of Obesity on Outcomes in Breast Reconstruction: A Systematic Review and Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriana%20C.%20Panayi">Adriana C. Panayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Riaz%20A.%20Agha"> Riaz A. Agha</a>, <a href="https://publications.waset.org/abstracts/search?q=Brady%20A.%20Sieber"> Brady A. Sieber</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20P.%20Orgill"> Dennis P. Orgill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Increased rates of both breast cancer and obesity have resulted in more women seeking breast reconstruction. These women may be at increased risk for perioperative complications. A systematic review was conducted to assess the outcomes in obese women who have undergone breast reconstruction following mastectomy. Methods: Cochrane, PUBMED and EMBASE electronic databases were screened and data was extracted from included studies. The clinical outcomes assessed were surgical complications, medical complications, length of postoperative hospital stay, reoperation rate and patient satisfaction. Results: 33 studies met the inclusion criteria for the review and 29 provided enough data to be included in the meta-analysis (71368 patients, 20061 of which were obese). Obese women were 2.3 times more likely to experience surgical complications (95 percent CI 2.19 to 2.39; P < 0.00001), 2.8 times more likely to have medical complications (95 percent CI 2.41 to 3.26; P < 0.00001) and had a 1.9 times higher risk of reoperation (95 percent CI 1.75 to 2.07; P < 0.00001). The most common complication, wound dehiscence, was 2.5 times more likely in obese women (95 percent CI 1.80 to 3.52; P < 0.00001). Sensitivity analysis confirmed that obese women were more likely to experience surgical complications (RR 2.36, 95% CI 2.22–2.52; P < 0.00001). Conclusions: This study provides evidence that obesity increases the risk of complications in both implant and autologous reconstruction. Additional prospective and observational studies are needed to determine if weight reduction prior to reconstruction reduces the perioperative risks associated with obesity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autologous%20reconstruction" title="autologous reconstruction">autologous reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20reconstruction" title=" breast reconstruction"> breast reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=literature%20review" title=" literature review"> literature review</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=oncology" title=" oncology"> oncology</a>, <a href="https://publications.waset.org/abstracts/search?q=prosthetic%20reconstruction" title=" prosthetic reconstruction"> prosthetic reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/68878/impact-of-obesity-on-outcomes-in-breast-reconstruction-a-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> Text Mining Analysis of the Reconstruction Plans after the Great East Japan Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minami%20Ito">Minami Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Iijima"> Akihiro Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On March 11, 2011, the Great East Japan Earthquake occurred off the coast of Sanriku, Japan. It is important to build a sustainable society through the reconstruction process rather than simply restoring the infrastructure. To compare the goals of reconstruction plans of quake-stricken municipalities, Japanese language morphological analysis was performed by using text mining techniques. Frequently-used nouns were sorted into four main categories of “life”, “disaster prevention”, “economy”, and “harmony with environment”. Because Soma City is affected by nuclear accident, sentences tagged to “harmony with environment” tended to be frequent compared to the other municipalities. Results from cluster analysis and principle component analysis clearly indicated that the local government reinforces the efforts to reduce risks from radiation exposure as a top priority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20reconstruction" title="eco-friendly reconstruction">eco-friendly reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=harmony%20with%20environment" title=" harmony with environment"> harmony with environment</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20disaster" title=" nuclear disaster"> nuclear disaster</a> </p> <a href="https://publications.waset.org/abstracts/3245/text-mining-analysis-of-the-reconstruction-plans-after-the-great-east-japan-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> The Voice Rehabilitation Program Following Ileocolon Flap Transfer for Voice Reconstruction after Laryngectomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Wen%20Huang">Chi-Wen Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Chi%20Chen"> Hung-Chi Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Total laryngectomy affects swallowing, speech functions and life quality in the head and neck cancer. Voice restoration plays an important role in social activities and communication. Several techniques have been developed for voice restoration and reported to improve the life quality. However, the rehabilitation program for voice reconstruction by using the ileocolon flap still unclear. A retrospective study was done, and the patients' data were drawn from the medical records between 2010 and 2016 who underwent voice reconstruction by ileocolon flap after laryngectomy. All of them were trained to swallow first; then, the voice rehabilitation was started. The outcome of voice was evaluated after 6 months using the 4-point scoring scale. In our result, 9.8% patients could give very clear voice so everyone could understand their speech, 61% patients could be understood well by families and friends, 20.2% patients could only talk with family, and 9% patients had difficulty to be understood. Moreover, the 57% patients did not need a second surgery, but in 43% patients voice was made clear by a second surgery. In this study, we demonstrated that the rehabilitation program after voice reconstruction with ileocolon flap for post-laryngectomy patients is important because the anatomical structure is different from the normal larynx. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-laryngectomy" title="post-laryngectomy">post-laryngectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=ileocolon%20flap" title=" ileocolon flap"> ileocolon flap</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20reconstruction" title=" voice reconstruction"> voice reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/87060/the-voice-rehabilitation-program-following-ileocolon-flap-transfer-for-voice-reconstruction-after-laryngectomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Debt Reconstruction, Career Development and Famers Household Well-Being in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yothin%20Sawangdee">Yothin Sawangdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyawat%20Katewongsa"> Piyawat Katewongsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Chutima%20Yousomboon"> Chutima Yousomboon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kornkanok%20Pongpradit"> Kornkanok Pongpradit</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakapas%20Saengchai"> Sakapas Saengchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Phusit%20Khantikul"> Phusit Khantikul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Debts reconstruction under some of moratorium projects is one of important method that highly benefits to both the Banks and farmers. The method can reduce probabilities for nonprofits loan. This paper discuss about debts reconstruction and career development training for farmers in Thailand between 2011 and 2013. The research designed is mix-method between quantitative survey and qualitative survey. Sample size for quantitative method is 1003 cases. Data gathering procedure is between October and December 2013. Main results affirmed that debts reconstruction is needed. And there are numerous benefits from farmers’ career development training. Many of farmers who attend field school activities able to bring knowledge learned to apply for the farms’ work. They can reduce production costs. Framers’ quality of life and their household well-being also improve. This program should apply in any countries where farmers have highly debts and highly risks for not return the debts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=career%20development" title="career development">career development</a>, <a href="https://publications.waset.org/abstracts/search?q=debts%20reconstruction" title=" debts reconstruction"> debts reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers%20household%20well-being" title=" farmers household well-being"> farmers household well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand "> Thailand </a> </p> <a href="https://publications.waset.org/abstracts/10161/debt-reconstruction-career-development-and-famers-household-well-being-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Virtual and Visual Reconstructions in Museum Expositions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20Razuvalova">Ekaterina Razuvalova</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Rudenko"> Konstantin Rudenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article the most successful examples of international visual and virtual reconstructions of historical and culture objects, which are based on informative and communicative technologies, are represented. 3D reconstructions can demonstrate outward appearance, visualize different hypothesis, connected to represented object. Virtual reality can give us any daytime and season, any century and environment. We can see how different people from different countries and different era lived; we can get different information about any object; we can see historical complexes in real city environment, which are damaged or vanished. These innovations confirm the fact, that 3D reconstruction is important in museum development. Considering the most interesting examples of visual and virtual reconstructions, we can notice, that visual reconstruction is a 3D image of different objects, historical complexes, buildings and phenomena. They are constant and we can see them only as momentary objects. And virtual reconstruction is some environment with its own time, rules and phenomena. These reconstructions are continuous; seasons, daytime and natural conditions can change there. They can demonstrate abilities of virtual world existence. In conclusion: new technologies give us opportunities to expand the boundaries of museum space, improve abilities of museum expositions, create emotional atmosphere of game immersion, which can interest visitor. Usage of network sources allows increasing the number of visitors and virtual reconstruction opportunities show creative side of museum business. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20technologies" title="computer technologies">computer technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20reconstruction" title=" historical reconstruction"> historical reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=museums" title=" museums"> museums</a>, <a href="https://publications.waset.org/abstracts/search?q=museum%20expositions" title=" museum expositions"> museum expositions</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reconstruction" title=" virtual reconstruction"> virtual reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/39522/virtual-and-visual-reconstructions-in-museum-expositions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Multimodal Direct Neural Network Positron Emission Tomography Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Whiteley">William Whiteley</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Gregor"> Jens Gregor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20reconstruction" title=" image reconstruction"> image reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=positron%20emission%20tomography" title=" positron emission tomography"> positron emission tomography</a> </p> <a href="https://publications.waset.org/abstracts/126580/multimodal-direct-neural-network-positron-emission-tomography-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Non-Invasive Imaging of Tissue Using Near Infrared Radiations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar%20Aggarwal">Ashwani Kumar Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=least-squares%20optimization" title="least-squares optimization">least-squares optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interaction" title=" laser interaction"> laser interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20scattering" title=" light scattering"> light scattering</a> </p> <a href="https://publications.waset.org/abstracts/33280/non-invasive-imaging-of-tissue-using-near-infrared-radiations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Reconstruction Post-mastectomy: A Literature Review on Its Indications and Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Layaly%20Ayoub">Layaly Ayoub</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Ribeiro"> Mariana Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Breast cancer is currently considered the leading cause of cancer-related deaths among women in Brazil. Mastectomy, essential in this treatment, often necessitates subsequent breast reconstruction to restore physical appearance and aid in the emotional and psychological recovery of patients. The choice between immediate or delayed reconstruction is influenced by factors such as the type and stage of cancer, as well as the patient's overall health. The decision between autologous breast reconstruction or implant-based reconstruction requires a detailed analysis of individual conditions and needs. Objectives: This study analyzes the techniques and indications used in post-mastectomy breast reconstruction. Methodology: Literature review conducted in the PubMed and SciELO databases, focusing on articles that met the inclusion and exclusion criteria and descriptors. Results: After mastectomy, breast reconstruction is commonly performed. It is necessary to determine the type of technique to be used in each case depending on the specific characteristics of each patient. The tissue expander technique is indicated for patients with sufficient skin and tissue post-mastectomy, who do not require additional radiotherapy, and who opt for a less complex surgery with a shorter recovery time. This procedure promotes the gradual expansion of soft tissues where the definitive implant will be placed. Both temporary and permanent expanders offer flexibility, allowing for adjustment in the expander size until the desired volume is reached, enabling the skin and tissues to adapt to the breast implant area. Conversely, autologous reconstruction is indicated for patients who will undergo radiotherapy, have insufficient tissue, and prefer a more natural solution. This technique uses the transverse rectus abdominis muscle (TRAM) flap, the latissimus dorsi muscle flap, the gluteal flap, and local muscle flaps to shape a new breast, potentially combined with a breast implant. Conclusion: In this context, it is essential to conduct a thorough evaluation regarding the technique to be applied, as both have their benefits and challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indications" title="indications">indications</a>, <a href="https://publications.waset.org/abstracts/search?q=post-mastectomy" title=" post-mastectomy"> post-mastectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20reconstruction" title=" breast reconstruction"> breast reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=techniques" title=" techniques"> techniques</a> </p> <a href="https://publications.waset.org/abstracts/188478/reconstruction-post-mastectomy-a-literature-review-on-its-indications-and-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Efficient Alias-Free Level Crossing Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Riazifar">Negar Riazifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20G.%20Stocks"> Nigel G. Stocks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to an alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alias-free" title="alias-free">alias-free</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20crossing%20sampling" title=" level crossing sampling"> level crossing sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum" title=" spectrum"> spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=trigonometric%20polynomial" title=" trigonometric polynomial"> trigonometric polynomial</a> </p> <a href="https://publications.waset.org/abstracts/136144/efficient-alias-free-level-crossing-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> 3D Human Face Reconstruction in Unstable Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoyuan%20Suo">Xiaoyuan Suo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20photogrammetry" title="3D photogrammetry">3D photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20object%20reconstruction" title=" 3D object reconstruction"> 3D object reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20expression%20recognition" title=" facial expression recognition"> facial expression recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20recognition" title=" facial recognition"> facial recognition</a> </p> <a href="https://publications.waset.org/abstracts/92745/3d-human-face-reconstruction-in-unstable-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=BSREM%20reconstruction&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>