CINXE.COM
Search results for: finned tube heat exchanger
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: finned tube heat exchanger</title> <meta name="description" content="Search results for: finned tube heat exchanger"> <meta name="keywords" content="finned tube heat exchanger"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="finned tube heat exchanger" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="finned tube heat exchanger"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3499</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: finned tube heat exchanger</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3499</span> Numerical Studies on the Performance of the Finned-Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Praveen%20Kumar">S. P. Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bong-Su%20Sin"> Bong-Su Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwon-Hee%20Lee"> Kwon-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finned-tube heat exchangers are predominantly used in space conditioning systems, as well as other applications requiring heat exchange between two fluids. The design of finned-tube heat exchangers requires the selection of over a dozen design parameters by the designer such as tube pitch, tube diameter, tube thickness, etc. Finned-tube heat exchangers are common devices; however, their performance characteristics are complicated. In this paper, numerical studies have been carried out to analyze the performances of finned tube heat exchanger (without fins considered for experimental purpose) by predicting the characteristics of temperature difference and pressure drop. In this study, a design considering 5 design variables, maximizing the temperature difference and minimizing the pressure drop was suggested by applying DOE. In this process, L18 orthogonal array was adopted. Parametric analytical studies have been carried out using Analysis of Variance (ANOVA) to determine the relative importance of each variable with respect to the temperature difference and the pressure drop. Following the results, the final design was suggested by predicting the optimum design therefore confirming the optimized condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title="heat exchanger">heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20analysis" title=" fluid analysis"> fluid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title=" analysis of variance"> analysis of variance</a> </p> <a href="https://publications.waset.org/abstracts/4352/numerical-studies-on-the-performance-of-the-finned-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3498</span> Numerical Study for Spatial Optimization of DVG for Fin and Tube Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Arora">Amit Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20V.%20Subbarao"> P. M. V. Subbarao</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Agarwal"> R. S. Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study attempts to find promising locations of upwash delta winglets for an inline finned tube heat exchanger. Later, location of winglets that delivers highest improvement in thermal performance is identified. Numerical results clearly showed that optimally located upwash delta winglets not only improved the thermal performance of fin area in tube wake and tubes, but also improved overall thermal performance of heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apparent%20friction%20factor" title="apparent friction factor">apparent friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20winglet" title=" delta winglet"> delta winglet</a>, <a href="https://publications.waset.org/abstracts/search?q=fin%20and%20tube%20heat%20exchanger" title=" fin and tube heat exchanger"> fin and tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20vortices" title=" longitudinal vortices"> longitudinal vortices</a> </p> <a href="https://publications.waset.org/abstracts/13189/numerical-study-for-spatial-optimization-of-dvg-for-fin-and-tube-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3497</span> Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remo%20Waser">Remo Waser</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Maranda"> Simon Maranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Stamatiou"> Anastasia Stamatiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludger%20J.%20Fischer"> Ludger J. Fischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Worlitschek"> Joerg Worlitschek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modelling%20of%20solidification" title="modelling of solidification">modelling of solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger" title=" finned tube heat exchanger"> finned tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20thermal%20energy%20storage" title=" latent thermal energy storage"> latent thermal energy storage</a> </p> <a href="https://publications.waset.org/abstracts/63495/modelling-of-solidification-in-a-latent-thermal-energy-storage-with-a-finned-tube-bundle-heat-exchanger-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3496</span> Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Hajabdollahi">Hassan Hajabdollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube%20heat%20exchanger" title="shell and tube heat exchanger">shell and tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles%20additive" title=" nanoparticles additive"> nanoparticles additive</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20annual%20cost" title=" total annual cost"> total annual cost</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20volumetric%20concentration" title=" particle volumetric concentration"> particle volumetric concentration</a> </p> <a href="https://publications.waset.org/abstracts/76502/economic-optimization-of-shell-and-tube-heat-exchanger-using-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3495</span> Heat Exchanger Optimization of a Domestic Refrigerator with Separate Cooling Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Tosun">Tugba Tosun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mert%20Tosun"> Mert Tosun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooling system performance and energy consumption in the bypass two-circuit cycle have been studied experimentally to find optimum evaporator type and geometry, capillary tube diameter and capillary length. Two types of evaporators, such as wire on the tube and finned tube evaporators were used for the experiments in the fresh food compartment. As capillary tube inner diameter and total length; 0.66 mm and 0.8mm, and 3000 mm and 3500 mm were selected as parameters, respectively. Experiments were performed at the 25⁰C ambient temperature while the average temperature of the fresh food compartment is kept at 5⁰C and the highest package temperature of the freezer compartment is kept at -18⁰C, which are defined in IEC 62552 European standard. The Design of Experiments (DOE) technique which is six sigma method has been used to indicate of effective parameters in the bypass two-circuit cycle. The experimental results revealed that the most effective parameter of the system is the evaporator type. Finned tube evaporator with 12 tube passes was found as the best option for the bypass two-circuit refrigeration cycle among the 8 different opportunities. The optimum cooling performance and the lowest energy consumption were provided with 0.66 mm capillary tube inner diameter and 3500 mm capillary tube length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20tube" title="capillary tube">capillary tube</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerator" title=" refrigerator"> refrigerator</a>, <a href="https://publications.waset.org/abstracts/search?q=separate%20cooling%20circuits" title=" separate cooling circuits"> separate cooling circuits</a> </p> <a href="https://publications.waset.org/abstracts/105366/heat-exchanger-optimization-of-a-domestic-refrigerator-with-separate-cooling-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3494</span> Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Soleimani">Shima Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Eckels"> Steven Eckels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20micro-finned%20tube" title="three-dimensional micro-finned tube">three-dimensional micro-finned tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/132535/parametric-study-of-3d-micro-fin-tubes-on-heat-transfer-and-friction-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3493</span> Waste Heat Recovery Using Spiral Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parthiban%20S.%20R.">Parthiban S. R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5 kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spiral%20heat%20exchanger" title="spiral heat exchanger">spiral heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20based%20materials" title=" polymer based materials"> polymer based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20factor" title=" fouling factor"> fouling factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20load" title=" heat load"> heat load</a> </p> <a href="https://publications.waset.org/abstracts/26107/waste-heat-recovery-using-spiral-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3492</span> Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Parthiban">S. R. Parthiban</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Elajchet%20Senni"> C. Elajchet Senni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spiral%20heat%20exchanger" title="spiral heat exchanger">spiral heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20based%20materials" title=" polymer based materials"> polymer based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20factor" title=" fouling factor"> fouling factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20load" title=" heat load"> heat load</a> </p> <a href="https://publications.waset.org/abstracts/26811/polymer-spiral-film-gas-liquid-heat-exchanger-for-waste-heat-recovery-in-exhaust-gases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3491</span> Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Soleimani">Shima Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Eckels"> Steven Eckels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20micro-fin%20tube" title="three-dimensional micro-fin tube">three-dimensional micro-fin tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/137786/parametric-study-of-3d-micro-fin-tubes-on-heat-transfer-and-friction-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3490</span> Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jason%20P.%20Michaud">Jason P. Michaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Connor%20P.%20Speer"> Connor P. Speer</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Miller"> David A. Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20S.%20Nobes"> David S. Nobes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of 50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finned-tube%20heat%20exchangers" title="finned-tube heat exchangers">finned-tube heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20correlations" title=" heat transfer correlations"> heat transfer correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsatile%20flow" title=" pulsatile flow"> pulsatile flow</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20radiators" title=" computer radiators"> computer radiators</a> </p> <a href="https://publications.waset.org/abstracts/59633/empirical-heat-transfer-correlations-of-finned-tube-heat-exchangers-in-pulsatile-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3489</span> Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogi%20Sirodz%20Gaos">Yogi Sirodz Gaos</a>, <a href="https://publications.waset.org/abstracts/search?q=Irvan%20Wiradinata"> Irvan Wiradinata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube" title="shell and tube">shell and tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20Rankine%20cycle" title=" organic Rankine cycle"> organic Rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=commissioning" title=" commissioning"> commissioning</a> </p> <a href="https://publications.waset.org/abstracts/82031/performance-analysis-of-a-shell-and-tube-heat-exchanger-in-the-organic-rankine-cycle-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3488</span> Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhawal%20Ladani">Dhawal Ladani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title="heat exchanger">heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20rate" title=" heat transfer rate"> heat transfer rate</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20and%20turbulent%20effect" title=" laminar and turbulent effect"> laminar and turbulent effect</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube" title=" shell and tube"> shell and tube</a> </p> <a href="https://publications.waset.org/abstracts/76104/analyzing-the-effect-of-design-of-pipe-in-shell-and-tube-type-heat-exchanger-by-measuring-its-heat-transfer-rate-by-computation-fluid-dynamics-and-thermal-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3487</span> Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mahmoodi">R. Mahmoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Zolfaghari"> A. R. Zolfaghari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell-and-tube%20heat%20exchanger" title="shell-and-tube heat exchanger">shell-and-tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=shell-side" title=" shell-side"> shell-side</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20and%20heat%20transfer" title=" flow and heat transfer"> flow and heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=LOCA" title=" LOCA"> LOCA</a> </p> <a href="https://publications.waset.org/abstracts/18828/simulation-of-heat-exchanger-behavior-during-loca-accident-in-thtl-test-loop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3486</span> Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanit%20Aroonrat">Kanit Aroonrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchai%20Wongwises"> Somchai Wongwises</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimpled%20tube" title=" dimpled tube"> dimpled tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/105152/condensation-heat-transfer-and-pressure-drop-of-r-134a-flowing-inside-dimpled-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3485</span> Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Abo%20Elazm">Mohamed M. Abo Elazm</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20I.%20Shehata"> Ali I. Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Khairat%20Dawood"> Mohamed M. Khairat Dawood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20effect" title=" swirling effect"> swirling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination%20angle" title=" inclination angle"> inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric%20tube%20heat%20exchange" title=" concentric tube heat exchange"> concentric tube heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/71387/experimental-and-numerical-investigation-of-fluid-flow-inside-concentric-heat-exchanger-using-different-inlet-geometry-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3484</span> Experimental and Numerical Investigation of Heat Transfer in THTL Test Loop Shell and Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moody">M. Moody</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mahmoodi"> R. Mahmoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Zolfaghari"> A. R. Zolfaghari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aminottojari"> A. Aminottojari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, flow inside the shell side of a shell-and-tube heat exchanger is simulated numerically for laminar and turbulent flows in both steady state and transient mode. Governing equations of fluid flow are discrete using finite volume method and central difference scheme and solved with simple algorithm which is staggered grid by using MATLAB programming language. The heat transfer coefficient is obtained using velocity field from equation Dittus-Bolter. In comparison with, heat exchanger is simulated with ANSYS CFX software and experimental data measured in the THTL test loop. Numerical results obtained from the study show good agreement with experimental data and ANSYS CFX results. In addition, by deliberation the effect of the baffle spacing and the baffle cut on the heat transfer rate for turbulent flow, it is illustrated that the heat transfer rate depends on the baffle spacing and the baffle cut directly. In other word in spied of large turbulence, if these two parameters are not selected properly in the heat exchanger, the heat transfer rate can reduce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell-and-tube%20heat%20exchanger" title="shell-and-tube heat exchanger">shell-and-tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20and%20heat%20transfer" title=" flow and heat transfer"> flow and heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20and%20turbulence%20flow" title=" laminar and turbulence flow"> laminar and turbulence flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle%20spacing" title=" baffle spacing"> baffle spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle%20cut" title=" baffle cut"> baffle cut</a> </p> <a href="https://publications.waset.org/abstracts/17978/experimental-and-numerical-investigation-of-heat-transfer-in-thtl-test-loop-shell-and-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3483</span> Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Asadi">H. Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Naderan%20Tahan"> H. Naderan Tahan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20pipe%20heat%20exchangers" title="double pipe heat exchangers">double pipe heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger%20performance" title=" heat exchanger performance"> heat exchanger performance</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20fins" title=" twisted fins"> twisted fins</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/52023/study-on-the-effects-of-geometrical-parameters-of-helical-fins-on-heat-transfer-enhancement-of-finned-tube-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3482</span> Heat Transfer Analysis of Corrugated Plate Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketankumar%20Gandabhai%20Patel">Ketankumar Gandabhai Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalpit%20Balvantkumar%20Prajapati"> Jalpit Balvantkumar Prajapati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plate type heat exchangers has many thin plates that are slightly apart and have very large surface areas and fluid flow passages that are good for heat transfer. This can be a more effective heat exchanger than the tube or shell heat exchanger due to advances in brazing and gasket technology that have made this plate exchanger more practical. Plate type heat exchangers are most widely used in food processing industries and dairy industries. Mostly fouling occurs in plate type heat exchanger due to deposits create an insulating layer over the surface of the heat exchanger, that decreases the heat transfer between fluids and increases the pressure drop. The pressure drop increases as a result of the narrowing of the flow area, which increases the gap velocity. Therefore, the thermal performance of the heat exchanger decreases with time, resulting in an undersized heat exchanger and causing the process efficiency to be reduced. Heat exchangers are often over sized by 70 to 80%, of which 30 % to 50% is assigned to fouling. The fouling can be reduced by varying some geometric parameters and flow parameters. Based on the study, a correlation will estimate for Nusselt number as a function of Reynolds number, Prandtl number and chevron angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20phase%20flow" title=" single phase flow"> single phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rate" title=" mass flow rate"> mass flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/49624/heat-transfer-analysis-of-corrugated-plate-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3481</span> Numerical Investigation of Thermal-Hydraulic Performance of a Flat Tube in Cross-Flow of Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Bayat">Hamidreza Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mirabdolah%20Lavasani"> Arash Mirabdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Bolhasani"> Meysam Bolhasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Moosavi"> Sajad Moosavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer from flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube which is varied in range of 100 to 300. In these range of Reynolds number flow is considered to be laminar, unsteady, and incompressible. Equations are solved by using finite volume method. Results show that increasing l/D from 1 to 2 has insignificant effect on heat transfer and Nusselt number of flat tube is slightly lower than circular tube. However, thermal-hydraulic performance of flat tube is up to 2.7 times greater than circular tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title="laminar flow">laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20tube" title=" flat tube"> flat tube</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/14592/numerical-investigation-of-thermal-hydraulic-performance-of-a-flat-tube-in-cross-flow-of-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3480</span> Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Lin">M. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Su"> C. W. Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization%20analysis" title="optimization analysis">optimization analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20synergy" title=" field synergy"> field synergy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/50449/optimization-analysis-of-a-concentric-tube-heat-exchanger-with-field-synergy-principle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3479</span> Numerical and Experimental Investigation of Distance Between Fan and Coil Block in a Fin and Tube Air Cooler Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feyza%20%C5%9Eahi%CC%87n">Feyza Şahi̇n</a>, <a href="https://publications.waset.org/abstracts/search?q=Harun%20Deni%CC%87zli%CC%87"> Harun Deni̇zli̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Zabun"> Mustafa Zabun</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyi%CC%87n%20Onba%C5%9FIo%C4%9Fli"> Hüseyi̇n OnbaşIoğli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchangers are devices that are widely used to transfer heat between fluids due to their temperature differences. As a type of heat exchanger, air coolers are heat exchangers that cool the air as it passes through the fins of the heat exchanger by transferring heat to the refrigerant in the coil tubes of the heat exchanger. An assembled fin and tube heat exchanger consists of a coil block and a casing with a fan mounted on it. The term “Fan hood” is used to define the distance between the fan and the coil block. Air coolers play a crucial role in cooling systems, and their heat transfer performance can vary depending on design parameters. These parameters can be related to the air side or the internal fluid side. For airside efficiency, the distance between the fan and the coil block affects the performance by creating dead zones at the corners of the casing and maldistribution of airflow. Therefore, a detailed study of the effect of the fan hood on the evaporator and the optimum fan hood distance is necessary for an efficient air cooler design. This study aims to investigate the value of the fan hood in a fin and tube-type air cooler heat exchanger through computational fluid dynamics (CFD) simulations and experimental investigations. CFD simulations will be used to study the airflow within the fan hood. These simulations will provide valuable insights to optimize the design of the fan hood. In addition, experimental tests will be carried out to validate the CFD results and to measure the performance of the fan hood under real conditions. The results will help us to understand the effect of fan hood design on evaporator efficiency and contribute to the development of more efficient cooling systems. This study will provide essential information for evaporator design and improving the energy efficiency of cooling systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title="heat exchanger">heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=fan%20hood" title=" fan hood"> fan hood</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger%20performance" title=" heat exchanger performance"> heat exchanger performance</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20performance" title=" air flow performance"> air flow performance</a> </p> <a href="https://publications.waset.org/abstracts/174317/numerical-and-experimental-investigation-of-distance-between-fan-and-coil-block-in-a-fin-and-tube-air-cooler-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3478</span> Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Hamzehei">Mahdi Hamzehei</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Amin%20Hakim"> Seyyed Amin Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Taherian"> Nahid Taherian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fin%20wave%20angle" title="fin wave angle">fin wave angle</a>, <a href="https://publications.waset.org/abstracts/search?q=tube" title=" tube"> tube</a>, <a href="https://publications.waset.org/abstracts/search?q=intercooler" title=" intercooler"> intercooler</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum" title=" optimum"> optimum</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/41621/determination-of-optimum-fin-wave-angle-and-its-effect-on-the-performance-of-an-intercooler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3477</span> Design of Tube Expanders with Groove Shapes to Reduce Deformation of Tube Inner Grooves in Copper Tube Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sin">I. Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kim"> H. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Park"> S. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fin-tube heat exchangers have grooves inside tubes to improve heat exchange performance. However, during the tube expansion process, heat exchange efficiency is decreased due to large deformation of tube inner grooves. Therefore, the objective of this study is to design a tube expander with groove shapes on its outer surface to minimize deformation of the inner grooves in copper tube expansion for fin-tube heat exchangers. In order to achieve this goal, first, we have tried to calculate tube inner groove deformation by the currently used tube expander without groove shapes on its surface. The tube inner groove deformation was acquired by elastoplastic finite element analysis from the boundary conditions with one tube end fixed and friction between the tube and tube expander (friction coefficient: 0.15). The tube expansion process was simulated by inserting the tube expander into the tube with a speed of 90 mm/s. The analysis results showed that tube inner groove heights were decreased by approximately 8 % from 0.15 mm to 0.138 mm with stress concentrations observed at the groove end, consistent with experimental results. Based on the current results, we are trying to design a novel shape of the tube expander with grooves to further reduce deformation tube inner grooves in copper tube expansion. For this, we will select major design variables of tube expander groove shapes by conducting sensitivity analysis and then optimize the design variables using the Taguchi method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tube%20expansion" title="tube expansion">tube expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20expander" title=" tube expander"> tube expander</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a> </p> <a href="https://publications.waset.org/abstracts/60394/design-of-tube-expanders-with-groove-shapes-to-reduce-deformation-of-tube-inner-grooves-in-copper-tube-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3476</span> Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Kouidri">A.Kouidri</a>, <a href="https://publications.waset.org/abstracts/search?q=B.Madani"> B.Madani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the study of the heat transfer in a rectangular channel equipped with a metallic foam. The tested metallic foam sample is made from copper with 20 PPI (Pore per Inch Linear) and 93% of porosity and the working fluid used is the n-pentane. In the present work the independent variables are the velocity in the range from 0.02 to 0.06 m/s and a boiling heat flux rate varying between 30 and 70 kW/m2. The heat transfer coefficient is presented versus boiling heat flux, vapor quality and superheat ΔTsat. The thermal results are compared to those found for a plain tube for the same conditions. The comparison with the plain tube shows that the insert of a metallic foam enhances the heat transfer coefficient by a factor between 1.3 and 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiling" title="boiling">boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20foam" title=" metallic foam"> metallic foam</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20heat%20exchanger" title=" plate heat exchanger"> plate heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/43857/heat-transfer-enhancement-using-copper-metallic-foam-during-convective-boiling-in-a-plate-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3475</span> Quantitative Changes in Biofilms of a Seawater Tubular Heat Exchanger Subjected to Electromagnetic Fields Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Garcia">Sergio Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Trueba"> Alfredo Trueba</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20M.%20Vega"> Luis M. Vega</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Madariaga"> Ernesto Madariaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofilms adhesion is one of the more important cost of industries plants on wide world, which use to water for cooling heat exchangers or are in contact with water. This study evaluated the effect of Electromagnetic Fields on biofilms in tubular heat exchangers using seawater cooling. The results showed an up to 40% reduction of the biofilm thickness compared to the untreated control tubes. The presence of organic matter was reduced by 75%, the inorganic mater was reduced by 87%, and 53% of the dissolved solids were eliminated. The biofilm thermal conductivity in the treated tube was reduced by 53% as compared to the control tube. The hardness in the effluent during the experimental period was decreased by 18% in the treated tubes compared with control tubes. Our results show that the electromagnetic fields treatment has a great potential in the process of removing biofilms in heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20fields" title=" electromagnetic fields"> electromagnetic fields</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater" title=" seawater"> seawater</a> </p> <a href="https://publications.waset.org/abstracts/90367/quantitative-changes-in-biofilms-of-a-seawater-tubular-heat-exchanger-subjected-to-electromagnetic-fields-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3474</span> Effect of Number of Baffles on Pressure Drop and Heat Transfer in a Shell and Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Falavand%20Jozaei">A. Falavand Jozaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghafouri"> A. Ghafouri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mosavi%20Navaei"> M. Mosavi Navaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper for a given heat duty, study of number of baffles on pressure drop and heat transfer is considered in a STHX (Shell and Tube Heat Exchanger) with single segmental baffles. The effect of number of baffles from 9 to 52 baffles (baffle spacing variations from 4 to 24 inches) over OHTC (Overall Heat Hransfer Coefficient) to pressure drop ratio (U/Δp ratio). The results show that U/Δp ratio is low when baffle spacing is minimum (4 inches) because pressure drop is high; however, heat transfer coefficient is very significant. Then, with the increase of baffle spacing, pressure drop rapidly decreases and OHTC also decreases, but the decrease of OHTC is lower than pressure drop, so (U/Δp) ratio increases. After increasing baffles more than 12 inches, variation in pressure drop is gradual and approximately constant and OHTC decreases; Consequently, U/Δp ratio decreases again. If baffle spacing reaches to 24 inches, STHX will have minimum pressure drop, but OHTC decreases, so required heat transfer surface increases and U/Δp ratio decreases. After baffle spacing more than 12 inches, variation of shell side pressure drop is negligible. So optimum baffle spacing is suggested between 8 to 12 inches (43 to 63 percent of inside shell diameter) for a sufficient heat duty and low pressure drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube%20heat%20exchanger" title="shell and tube heat exchanger">shell and tube heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20segmental%20baffle" title=" single segmental baffle"> single segmental baffle</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20heat%20transfer%20coefficient" title=" overall heat transfer coefficient"> overall heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/18303/effect-of-number-of-baffles-on-pressure-drop-and-heat-transfer-in-a-shell-and-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3473</span> Thermal and Hydraulic Design of Shell and Tube Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20R.%20Ballil">Ahmed R. Ballil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchangers are devices used to transfer heat between two fluids. These devices are utilized in many engineering and industrial applications such as heating, cooling, condensation and boiling processes. The fluids might be in direct contact (mixed), or they separated by a solid wall to avoid mixing. In the present paper, interactive computer-aided design of shell and tube heat exchangers is developed using Visual Basic computer code as a framework. This design is based on the Bell-Delaware method, which is one of the very well known methods reported in the literature for the design of shell and tube heat exchangers. Physical properties for either the tube or the shell side fluids are internally evaluated by calling on an enormous data bank composed of more than a hundred fluid compounds. This contributes to increase the accuracy of the present design. The international system of units is considered in the developed computer program. The present design has an added feature of being capable of performing modification based upon a preset design criterion, such that an optimum design is obtained at satisfying constraints set either by the user or by the method itself. Also, the present code is capable of giving an estimate of the approximate cost of the heat exchanger based on the predicted surface area of the exchanger evaluated by the program. Finally, the present thermal and hydraulic design code is tested for accuracy and consistency against some of existed and approved designs of shell and tube heat exchangers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bell-delaware%20method" title="bell-delaware method">bell-delaware method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchangers" title=" heat exchangers"> heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20and%20tube" title=" shell and tube"> shell and tube</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20hydraulic%20design" title=" thermal and hydraulic design"> thermal and hydraulic design</a> </p> <a href="https://publications.waset.org/abstracts/111744/thermal-and-hydraulic-design-of-shell-and-tube-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3472</span> Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Biswal">Pratibha Biswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Suyash%20Morchhale"> Suyash Morchhale</a>, <a href="https://publications.waset.org/abstracts/search?q=Anshuman%20Singh%20Yadav"> Anshuman Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Sanjay%20Chobe"> Shubham Sanjay Chobe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fraction <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title="heat exchanger">heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20material" title=" phase change material"> phase change material</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat" title=" latent heat"> latent heat</a> </p> <a href="https://publications.waset.org/abstracts/128693/development-of-a-cfd-model-for-pcm-based-energy-storage-in-a-vertical-triplex-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3471</span> Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feyza%20Eda%20Akyurek">Feyza Eda Akyurek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayram%20Sahin"> Bayram Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Gelis"> Kadir Gelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyuphan%20Manay"> Eyuphan Manay</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ceylan"> Murat Ceylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulent forced convection heat transfer and pressure drop characteristics of Al<sub>2</sub>O<sub>3</sub>–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulators" title="turbulators">turbulators</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a> </p> <a href="https://publications.waset.org/abstracts/53841/thermal-performance-analysis-of-nanofluids-in-a-concetric-heat-exchanger-equipped-with-turbulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3470</span> Effect of the Fluid Temperature on the Crude Oil Fouling in the Heat Exchangers of Algiers Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rima%20Harche">Rima Harche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Mouheb"> Abdelkader Mouheb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Algiers refinery as all the other refineries always suffers from the problem of stopping of the tubes of heat exchanger. For that a study experimental of this phenomenon was undertaken in site on the cell of heat exchangers E101 (E101 CBA and E101 EDF) intended for the heating of the crude before its fractionation, which are exposed to the problem of the fouling on the side tubes exchangers. It is of tube-calenders type with head floating. Each cell is made up of three heat exchangers, laid out in series. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fouling" title="fouling">fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20temperatue" title=" fluid temperatue "> fluid temperatue </a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=tubular%20heat%20exchanger" title=" tubular heat exchanger"> tubular heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20resistance" title=" fouling resistance"> fouling resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/17999/effect-of-the-fluid-temperature-on-the-crude-oil-fouling-in-the-heat-exchangers-of-algiers-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=116">116</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=117">117</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=finned%20tube%20heat%20exchanger&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>