CINXE.COM
Search results for: coating materials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: coating materials</title> <meta name="description" content="Search results for: coating materials"> <meta name="keywords" content="coating materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="coating materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="coating materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7412</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: coating materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7412</span> Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouby%20Ghazaly">Nouby Ghazaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Fouad"> Gamal Fouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Abd-El-Tawwab"> Ali Abd-El-Tawwab</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Abd%20El-Gwwad"> K. A. Abd El-Gwwad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure%20analysis" title="structure analysis">structure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20piston" title=" aluminum piston"> aluminum piston</a>, <a href="https://publications.waset.org/abstracts/search?q=MgZrO%E2%82%83" title=" MgZrO₃"> MgZrO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=YTZ" title=" YTZ"> YTZ</a>, <a href="https://publications.waset.org/abstracts/search?q=mullite%20and%20alumina" title=" mullite and alumina"> mullite and alumina</a> </p> <a href="https://publications.waset.org/abstracts/106028/evaluation-of-gasoline-engine-piston-with-various-coating-materials-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7411</span> Optimization of Bio-Based Mixture of Canarium Luzonicum and Calcium Oxide as Coating Material for Reinforcing Steel Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charizza%20D.%20Montarin">Charizza D. Montarin</a>, <a href="https://publications.waset.org/abstracts/search?q=Daryl%20Jae%20S.%20Sigue"> Daryl Jae S. Sigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilford%20Estores"> Gilford Estores</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Philippines was moderately vulnerable to corrosion and to prevent this problem, surface coating should be applied. The main objective of this research was to develop and optimize a bio-based mixture of Pili Resin and Lime as Coating Materials. There are three (3) factors to be considered in choosing the best coating material such as chemical adhesion, friction, and the bearing/shear against the steel bar-concrete interface. Fortunately, both proportions of the Bio-based coating materials (50:50 and 65:35) do not have red rust formation complying with ASTM B117 but failed in terms of ASTM D 3359. Splitting failures of concrete were observed in the Unconfined Reinforced Concrete Samples. All of the steel bars (uncoated and coated) surpassed the Minimum Bond strength (NSCP 2015) about 203% to 285%. The experiments were about 1% to 3% of the results from the ANSYS Simulations with and without Salt Spray Test. Using the bio-based and epoxy coatings, normal splitting strengths were declined. However, there has no significant difference between the results. Thus, the bio-based coating materials can be used as an alternative for the epoxy coating materials and it was highly recommended for Low – Rise Building only. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canarium%20luzonicum" title="Canarium luzonicum">Canarium luzonicum</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20oxide" title=" calcium oxide"> calcium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulations" title=" finite element simulations"> finite element simulations</a> </p> <a href="https://publications.waset.org/abstracts/142639/optimization-of-bio-based-mixture-of-canarium-luzonicum-and-calcium-oxide-as-coating-material-for-reinforcing-steel-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7410</span> Cold Spray Coating and Its Application for High Temperature </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Sidhu">T. S. Sidhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amongst the existing coatings methods, the cold spray is new upcoming process to deposit coatings. As from the name itself, the cold spray coating takes place at very low temperature as compare to other thermal spray coatings. In all other thermal spray coating process the partial melting of the coating powder particles takes place before deposition, but cold spray process takes place in solid state. In cold spray process, the bonding of coating power with substrate is not metallurgical as in other thermal spray processes. Due to supersonic speed and less temperature of spray particles, solid state, dense, and oxide free coatings are produced. Due to these characteristics, the cold spray coatings have been used to protect the materials against hot corrosion. In the present study, the cold spray process, cold spray fundaments, its types, and its applications for high temperatures are discussed in the light of presently available literature. In addition, the assessment of cold spray with the competitive technologies has been conferred with available literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20spray%20coating" title="cold spray coating">cold spray coating</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20corrosion" title=" hot corrosion"> hot corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20spray%20coating" title=" thermal spray coating"> thermal spray coating</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20materials" title=" high-temperature materials "> high-temperature materials </a> </p> <a href="https://publications.waset.org/abstracts/89039/cold-spray-coating-and-its-application-for-high-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7409</span> Technology of Thermal Spray Coating Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petr%C5%AF">Jana Petrů</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Zl%C3%A1mal"> Tomáš Zlámal</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20%C4%8Cep"> Robert Čep</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20%C4%8Cepov%C3%A1"> Lenka Čepová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/2535/technology-of-thermal-spray-coating-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7408</span> Surface Coatings of Boards Made from Alternative Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Hysek">Stepan Hysek</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gajdacova"> Petra Gajdacova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20plant" title=" annual plant"> annual plant</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=particleboard" title=" particleboard"> particleboard</a> </p> <a href="https://publications.waset.org/abstracts/94682/surface-coatings-of-boards-made-from-alternative-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7407</span> Evaluation of Erosive Wear Resistance of Commercial Hard Coatings with Plasma Nitride and Without Plasma Nitride in Aluminium Die Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammed">A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lewis"> R. Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Marshall"> M. Marshall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commonly used coatings to protect tools in die casting were used. A heat treatment and then surface coating can have a large effect on erosion damage. Samples have been tested to evaluate their resistances to erosive wear and to assess how this compares with behaviour seen for untreated material. Five commercial (PN + TiN), (PN + TiAlCN), (TiN X 2), (TiN), and (TiAlCN) coatings have been evaluated for their wear resistance. The objective was to permit an optimized selection of coatings to be used to give good resistance to erosive wear. A test-Rig has been developed to study the erosive wear in aluminium die casting and provide an environment similar to industrial operation that is more practical than using actual machines. These surfaces were analysed using a Scanning Electron Microscope (SEM) and Optical Microscopes each with a different level of resolution. Examination of coating materials revealed an important parameter associated with the failure of the coating materials.This was adhesion of the coating material to the substrate surface. A well-adhered coating withstands wear much better compared to the poorest-adhering coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20particle%20erosion" title="solid particle erosion">solid particle erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=PVD-coatings" title=" PVD-coatings"> PVD-coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20testing" title=" erosion testing"> erosion testing</a> </p> <a href="https://publications.waset.org/abstracts/31573/evaluation-of-erosive-wear-resistance-of-commercial-hard-coatings-with-plasma-nitride-and-without-plasma-nitride-in-aluminium-die-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7406</span> Effectiveness of Crystallization Coating Materials on Chloride Ions Ingress in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Elsalamawy">Mona Elsalamawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Ragab%20Mohamed"> Ashraf Ragab Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Elsayed%20Abosen"> Abdellatif Elsayed Abosen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to evaluate the effectiveness of different crystalline coating materials concerning of chloride ions penetration. The concrete ages at the coating installation and its moisture conditions were addressed; where, these two factors may play a dominant role for the effectiveness of the used materials. Rapid chloride ions penetration test (RCPT) was conducted at different ages and moisture conditions according to the relevant standard. In addition, the contaminated area and the penetration depth of the chloride ions were investigated immediately after the RCPT test using chemical identifier, 0.1 M silver nitrate AgNO<sub>3</sub> solution. Results have shown that, the very low chloride ions penetrability, for the studied crystallization materials, were investigated only with the old age concrete (G1). The significant reduction in chloride ions’ penetrability was illustrated after 7 days of installing the crystalline coating layers. Using imageJ is more reliable to describe the contaminated area of chloride ions, where the distribution of aggregate and heterogeneous of cement mortar was considered in the images analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chloride%20permeability" title="chloride permeability">chloride permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20area" title=" contaminated area"> contaminated area</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20waterproofing%20materials" title=" crystalline waterproofing materials"> crystalline waterproofing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=RCPT" title=" RCPT"> RCPT</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/79848/effectiveness-of-crystallization-coating-materials-on-chloride-ions-ingress-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7405</span> The Use of the Steel Aggregate and Procedures for Application on Rural Roads to Improve Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Felipe%20da%20Cunha%20Mendon%C3%A7a">Luís Felipe da Cunha Mendonça</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Normally, rural roads do not have any type of coating, and when they have any coating, they have a high maintenance cost due to the characteristics of natural materials. The Steel Aggregate has specific technical characteristics, which considerably reduce the maintenance costs of rural roads with the execution of the Primary Coating. For use as a primary coating, it must be mixed with clay due to the physical-chemical properties of the material. The application is mainly in the Primary Coating of rural roads due to the cementitious property in the presence of water, offering greater resistance to wear caused by traffic and consequently a longer useful life of the coating. The Steel Aggregate executed on rural roads has reduced particulate emissions and offers normal traffic in any weather condition, as well as creating sustainability. Contribute to the quality of life of communities through improvements in the conditions of rural and urban unpaved roads. Leading to substantial savings in maintenance. Because the durability, if applied correctly, is about 3 years, but if annual monitoring is carried out, it can be extended for more than 5 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title="steel slag">steel slag</a>, <a href="https://publications.waset.org/abstracts/search?q=co-product" title=" co-product"> co-product</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20coating" title=" primary coating"> primary coating</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20aggregate" title=" steel aggregate"> steel aggregate</a> </p> <a href="https://publications.waset.org/abstracts/149182/the-use-of-the-steel-aggregate-and-procedures-for-application-on-rural-roads-to-improve-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7404</span> Fabrication of Titanium Diboride-Based High Emissive Paint Coating Using Economical Dip Coating Method for High Temperature Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atasi%20Dan">Atasi Dan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamanio%20Chattopadhyay"> Kamanio Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Basu"> Bikramjit Basu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cost-effective titanium diboride (TiB2) paint coating has been developed on stainless steel substrate using commercially available polyvinylpyrrolidone as a binder by convenient dip-coating technique. The emittance of the coating has been explored by tailoring various process parameters to obtain highest thermal radiation. The optimized coating has achieved a high thermal emittance of 0.85. In addition, the coating exhibited an excellent thermal stability while heat-treated at 500 °C in air. Along with the emittance, the structural and physical properties of the As-deposited and heat-treated coatings have been investigated systematically. The high temperature annealing has not affected the emittance, chemical composition and morphology of the coating significantly. Hence, the fabricated paint coating is expected to open up new possibilities for using it as a low-cost, thermally stable emitter in high temperature applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20diboride" title="titanium diboride">titanium diboride</a>, <a href="https://publications.waset.org/abstracts/search?q=emittance" title=" emittance"> emittance</a>, <a href="https://publications.waset.org/abstracts/search?q=paint%20coating" title=" paint coating"> paint coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stability" title=" thermal stability"> thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/61044/fabrication-of-titanium-diboride-based-high-emissive-paint-coating-using-economical-dip-coating-method-for-high-temperature-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7403</span> Nano-Coating for Corrosion Prevention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Suriani">M. J. Suriani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mansor"> F. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Siti%20Maizurah"> W. Siti Maizurah</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nurizwani"> I. Nurizwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20corrosion" title=" marine corrosion"> marine corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-composite" title=" nano-composite"> nano-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20structure%E2%80%93coating" title=" nano structure–coating"> nano structure–coating</a> </p> <a href="https://publications.waset.org/abstracts/33794/nano-coating-for-corrosion-prevention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7402</span> Response of Briquettes Application with Different Coating Materials on Yield and Quality of Cucumber [Cucumis sativus (L.)]</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20B.%20Torane">H. B. Torane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Kasture"> M. C. Kasture</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Prabhudesai"> S. S. Prabhudesai</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20B.%20Sanap"> P. B. Sanap</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Palsande"> V. N. Palsande</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Palkar"> J. J. Palkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation entitled “Response of briquettes application with different coating materials on yield and quality of Cucumber [Cucumis sativus (L.)]” was conducted at Central Experiment Center, Wakawali during kharif season 2013. The field experiment was laid out in Factorial Randomized Block Design with three replicate. The four coating materials viz., Co – Non coating, C1 – Wax coating, C2 – Jaggary coating, and C3 – Tar coating was applied to Konkan Annapurna Briquette along with three sub treatments of application time i.e B1 – ½ at sowing, B2 - ½ at sowing and ½ at 30 days after sowing and B3 - 1/3 at sowing, 1/3 at 30 days after sowing and 1/3 at 60 days after sowing. It was observed that the application of tar coated Konkan Annapurna Briquettes (KAB) in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing was found promising to enhancing the cucumber fruit yield, higher vine length, number of fruits vine-1, girth of fruit, length of fruit. It was also observed that the quality of the cucumber fruit increased in terms of ascorbic acid. UB-Godavari forms of briquettes .i.e. are promising source of N, P2O5 and K2O fertilizers as compared to straight fertilizers for enhancing green cucumber fruit yield of Sheetal variety of cucumber in lateritic soil. Amongst the three types of coated briquettes, the tar coated briquettes application was found to be superior for increasing cucumber fruit yield applied in three times @1/3 quantity of briquettes at sowing time, 1/3 quantity of briquettes at 30 days after sowing and 1/3 quantity of briquettes at 60 days after sowing @ 5 briquettes per plant at an interval of 30 days after sowing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=briquettes" title="briquettes">briquettes</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=tar" title=" tar"> tar</a>, <a href="https://publications.waset.org/abstracts/search?q=wax%20and%20quality" title=" wax and quality"> wax and quality</a> </p> <a href="https://publications.waset.org/abstracts/23184/response-of-briquettes-application-with-different-coating-materials-on-yield-and-quality-of-cucumber-cucumis-sativus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7401</span> Toxicity Analysis of Metal Coating Industry Wastewaters by Phytotoxicity Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukru%20Dursun">Sukru Dursun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Cansu%20Ayturan"> Zeynep Cansu Ayturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Maroof"> Mostafa Maroof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal coating which is important method used for protecting metals against oxidation and corrosion, decreasing friction, protecting metals from chemicals, easing cleaning of the metals. There are several methods used for metal coating such as hot-dip galvanizing, thermal spraying, electroplating and sherardizing. Method which will be used for metal coating depends on the type of metal. The materials mostly used for coating are zinc, nickel, brass, chrome, gold, cadmium, copper, brass, and silver. Within these materials, chrome ion has significant negative impacts on human, other living organisms and environment. Moreover, especially on human chrome may cause lung cancer, stomach ulcer, kidney and liver function disorders and death. Therefore, wastewaters of metal coating industry including chrome should be treated very carefully. In this study, wastewater containing chrome produced by metal coating industry was analysed with phytotoxicity method that is based on measuring the reaction of some plant species against different concentrations of chrome solution. Main plants used for phytotoxicity tests are Lepidium sativum and Lemna minor. Owing to phytotoxicity test, assessing the negative effects of chrome which may harm plants and offering more accurate wastewater treatment techniques against chromium wastewater is possible. Furthermore, the results taken from phytotoxicity tests were analysed with respect to their variance and their importance against different concentrations of chrome solution were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20coating%20wastewater" title="metal coating wastewater">metal coating wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=chrome" title=" chrome"> chrome</a>, <a href="https://publications.waset.org/abstracts/search?q=phytotoxicity" title=" phytotoxicity"> phytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Lepidium%20sativum" title=" Lepidium sativum"> Lepidium sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemna%20minor" title=" Lemna minor"> Lemna minor</a> </p> <a href="https://publications.waset.org/abstracts/55957/toxicity-analysis-of-metal-coating-industry-wastewaters-by-phytotoxicity-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7400</span> Cold Spray Fabrication of Coating for Highly Corrosive Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harminder%20Singh">Harminder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold spray is a novel and emerging technology for the fabrication of coating. In this study, coating is successfully developed by this process on superalloy surface. The selected coating composition is already proved as corrosion resistant. The microstructure of the newly developed coating is examined by various characterization techniques, for testing its suitability for high temperature corrosive conditions of waste incinerator. The energy producing waste incinerators are still running at low efficiency, mainly due to their chlorine based highly corrosive conditions. The characterization results show that the developed cold sprayed coating structure is suitable for its further testing in highly aggressive conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20spray" title=" cold spray"> cold spray</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/43306/cold-spray-fabrication-of-coating-for-highly-corrosive-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7399</span> Cutting Performance of BDD Coating on WC-Co Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu">Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaozhi%20Liu"> Zhaozhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhua%20Xu"> Junhua Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Tang"> Xiaolong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbide%20with%20high%20cobalt%20content" title="cemented carbide with high cobalt content">cemented carbide with high cobalt content</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD%20boron-doped%20diamond" title=" CVD boron-doped diamond"> CVD boron-doped diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20test" title=" cutting test"> cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=drill" title=" drill"> drill</a> </p> <a href="https://publications.waset.org/abstracts/23174/cutting-performance-of-bdd-coating-on-wc-co-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7398</span> Developments and Implementation of Biomaterials in Textile Coating and Finishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20De%20Smet">David De Smet</a>, <a href="https://publications.waset.org/abstracts/search?q=Myriam%20Vanneste"> Myriam Vanneste</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a constant need for the improvement of materials applied in textile industries. Nowadays there is a tendency for “bio, eco, natural and environmental friendly” consciousness of the consumer resulting in various textile labels. Materials, totally based on CO2-neutral renewable resources (biopolymers), respond very well to this tendency. Proteins and PLA were evaluated as binders for textile coatings. Much attention is paid to the functionalization of textiles, therefore bio-additves are examined to introduce abrasion resistance, antimicrobial and flame retardant properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=finishing" title=" finishing"> finishing</a> </p> <a href="https://publications.waset.org/abstracts/26428/developments-and-implementation-of-biomaterials-in-textile-coating-and-finishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">712</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7397</span> Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaozhi%20Liu">Zhaozhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhua%20Xu"> Junhua Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Tang"> Xiaolong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liu"> Ying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbide%20with%20high%20cobalt%20content" title="cemented carbide with high cobalt content">cemented carbide with high cobalt content</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD%20boron-doped%20diamond" title=" CVD boron-doped diamond"> CVD boron-doped diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20test" title=" cutting test"> cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=drill" title=" drill"> drill</a> </p> <a href="https://publications.waset.org/abstracts/20081/preparation-and-cutting-performance-of-boron-doped-diamond-coating-on-cemented-carbide-cutting-tools-with-high-cobalt-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7396</span> The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Altin">Mustafa Altin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Fahriye%20Pehlivan"> Gamze Fahriye Pehlivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiye%20Didem%20Boztepe%20Erkis"> Sadiye Didem Boztepe Erkis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakir%20Tasdemir"> Sakir Tasdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Altin"> Sevda Altin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an experimental study was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally, 81 samples which included three different wood species, three different sizes, two different fire retardants and two unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance%20of%20wood%20against%20pressure" title="resistance of wood against pressure">resistance of wood against pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20of%20wood" title=" species of wood"> species of wood</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20analysis" title=" variance analysis"> variance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20coating" title=" wood coating"> wood coating</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20fire%20safety" title=" wood fire safety"> wood fire safety</a> </p> <a href="https://publications.waset.org/abstracts/19264/the-experimental-and-statistical-analysis-of-the-wood-strength-against-pressure-according-to-different-wood-types-sizes-and-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7395</span> Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-Cut Papaya (Carica papaya)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basharat%20Yousuf">Basharat Yousuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhaya%20K.%20Srivastava"> Abhaya K. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh-cut" title=" fresh-cut"> fresh-cut</a>, <a href="https://publications.waset.org/abstracts/search?q=gum" title=" gum"> gum</a>, <a href="https://publications.waset.org/abstracts/search?q=papaya" title=" papaya"> papaya</a>, <a href="https://publications.waset.org/abstracts/search?q=psylllium" title=" psylllium"> psylllium</a> </p> <a href="https://publications.waset.org/abstracts/26199/psyllium-plantago-gum-as-an-effective-edible-coating-to-improve-quality-and-shelf-life-of-fresh-cut-papaya-carica-papaya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7394</span> The Performance of Typical Kinds of Coating of Printed Circuit Board under Accelerated Degradation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohui%20Wang">Xiaohui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liwei%20Sun"> Liwei Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilin%20Zhang"> Guilin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed circuit board (PCB) is the carrier of electronic components. Its coating is the first barrier for protecting itself. If the coating is damaged, the performance of printed circuit board will decrease rapidly until failure. Therefore, the coating plays an important role in the entire printed circuit board. There are common four kinds of coating of printed circuit board that the material of the coatings are paryleneC, acrylic, polyurethane, silicone. In this paper, we designed an accelerated degradation test of humid and heat for these four kinds of coating. And chose insulation resistance, moisture absorption and surface morphology as its test indexes. By comparing the change of insulation resistance of the coating before and after the test, we estimate failure time of these coatings based on the degradation of insulation resistance. Based on the above, we estimate the service life of the four kinds of PCB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title="printed circuit board">printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20assessment" title=" life assessment"> life assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20resistance" title=" insulation resistance"> insulation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20material" title=" coating material"> coating material</a> </p> <a href="https://publications.waset.org/abstracts/29607/the-performance-of-typical-kinds-of-coating-of-printed-circuit-board-under-accelerated-degradation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7393</span> Meniscus Guided Film Coating for Large-Area Perovskite Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gizachew%20Belay%20Adugna">Gizachew Belay Adugna</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Tai%20Tao"> Yu-Tai Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perovskite solar cells (PSCs) have been gaining impressive progress with excellent power conversion efficiency (PCE) of 25.5% in small-area devices. However, the conventional film coating approach is not applicable to large-area module fabrication. Meniscus-guided coating, including blade coating, slot-die coating, and bar coating, is solution processing and promising for large-area and cost-effective film coating to industrial-scale PSCs. Here, we develop simple and scalable solution shearing (SS) and bar coating (BC) methods to coat all layers on large-area (10x10 cm²) substrate in FTO/c-TiO₂/mp-TiO₂/ CH₃NH₃PbI₃/Spiro-OMeTAD/Ag device structure, except the Ag electrode. All solution-sheared PSC exhibited a champion power conversion efficiency of 15.89% in the conational DMF/DMSO solvent. Whereas a very high PCE of 20.30% compared to the controlled spin-coated device (SC, 17.60%) was achieved from the large area sheared perovskite film in a green ACN/MA solvent. Similarly, a remarkable PCE of 18.50% was achieved for a device fabricated from a large-area perovskite film in a simpler and more compatible Bar-coating system. This strategy demonstrates the huge potential for module fabrication and future PSC commercialization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perovskite%20solar%20cells" title="Perovskite solar cells">Perovskite solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=larger%20area%20film%20coating" title=" larger area film coating"> larger area film coating</a>, <a href="https://publications.waset.org/abstracts/search?q=meniscus-guided%20film%20coating" title=" meniscus-guided film coating"> meniscus-guided film coating</a>, <a href="https://publications.waset.org/abstracts/search?q=solution-shearing" title=" solution-shearing"> solution-shearing</a>, <a href="https://publications.waset.org/abstracts/search?q=bar-coating" title=" bar-coating"> bar-coating</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20conversion%20efficiency" title=" power conversion efficiency"> power conversion efficiency</a> </p> <a href="https://publications.waset.org/abstracts/168010/meniscus-guided-film-coating-for-large-area-perovskite-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7392</span> Preparation of Protective Coating Film on Metal Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Th.%20A.%20Al-rubaye">Rana Th. A. Al-rubaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in –situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physico-chemical properties were investigated using X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fecralloy" title="fecralloy">fecralloy</a>, <a href="https://publications.waset.org/abstracts/search?q=zsm-5%20zeolite" title=" zsm-5 zeolite"> zsm-5 zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20coatings" title=" zeolite coatings"> zeolite coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20method" title=" hydrothermal method"> hydrothermal method</a> </p> <a href="https://publications.waset.org/abstracts/30792/preparation-of-protective-coating-film-on-metal-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7391</span> Enhancing Anode Performance in Li-S Batteries via Coating with Waste Battery-Derived Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Hajian%20Foroushani">Mohsen Hajian Foroushani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samane%20Maroufi"> Samane Maroufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasoul%20Khayyam%20Nekouei"> Rasoul Khayyam Nekouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Veena%20Sahajwalla"> Veena Sahajwalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium (Li) metal possesses outstanding characteristics, with the highest specific capacity (3860 mAh g-1) and the lowest electrochemical potential (-3.04 V vs. SHE) among available metal anodes. The collaborative impact of Li and sulfur, featuring a specific capacity of 1670 mAh g-1, positions Li–S batteries (LSBs) as highly promising contenders for the next generation of high-energy-density batteries. However, the comprehensive commercialization of LSBs relies on addressing various challenges inherent to these batteries. One of the most formidable hurdles is the widespread issue of Li dendrite nucleation and growth on the anode surface, stemming from the inherent instability of the solid electrolyte interphase (SEI) layer. In this study, we employed a Zn-based coating derived from waste materials, significantly enhancing the performance of the symmetrical cell across various current densities. The applied coating not only improved the cyclability of the cell by more than fourfold but also reduced the charge transfer resistance from over 300 to less than 10 before cycling. Examination through SEM micrographs of both samples revealed the successful suppression of Li dendrites by the applied coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-S%20batteries" title="Li-S batteries">Li-S batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20dendrite" title=" Li dendrite"> Li dendrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20anode" title=" Li anode"> Li anode</a> </p> <a href="https://publications.waset.org/abstracts/178806/enhancing-anode-performance-in-li-s-batteries-via-coating-with-waste-battery-derived-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7390</span> Influence of Machining Process on Surface Integrity of Plasma Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Zl%C3%A1mal">T. Zlámal</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Petr%C5%AF"> J. Petrů</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pag%C3%A1%C4%8D"> M. Pagáč</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krajkovi%C4%8D"> P. Krajkovič</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20sprayed%20coating" title=" plasma sprayed coating"> plasma sprayed coating</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20integrity" title=" surface integrity"> surface integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/85489/influence-of-machining-process-on-surface-integrity-of-plasma-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7389</span> The Study of Seed Coating Effects on Germination Speed of Astragalus Adscendens under Different Moisture Conditions and Planting Depth in the Boroujerd Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Mehrabi">Hamidreza Mehrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Rezayee"> Mandana Rezayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coated seed process is from amplifier ways that stick various materials on the outer surface of the seeds that minimize the negative environmental effects and increase the ability of Plant establishment. This study was done to assess the effects of coated seed on the germination speed of Astragalus adscendens in different conditions of drought stress and planting depth as it was conducted with a completely randomized factorial design with four replications. treatments of covering material was used in Four non coating levels (NC), mineral-based coating (CC), organic - based coating (OC) hydro gel-based coating (HC) ; treatment of moisture percent used in three levels of dried soil content, treatments of planting depth in two surfaces of planting and three times of the seed diameter was 9%, 14% and 21 % respectively. During the test, it was evaluated the germination speed attribute. The main results showed that moisture treatments and planting depth at a surface of 1% (P <0/01) was significant and has no significant effect of treatment materials. Also, In examining of the interaction between type of covering material and soil moisture were not observed significant differences for germination speed between covering treatments and controls covering, but there was a significant difference between treatments in 9% and 21%. Although in examining the triple interaction, increasing moisture and planting depth enhanced the speed of germination process, but it was not significant statistically, while it has made important differences in terms of description; because it had not growth in the moisture level of 9% and shallow cultivation (high stress). However, treatment of covered materials growth has developed significantly, so it can be useful in enhancing plant performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seed%20coating" title="seed coating">seed coating</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture" title=" soil moisture"> soil moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=sowing%20depth" title=" sowing depth"> sowing depth</a>, <a href="https://publications.waset.org/abstracts/search?q=germination%20percentage" title=" germination percentage"> germination percentage</a> </p> <a href="https://publications.waset.org/abstracts/48322/the-study-of-seed-coating-effects-on-germination-speed-of-astragalus-adscendens-under-different-moisture-conditions-and-planting-depth-in-the-boroujerd-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7388</span> Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Sharma">Prashant Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Dutta%20Majumdar"> Jyotsna Dutta Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20spraying" title="plasma spraying">plasma spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20method" title=" X-ray method"> X-ray method</a> </p> <a href="https://publications.waset.org/abstracts/48738/studies-on-plasma-spray-deposited-la2o3-ysz-yttria-stabilized-zirconia-composite-thermal-barrier-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7387</span> Research on the Two-Way Sound Absorption Performance of Multilayer Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Song">Yang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Qiu"> Xiaojun Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multilayer materials are applied to much acoustics area. Multilayer porous materials are dominant in room absorber. Multilayer viscoelastic materials are the basic parts in underwater absorption coating. In most cases, the one-way sound absorption performance of multilayer material is concentrated according to the sound source site. But the two-way sound absorption performance is also necessary to be known in some special cases which sound is produced in both sides of the material and the both sides especially might contact with different media. In this article, this kind of case was research. The multilayer material was composed of viscoelastic layer and steel plate and the porous layer. The two sides of multilayer material contact with water and air, respectively. A theory model was given to describe the sound propagation and impedance in multilayer absorption material. The two-way sound absorption properties of several multilayer materials were calculated whose two sides all contacted with different media. The calculated results showed that the difference of two-way sound absorption coefficients is obvious. The frequency, the relation of layers thickness and parameters of multilayer materials all have an influence on the two-way sound absorption coefficients. But the degrees of influence are varied. All these simulation results were analyzed in the article. It was obtained that two-way sound absorption at different frequencies can be promoted by optimizing the configuration parameters. This work will improve the performance of underwater sound absorption coating which can absorb incident sound from the water and reduce the noise radiation from inside space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=different%20media" title="different media">different media</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20material" title=" multilayer material"> multilayer material</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coating" title=" sound absorption coating"> sound absorption coating</a>, <a href="https://publications.waset.org/abstracts/search?q=two-way%20sound%20absorption" title=" two-way sound absorption"> two-way sound absorption</a> </p> <a href="https://publications.waset.org/abstracts/33628/research-on-the-two-way-sound-absorption-performance-of-multilayer-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7386</span> Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artemova%20Anastasiia">Artemova Anastasiia</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen%20Zexiang"> Shen Zexiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Savilov%20Serguei"> Savilov Serguei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a> </p> <a href="https://publications.waset.org/abstracts/112005/effect-of-carbon-nanotubes-on-ultraviolet-and-immersion-stability-of-diglycidyl-ether-of-bisphenol-a-epoxy-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7385</span> Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu">Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kajama"> Mohammed Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Anyanwu"> Emmanuel Anyanwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title="gas separation">gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/29152/multi-layer-silica-alumina-membrane-performance-for-flue-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7384</span> Studies on Corrosion Resistant Composite Coating for Metallic Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneetinder%20Singh">Navneetinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harprabhjot%20Singh"> Harprabhjot Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harpreet%20Singh"> Harpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Supreet%20Singh"> Supreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many materials are known to mankind that is widely used for synthesis of corrosion resistant hydrophobic coatings. In the current work, novel hydrophobic composite was synthesized by mixing polytetrafluoroethylene (PTFE) and 20 weight% ceria particles followed by sintering. This composite had same hydrophobic behavior as PTFE. Moreover, composite showed better scratch resistance than virgin PTFE. Pits of plasma sprayed Ni₃Al coating were exploited to hold PTFE composite on the substrate as Superni-75 alloy surface through sintering process. Plasma sprayed surface showed good adhesion with the composite coating during scratch test. Potentiodynamic corrosion test showed 100 fold decreases in corrosion rate of coated sample this may be attributed to inert and hydrophobic nature of PTFE and ceria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polytetrafluoroethylene" title="polytetrafluoroethylene">polytetrafluoroethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=PTFE" title=" PTFE"> PTFE</a>, <a href="https://publications.waset.org/abstracts/search?q=ceria" title=" ceria"> ceria</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/94265/studies-on-corrosion-resistant-composite-coating-for-metallic-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7383</span> The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siming%20Wang">Siming Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Ni"> Qing Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Wu"> Yu Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruihai%20Xu"> Ruihai Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Ye"> Hong Ye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20coating" title="conductive coating">conductive coating</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20ceramic%20electric%20heater" title=" honeycomb ceramic electric heater"> honeycomb ceramic electric heater</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20specific%20surface%20area" title=" high specific surface area"> high specific surface area</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20volume%20power%20density" title=" high volume power density"> high volume power density</a> </p> <a href="https://publications.waset.org/abstracts/149014/the-fabrication-and-characterization-of-a-honeycomb-ceramic-electric-heater-with-a-conductive-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=247">247</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=248">248</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=coating%20materials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>