CINXE.COM

ACP - Tropospheric links to uncertainty in stratospheric subseasonal predictions

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if lt IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 lt-ie7 co-ui"> <![endif]--> <!--[if IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 co-ui"> <![endif]--> <!--[if IE 8]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 co-ui"> <![endif]--> <!--[if gt IE 8]><!--> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js co-ui"> <!--<![endif]--> <!-- remove class no-js if js is available --><head> <!-- BEGIN_HEAD --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="theme-color" content="#000000" /> <meta name="application-name" content="1" /> <meta name="msapplication-TileColor" content="#FFFFFF" /> <link rel="preconnect" crossorigin="" href="https://contentmanager.copernicus.org/" /><link rel="icon" size="16x16" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_16x16_.ico" type="image/x-icon" /><link rel="icon" size="24x24" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_24x24_.ico" type="image/x-icon" /><link rel="icon" size="32x32" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_32x32_.ico" type="image/x-icon" /><link rel="icon" size="48x48" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_48x48_.ico" type="image/x-icon" /><link rel="icon" size="64x64" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_64x64_.ico" type="image/x-icon" /><link rel="icon" size="228x228" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_228x228_.png" type="image/png-icon" /><link rel="icon" size="195x195" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_195x195_.png" type="image/png-icon" /><link rel="icon" size="196x196" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_196x196_.png" type="image/png-icon" /><link rel="icon" size="128x128" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_128x128_.png" type="image/png-icon" /><link rel="icon" size="96x96" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_96x96_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="180x180" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_180x180_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="120x120" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_120x120_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="152x152" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_152x152_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="76x76" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_76x76_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="57x57" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_57x57_.ico" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="144x144" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_144x144_.png" type="image/png-icon" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/mustache/2.3.0/mustache.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/jquery.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/js/copernicus.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/htmlgenerator-v2.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.js"></script><link rel="stylesheet" type="text/css" media="all" id="hasBootstrap" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-media.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-grid.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-reboot.min.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/popper.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/bootstrap.min.js"></script><link rel="preconnect" crossorigin="" href="https://cdn.copernicus.org/" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/copernicus-min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/fontawesome.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/fonts/FontAwesome/5.11.2_and_4.7.0/css/all.font.css" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/237997/10/ssl" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/2154804/10/ssl" /><link rel="stylesheet" type="text/css" media="print" href="https://contentmanager.copernicus.org/2154805/10/ssl" /><script src="https://contentmanager.copernicus.org/1672/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/1468/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/402/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/2154808/10/ssl" type="text/javascript"> </script><!-- END_HEAD --><meta name="global_projectID" content="10" /><meta name="global_pageID" content="297" /><meta name="global_pageIdentifier" content="home" /><meta name="global_moBaseURL" content="https://meetingorganizer.copernicus.org/" /><meta name="global_projectShortcut" content="ACP" /><meta name="global_projectDomain" content="https://www.atmospheric-chemistry-and-physics.net/" /> <title>ACP - Tropospheric links to uncertainty in stratospheric subseasonal predictions</title> <meta name="data-non-mobile-optimized-message" content="" /><script id="networker"> window.isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent); /** * */ function createToastsFunctionality() { const toastsWrapper = $('<div>') .attr('aria-live', 'polite') .attr('aria-atomic', 'true') .addClass('toasts-notifications-wrapper'); $('body').append(toastsWrapper); } function isOS() { return [ 'iPad Simulator', 'iPhone Simulator', 'iPod Simulator', 'iPad', 'iPhone', 'iPod' ].includes(navigator.platform) || (navigator.userAgent.includes("Mac") && "ontouchend" in document) } /** * * @param notificationContent */ function addToast(notificationContent) { const toast = $('<div>').addClass('toast').attr('role', 'alert').attr('aria-live', 'assertive') .attr('aria-atomic', 'true').attr('data-autohide', 'false'); const toastHeader = $('<div>').addClass('toast-header'); const toastHeaderTitle = $('<strong>').addClass('mr-auto').html(notificationContent.title); const toastHeaderCloseButton = $('<button>').addClass('ml-2').addClass('mb-1').addClass('close').attr('type', 'button') .attr('data-dismiss', 'toast'); const toastHeaderCloseIcon = $('<span>').attr('aria-hidden', 'true').html('&times;'); let url = ''; if (notificationContent.hasOwnProperty('url')) { url = notificationContent.url; } else { url = 'https://networker.copernicus.org/my-network'; } const toastBody = $('<div>').addClass('toast-body').html('<a target="_blank" href="' + url + '">' + notificationContent.text + '</a>'); $(toastHeaderCloseButton).append(toastHeaderCloseIcon); $(toastHeader).append(toastHeaderTitle); $(toastHeader).append(toastHeaderCloseButton); $(toast).append(toastHeader); $(toast).append(toastBody); $('.toasts-notifications-wrapper').append(toast); $('.toast').toast('show'); } function coNetworker_sendUsersLocation(location, userHash, publicLabel, projectID, application) { if (templateHasBootstrap()) { createToastsFunctionality(); } userHash = userHash || 'null'; location = location || 'c_content_manager::getProjectTemplateMobileOpt'; publicLabel = publicLabel || ''; if (publicLabel === ''){ publicLabel = location; } if (userHash !== null && userHash.length > 5) { try { if(typeof window.ws === 'undefined' || window.ws === null || !window.ws) { window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } else { window.ws.close(1000); window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } const data = { 'type': 'status', 'action': 'start', 'data': { 'userIdentifier': userHash, 'projectID': projectID, 'coApp': application, 'location': location, 'publicLabel': publicLabel } }; if (window.ws === 1) { window.ws.send(JSON.stringify(data)); } else { window.ws.onopen = function (msg) { window.ws.send(JSON.stringify(data)); dispatchEvent(new CustomEvent('loadCommonNetworker')); }; window.ws.onmessage = function (event) { try { const data = JSON.parse(event.data); switch (data.type) { case 'notification': const pushNotificationData = data.data; if (pushNotificationData.hasOwnProperty('user') && pushNotificationData.user.length > 5 && pushNotificationData.user === userHash) { window.showPushNotification(pushNotificationData); } break; } } catch (e) { console.log(e); } } } } catch (e) { console.error(e); } } } window.showPushNotification = function (notificationContent) { showMessage(notificationContent); function showMessage(notificationContent){ if (templateHasBootstrap()) { showBootstrapModal(notificationContent); } } function showBootstrapModal(notificationContent) { const randomId = getRandomInt(100,999); let modal = $('<div>').addClass('modal').attr('id', 'modal-notification' + randomId); let modalDialog = $('<div>').addClass('modal-dialog'); let modalContent = $('<div>').addClass('modal-content'); let modalBody = $('<div>').addClass('modal-body'); let message = $('<div>').addClass('modal-push-message').html('<h3 class="mb-3">' + notificationContent.title + '</h3><p>' + notificationContent.text + '</p>'); let buttonsWrapper = $('<div>').addClass('row'); let buttonsWrapperCol = $('<div>').addClass('col-12').addClass('text-right'); let buttonCancel = $('<button>').addClass('btn').addClass('btn-danger').addClass('mr-2').html('Cancel') let buttonSuccess = $('<button>').addClass('btn').addClass('btn-success').html('OK') $(buttonsWrapper).append(buttonsWrapperCol); $(buttonsWrapperCol).append(buttonCancel); $(buttonsWrapperCol).append(buttonSuccess); $(modalBody).append(message).append(buttonsWrapper); $(modalContent).append(modalBody); $(modalDialog).append(modalContent); $(modal).append(modalDialog); $(buttonCancel).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); }); $(buttonSuccess).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); handleOnclickNotification(notificationContent); }); $(modal).modal('show'); setTimeout(() => { dispatchEvent(new CustomEvent('modalLoaded', {'detail': 'modal-notification' + randomId})); }, 1000); } window.addEventListener('modalLoaded', function (event) { setTimeout(() => { $('#' + event.detail).modal('hide'); }, 9000); }); function handleOnclickNotification(notificationContent) { if (notificationContent.hasOwnProperty('withConnect') && notificationContent.withConnect.length > 0) { acceptContactRequest(notificationContent); } if (notificationContent.hasOwnProperty('url')) { if (window.isSafari && isOS()) { window.location.href = notificationContent.url; } else { window.open(notificationContent.url, '_blank').focus(); } } else { if (window.isSafari && isOS()) { window.open('https://networker.copernicus.org/my-network', '_blank'); } else { window.open('https://networker.copernicus.org/my-network', '_blank').focus(); } } } /** * * @param notificationContent */ function acceptContactRequest(notificationContent) { const formData = new FormData(); formData.append('r', notificationContent.userFrom); formData.append('a', 'a'); $.ajax({ url: 'https://networker.copernicus.org/handle-request-job', type: 'POST', data: formData, processData: false, contentType: false, xhrFields: { withCredentials: true }, beforeSend: function () { $('.splash').fadeIn(); $('.lightbox').fadeIn(); } }) .done(function (dataResponse) { const data = JSON.parse(dataResponse); let text = 'Please consider joining the text chat now.'; window.sendPushNotification({ title: window.userDataCommonNetworker.name + ' aims to chat with you.', text: text, user: data.message.userIdentifier, url: notificationContent.url }); $('.splash').fadeOut(); $('.lightbox').fadeOut(); }) .fail(function (error) { $('.splash').fadeOut(); $('.lightbox').fadeOut(); }); } } function templateHasBootstrap() { const bootstrap = document.getElementById('hasBootstrap'); return bootstrap !== null && typeof bootstrap !== 'undefined'; } coNetworker_sendUsersLocation(); dispatchEvent(new CustomEvent('loadCommonNetworker')); function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Math.random() * (max - min + 1)) + min; } </script> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css"> <base href="/"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/apps/htmlgenerator/css/htmlgenerator.css?v=1"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_publisher" content="Copernicus GmbH"/> <meta name="citation_title" content="Tropospheric links to uncertainty in stratospheric subseasonal predictions"/> <meta name="citation_abstract" content="&lt;p&gt;&lt;strong class=&quot;journal-contentHeaderColor&quot;&gt;Abstract.&lt;/strong&gt; Variability in the stratosphere, especially extreme events such as sudden stratospheric warmings (SSWs), can impact surface weather. Understanding stratospheric prediction uncertainty is therefore crucial for skillful surface weather forecasts on weekly to monthly timescales. Using ECMWF subseasonal hindcasts, this study finds that stratospheric uncertainty is most strongly linked to tropospheric uncertainty over the North Pacific and Northern Europe, regions that can modulate but also respond to stratospheric variability, suggesting a two-way propagation of uncertainty. A case study of the 2018 SSW event shows an initial poleward and upward propagation of uncertainty from tropical convection, followed by a downward propagation where ensemble members that accurately predict the SSW are also better at predicting its downward impacts. These findings highlight the locations in the troposphere that are linked to stratospheric uncertainty and suggest that improved model representation of tropospheric mechanisms linked to polar vortex variability could enhance both stratospheric and extratropical surface prediction.&lt;/p&gt;"/> <meta name="citation_publication_date" content="2024/11/06"/> <meta name="citation_online_date" content="2024/11/06"/> <meta name="citation_journal_title" content="Atmospheric Chemistry and Physics"/> <meta name="citation_volume" content="24"/> <meta name="citation_issue" content="21"/> <meta name="citation_issn" content="1680-7316"/> <meta name="citation_doi" content="https://doi.org/10.5194/acp-24-12259-2024"/> <meta name="citation_firstpage" content="12259"/> <meta name="citation_lastpage" content="12275"/> <meta name="citation_author" content="Wu, Rachel W.-Y."/> <meta name="citation_author_institution" content="Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland"/> <meta name="citation_author_orcid" content="0000-0002-8100-2424"> <meta name="citation_author_email" content="rachel.wu@env.ethz.ch"> <meta name="citation_author" content="Chiodo, Gabriel"/> <meta name="citation_author_institution" content="Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland"/> <meta name="citation_author_institution" content="Instituto de Geociencias, IGEO-CSIC-UCM, Madrid, Spain"/> <meta name="citation_author_orcid" content="0000-0002-8079-6314"> <meta name="citation_author" content="Polichtchouk, Inna"/> <meta name="citation_author_institution" content="European Centre for Medium-Range Weather Forecasts, Reading, UK"/> <meta name="citation_author_orcid" content="0000-0002-8943-4993"> <meta name="citation_author" content="Domeisen, Daniela I. V."/> <meta name="citation_author_institution" content="Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland"/> <meta name="citation_author_institution" content="Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland"/> <meta name="citation_author_orcid" content="0000-0002-1463-929X"> <meta name="citation_reference" content="Afargan-Gerstman, H. and Domeisen, D. I. V.: Pacific Modulation of the North Atlantic Storm Track Response to Sudden Stratospheric Warming Events, Geophys. Res. Lett., 47, e2019GL085007, https://doi.org/10.1029/2019GL085007, 2020. a"> <meta name="citation_reference" content="Afargan-Gerstman, H., Büeler, D., Wulff, C. O., Sprenger, M., and Domeisen, D. I. V.: Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts, Weather Clim. Dynam., 5, 231–249, https://doi.org/10.5194/wcd-5-231-2024, 2024. a"> <meta name="citation_reference" content="Albers, J. R. and Birner, T.: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings, J. Atmos. Sci., 71, 4028–4054, https://doi.org/10.1175/JAS-D-14-0026.1, 2014. a, b"> <meta name="citation_reference" content="Ayarzagüena, B., Barriopedro, D., Garrido-Perez, J. M., Abalos, M., de la Cámara, A., García-Herrera, R., Calvo, N., and Ordóñez, C.: Stratospheric Connection to the Abrupt End of the 2016/2017 Iberian Drought, Geophys. Res. Lett., 45, 12639–12646, https://doi.org/10.1029/2018GL079802, 2018. a"> <meta name="citation_reference" content="Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous Weather Regimes, Science, 294, 581–584, https://doi.org/10.1126/science.1063315, 2001. a"> <meta name="citation_reference" content="Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708, https://doi.org/10.1029/2020RG000708, 2021. a"> <meta name="citation_reference" content="Barrett, B. S.: Connections between the Madden–Julian Oscillation and surface temperatures in winter 2018 over eastern North America, Atmos. Sci. Lett., 20, e869, https://doi.org/10.1002/asl.869, 2019. a"> <meta name="citation_reference" content="Barriopedro, D. and Calvo, N.: On the Relationship between ENSO, Stratospheric Sudden Warmings, and Blocking, J. Climate, 27, 4704–4720, https://doi.org/10.1175/JCLI-D-13-00770.1, 2014. a"> <meta name="citation_reference" content="Birner, T. and Albers, J. R.: Sudden Stratospheric Warmings and Anomalous Upward Wave Activity Flux, SOLA, 13A, 8–12, https://doi.org/10.2151/sola.13A-002, 2017. a, b"> <meta name="citation_reference" content="Butler, A. H., Charlton-Perez, A., Domeisen, D. I. V., Garfinkel, C., Gerber, E. P., Hitchcock, P., Karpechko, A. Y., Maycock, A., Sigmond, M., Simpson, I., and Son, S.-W.: Sub-seasonal Predictability and the Stratosphere, in: Sub-seasonal to Seasonal Prediction, edited by: Robertson, A. W. and Vitart, F., Chap. 11, p. 585, Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/C2016-0-01594-2, 2018. a"> <meta name="citation_reference" content="Büeler, D., Beerli, R., Wernli, H., and Grams, C. M.: Stratospheric influence on ECMWF sub-seasonal forecast skill for energy-industry-relevant surface weather in European countries, Q. J. Roy. Meteorolog. Soc., 146, 3675–3694, https://doi.org/10.1002/qj.3866, 2020. a, b"> <meta name="citation_reference" content="Charlton, A. J., O'Neill, A., Lahoz, W. A., and Massacand, A. C.: Sensitivity of tropospheric forecasts to stratospheric initial conditions, Q. J. Roy. Meteorolog. Soc., 130, 1771–1792, https://doi.org/10.1256/qj.03.167, 2004. a"> <meta name="citation_reference" content="Charlton-Perez, A. J., Ferranti, L., and Lee, R. W.: The influence of the stratospheric state on North Atlantic weather regimes, Q. J. Roy. Meteorolog. Soc., 144, 1140–1151, https://doi.org/10.1002/qj.3280, 2018. a"> <meta name="citation_reference" content="Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, https://doi.org/10.1029/JZ066i001p00083, 1961. a"> <meta name="citation_reference" content="Cho, H.-O., Kang, M.-J., and Son, S.-&lt;span id=&quot;page12273&quot;/&gt;W.: The Predictability of the 2021 SSW Event Controlled by the Zonal-Mean State in the Upper Troposphere and Lower Stratosphere, J. Geophys. Res.-Atmos., 128, e2023JD039559, https://doi.org/10.1029/2023JD039559, 2023. a, b"> <meta name="citation_reference" content="Chwat, D., Garfinkel, C. I., Chen, W., and Rao, J.: Which Sudden Stratospheric Warming Events Are Most Predictable?, J. Geophys. Res.-Atmos., 127, e2022JD037521, https://doi.org/10.1029/2022JD037521, 2022. a"> <meta name="citation_reference" content="Clark, J. H. E.: Atmospheric Response to the Quasi-Resonant Growth of Forced Planetary Waves, J. Meteorol. Soc. JPN II, 52, 143–163, https://doi.org/10.2151/jmsj1965.52.2_143, 1974. a"> <meta name="citation_reference" content="Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorolog. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011 (data available at: https://cds.climate.copernicus.eu/#!/home, last access: 30 October 2024), 2011. a, b"> <meta name="citation_reference" content="de la Cámara, A., Birner, T., and Albers, J. R.: Are Sudden Stratospheric Warmings Preceded by Anomalous Tropospheric Wave Activity?, J. Climate, 32, 7173–7189, https://doi.org/10.1175/JCLI-D-19-0269.1, 2019. a"> <meta name="citation_reference" content="Domeisen, D. I., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere, J. Geophys. Res.-Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920, 2020. a, b"> <meta name="citation_reference" content="Domeisen, D. I. V. and Butler, A. H.: Stratospheric drivers of extreme events at the Earth's surface, Commun. Earth Environ., 1, e2019JD030923, https://doi.org/10.1038/s43247-020-00060-z, 2020. a"> <meta name="citation_reference" content="Domeisen, D. I. V., Martius, O., and Esteve, B. J.: Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed, Geophys. Res. Lett., 45, 2064–2071, 2018. a"> <meta name="citation_reference" content="Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection of El Niño Southern Oscillation to the Stratosphere, Rev. Geophys., 57, 5–47, https://doi.org/10.1029/2018RG000596, 2019. a"> <meta name="citation_reference" content="Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From Stratosphere-Troposphere Coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923, 2020a. a, b, c"> <meta name="citation_reference" content="Domeisen, D. I. V., Grams, C. M., and Papritz, L.: The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events, Weather Clim. Dyn., 1, 373–388, https://doi.org/10.5194/wcd-1-373-2020, 2020b. a, b"> <meta name="citation_reference" content="ECMWF: 2018 SSW S2S hindcast dataset, ECMWF Research Department, ECMWF [data set], https://doi.org/10.21957/hcmn-0572, 2024. a"> <meta name="citation_reference" content="Erner, I. and Karpechko, A.: Factors influencing subseasonal predictability of northern Eurasian cold spells, Q. J. R. Meteorolog. Soc., 150, 2955–2975, https://doi.org/10.1002/qj.4744, 2024. a, b"> <meta name="citation_reference" content="Erner, I., Karpechko, A. Y., and Järvinen, H. J.: Mechanisms and predictability of sudden stratospheric warming in winter 2018, Weather Clim. Dynam., 1, 657–674, https://doi.org/10.5194/wcd-1-657-2020, 2020. a, b, c, d"> <meta name="citation_reference" content="Esler, J. G. and Scott, R. K.: Excitation of Transient Rossby Waves on the Stratospheric Polar Vortex and the Barotropic Sudden Warming, J. Atmos. Sci., 62, 3661–3682, https://doi.org/10.1175/JAS3557.1, 2005. a"> <meta name="citation_reference" content="Esler, J. G., Polvani, L. M., and Scott, R. K.: The Antarctic stratospheric sudden warming of 2002: A self-tuned resonance?, Geophys. Res. Lett., 33, L12804, https://doi.org/10.1029/2006GL026034, 2006. a"> <meta name="citation_reference" content="Ferranti, L., Magnusson, L., Vitart, F., and Richardson, D. S.: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe?, Q. J. Roy. Meteorolog. Soc., 144, 1788–1802, https://doi.org/10.1002/qj.3341, 2018. a"> <meta name="citation_reference" content="Garfinkel, C. I. and Schwartz, C.: MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models, Geophys. Res. Lett., 44, 10054–10062, https://doi.org/10.1002/2017GL074470, 2017. a, b"> <meta name="citation_reference" content="Garfinkel, C. I., Hartmann, D. L., and Sassi, F.: Tropospheric Precursors of Anomalous Northern Hemisphere Stratospheric Polar Vortices, J. Climate, 23, 3282–3299, https://doi.org/10.1175/2010JCLI3010.1, 2010. a, b, c, d"> <meta name="citation_reference" content="Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C., and Lee, S.: Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation, Geophys. Res. Lett., 39, L18807, https://doi.org/10.1029/2012GL053144, 2012. a, b, c"> <meta name="citation_reference" content="Garfinkel, C. I., Benedict, J. J., and Maloney, E. D.: Impact of the MJO on the boreal winter extratropical circulation, Geophys. Res. Lett., 41, 6055–6062, https://doi.org/10.1002/2014GL061094, 2014. a, b, c, d, e"> <meta name="citation_reference" content="González-Alemán, J. J., Grams, C. M., Ayarzagüena, B., Zurita-Gotor, P., Domeisen, D. I., Gómara, I., Rodríguez-Fonseca, B., and Vitart, F.: Tropospheric role in the predictability of the surface impact of the 2018 sudden stratospheric warming event, Geophys. Res. Lett., 49, e2021GL095464, https://doi.org/10.1029/2021GL095464, 2022. a, b"> <meta name="citation_reference" content="Henderson, G. R., Barrett, B. S., Lois, A., and Elsaawy, H.: Time-Lagged Response of the Antarctic and High-Latitude Atmosphere to Tropical MJO Convection, Mon. Weather Rev., 146, 1219–1231, https://doi.org/10.1175/MWR-D-17-0224.1, 2018. a"> <meta name="citation_reference" content="Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horán&lt;span id=&quot;page12274&quot;/&gt;yi, A., Mueñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. R. Meteorolog. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b"> <meta name="citation_reference" content="Hitchcock, P. and Shepherd, T. G.: Zonal-Mean Dynamics of Extended Recoveries from Stratospheric Sudden Warmings, J. Atmos. Sci., 70, 688–707, https://doi.org/10.1175/JAS-D-12-0111.1, 2013 (data available at: https://cds.climate.copernicus.eu/#!/home, last access: 30 October, 2024). a"> <meta name="citation_reference" content="Hitchcock, P., Butler, A., Charlton-Perez, A., Garfinkel, C. I., Stockdale, T., Anstey, J., Mitchell, D., Domeisen, D. I. V., Wu, T., Lu, Y., Mastrangelo, D., Malguzzi, P., Lin, H., Muncaster, R., Merryfield, B., Sigmond, M., Xiang, B., Jia, L., Hyun, Y.-K., Oh, J., Specq, D., Simpson, I. R., Richter, J. H., Barton, C., Knight, J., Lim, E.-P., and Hendon, H.: Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts, Geosci. Model Dev., 15, 5073–5092, https://doi.org/10.5194/gmd-15-5073-2022, 2022. a"> <meta name="citation_reference" content="Holton, J. R. and Mass, C.: Stratospheric Vacillation Cycles, J. Atmos. Sci., 33, 2218–2225, https://doi.org/10.1175/1520-0469(1976)033&amp;lt;2218:SVC&amp;gt;2.0.CO;2, 1976. a"> <meta name="citation_reference" content="Kang, W. and Tziperman, E.: The MJO-SSW Teleconnection: Interaction Between MJO-Forced Waves and the Midlatitude Jet, Geophys. Res. Lett., 45, 4400–4409, https://doi.org/10.1029/2018GL077937, 2018. a, b"> <meta name="citation_reference" content="Karpechko, A. Y., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., and Vitart, F.: Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts With a Multimodel Ensemble, Geophys. Res. Lett., 45, 513–538, https://doi.org/10.1029/2018GL081091, 2018. a, b, c, d"> <meta name="citation_reference" content="Kautz, L.-A., Polichtchouk, I., Birner, T., Garny, H., and Pinto, J. G.: Enhanced extended-range predictability of the 2018 late-winter Eurasian cold spell due to the stratosphere, Q. J. R. Meteorolog. Soc., 146, 1040–1055, https://doi.org/10.1002/qj.3724, 2020. a, b"> <meta name="citation_reference" content="Kent, C., Scaife, A. A., Seviour, W. J. M., Dunstone, N., Smith, D., and Smout-Day, K.: Identifying Perturbations That Tipped the Stratosphere Into a Sudden Warming During January 2013, Geophys. Res. Lett., 50, e2023GL106288, https://doi.org/10.1029/2023GL106288, 2023. a, b, c"> <meta name="citation_reference" content="Kiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., Weickmann, K. M., and Ventrice, M. J.: A Comparison of OLR and Circulation-Based Indices for Tracking the MJO, Mon. Weather Rev., 142, 1697–1715, https://doi.org/10.1175/MWR-D-13-00301.1, 2014. a"> <meta name="citation_reference" content="Kim, H., Son, S.-W., Kim, H., Seo, K.-H., and Kang, M.-J.: MJO Influence on Subseasonal-to-Seasonal Prediction in the Northern Hemisphere Extratropics, J. Climate, 36, 7943–7956, https://doi.org/10.1175/JCLI-D-23-0139.1, 2023. a"> <meta name="citation_reference" content="Lawrence, Z. D., Abalos, M., Ayarzagüena, B., Barriopedro, D., Butler, A. H., Calvo, N., de la Cámara, A., Charlton-Perez, A., Domeisen, D. I. V., Dunn-Sigouin, E., García-Serrano, J., Garfinkel, C. I., Hindley, N. P., Jia, L., Jucker, M., Karpechko, A. Y., Kim, H., Lang, A. L., Lee, S. H., Lin, P., Osman, M., Palmeiro, F. M., Perlwitz, J., Polichtchouk, I., Richter, J. H., Schwartz, C., Son, S.-W., Erner, I., Taguchi, M., Tyrrell, N. L., Wright, C. J., and Wu, R. W.-Y.: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems, Weather Clim. Dynam., 3, 977–1001, https://doi.org/10.5194/wcd-3-977-2022, 2022. a"> <meta name="citation_reference" content="Lee, S. H., Charlton-Perez, A. J., Furtado, J. C., and Woolnough, S. J.: Abrupt Stratospheric Vortex Weakening Associated With North Atlantic Anticyclonic Wave Breaking, J. Geophys. Res.-Atmos., 124, 8563–8575, https://doi.org/10.1029/2019JD030940, 2019. a, b, c, d, e"> <meta name="citation_reference" content="Lee, S. H., Charlton-Perez, A. J., Furtado, J. C., and Woolnough, S. J.: Representation of the Scandinavia–Greenland pattern and its relationship with the polar vortex in S2S forecast models, Q. J. Roy. Meteorolog. Soc., 146, 4083–4098, https://doi.org/10.1002/qj.3892, 2020. a"> <meta name="citation_reference" content="Limpasuvan, V., Thompson, D. W. J., and Hartmann, D. L.: The Life Cycle of the Northern Hemisphere Sudden Stratospheric Warmings, J. Climate, 17, 2584–2596, https://doi.org/10.1175/1520-0442(2004)017&amp;lt;2584:TLCOTN&amp;gt;2.0.CO;2, 2004. a"> <meta name="citation_reference" content="Limpasuvan, V., Hartmann, D. L., Thompson, D. W. J., Jeev, K., and Yung, Y. L.: Stratosphere-troposphere evolution during polar vortex intensification, J. Geophys. Res.-Atmos., 110, D24101, https://doi.org/10.1029/2005JD006302, 2005. a"> <meta name="citation_reference" content="Lin, P., Paynter, D., Polvani, L., Correa, G. J. P., Ming, Y., and Ramaswamy, V.: Dependence of model-simulated response to ozone depletion on stratospheric polar vortex climatology, Geophys. Res. Lett., 44, 6391–6398, https://doi.org/10.1002/2017GL073862, 2017. a, b"> <meta name="citation_reference" content="Liu, C., Tian, B., Li, K.-F., Manney, G. L., Livesey, N. J., Yung, Y. L., and Waliser, D. E.: Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation, J. Geophys. Res.-Atmos., 119, 12599–12620, https://doi.org/10.1002/2014JD021876, 2014. a, b"> <meta name="citation_reference" content="Martius, O., Polvani, L. M., and Davies, H. C.: Blocking precursors to stratospheric sudden warming events, Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776, 2009. a, b, c"> <meta name="citation_reference" content="Matsuno, T.: Vertical Propagation of Stationary Planetary Waves in the Winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883, https://doi.org/10.1175/1520-0469(1970)027&amp;lt;0871:VPOSPW&amp;gt;2.0.CO;2, 1970. a, b"> <meta name="citation_reference" content="Matthewman, N. J. and Esler, J. G.: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events, J. Atmos. Sci., 68, 2481–2504, https://doi.org/10.1175/JAS-D-11-07.1, 2011. a"> <meta name="citation_reference" content="Maycock, A. C., Masukwedza, G. I. T., Hitchcock, P., and Simpson, I. R.: A Regime Perspective on the North Atlantic Eddy-Driven Jet Response to Sudden Stratospheric Warmings, J. Climate, 33, 3901–3917, https://doi.org/10.1175/JCLI-D-19-0702.1, 2020. a"> <meta name="citation_reference" content="Peings, Y.: Ural Blocking as a driver of early winter stratospheric warmings, Geophys. Res. Lett., 46, 5406–5468, https://doi.org/10.1029/2019GL082097, 2019. a"> <meta name="citation_reference" content="Plumb, R. A.: Instability of the distorted polar night vortex: A theory of stratospheric warmings, J. Atmos. Sci., 38, 2514–2531, https://doi.org/10.1175/1520-0469(1981)038&amp;lt;2514:IOTDPN&amp;gt;2.0.CO;2, 1981. a"> <meta name="citation_reference" content="Portal, A., Ruggieri, P., Palmeiro, F. M., García-Serrano, J., Domeisen, D. I. V., and Gualdi, S.: Seasonal prediction of the boreal winter stratosphere, Clim. Dynam., 58, 2109–2130, https://doi.org/10.1007/s00382-021-05787-9, 2022. a"> <meta name="citation_reference" content="Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The Stratospheric Sudden Warming Event in February 2018 and its Prediction by a Climate System Model, J. Geophys. Res.-Atmos., 123, 13,332–13,345, https://doi.org/10.1029/2018JD028908, 2018. a, b"> <meta name="citation_reference" content="Roberts, C. D., Balmaseda, M. A., Ferranti, L., and Vitart, F.: Euro-Atlantic Weather Regimes and Their Modulation by Tropospheric and Stratospheric Teleconnection Pathways in ECMWF Reforecasts, Mon. Weather Rev., 151, 2779–2799, https://doi.org/10.1175/MWR-D-22-0346.1, 2023. a, b"> <meta name="citation_reference" content="Rondanelli, R., Hatchett, B., Rutllant, J., Bozkurt, D., and Garreaud, R.: Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica, Geophys. Res. Lett., 46, 3482–3491, 2019. a"> <meta name="citation_reference" content="Rupp, P., Spaeth, J., Garny, H., and Birner, T.: Enhanced Polar Vortex Predictability Following Sudden Stratospheric Warming Events, Geophys. Res. Lett., 50, e2023GL104057, https://doi.org/10.1029/2023GL104057, 2023. a"> <meta name="citation_reference" content="Scaife, A. A., Karpechko, A. Yu., Baldwin, M. P., Brookshaw, A., Butler, A. H., Eade, R., Gordon, M., MacLachlan, C., Martin, N., Dunstone, N., and Smith, D.: Seasonal winter forecasts and the stratosphere, Atmos. Sci. Lett., 17, 51–56, https://doi.org/10.1002/asl.598, 2016. a"> <meta name="citation_reference" content="Schwartz, C. and Garfinkel, C. I.: Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate, J. Geophys. Res.-Atmos., 122, 4184–4201, https://doi.org/10.1002/2016JD025829, 2017. a, b, c, d, e"> <meta name="citation_reference" content="Schwartz, C. and Garfinkel, C. I.: Troposphere-Stratosphere Coupling in Subseasonal-to-Seasonal Models and Its Importance for a Realistic Extratropical Response to the Madden-Julian Oscillation, J. Geophys. Res.-Atmos., 125, e2019JD032043, https://doi.org/10.1029/2019JD032043, 2020. a"> <meta name="citation_reference" content="Schwartz, C., Garfinkel, C. I., Yadav, P., Chen, W., and Domeisen, D. I. V.: Stationary wave biases and their effect on upward troposphere–stratosphere coupling in sub-seasonal prediction models, Weather Clim. Dyn., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, 2022. a, b, c, d, e"> <meta name="citation_reference" content="Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced seasonal forecast skill following stratospheric sudden warmings, Nat. Geosci., 6, 98–102, https://doi.org/10.1038/ngeo1698, 2013. a, b"> <meta name="citation_reference" content="Simpson, I. R., Blackburn, M., and Haigh, J. D.: The role of eddies in driving the tropospheric response to stratospheric heating perturbations, J. Atmos. Sci., 66, 1347–1365, https://doi.org/10.1175/2008JAS2758.1, 2009. a"> <meta name="citation_reference" content="Smith, K. L. and Kushner, P. J.: Linear interference and the initiation of extratropical stratosphere-troposphere interactions, J. Geophys. Res.-Atmos., 117, https://doi.org/10.1029/2012JD017587, 2012. a"> <meta name="citation_reference" content="Son, S.-W., Kim, H., Song, K., Kim, S.-W., Martineau, P., Hyun, Y.-K., and Kim, Y.: Extratropical Prediction Skill of the Subseasonal-to-Seasonal (S2S) Prediction Models, J. Geophys. Res.-Atmos., 125, e2019JD031273, https://doi.org/10.1029/2019JD031273, 2020. a"> <meta name="citation_reference" content="Spaeth, J., Rupp, P., Garny, H., and Birner, T.: Stratospheric impact on subseasonal forecast uncertainty in the northern extratropics, Commun. Earth Environ., 5, 1–7, https://doi.org/10.1038/s43247-024-01292-z, 2024. a, b"> <meta name="citation_reference" content="Stan, C. and Straus, D. M.: Stratospheric predictability and sudden stratospheric warming events, J. Geophys. Res.-Atmos., 114, D12103, https://doi.org/10.1029/2008JD011277, 2009. a"> <meta name="citation_reference" content="Stan, C., Zheng, C., Chang, E. K.-M., Domeisen, D. I. V., Garfinkel, C. I., Jenney, A. M., Kim, H., Lim, Y.-K., Lin, H., Robertson, A., Schwartz, C., Vitart, F., Wang, J., and Yadav, P.: Advances in the Prediction of MJO Teleconnections in the S2S Forecast Systems, B. Am. Meteorol. Soc., 103, E1426–E1447, https://doi.org/10.1175/BAMS-D-21-0130.1, 2022. a, b, c"> <meta name="citation_reference" content="Straus, D. M., Domeisen, D. I. V., Lock, S.-J., Molteni, F., and Yadav, P.: Intrinsic predictability limits arising from Indian Ocean Madden–Julian oscillation (MJO) heating: effects on tropical and extratropical teleconnections, Weather Clim. Dynam., 4, 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023, 2023. a, b"> <meta name="citation_reference" content="Taguchi, M.: Comparison of Subseasonal-to-Seasonal Model Forecasts for Major Stratospheric Sudden Warmings, J. Geophys. Res.-Atmos., 123, 10231–10,247, https://doi.org/10.1029/2018JD028755, 2018. a"> <meta name="citation_reference" content="Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F., Dommenget, D., Ashok, K., Rodrigues, R. R., and Yeh, S.-W.: ENSO Atmospheric Teleconnections, in: El Niño Southern Oscillation in a Changing Climate, pp. 309–335, American Geophysical Union (AGU), ISBN 978-1-11954816-4, https://doi.org/10.1002/9781119548164.ch14, 2020. a, b"> <meta name="citation_reference" content="Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann, S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y., Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., and Son, S.-W.: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts, Q. J. R. Meteorolog. Soc., 141, 987–1003, https://doi.org/10.1002/qj.2432, 2015a. a"> <meta name="citation_reference" content="Tripathi, O. P., Charlton-Perez, A., Sigmond, M., and Vitart, F.: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions, Environ. Res. Lett., 10, 104007, https://doi.org/10.1088/1748-9326/10/10/104007, 2015b. a, b"> <meta name="citation_reference" content="Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H. S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., Won, D. J., Xiao, H., Zaripov, R., and Zhang, L.: The subseasonal to seasonal (S2S) prediction project database, B. Am. Meteorol. Soc., 98, 163–173, https://doi.org/10.1175/BAMS-D-16-0017.1, 2017 (data available at: https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous-accum-ecmf/levtype=sfc/type=cf/, last access: 30 October 2024). a, b"> <meta name="citation_reference" content="Wu, R. W.-Y., Wu, Z., and Domeisen, D. I. V.: Differences in the sub-seasonal predictability of extreme stratospheric events, Weather Clim. Dynam., 3, 755–776, https://doi.org/10.5194/wcd-3-755-2022, 2022. a, b"> <meta name="citation_reference" content="Yadav, P., Garfinkel, C. I., and Domeisen, D. I. V.: The Role of the Stratosphere in Teleconnections Arising From Fast and Slow MJO Episodes, Geophys. Res. Lett., 51, e2023GL104826, https://doi.org/10.1029/2023GL104826, 2024. a"> <meta name="citation_funding_source" content="citation_funder=Eidgenössische Technische Hochschule Zürich;citation_funder_id=501100003006;citation_grant_number=ETH-05 19-1"> <meta name="citation_funding_source" content="citation_funder=Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;citation_funder_id=501100001711;citation_grant_number=PP00P2_198896"> <meta name="citation_funding_source" content="citation_funder=Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;citation_funder_id=501100001711;citation_grant_number=Z00P2_180043"> <meta name="citation_pdf_url" content="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.pdf"/> <meta name="citation_xml_url" content="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.xml"/> <meta name="fulltext_pdf" content="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.pdf"/> <meta name="citation_language" content="English"/> <meta name="libraryUrl" content="https://acp.copernicus.org/articles/"/> <meta property="og:image" content="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png"/> <meta property="og:title" content="Tropospheric links to uncertainty in stratospheric subseasonal predictions"> <meta property="og:description" content="Abstract. Variability in the stratosphere, especially extreme events such as sudden stratospheric warmings (SSWs), can impact surface weather. Understanding stratospheric prediction uncertainty is therefore crucial for skillful surface weather forecasts on weekly to monthly timescales. Using ECMWF subseasonal hindcasts, this study finds that stratospheric uncertainty is most strongly linked to tropospheric uncertainty over the North Pacific and Northern Europe, regions that can modulate but also respond to stratospheric variability, suggesting a two-way propagation of uncertainty. A case study of the 2018 SSW event shows an initial poleward and upward propagation of uncertainty from tropical convection, followed by a downward propagation where ensemble members that accurately predict the SSW are also better at predicting its downward impacts. These findings highlight the locations in the troposphere that are linked to stratospheric uncertainty and suggest that improved model representation of tropospheric mechanisms linked to polar vortex variability could enhance both stratospheric and extratropical surface prediction."> <meta property="og:url" content="https://acp.copernicus.org/articles/24/12259/2024/"> <meta property="twitter:image" content="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png"/> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:title" content="Tropospheric links to uncertainty in stratospheric subseasonal predictions"> <meta name="twitter:description" content="Abstract. Variability in the stratosphere, especially extreme events such as sudden stratospheric warmings (SSWs), can impact surface weather. Understanding stratospheric prediction uncertainty is therefore crucial for skillful surface weather forecasts on weekly to monthly timescales. Using ECMWF subseasonal hindcasts, this study finds that stratospheric uncertainty is most strongly linked to tropospheric uncertainty over the North Pacific and Northern Europe, regions that can modulate but also respond to stratospheric variability, suggesting a two-way propagation of uncertainty. A case study of the 2018 SSW event shows an initial poleward and upward propagation of uncertainty from tropical convection, followed by a downward propagation where ensemble members that accurately predict the SSW are also better at predicting its downward impacts. These findings highlight the locations in the troposphere that are linked to stratospheric uncertainty and suggest that improved model representation of tropospheric mechanisms linked to polar vortex variability could enhance both stratospheric and extratropical surface prediction."> <link rel="icon" href="https://www.atmospheric-chemistry-and-physics.net/favicon.ico" type="image/x-icon"/> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/template_jquery-ui-touch.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/js/respond.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/highstock/2.0.4/highstock.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/CoPublisher.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { fonts: ["TeX"] ,linebreaks: { automatic: true, width: "90% container" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_HTMLorMML-full"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script> <script type="text/javascript"> /* <![CDATA[ */ /* ]]> */ </script> <style type="text/css"> .top_menu { margin-right: 0!important; } </style> </head><body><header id="printheader" class="d-none d-print-block container"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </header> <header class="d-print-none mb-n3 version-2023"> <div class="container"> <div class="row no-gutters mr-0 ml-0 align-items-center header-wrapper mb-lg-3"> <div class="col-auto pr-3"> <div class="layout__moodboard-logo-year-container"> <a class="layout__moodboard-logo-link" target="_blank" href="http://www.egu.eu"> <div class="layout__moodboard-logo"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </div> </a> </div> </div> <div class="d-none d-lg-block col text-md-right layout__title-desktop"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="d-none d-md-block d-lg-none col text-md-right layout__title-tablet"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="col layout__m-location-and-time-mobile d-md-none text-center layout__title-mobile"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> ACP </a> </div> <!-- End Logo --> <div class="col-auto text-right"> <button class="navbar-toggler light mx-auto mr-sm-0" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbar_menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon light"></span> </button> </div> <!-- Topbar --> <div class="topbar d-print-none"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </div> <!-- End Topbar --> </div> </div> <div class="banner-navigation-breadcrumbs-wrapper"> <div id="navigation"> <nav class="container navbar navbar-expand-lg navbar-light"><!-- Logo --> <div class="collapse navbar-collapse CMSCONTAINER" id="navbar_menu"> <div id="cmsbox_126167" class="cmsbox navbar-collapse"><button style="display: none;" class="navbar-toggler navigation-extended-toggle-button" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="navbar-collapse CMSCONTAINER collapse show" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto no-styling"> <li class="nav-item "> <a target="_parent" class="nav-link active " href="https://www.atmospheric-chemistry-and-physics.net/home.html"><i class='fal fa-home fa-lg' title='Home'></i></a> </li> <li class="nav-item megamenu "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10845" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Articles & preprints <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10845"> <div class="container"> <div class="row"> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Recent</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/">Recent papers</a> </div> <div class="dropdown-header">Highlights</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/acp_letters.html">ACP Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/editors_choice.html">Editor's choice</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/opinion.html">Opinions</a> </div> <div class="dropdown-header">Regular articles</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/research_article.html">Research articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/review_article.html">Review articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/measurement_report.html">Measurement reports</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/technical_note.html">Technical notes</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Special issues</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issue_overview.html">SI overview articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issues.html">Published SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/scheduled_sis.html">Scheduled SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/how_to_apply_for_an_si.html">How to apply for an SI</a> </div> <div class="dropdown-header">EGU Compilations</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egu-letters.net/">EGU Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://encyclopedia-of-geosciences.net/">Encyclopedia of Geosciences</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egusphere.net/">EGUsphere</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Alerts</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/subscribe_to_alerts.html">Subscribe to alerts</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/submission.html">Submission</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10849" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Policies <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10849"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/licence_and_copyright.html">Licence & copyright</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/general_terms.html">General terms</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_authors.html">Guidelines for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_editors.html">Guidelines for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_policy.html">Publication policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/data_policy.html">Data policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_ethics.html">Publication ethics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/inclusivity_in_global_research.html">Inclusivity in global research</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/competing_interests_policy.html">Competing interests policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/appeals_and_complaints.html">Appeals & complaints</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/proofreading_guidelines.html">Proofreading guidelines</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_authors.html">Obligations for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_editors.html">Obligations for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_referees.html">Obligations for referees</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/author_name_change.html">Inclusive author name-change policy</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown300" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Peer review <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown300"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html">Interactive review process</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/finding_an_editor.html">Finding an editor</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/review_criteria.html">Review criteria</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://webforms.copernicus.org/ACP/referee-application">Become a referee</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a data-non-mobile-optimized="1" target="_parent" class="" href="https://editor.copernicus.org/ACP/my_manuscript_overview">Manuscript tracking</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/reviewer_recognition.html">Reviewer recognition</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/editorial_board.html">Editorial board</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown29677" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Awards <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown29677"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-referee-awards.html">Outstanding referee awards</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-editor-award.html">Outstanding editor award</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/paul-crutzen-publication-award.html">Paul Crutzen Publication award</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown6086" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown6086"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/aims_and_scope.html">Aims & scope</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/subject_areas.html">Subject areas</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/manuscript_types.html">Manuscript types</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_processing_charges.html">Article processing charges</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/financial_support.html">Financial support</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/promote_your_work.html">Promote your work</a> </div> <div class="dropdown dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="dropdown-toggle dropdown-item " href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press.html" > News & press<span class="caret"></span> </a> <div class="dropdown-menu level-2 " aria-labelledby="navbarDropdown316"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2019-11-27_thanks-to-cristina-facchini-and-rolf-sander-and-welcome-to-barbara-ervens.html">Many thanks to Cristina Facchini and Rolf Sander and welcome to Barbara Ervens as executive editor of ACP</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2020-08-28_first-acp-letter-published.html">First ACP Letter: The value of remote marine aerosol measurements for constraining radiative forcing uncertainty</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-01-14_atmospheric-evolution-of-emissions-from-a-boreal-forest-fire-the-formation-of-highly-functionalized-oxygen-nitrogen-and-sulfur-containing-organic-compounds.html">Atmospheric evolution of emissions from a boreal forest fire: the formation of highly functionalized oxygen-, nitrogen-, and sulfur-containing organic compounds</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-04-25_observing-the-timescales-of-aerosol-cloud-interactions-in-snapshot-satellite-images.html">Observing the timescales of aerosol–cloud interactions in snapshot satellite images</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-10-15_new-acp-letter-how-alkaline-compounds-control-atmospheric-aerosol-particle-acidity.html">New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-11-16_changes-in-biomass-burning-wetland-extent-or-agriculture-drive-atmospheric-nh3-trends-in-select-african-regions.html">Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in select African regions</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2022-07-18_two-of-acps-founding-executive-editors-step-down.html">Two of ACP's founding executive editors step down</a> </div> </div> </div> </div> </div> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/egu_resources.html">EGU resources</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_statistics.html">Journal statistics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_metrics.html">Journal metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/abstracted_and_indexed.html">Abstracted & indexed</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_level_metrics.html">Article level metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/faqs.html">FAQs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/xml_harvesting_and_oai-pmh.html">XML harvesting & OAI-PMH</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/egu_publications.html">EGU publications</a> </li> <li class="nav-item "> <a target="_blank" class="nav-link " data-non-mobile-optimized="1" href="https://editor.copernicus.org/ACP/"><i class='fal fa-sign-in-alt fa-lg' title='Login'></i></a> </li> <!-- Topbar --> <li class="d-print-none d-lg-none pt-2 topbar-mobile"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </li> <!-- End Topbar --> </ul> </div> </div></div> </nav> </div> <section id="banner" class="banner dzsparallaxer use-loading auto-init height-is-based-on-content mode-scroll loaded dzsprx-readyall"> <div class="divimage dzsparallaxer--target layout__moodboard-banner" data-src="" style=""></div> <div id="headers-content-container" class="container CMSCONTAINER"> <div id="cmsbox_126230" class="cmsbox "> <span class="header-small text-uppercase">&nbsp;</span> <h1 class="display-4 header-get-function home-header hide-md-on-version2023"> Article &nbsp; </h1> </div></div> </section> <div id="breadcrumbs" class="breadcrumbs"> <div class="container"> <div class="row align-items-center"> <div class="d-none d-sm-block text-nowrap pageactions"></div> <!-- START_SEARCH --> <!-- END_SEARCH --> <!-- The template part snippet fo breadcrubs is in source code--> <div class="justify-content-between col-auto col-md CMSCONTAINER" id="breadcrumbs_content_container"><div id="cmsbox_1088152" class="cmsbox "><!-- tpl: templates/get_functions/get_breadcrumbs/index --> <!-- START_BREADCRUMBS_CONTAINER --> <ol class="breadcrumb"> <li class="breadcrumb-item"><a href="https://acp.copernicus.org/">Articles</a></li><li class="breadcrumb-item"><a href="https://acp.copernicus.org/articles/24/issue21.html">Volume 24, issue 21</a></li><li class="breadcrumb-item active">ACP, 24, 12259&ndash;12275, 2024</li> </ol> <!-- END_BREADCRUMBS_CONTAINER --> </div></div> <div class="col col-md-4 text-right page-search CMSCONTAINER" id="search_content_container"><div id="cmsbox_1088035" class="cmsbox "><!-- v1.31 --> <!-- 1.31: added placeholder for test system sanitizing--> <!-- 1.3: #855 --> <!-- 1.2: #166 --> <!-- CMS ressources/FinderBreadcrumbBox.html --> <!-- START_SITE_SEARCH --> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <div class="row align-items-center no-gutters py-1" id="search-wrapper"> <div class="col-auto pl-0 pr-1"> <a id="templateSearchInfoBtn" role="button" tabindex="99" data-container="body" data-toggle="popover" data-placement="bottom" data-trigger="click"><span class="fal fa-info-circle"></span></a> </div> <div class="col pl-0 pr-1"> <input type="search" placeholder="Search" name="q" class="form-control form-control-sm" id="search_query_solr"/> </div> <div class="col-auto pl-0"> <button title="Start site search" id="start_site_search_solr" class="btn btn-sm btn-success"><span class="co-search"></span></button> </div> </div> <div class="text-left"> <div id="templateSearchInfo" class="d-none"> <div> <p> Multiple terms: term1 term2<br /> <i>red apples</i><br /> returns results with all terms like:<br /> <i>Fructose levels in <strong>red</strong> and <strong>green</strong> apples</i><br /> </p> <p> Precise match in quotes: "term1 term2"<br /> <i>"red apples"</i><br /> returns results matching exactly like:<br /> <i>Anthocyanin biosynthesis in <strong>red apples</strong></i><br /> </p> <p> Exclude a term with -: term1 -term2<br /> <i>apples -red</i><br /> returns results containing <i><strong>apples</strong></i> but not <i><strong>red</strong></i>:<br /> <i>Malic acid in green <strong>apples</strong></i><br /> </p> </div> </div> <div class="modal " id="templateSearchResultModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header modal-header--sticky shadow one-column d-block"> <div class="row no-gutters mx-1"> <div class="col mr-3"> <h1 class="" id="resultsSearchHeader"><span id="templateSearchResultNr"></span> hit<span id="templateSearchResultNrPlural">s</span> for <span id="templateSearchResultTerm"></span></h1> </div> <div class="col-auto"> <a id="scrolltopmodal" href="javascript:void(0)" onclick="scrollModalTop();" style="display: none;"><i class="co-home"></i></a> </div> <div class="col-auto"> <button data-dismiss="modal" aria-label="Close" class="btn btn-danger mt-1">Close</button> </div> </div> </div> <div class="modal-body one-column"> <!-- $$co-sanitizing-slot1$$ --> <div class="grid-container mx-n3"><div class="grid-85 tablet-grid-85"> <button aria-label="Refine" id="refineSearchModal" class="btn btn-primary float-left mt-4">Refine your search</button> <button aria-label="Refine" id="refineSearchModalHide" class="btn btn-danger float-left d-none mt-4">Hide refinement</button> </div></div> <div class="grid-container mx-n3"><div class="grid-100 tablet-grid-100"><div id="templateRefineSearch" class="d-none"></div></div></div> <div id="templateSearchResultContainer" class="searchResultsModal mx-n3"></div> <div class="grid-container mb-0"><div class="grid-100 tablet-grid-100"><div id="templateSearchResultContainerEmpty" class="co-notification d-none">There are no results for your search term.</div></div></div> </div> </div> </div> </div> </div> <!-- feedback network problems --> <div class="modal " id="templateSearchErrorModal1" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Network problems</h1> <div class="co-error">We are sorry, but your search could not be completed due to network problems. Please try again later.</div> </div> </div> </div> </div> <!-- feedback server timeout --> <div class="modal " id="templateSearchErrorModal2" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Server timeout</h1> <div class="co-error">We are sorry, but your search could not be completed due to server timeouts. Please try again later.</div> </div> </div> </div> </div> <!-- feedback invalid search term --> <div class="modal " id="templateSearchErrorModal3" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Empty search term</h1> <div class="co-error">You have applied the search with an empty search term. Please revisit and try again.</div> </div> </div> </div> </div> <!-- feedback too many requests --> <div class="modal " id="templateSearchErrorModal4" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Too many requests</h1> <div class="co-error">We are sorry, but we have received too many parallel search requests. Please try again later.</div> </div> </div> </div> </div> <!-- loading --> <div class="modal " id="templateSearchLoadingModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-sm modal-dialog-centered"> <div class="modal-content p-3 co_LoadingDotsContainer"> <div class="modal-body"> <div class="text">Searching</div> <div class="dots d-flex justify-content-center"><div class="dot"></div><div class="dot"></div><div class="dot"></div></div></div> </div> </div> </div> </div> <style> /*.modal {*/ /* background: rgba(255, 255, 255, 0.8);*/ /*}*/ .modal-header--sticky { position: sticky; top: 0; background-color: inherit; z-index: 1055; } .grid-container { margin-bottom: 1em; /*padding-left: 0;*/ /*padding-right: 0;*/ } #templateSearchInfo{ display: none; background-color: var(--background-color-primary); margin-top: 1px; z-index: 5; border: 1px solid var(--color-primary); opacity: .8; font-size: .7rem; border-radius: .25rem; } #templateSearchLoadingModal .co_LoadingDotsContainer { z-index: 1000; } #templateSearchLoadingModal .co_LoadingDotsContainer .text { text-align: center; font-weight: bold; padding-bottom: 1rem; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot { background-color: #0072BC; border: 2px solid white; border-radius: 50%; float: left; height: 2rem; width: 2rem; margin: 0 5px; -webkit-transform: scale(0); transform: scale(0); -webkit-animation: animation_dots_breath 1000ms ease infinite 0ms; animation: animation_dots_breath 1000ms ease infinite 0ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(2) { -webkit-animation: animation_dots_breath 1000ms ease infinite 300ms; animation: animation_dots_breath 1000ms ease infinite 300ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(3) { -webkit-animation: animation_dots_breath 1000ms ease infinite 600ms; animation: animation_dots_breath 1000ms ease infinite 600ms; } #templateSearchResultModal [class*="grid-"] { padding-left: 10px !important; padding-right: 10px !important; } #templateSearchResultTerm { font-weight: bold; } #resultsSearchHeader { display: block !important; } #scrolltopmodal { font-size: 3.0em; margin-top: 0 !important; margin-right: 15px; } @-webkit-keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @media (min-width: 768px) and (max-width: 991px) { #templateSearchResultModal .modal-dialog { max-width: 90%; } } </style> <script> if(document.querySelector('meta[name="global_moBaseURL"]').content == "https://meetingorganizer.copernicus.org/") FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder-app')+"search/library.php"; else FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder')+"search/library.php"; SEARCH_INPUT = document.getElementById('search_query_solr'); SEARCH_INPUT_MODAL = document.getElementById('search_query_modal'); searchRunning = false; offset = 20; INITIAL_OFFSET = 20; var MutationObserver = window.MutationObserver || window.WebKitMutationObserver || window.MozMutationObserver; const targetNodeSearchModal = document.getElementById("templateSearchResultModal"); const configSearchModal = { attributes: true, childList: true, subtree: true }; // Callback function to execute when mutations are observed const callbackSearchModal = (mutationList, observer) => { for (const mutation of mutationList) { if (mutation.type === "childList") { // console.log("A child node has been added or removed."); picturesGallery(); } else if (mutation.type === "attributes") { // console.log(`The ${mutation.attributeName} attribute was modified.`); } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callbackSearchModal); // Start observing the target node for configured mutations observer.observe(targetNodeSearchModal, configSearchModal); function _addEventListener() { document.getElementById('search_query_solr').addEventListener('keypress', (e) => { if (e.key === 'Enter') _runSearch(); }); document.getElementById('start_site_search_solr').addEventListener('click', (e) => { _runSearch(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $('#templateSearchResultModal').scroll(function() { if ($(this).scrollTop()) { $('#scrolltopmodal:hidden').stop(true, true).fadeIn().css("display","inline-block"); } else { $('#scrolltopmodal').stop(true, true).fadeOut(); } }); } function scrollModalTop() { $('#templateSearchResultModal').animate({ scrollTop: 0 }, 'slow'); // $('#templateSearchResultModal').scrollTop(0); } function picturesGallery() { $('body').off('click', '.paperlist-avatar img'); $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; if (typeof search_gallery != "undefined") { search_gallery = null; } $('body').on('click', '#templateSearchResultContainer .paperlist-avatar img', function (e) { if(searchPaperListAvatarThumb.length === 0 && searchPaperListAvatar.length === 0) { $('#templateSearchResultContainer .paperlist-avatar img').each(function () { var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption = $(this).attr('data-caption'); var figure = { src: webversion, w: width, h: height, title: caption }; searchPaperListAvatarThumb.push($(this)[0]); searchPaperListAvatar.push(figure); }); } var target = $(this); var index = $('#templateSearchResultContainer .paperlist-avatar img').index(target); var options = { showHideOpacity:false, bgOpacity:0.8, index:index, spacing:0.15, history: false, focus:false, getThumbBoundsFn: function(index) { var thumbnail = searchPaperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; search_gallery = new PhotoSwipe( search_pswpElement, PhotoSwipeUI_Default,[searchPaperListAvatar[index]],options); search_gallery.init(); }); } function showError(code, msg) { console.error(code, msg); $("#templateSearchLoadingModal").modal("hide"); switch(code) { case -3: // http request fail case -2: // invalid MO response case 4: // CORS case 1: // project $("#templateSearchErrorModal1").modal({}); break; case -1: // timeout $("#templateSearchErrorModal2").modal({}); break; case 2: // empty term $("#templateSearchErrorModal3").modal({}); break; case 3: // DOS $("#templateSearchErrorModal4").modal({}); break; default: $("#templateSearchErrorModal1").modal({}); break; } } function clearForm() { var myFormElement = document.getElementById("library-filters") var elements = myFormElement.elements; $(".form-check-input").prop('checked', false).change().parent().removeClass('active'); for(i=0; i<elements.length; i++) { field_type = elements[i].type.toLowerCase(); switch(field_type) { case "text": case "password": case "textarea": case "hidden": elements[i].value = ""; break; case "radio": case "checkbox": if (elements[i].checked) { elements[i].checked = false; } break; case "select-one": case "select-multi": elements[i].selectedIndex = -1; break; default: break; } } } function generateShowMoreButton(offset, term) { var code = '<button aria-label="ShowMore" id="showMore" class="btn btn-success float-right mr-2" data-offset="' + offset + '">Show more</button>'; return code; } function hideModal(id) { $("#"+id).modal('hide'); } function showModal(id) { $("#"+id).modal({}); } function prepareForPhotoSwipe() { searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; } function _sendAjax(projectID, term) { let httpRequest = new XMLHttpRequest(); if(searchRunning) { console.log("Search running"); return; } if (!httpRequest) { console.error("Giving up :( Cannot create an XMLHTTP instance"); showError(-1); return false; } // httpRequest.timeout = 20000; // time in milliseconds httpRequest.withCredentials = false; httpRequest.ontimeout = (e) => { showError(-1, "result timeout"); searchRunning = false; }; httpRequest.onreadystatechange = function() { if (httpRequest.readyState === XMLHttpRequest.DONE) { searchRunning = false; if (httpRequest.status === 200) { let rs = JSON.parse(httpRequest.responseText); if(rs) { if(rs.isError) { showError(rs.errorCode, rs.errorMessage); } else { let html = rs.resultHTMLs; $("#modal_search_query").val(rs.term); $("#templateSearchResultTerm").html(rs.term); $("#templateSearchResultNr").html(rs.resultsNr); $("#templateRefineSearch").html(rs.filter); if(rs.filter == false) { console.log('filter empty'); $("#refineSearchModal").removeClass('d-block').addClass('d-none'); } if(rs.resultsNr==1) $("#templateSearchResultNrPlural").hide(); else $("#templateSearchResultNrPlural").show(); if(rs.resultsNr==0) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(""); $("#templateSearchResultContainerEmpty").removeClass("d-none"); showModal('templateSearchResultModal'); } else { if((rs.resultsNr - offset)>0) { html = html + generateShowMoreButton(offset, term); } $("#templateSearchResultContainerEmpty").addClass("d-none"); if( offset == INITIAL_OFFSET) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(html); showModal('templateSearchResultModal'); } else { $('#showMore').remove(); startHtml = $("#templateSearchResultContainer").html(); $("#templateSearchResultContainer").html(startHtml + html); } // prepareForPhotoSwipe(); } } } else { showError(-2, "invalid result"); } } else { showError(-3, "There was a problem with the request."); } } }; if(offset == INITIAL_OFFSET) { hideModal('templateSearchResultModal'); showModal('templateSearchLoadingModal'); } httpRequest.open("GET", FINDER_URL+"?project="+projectID+"&term="+encodeURI(term)+((offset>INITIAL_OFFSET)?("&offset="+(offset-INITIAL_OFFSET)) : "")); httpRequest.send(); searchRunning = true; } function _runSearch() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var term = _searchTrimInput(SEARCH_INPUT.value); if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } function _searchTrimInput(str) { return str.replace(/^\s+|\s+$/gm, ''); } function run() { _addEventListener(); $('#templateSearchInfoBtn, #modalSearchInfoBtn').popover({ sanitize: false, html: true, content: $("#templateSearchInfo").html(), placement: "bottom", template: '<div class="popover" role="tooltip"><div class="arrow"></div><button class="m-1 float-right btn btn-sm btn-danger" id="templateSearchInfoClose"><i class="fas fa-times-circle"></i></button><h3 class="popover-header"></h3><div class="popover-body"></div></div>', title: "Search tips", }); $(document).click(function (e) { let t = $(e.target); let a = t && t.attr("data-toggle")!=="popover" && t.parent().attr("data-toggle")!=="popover"; let b = t && $(".popover").has(t).length===0; if(a && b) { $('#templateSearchInfoBtn').popover('hide'); $('#modalSearchInfoBtn').popover('hide'); } }); $('#templateSearchInfoBtn').on('shown.bs.popover', function () { $("#templateSearchInfoClose").click(function(e){ $('#templateSearchInfoBtn').popover('hide'); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }) $('#templateSearchResultModal').on('hidden.bs.modal', function(e) { $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); var pswpElement = document.querySelectorAll('.pswp')[0]; var gallery = null; var paperListAvatar = []; var paperListAvatarThumb = []; $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); $('body').on('click', '.paperlist-avatar img', function (e) { if(paperListAvatarThumb.length === 0 && paperListAvatar.length === 0){ $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); } var target = $(this); var index = $('.paperlist-avatar img').index(target); var options = { showHideOpacity:true, bgOpacity:0.8, index:index, spacing:0.15, getThumbBoundsFn: function(index) { var thumbnail = paperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; gallery = new PhotoSwipe( pswpElement, PhotoSwipeUI_Default,[paperListAvatar[index]],options); gallery.init(); }); }); $('#templateSearchResultModal').on('hide.bs.modal', function(e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); offset = INITIAL_OFFSET; }) $(document).on("click", "#showMore", function(e){ offset+=INITIAL_OFFSET; runSearchModal() e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $(document).ready(function() { $(document).on("click", "#refineSearchModal", function (e) { $("#templateRefineSearch").removeClass('d-none').addClass('d-block'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#refineSearchModalHide", function (e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#modal_start_site_search", function (e) { runSearchModal(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }); } function runSearchModal() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var queryString = $('#library-filters').serialize(); var term = _searchTrimInput($('#modal_search_query').val()); term+='&'+queryString; if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } if(document.getElementById('search_query_solr')) { run(); } </script> <!-- END_SITE_SEARCH --></div></div> </div> </div> </div> </div> </header> <!--=== Content ===--> <main class="one-column version-2023"> <div id="content" class="container"> <div id="page_content_container" class="CMSCONTAINER row"> <div class="col"> <div class="article"> <div id="top"></div> <div class="row no-gutters header-block mb-1 align-items-end"> <div class="col-12 col-xl-5"> <div class="row d-xl-none mb-3"> <div class="col-12" > <div class="d-none d-lg-block articleBackLink"> <a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/24/issue21.html">Volume 24, issue 21</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="d-lg-none"> <span class="articleBackLink"><a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/24/issue21.html">Volume 24, issue 21</a> </span> <div class="citation-header" id="citation-content"> <div class="citation-doi">https://doi.org/10.5194/acp-24-12259-2024</div> <div class="citation-copyright">&copy; Author(s) 2024. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> <div class="hide-on-mobile hide-on-tablet"> <div class="citation-header"> <div class="citation-doi">https://doi.org/10.5194/acp-24-12259-2024</div> <div class="citation-copyright">&copy; Author(s) 2024. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> </div> <div class="col-7 d-none d-xl-block"> <div class="text-right articleBackLink"> <a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/24/issue21.html">Volume 24, issue 21</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="ms-type row no-gutters d-none d-lg-flex mb-1 mt-0 align-items-center"> <div class="col"> <div class="row no-gutters align-items-center"> <div class="col-auto"> Research article </div> <div class="col-auto"> &nbsp;|&nbsp;<strong>Highlight paper</strong> </div> <div class="col"> &nbsp;|&nbsp;<a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg"><img src="https://www.atmospheric-chemistry-and-physics.net/licenceSVG_16.svg"></a> </div> </div> </div> <div class="col-auto text-right">06 Nov 2024</div> </div> <div class="ms-type row no-gutters d-lg-none mb-1 align-items-center"> <div class="col-12"> Research article&nbsp;|&nbsp;<strong>Highlight paper</strong> | <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg "><img src="https://www.atmospheric-chemistry-and-physics.net/licenceSVG_16.svg"></a>&nbsp;|&nbsp;<span>06 Nov 2024</span> </div> </div> <a class="article-avatar hide-on-mobile hide-on-tablet" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png" target="_blank"> <img border="0" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-thumb150.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png" data-width="531" data-height="600"> </a> <h1>Tropospheric links to uncertainty in stratospheric subseasonal predictions</h1> <div class="auto-fixed-top-forced article-title"> <div class="grid-container show-on-fixed" style="display: none"> <div class="grid-85 mobile-grid-85 tablet-grid-85 grid-parent"> <span class="d-block hide-on-mobile hide-on-tablet journal-contentHeaderColor">Tropospheric links to uncertainty in stratospheric subseasonal predictions</span> <span class="d-block hide-on-desktop journal-contentHeaderColor">Tropospheric links to uncertainty in stratospheric subseasonal predictions</span> <span>Rachel W.-Y. Wu et al.</span> </div> <div class="grid-1 mobile-grid-15 tablet-grid-15 grid-parent text-right"> <a id="scrolltop" class="scrollto" href="https://acp.copernicus.org/articles/24/12259/2024/#top"><i class="co-home"></i> </a> </div> </div> </div> <div class="mb-3 authors-with-affiliations"> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author907265">Rachel W.-Y. Wu<a href="mailto:rachel.wu@env.ethz.ch"><i class="fal fa-envelope ml-1"></i></a></span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author907266">Gabriel Chiodo</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author907267">Inna Polichtchouk</span>,</nobr> <nobr>and <span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author907268">Daniela I. V. Domeisen</span></nobr> </div> <div class="modal fade author907265" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Rachel W.-Y. Wu</h3> <div class="row no-gutters"> <div class="col-12">CORRESPONDING AUTHOR</div> <div class="col-12"><a href="mailto:rachel.wu@env.ethz.ch"><i class="fal fa-envelope mr-2"></i>rachel.wu@env.ethz.ch</a></div> </div> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-8100-2424" data-title="https://orcid.org/0000-0002-8100-2424"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-8100-2424</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author907266" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Gabriel Chiodo</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-8079-6314" data-title="https://orcid.org/0000-0002-8079-6314"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-8079-6314</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland </div> </div> <div class="row"> <div class="col-12 mb-3"> Instituto de Geociencias, IGEO-CSIC-UCM, Madrid, Spain </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author907267" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Inna Polichtchouk</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-8943-4993" data-title="https://orcid.org/0000-0002-8943-4993"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-8943-4993</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> European Centre for Medium-Range Weather Forecasts, Reading, UK </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author907268" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Daniela I. V. Domeisen</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-1463-929X" data-title="https://orcid.org/0000-0002-1463-929X"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-1463-929X</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">&times;</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland </div> </div> <div class="row"> <div class="col-12 mb-3"> Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland </div> </div> </div> </div> </div> </div> </div> <div class="abstract sec" id="abstract"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-show="#abstract .co-arrow-open,.abstract-content" data-hide="#abstract .co-arrow-closed,.abstract-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Abstract<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed" style="display:none"></i><i class="co-arrow-open" style="display:inline-block"></i></span></div></span></div> <div class="abstract-content show-no-js"><p id="d2e129">Variability in the stratosphere, especially extreme events such as sudden stratospheric warmings (SSWs), can impact surface weather. Understanding stratospheric prediction uncertainty is therefore crucial for skillful surface weather forecasts on weekly to monthly timescales. Using ECMWF subseasonal hindcasts, this study finds that stratospheric uncertainty is most strongly linked to tropospheric uncertainty over the North Pacific and Northern Europe, regions that can modulate but also respond to stratospheric variability, suggesting a two-way propagation of uncertainty. A case study of the 2018 SSW event shows an initial poleward and upward propagation of uncertainty from tropical convection, followed by a downward propagation where ensemble members that accurately predict the SSW are also better at predicting its downward impacts. These findings highlight the locations in the troposphere that are linked to stratospheric uncertainty and suggest that improved model representation of tropospheric mechanisms linked to polar vortex variability could enhance both stratospheric and extratropical surface prediction.</p></div><span class="abstract-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet" style="display:none"></span></div> <div id="oldMobileDownloadBox" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li> <a class="triangle" data-toggle=".box-notice" data-duration="300" title="PDF Version (13072 KB)" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.pdf" > Article (PDF, 13072 KB) </a> </li> </ul> </div> </div> <div id="downloadBoxOneColumn" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (13072 KB)" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.pdf">Article</a> <nobr>(13072 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.xml">Full-text XML</a> </li> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.bib">BibTeX</a></li> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.ris">EndNote</a></li> </ul> </div> </div> <div id="share" class="oneColumnShareMobileBox widget dark-border hide-on-desktop"> <div class="legend journal-contentLinkColor">Share</div> <div class="content row m-0 py-1"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F" title="Mendeley" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F" title="Reddit" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=Tropospheric+links+to+uncertainty+in+stratospheric+subseasonal++predictions https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F" title="Twitter" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F&t=Tropospheric+links+to+uncertainty+in+stratospheric+subseasonal++predictions" title="Facebook" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F&title=Tropospheric+links+to+uncertainty+in+stratospheric+subseasonal++predictions" title="LinkedIn" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Atmospheric Chemistry and Physics" data-text="*Tropospheric links to uncertainty in stratospheric subseasonal predictions* Rachel W.-Y. Wu et al." data-url="https://acp.copernicus.org/articles/24/12259/2024/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div id="citation-footer" class="sec"> <div class="h1-special journal-contentHeaderColor">How to cite.&nbsp;</div> <div class="citation-footer-content show-no-js"> <p> <div class="citation-footer"> Wu, R. W.-Y., Chiodo, G., Polichtchouk, I., and Domeisen, D. I. V.: Tropospheric links to uncertainty in stratospheric subseasonal predictions, Atmos. Chem. Phys., 24, 12259&ndash;12275, https://doi.org/10.5194/acp-24-12259-2024, 2024. </div> </p> </div> </div> <div id="article-dates" class="sec"> <div class="article-dates dates-content my-3"> <nobr>Received: 31 May 2024</nobr> &ndash; <nobr>Discussion started: 05 Jun 2024</nobr> &ndash; <nobr>Revised: 11 Sep 2024</nobr> &ndash; <nobr>Accepted: 17 Sep 2024</nobr> &ndash; <nobr>Published: 06 Nov 2024</nobr> </div> </div> <div class="sec intro" id="section1"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section1 .co-arrow-open,.section1-content" data-show="#section1 .co-arrow-closed,.section1-mobile-bottom-border"><div id="Ch1.S1" class="h1"><span class="label">1</span> Introduction<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section1-content show-no-js hide-on-mobile-soft"><p id="d2e141">Anomalous variability in the stratosphere is an important precursor for surface weather anomalies <span class="cit" id="xref_paren.1">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Baldwin and Dunkerton</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2001</a>)</span> and extremes <span class="cit" id="xref_paren.2">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen and Butler</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span> on weekly to monthly timescales in winter and spring. In particular, sudden stratospheric warming (SSW) <span class="cit" id="xref_paren.3">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Baldwin et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2021</a>)</span> and strong vortex events are windows of opportunity for extended-range weather prediction <span class="cit" id="xref_paren.4">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Butler et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Scaife et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2016</a>)</span>. Indeed, the stratosphere has an extended predictability limit with respect to the troposphere <span class="cit" id="xref_paren.5">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">D. I. Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Son et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. These longer characteristic timescales in the stratosphere suggest a potential for increased predictability of surface weather arising from stratospheric forcing, particularly on subseasonal-to-seasonal (S2S) timescales, ranging from weeks to months. However, when it comes to predicting the variability in the stratosphere in the first place, extreme stratospheric events, especially SSW events, have a more limited predictability as compared to more neutral states of the vortex. The average predictability of an SSW is around 5–10 d in dynamical models <span class="cit" id="xref_paren.6">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">D. I. Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx78" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Taguchi</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx78" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Chwat et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>, indicating a higher uncertainty ahead of such events.</p><p id="d2e165"><span id="page12260"></span>Uncertainty in the prediction of stratospheric variability can be contributed by model uncertainty in the stratospheric mean state and in upward wave propagation <span class="cit" id="xref_paren.7">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx80" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Tripathi et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx80" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx80" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>, as the strength of the stratospheric polar vortex is modulated by the interaction of planetary waves with the stratospheric mean flow. The planetary waves entering the stratosphere can break, depositing momentum and thereby forcing a weakening of the westerly vortex winds. As a secondary effect, the breaking of planetary waves can also precondition the vortex into a state that is more favorable for wave propagation <span class="cit" id="xref_paren.8">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Limpasuvan et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2004</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Albers and Birner</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span>, which acts to guide waves towards the vortex <span class="cit" id="xref_paren.9">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Matsuno</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1970</a>)</span>, thus making the deposition of wave momentum more focused in the vortex area. Stratospheric variability can also be influenced by internal variability, where the stratosphere can be modulated by internal oscillations <span class="cit" id="xref_paren.10">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Holton and Mass</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1976</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Matthewman and Esler</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2011</a>)</span>, or through amplifying wave activity that propagates from the troposphere <span class="cit" id="xref_paren.11">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Clark</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1974</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Plumb</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1981</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Esler and Scott</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2005</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Esler et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2006</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>, which can lead to the triggering of SSWs, even if the wave activity in the troposphere is not anomalous <span class="cit" id="xref_paren.12">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Birner and Albers</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">de la Cámara et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>. Hence, the strength and geometry of vortex winds and upward wave propagation can strongly influence the subsequent evolution of the polar vortex, and model biases related to these factors can therefore strongly impact the uncertainty in the prediction of the stratosphere.</p><p id="d2e191">Subseasonal-to-seasonal forecast systems are subject to model biases in both polar vortex strength <span class="cit" id="xref_paren.13">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lawrence et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> and climatological tropospheric stationary waves <span class="cit" id="xref_paren.14">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>, which can interact with wave anomalies to enhance or suppress upward wave flux <span class="cit" id="xref_paren.15">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx72" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Smith and Kushner</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx72" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2012</a>)</span>. For instance, the accurate representation of the vortex background state is found to be important for the successful prediction of the 2021 SSW event <span class="cit" id="xref_paren.16">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cho et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. Yet, it has been suggested that the dominant factor in limiting the prediction of SSWs is the prediction of planetary wave activity rather than the mean state <span class="cit" id="xref_paren.17">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Stan and Straus</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2009</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx83" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wu et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx83" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Portal et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. The major sources of uncertainty in predicting the wave activity driving SSWs are suggested to be associated with the model representation of tropospheric stationary wave ridges in western North America and the North Atlantic region <span class="cit" id="xref_paren.18">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. For individual SSW events, the uncertainty in wave activity is suggested to be related to the representation of extratropical blocking, as found for the 2018 SSW event <span class="cit" id="xref_paren.19">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Karpechko et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lee et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Erner et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>, and to localized synoptic-scale tropospheric perturbations, as shown by <span class="cit" id="xref_text.20"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kent et al.</a> (<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span> for the 2013 SSW event.</p><p id="d2e219">Through teleconnection pathways, variability in the tropics can contribute to uncertainty in the extratropics, which can further propagate into the stratosphere <span class="cit" id="xref_paren.21">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Straus et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Roberts et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. The Madden–Julian Oscillation (MJO), the dominant mode of intraseasonal variability in the tropics, influences the extratropics by modulating extratropical tropospheric stationary waves, over the North Pacific in particular <span class="cit" id="xref_paren.22">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lin et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz and Garfinkel</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, and can further impact the stratospheric polar vortex by exciting poleward and vertical wave propagation <span class="cit" id="xref_paren.23">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2012</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span>. Model initializations that better capture the MJO show better prediction skill over the North Pacific and Euro-Atlantic region <span class="cit" id="xref_paren.24">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Ferranti et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kim et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span> and better upward coupling of the troposphere to the stratosphere <span class="cit" id="xref_paren.25">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel and Schwartz</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Stan et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>, often resulting in a better simulation of SSWs <span class="cit" id="xref_paren.26">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz and Garfinkel</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kang and Tziperman</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>.</p><p id="d2e244">Uncertainty in the troposphere can also be a response to the extreme states of the polar vortex itself <span class="cit" id="xref_paren.27">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Charlton et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2004</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Sigmond et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Tripathi et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>. Forecast skill can be enhanced after stratospheric extreme events <span class="cit" id="xref_paren.28">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Sigmond et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Tripathi et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2015</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span> but can also be reduced since the forecasts can be overconfident <span class="cit" id="xref_paren.29">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Büeler et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Erner and Karpechko</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>, especially over Europe <span class="cit" id="xref_paren.30">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>)</span>. In particular, tropospheric internal variability can limit the coupling of stratospheric variability to the troposphere <span class="cit" id="xref_paren.31">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span>. For instance, following the 2018 SSW event, the uncertainty in the development of synoptic activity after the SSW onset impacted the predictability of surface anomalies <span class="cit" id="xref_paren.32">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">González-Alemán et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>.</p><p id="d2e268">Given that the uncertainty in the stratosphere is coupled to uncertainty in the troposphere, this study aims to systematically investigate the link between stratospheric and tropospheric uncertainty in the ECMWF subseasonal-to-seasonal (S2S) hindcasts and to identify regions and pathways for which better model representation might enhance the skill of stratospheric prediction.</p></div><span class="section1-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section2"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section2 .co-arrow-open,.section2-content" data-show="#section2 .co-arrow-closed,.section2-mobile-bottom-border"><div id="Ch1.S2" class="h1"><span class="label">2</span> Data and methods<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section2-content show-no-js hide-on-mobile-soft"><p id="d2e279">The northern hemispheric (NH) winter (November to February) subseasonal-to-seasonal (S2S) hindcasts <span class="cit" id="xref_paren.33">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx82" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Vitart et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx82" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span> of ECMWF model versions CY43R3 and CY45R1 are analyzed for the period 1998–1999 to 2017-2018. The hindcasts consist of 11 ensemble members, are integrated for 46 d, and are initialized twice a week. Both versions share similar configurations and are initialized with the ECMWF ERA-I reanalysis <span class="cit" id="xref_paren.34">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Dee et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2011</a>)</span>.</p><p id="d2e288">In addition, a hindcast for a case study initialized on 27 January 2018, 16 d before the onset of the 2018 SSW event on 12 February 2018, is chosen for a re-run to investigate the development of the large ensemble spread associated with this particular hindcast. This specific hindcast initialization date is chosen for a re-run because it displays a larger ensemble spread and consists of a larger portion of ensemble members that successfully predict the SSW event than the initializations available from the ECMWF real-time forecast on neighboring dates (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A1</a>). The hindcast is computed for an increased ensemble size (51 members compared to 11 in the original hindcast) and for more pressure output levels to enable a more robust investigation of the spread. The hindcast is re-run using model version CY47R3, computed on 27 January 2022, and is initialized with ERA5 reanalysis <span class="cit" id="xref_paren.35">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hersbach et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. The daily means of the 20-year hindcasts of the same model version are chosen as the climatology to compute anomalies for the hindcasts.</p><p id="d2e296"><span id="page12261"></span>The zonal-mean zonal wind at 60° N and 10 hPa (<span class="inline-formula"><i>U</i><sub>10,60</sub></span>) is used as a measure of the strength of the stratospheric polar vortex. As a measure of upward wave activity in the lower stratosphere, we use the zonal average of meridional eddy heat fluxes (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><msup><mi>v</mi><mo>′</mo></msup><msup><mi>T</mi><mo>′</mo></msup></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="13pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="2b284452a6a0db7d64d70c39ee8f9087"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00001.svg" width="100%" height="13pt" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00001.png"></image></svg></span></span>) averaged over 40–80° N at 100 hPa and weighted by the cosine of latitude, where <span class="inline-formula"><i>v</i></span> is the meridional wind, <span class="inline-formula"><i>T</i></span> is the temperature, and the prime (<span class="inline-formula"><sup>′</sup></span>) denotes the departure from the zonal mean.</p><p id="d2e357">Hindcasts are categorized based on their ensemble spread in <span class="inline-formula"><i>U</i><sub>10,60</sub></span>. The uncertainty is estimated by first calculating the daily standard deviation of <span class="inline-formula"><i>U</i><sub>10,60</sub></span> across the ensemble members of each hindcast. These daily standard deviations are then averaged over the 46 d integration period of the hindcast to obtain an estimate of the overall uncertainty present in the hindcast. Based on this 46 d average uncertainty, the hindcasts are separated into composites of large and small uncertainty, each consisting of 328 hindcasts. Specifically, the large uncertainty composite (large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread) is composed of hindcasts with an ensemble spread above the 75th percentile of all hindcasts (9.16 m s<span class="inline-formula"><sup>−1</sup></span>), and the small uncertainty composite (small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread) is composed of hindcasts with an ensemble spread below the 25th percentile (5.86 m s<span class="inline-formula"><sup>−1</sup></span>). Similar separations of hindcasts are found when using shorter averaging windows instead of the full 46 d average, and the results do not change significantly based on the definitions used (not shown).</p></div><span class="section2-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section3"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section3 .co-arrow-open,.section3-content" data-show="#section3 .co-arrow-closed,.section3-mobile-bottom-border"><div id="Ch1.S3" class="h1"><span class="label">3</span> Uncertainty in the ensemble prediction of the stratosphere<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section3-content show-no-js hide-on-mobile-soft"><p id="d2e457">We start by comparing and characterizing the features of high and low uncertainty hindcasts in the ECMWF subseasonal-to-seasonal (S2S) model. Hindcasts that exhibit large uncertainty in the prediction of the strength of the stratospheric polar vortex (<span class="inline-formula"><i>U</i><sub>10,60</sub></span>) are associated with strong growth in the spread at around 5–25 d after initialization (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>a). For hindcasts that exhibit small uncertainty, the spread in <span class="inline-formula"><i>U</i><sub>10,60</sub></span> grows as lead time increases, but the rate of increase is much smaller than for the large uncertainty composite. Hereafter, the large uncertainty and small uncertainty composites are referred to as large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread and small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite, respectively.</p><div class="fig" id="Ch1.F1"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f01-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f01" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f01-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f01-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f01-high-res.pdf" data-width="2067" data-height="620"></a><div class="caption"><p id="d2e528"><strong class="caption-number">Figure 1</strong>Evolution of <strong>(a)</strong> ensemble spread in <span class="inline-formula"><i>U</i><sub>10,60</sub></span>, <strong>(b)</strong> ensemble mean of <span class="inline-formula"><i>U</i><sub>10,60</sub></span>, and <strong>(c)</strong> ensemble mean of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><msup><mi>v</mi><mo>′</mo></msup><msup><mi>T</mi><mo>′</mo></msup></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="13pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="4a3dd808aba552ed4701ce4eb8c0f3c6"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00002.svg" width="100%" height="13pt" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00002.png"></image></svg></span></span> at 100 hPa in composites of hindcasts classified as having large uncertainty (large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread, black) and small uncertainty (small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread, grey), respectively, for the prediction of the stratospheric polar vortex. The solid line denotes the median, the shaded region denotes the 25th to 75th percentiles, and dotted lines denote the 5th and 95th percentiles, for the large and small spread composites. The median of all hindcasts is shown in yellow. Solid lines are printed in bold when the composites are significantly different from all hindcasts at the 95 % confidence interval using a <span class="inline-formula"><i>t</i></span> test. The dashed purple line in <strong>(a)</strong> corresponds to the ensemble spread of the hindcast of the 2018 SSW event, and the dashed purple lines in <strong>(b)</strong> and <strong>(c)</strong> correspond to the ensemble mean of the hindcast for the 2018 SSW. Dotted vertical purple and grey lines indicate the onset and the peak of the uncertainty in <span class="inline-formula"><i>U</i><sub>10,60</sub></span> for the 2018 SSW event, respectively. The number of hindcasts in each composite is given in brackets in the legend.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f01-high-res.pdf" target="_blank">Download</a></p></div><p id="d2e663">The ensemble mean evolution in <span class="inline-formula"><i>U</i><sub>10,60</sub></span> of the identified composites (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>b) shows that on the day of initialization (day 0), the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts are more generally associated with a strong vortex, and the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts are associated with a weak vortex, with the medians of the composites being 36.28 and 13.25 m s<span class="inline-formula"><sup>−1</sup></span> on day 0, respectively. After day 0, the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite shows an overall weakening of the vortex, and the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite shows an overall strengthening of the vortex. The <span class="inline-formula"><i>U</i><sub>10,60</sub></span> evolution of the composites is likely related to the fact that SSWs or vortex weakenings in the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite occur predominantly at relatively long lead times (from 10 d after initialization), while the SSWs or vortex weakenings in the small spread composite occur mostly at early lead times (within the first 10 d after initialization) (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a>). The difference in vortex strength between the composites reduces with lead time but remains significantly different from that of all hindcasts until 24 and 29 d after initialization, for the large and small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composites, respectively. Towards longer lead times, from around 35 d after initialization, the composites display a vortex strength similar to all hindcasts, likely linked to the model's drift towards climatology at long lead times. After that, the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite stagnates at a vortex strength similar to all hindcasts, while the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite weakens further and shows significantly weaker vortex strength than all hindcasts starting on day 37, possibly due to the stronger-than-average wave activity of the composite, which lasted until the end of the hindcasts (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>c).</p><p id="d2e847">The respective behavior of the composites is consistent with our understanding that when the stratospheric mean flow is westerly, vertical wave propagation in the NH is possible for small wavenumbers <span class="cit" id="xref_paren.36">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Charney and Drazin</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1961</a>)</span>, while the exact propagation properties of the waves are modulated by the three-dimensional structure of the stratospheric flow. A strong vortex can further act as a waveguide, guiding waves from the troposphere towards the polar stratosphere <span class="cit" id="xref_paren.37">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Matsuno</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1970</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Simpson et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2009</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Albers and Birner</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span>. On the other hand, when the vortex in the lower stratosphere is very weak, such as after an SSW event, waves can be inhibited from propagating upwards, and the vortex can strengthen radiatively <span class="cit" id="xref_paren.38">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Limpasuvan et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2005</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hitchcock and Shepherd</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2013</a>)</span>. Indeed, as expected, the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite that is associated with a stronger vortex is associated with stronger eddy heat flux in the lower stratosphere, as compared to the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite, which is associated with a weaker vortex and weaker eddy heat flux (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>b and c).</p><p id="d2e894">To better understand the regional contributions to the spread in <span class="inline-formula"><i>U</i><sub>10,60</sub></span>, we now investigate the longitudinal structure of the lower stratospheric heat flux (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>). The large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite shows anomalously positive eddy heat flux over the North Pacific (NP), Northern Europe (NE), and Siberia (Sib) and anomalously negative heat flux over North America (NA) (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>a). The heat flux associated with NP peaks in the first few days after initialization, while that in the NA peaks after 10 d and in the NE after 15 d. For the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite, the heat flux is weaker than for the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>b) and comparable to the average of all hindcasts (yellow contours in Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>b). The heat flux of the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite is strongest at initialization and gradually decreases within the first 10 d for all longitudes. Interestingly, the heat flux over the North Pacific of the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite increases again around 25 d after initialization, which might explain the stagnation of the increase in <span class="inline-formula"><i>U</i><sub>10,60</sub></span> for the small spread composite in Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>b. The largest difference in the ensemble mean heat flux between the composites is found over the North Pacific, owing to the very strong positive heat flux over the North Pacific associated with the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>c).</p><p id="d2e1039"><span id="page12262"></span>In terms of ensemble spread, the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite shows large uncertainty in the heat flux in all regions that also exhibit large positive and negative ensemble mean heat flux (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>d). For the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> composite, uncertainty is found in the same regions as for the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> composite, but the ensemble spread is much weaker (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>e). The largest difference between the high and low spread composites in descending order is over Northern Europe, followed by North America, the North Pacific, and Siberia (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>f).</p><div class="fig" id="Ch1.F2"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f02-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f02" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f02-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f02-thumb.png" data-width="1852" data-height="1272"></a><div class="caption"><p id="d2e1099"><strong class="caption-number">Figure 2</strong>Hovmöller diagrams of composite ensemble mean and ensemble spread of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M47" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>v</mi><mo>′</mo></msup><msup><mi>T</mi><mo>′</mo></msup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="11pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="230d5286d1ba94eb88a4e3a77e5a9bac"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00003.svg" width="100%" height="11pt" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00003.png"></image></svg></span></span> at 100 hPa for <strong>(a, d)</strong> hindcasts with large spread in <span class="inline-formula"><i>U</i><sub>10,60</sub></span> and <strong>(b, e)</strong> hindcasts with small spread in <span class="inline-formula"><i>U</i><sub>10,60</sub></span>. The difference between the composites, given as large minus small spread composite, in the ensemble mean and ensemble spread is displayed in <strong>(c)</strong> and <strong>(f)</strong>, respectively. The averages over all hindcasts are plotted by grey contours. Stippling indicates significant differences at the 95 % confidence level determined by a <span class="inline-formula"><i>t</i></span> test in <strong>(a)</strong> and <strong>(b)</strong> and in <strong>(d)</strong> and <strong>(e)</strong> between the corresponding hindcast composite and all hindcasts and in <strong>(c)</strong> and <strong>(f)</strong> between the hindcast composites. The grey vertical lines separate the regions of investigation, from left to right: North Pacific (NP; 140° E–130° W), North America (NA; 130–40° W), Northern Europe (NE; 40° W–50° E), and Siberia (Sib; 50–140° E). Note that the negative range of the color bars is smaller than the positive range for visualization purposes, but the contour levels are kept constant.</p></div><p class="downloads"></p></div></div><span class="section3-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section4"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section4 .co-arrow-open,.section4-content" data-show="#section4 .co-arrow-closed,.section4-mobile-bottom-border"><div id="Ch1.S4" class="h1"><span class="label">4</span> Tropospheric links to stratospheric uncertainty<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section4-content show-no-js hide-on-mobile-soft"><p id="d2e1203">As a next step, we investigate whether the uncertainty in the stratosphere is related to uncertainty in the troposphere by comparing the temporal and spatial evolution of the uncertainty of the large and small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> composites in mean sea level pressure (MSLP) anomalies (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>). In the first 5 d after initialization, only small significant patches of larger uncertainty are found in the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite compared to the small spread composite (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>a). At days 5–10, a significant difference between the large and small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite is found over the North Pacific, the polar regions, Northern Europe, and the Ural region. The difference in uncertainty between the composites at these regions persists and amplifies as lead time increases (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>b–f), especially over the North Pacific and Scandinavia.</p><p id="d2e1261">Other regions with significant differences between the large and small spread composites include the Azores High and the tropics during days 10–30 (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>c–f). Smaller uncertainty is found in the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite than the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite over the Azores High during days 10–25 (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>c–e). In the tropics, a small but significant difference is found from days 10–15 over the Maritime Continent and the tropical Pacific Ocean where the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite shows larger uncertainty than the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> composite (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>c). The difference in uncertainty between the composites expands to more regions in the tropics and subtropics as lead time increases (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>c–f), including Africa at around day 25–30 (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>f). Small significant differences are also found in the Southern Hemisphere extratropics and over Antarctica. These anomalies, especially at longer lead times (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>d–f), may be connected to tropical precursors, such as for example the MJO <span class="cit" id="xref_paren.39">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Stan et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> or El Niño–Southern Oscillation <span class="cit" id="xref_paren.40">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Taschetto et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. The phases of these phenomena are related to the strength of the Northern Hemisphere polar vortex and its predictability <span class="cit" id="xref_paren.41">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel and Schwartz</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>, according to which the ensemble was separated here, but they also exhibit teleconnections to the Southern Hemisphere <span class="cit" id="xref_paren.42">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Rondanelli et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Taschetto et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>.</p><p id="d2e1356">The regions in the troposphere where uncertainty emerges are consistent with precursor regions that are known to modulate upward wave propagation into the stratosphere, namely over the North Pacific and Northern Europe <span class="cit" id="xref_paren.43">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2010</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Barriopedro and Calvo</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span> and over Scandinavia and the Ural mountains, regions where increased blocking frequency occurs before SSWs <span class="cit" id="xref_paren.44">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Martius et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2009</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Peings</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>. The consistency between the identified tropospheric origins of uncertainty and the precursor regions might suggest a propagation of uncertainty from the troposphere into the stratosphere through uncertainty in upward wave<span id="page12263"></span> propagation, associated with uncertainty in tropospheric stationary waves <span class="cit" id="xref_paren.45">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> and in synoptic-scale conditions located in these regions <span class="cit" id="xref_paren.46">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lee et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. Larger uncertainty in the tropospheric stationary wave anomalies is associated with the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite as compared to the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite over the North Pacific, North America, and Northern Europe at lead times beyond 20 d (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A3</a>f). This uncertainty in the stationary waves might have contributed to the uncertainty in upward wave propagation (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2</a>f), as suggested in <span class="cit" id="xref_text.47"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a> (<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. Tropospheric variability in these regions could thus contribute to the polar vortex weakening in the large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composite, in which SSWs in the composite occur mainly at lead times of more than 10 d (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a>b).</p><div class="fig" id="Ch1.F3"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f03-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f03" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f03-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f03-thumb.png" data-width="2067" data-height="965"></a><div class="caption"><p id="d2e1432"><strong class="caption-number">Figure 3</strong>Difference in the evolution of composite ensemble spread of mean sea level pressure anomalies (MSLP<span class="inline-formula"><sub>anom</sub></span>) given by hindcasts of large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread minus small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread. Differences that are significant at the 95 % confidence level according to a <span class="inline-formula"><i>t</i></span> test are marked by stippling.</p></div><p class="downloads"></p></div><p id="d2e1489">At the same time, several of these regions are known to be impacted by stratospheric forcing, e.g., after SSW events. SSW can have a downward impact over the Euro-Atlantic sector, resulting in a shift of storm track position <span class="cit" id="xref_paren.48">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Afargan-Gerstman and Domeisen</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx58" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Maycock et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx58" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>, in a change of cyclone frequency <span class="cit" id="xref_paren.49">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Afargan-Gerstman et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>, and in the transition of weather regimes <span class="cit" id="xref_paren.50">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Charlton-Perez et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Domeisen et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>)</span>. Hence, since SSW events occur more frequently within the first 10 d after initialization in the small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a>c), the regions highlighted at longer lead times (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>d–f) could also be related to downward impacts from the stratosphere. However, due to the substantial variability in the timing of SSW occurrence in both the large and small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread composites (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A2</a>b, c), it is not possible to clearly determine whether these regions correspond directly to upward or downward coupling in these composites at a given lead time. Therefore, in Sect. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.S5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>, we further investigate the upward and<span id="page12264"></span> downward pathways in a case study of the 2018 SSW prediction.</p></div><span class="section4-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section5"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section5 .co-arrow-open,.section5-content" data-show="#section5 .co-arrow-closed,.section5-mobile-bottom-border"><div id="Ch1.S5" class="h1"><span class="label">5</span> Development of the high uncertainty in the 2018 SSW prediction<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section5-content show-no-js hide-on-mobile-soft"><p id="d2e1551">A case with particularly high uncertainty in the prediction of the stratosphere was the SSW event on 12 February 2018. This case therefore represents a prime example for studying the origins of stratospheric uncertainty and their link to the troposphere. Furthermore, this event had a wide range of surface impacts <span class="cit" id="xref_paren.51">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kautz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Ayarzagüena et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hitchcock et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>, while its prediction itself exhibited high uncertainty despite a range of suggested precursors, including extratropical troughs and blocking <span class="cit" id="xref_paren.52">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Rao et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Karpechko et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lee et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>, and an MJO teleconnection <span class="cit" id="xref_paren.53">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Erner et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>.</p><div class="fig" id="Ch1.F4"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f04-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f04" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f04-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f04-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f04-high-res.pdf" data-width="2067" data-height="744"></a><div class="caption"><p id="d2e1567"><strong class="caption-number">Figure 4</strong>Ensemble plumes of <strong>(a)</strong> <span class="inline-formula"><i>U</i><sub>10,60</sub></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M68" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mrow><msup><mi>v</mi><mo>′</mo></msup><msup><mi>T</mi><mo>′</mo></msup></mrow><mo mathvariant="normal">‾</mo></mover></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="13pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="54257b35bd15c513d1366f0e13bfa556"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00004.svg" width="100%" height="13pt" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00004.png"></image></svg></span></span> at 100 hPa averaged over 45–75° N for <strong>(b)</strong> wave-1 and <strong>(c)</strong> wave-2, respectively, for the hindcast of the 2018 SSW event. Ensemble members are separated into strong vortex cluster (red) and SSW cluster (blue). The solid dark-colored lines denote the median of the composite. Solid lines are printed in bold when the ensemble clusters are significantly different from each other at the 95 % confidence interval using a <span class="inline-formula"><i>t</i></span> test. The black line denotes ERA5. The vertical line denotes the central date of the SSW on 12 February 2018.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f04-high-res.pdf" target="_blank">Download</a></p></div><p id="d2e1628">We therefore further explore the development of uncertainty for the case study of the 2018 SSW. For this purpose we use an additional hindcast initialization with a larger number of ensemble members, initialized 16 d before the onset of the 2018 SSW event (see “Data and methods”). This initialization is selected because it includes ensemble members that successfully predict the onset of the SSW event and members that erroneously predict a strong vortex state around the time of the SSW onset, contributing to the large spread in ensemble for <span class="inline-formula"><i>U</i><sub>10,60</sub></span>. The selected initialization date shows a particularly extreme spread in <span class="inline-formula"><i>U</i><sub>10,60</sub></span> compared to other initialization dates, with the spread increasing beyond the 95th percentile of the climatology and peaking at 7 d after the SSW onset (dashed purple line in Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>a). Consistent with the characteristics of the large uncertainty hindcasts discussed in Sect. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.S3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">3</a>, the hindcast is initialized under a strong vortex state (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>b) and is associated with strong eddy heat flux around 10–20 d after initialization (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">1</a>c), consistent with the occurrence of the SSW. Similar to methods used in, e.g., <span class="cit" id="xref_text.54"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kautz et al.</a> (<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span> and <span class="cit" id="xref_text.55"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Cho et al.</a> (<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>, we separate the ensemble into two clusters, one with ensemble members that successfully predict the SSW (<i>SSW cluster</i>) and one that predicts a strong vortex state (<i>strong vortex cluster</i>) (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>a), to investigate the differences between the clusters that subsequently lead to different predictions of the vortex strength.</p><p id="d2e1687">Before the onset of the SSW, the clusters do not differ significantly in wave-1 heat flux in the lower stratosphere, whereas they do differ significantly in wave-2 at around lag <span class="inline-formula">−5</span> (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>b and c). Both clusters show an initial increase in wave-2 activity, but the wave activity of the strong vortex cluster decreases shortly after the initial increase. The observed difference between the two clusters in the wave-2 activity suggests that accurately predicting the wave-2 activity is crucial for successfully predicting the SSW, in agreement with previous studies <span class="cit" id="xref_paren.56">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Karpechko et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Rao et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lee et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Erner et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>. Although the SSW cluster on average still underestimates the wave activity as compared to reanalysis, and as a consequence the vortex deceleration, several individual ensemble members predict eddy heat fluxes comparable to reanalysis.</p><div class="fig" id="Ch1.F5"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f05-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f05" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f05-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f05-thumb.png" data-width="1088" data-height="1230"></a><div class="caption"><p id="d2e1707"><strong class="caption-number">Figure 5</strong>Difference between the SSW cluster and the strong vortex cluster in weekly averages of <strong>(a, b)</strong> outgoing longwave radiation (OLR) anomalies before SSW onset and <strong>(c–h)</strong> mean sea level pressure (MSLP) anomalies before and after SSW onset for the hindcast of the 2018 SSW. Lag is given in days with respect to SSW onset. Anomalies are averaged every 7 d starting from 14 d before SSW onset (lag <span class="inline-formula">−14</span> corresponds to 2 d after initialization), for MSLP anomalies up to 28 d after SSW onset (lag 28). Stippling indicates a significant difference between the two clusters by a <span class="inline-formula"><i>t</i></span> test at the 95 % confidence level. Note that the upper and lower limits of the color bars are increased from <strong>(c)</strong> to <strong>(h)</strong>, with a color bar range of <span class="inline-formula">±</span> 500 Pa in <strong>(c)</strong>, <span class="inline-formula">±</span> 1500 Pa in <strong>(d)</strong> to <strong>(f)</strong>, and <span class="inline-formula">±</span> 2500 Pa in <strong>(g)</strong> and <strong>(h)</strong>. </p></div><p class="downloads"></p></div><p id="d2e1783"><span id="page12265"></span>To further understand the origin of the difference between the clusters in wave-2 activity, we compare the differences between the clusters in terms of their respective anomalies of outgoing longwave radiation (OLR) (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>a–b) and of geopotential height anomalies (Figs. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A4</a> and <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A5</a>) before SSW onset and of mean sea level pressure (MSLP) anomalies before and after SSW onset (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>c–h). Before SSW onset, for lags <span class="inline-formula">−14</span> to <span class="inline-formula">−1</span>, the SSW cluster shows more enhanced convection over the Maritime Continent and suppressed convection over parts of Africa and South America than the strong vortex cluster (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>a–b). During lags <span class="inline-formula">−14</span> to <span class="inline-formula">−8</span>, the SSW cluster also shows a stronger negative-pressure anomaly over the Northwestern Pacific and a stronger positive-pressure anomaly over western North America and the North Atlantic (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>c). There is also a wave train pattern over the extratropics in the Southern Hemisphere that could be related to the enhanced convection over the tropics <span class="cit" id="xref_paren.57">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Stan et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Henderson et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>. During lags <span class="inline-formula">−7</span> to <span class="inline-formula">−1</span>, for the SSW cluster, the high-pressure anomaly over Scandinavia is amplified, and stronger negative-pressure anomalies over the North Atlantic and eastern Siberia are found (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>d). This pressure dipole between Scandinavia and the North Atlantic is remarkably similar to the pattern that is identified by <span class="cit" id="xref_text.58"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kent et al.</a> (<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span> to be crucial for successfully predicting the 2013 SSW, which was also preceded by strong wave-2 flux. The simultaneous increase in positive-pressure anomaly over Scandinavia and Alaska, combined with the reduced negative-pressure anomaly over eastern Siberia, projects onto a climatological wave-2 pattern, which likely forced the upward wave-2 activity flux (Figs. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">4</a>c and <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A6</a>c, d) by amplifying the climatological stationary waves <span class="cit" id="xref_paren.59">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2010</a>)</span>.</p><p id="d2e1878">The development of extratropical precursors to the SSW could potentially be linked to the enhanced convection over the tropics, particularly the low-pressure anomaly over the Northwestern Pacific during lags <span class="inline-formula">−14</span> to <span class="inline-formula">−8</span> (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>c), which has been suggested to be associated with MJO phase 6/7 <span class="cit" id="xref_paren.60">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2012</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Liu et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz and Garfinkel</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. A closer examination of the buildup of these anomalies indicates that the SSW cluster starts to show stronger convection over the Maritime Continent a few days after initialization (Figs. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A4</a>a and <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A5</a>a), followed by a trough over the Northwestern Pacific (Figs. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A4</a>b and <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A5</a>b) and a ridge over Alaska (Figs. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A4</a>b and <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A5</a>c). During lags <span class="inline-formula">−7</span> to <span class="inline-formula">−4</span>, the ridge over Alaska develops into anomalies that project onto the Pacific North American (PNA) pattern and form a wave train into Northern Europe (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A4</a>c), potentially contributing to the formation of the trough over the North Atlantic and the ridge over Scandinavia (Figs. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A4</a>d and <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A5</a>d).</p><p id="d2e1946">The higher pressure over Scandinavia and the lower pressure over the North Atlantic in the SSW cluster as compared to the strong vortex cluster before the SSW onset (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>d) persist and strengthen further after SSW onset, while the high-pressure anomaly extends further towards Greenland and then spreads across the Arctic (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>e–h). Starting at lag 7, the anomalies start resembling the negative phase of the North Atlantic Oscillation (NAO) (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#Ch1.F5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">5</a>f–h), consistent with the downward impact associated with the SSW event that is observed in reanalysis (Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A8</a>).</p></div><span class="section5-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec conclusions" id="section6"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section6 .co-arrow-open,.section6-content" data-show="#section6 .co-arrow-closed,.section6-mobile-bottom-border"><div id="Ch1.S6" class="h1"><span class="label">6</span> Conclusions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section6-content show-no-js hide-on-mobile-soft"><p id="d2e1965"><span id="page12266"></span>The uncertainty in the prediction of the stratosphere and the origins of the uncertainty are systematically investigated using the S2S hindcasts of the ECMWF prediction system. By separating hindcasts into those that show large uncertainty versus those that show small uncertainty in the prediction of the polar vortex strength (<span class="inline-formula"><i>U</i><sub>10,60</sub></span>), using ensemble spread as a measure of uncertainty, we find that hindcasts associated with large uncertainty (large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread) tend to be initialized under a strong vortex, while hindcasts associated with small uncertainty (small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread) tend to be initialized under a weak vortex. Large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts are also associated with a stronger ensemble mean wave activity in the lower stratosphere and associated with larger uncertainty in the wave activity compared to small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts. The characteristics of the hindcast composites suggest that the vortex background state at initialization of a given hindcast can indicate whether the uncertainty in the subsequent stratospheric prediction will be larger or smaller than average <span class="cit" id="xref_paren.61">(compare also to <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Rupp et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Spaeth et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>, and this relationship between hindcasts' uncertainty and the vortex state can in turn be explained by the different uncertainty in stratospheric wave activity under a different initial vortex state.</p><p id="d2e2054"><span id="page12267"></span>The difference in uncertainty between the hindcasts is further linked to the troposphere. Specifically, larger uncertainty is identified over the North Pacific and Northern Europe in large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts, where synoptic-scale variability can modulate stratospheric vortex strength <span class="cit" id="xref_paren.62">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2010</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Martius et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2009</a>)</span> and impact the prediction of the stratosphere <span class="cit" id="xref_paren.63">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kent et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. This tropospheric pattern suggests upward propagation of uncertainty from the troposphere into the stratosphere through the uncertainty associated with the tropospheric stationary waves <span class="cit" id="xref_paren.64">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span> and the synoptic-scale conditions in these precursor regions <span class="cit" id="xref_paren.65">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lee et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Karpechko et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>)</span>. In turn, the stratosphere can also propagate uncertainty downward, impacting predictability of the troposphere, especially over the North Atlantic region <span class="cit" id="xref_paren.66">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Büeler et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Spaeth et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Erner and Karpechko</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. For instance, synoptic-scale tropospheric uncertainties following stratospheric disruptions can limit the predictability of the troposphere <span class="cit" id="xref_paren.67">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">González-Alemán et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>. Hence, the identified uncertainty signal in the North Atlantic region is likely linked to both precursors and responses to stratospheric extremes.</p><p id="d2e2092">Since it is not possible to clearly separate tropospheric precursors and responses in the analysis of uncertainty for all cases, as there are substantial overlaps of upward and downward coupling when considering all hindcasts together (not shown), the upward and downward coupling of uncertainty between the troposphere and the stratosphere is further explored in a hindcast of the 2018 SSW initialized 16 d before the event onset under a strong vortex. Initialized at the end of MJO phase 5 <span class="cit" id="xref_paren.68">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kiladis et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>)</span> and near the onset of a record-breaking MJO phase 6 <span class="cit" id="xref_paren.69">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Barrett</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2019</a>)</span>, this event showed a particularly strong uncertainty in the stratosphere ahead of the event onset. The hindcast's ensemble spans a range from erroneously predicting a strong vortex to successfully predicting the observed SSW event. The ensemble members that successfully predict the SSW are preceded by enhanced convection over the Maritime Continent and followed by a trough over the Northwestern Pacific, which is suggested to be associated with MJO phase 7 <span class="cit" id="xref_paren.70">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Lin et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz and Garfinkel</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>. The development of the trough over the Northwestern Pacific is followed by the development of a ridge over Alaska, a wave train to Northern Europe, a trough over the Atlantic, a ridge over Scandinavia, and subsequently a development of wave-2 flux. Since the ensemble members that successfully predict the SSW capture anomalies that are consistent with the extratropical impact of the MJO <span class="cit" id="xref_paren.71">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2012</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Liu et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2014</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz and Garfinkel</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, and since the MJO is also suggested to act as a trigger for the SSW event <span class="cit" id="xref_paren.72">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Erner et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a>)</span>, this hindcast of the 2018 SSW represents an example demonstrating the propagation of uncertainty from the tropical troposphere into the stratosphere through teleconnection pathways <span class="cit" id="xref_paren.73">(<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Schwartz and Garfinkel</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Straus et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Roberts et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2023</a>)</span>. The ensemble members that successfully capture the MJO teleconnection and the SSW also better capture the downward impact associated with the SSW. Therefore, this hindcast also demonstrates the extended surface prediction skill that can be gained from the successful prediction of an SSW due to its precursors.</p><p id="d2e2114">While tropospheric variability alone cannot fully explain the uncertainties in the stratosphere, and while not all wave activity that drives SSWs has a tropospheric origin <span class="cit" id="xref_paren.74">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Birner and Albers</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a>)</span>, this study highlights how uncertainties in the troposphere can contribute to uncertainty in the stratosphere, and vice versa. Thus, a better representation of the regions identified in this study can be beneficial for both tropospheric and stratospheric prediction, in agreement with the suggested precursor regions of SSWs, e.g., over the North Pacific; the North Atlantic <span class="cit" id="xref_paren.75">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Martius et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2009</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Garfinkel et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2010</a>)</span>; and the tropics, for instance, over the Maritime Continent for MJO teleconnections <span class="cit" id="xref_paren.76">(e.g., <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Kang and Tziperman</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2018</a>; <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx84" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Yadav et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx84" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a>)</span>. Model improvements for these regions, e.g., higher model resolution and improved representation of sea surface temperature gradients and diabatic heating, may benefit the representation of the synoptic-scale conditions over the extratropics and, subsequently, the prediction of the stratosphere and its downward impacts.</p></div><span class="section6-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="app sec" id="section7"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section7 .co-arrow-open,.section7-content" data-show="#section7 .co-arrow-closed,.section7-mobile-bottom-border"><div id="App1.Ch1.S1" class="h1"><span class="section-number"></span>Appendix A<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section7-content show-no-js hide-on-mobile-soft"><div class="fig" id="App1.Ch1.S1.F6"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f06-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f06" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f06-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f06-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f06-high-res.pdf" data-width="2067" data-height="595"></a><div class="caption"><p id="d2e2145"><strong class="caption-number">Figure A1</strong>Ensemble plumes of zonal-mean zonal wind at 10 hPa, 60° N of ECMWF real-time forecasts initialized on <strong>(a)</strong> 25 January 2018 and <strong>(c)</strong> 29 January 2018 and <strong>(b)</strong> of the re-run of the ECMWF hindcast initialized on 27 January 2018. Blue lines denote members that successfully predict the 2018 SSW event within 10 d following the SSW onset, and grey lines denote members that did not predict the SSW or that got the timing of the SSW wrong. Numbers in the brackets at the legend indicate the number of ensemble members in each category. Ensemble spread in zonal-mean zonal wind at 10 hPa; 60° N averaged over the entire hindcast/forecast period is indicated in the bottom-right corner of each panel. Lag 0 denotes the onset of the 2018 SSW.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f06-high-res.pdf" target="_blank">Download</a></p></div><div class="fig" id="App1.Ch1.S1.F7"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f07-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f07" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f07-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f07-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f07-high-res.pdf" data-width="2067" data-height="603"></a><div class="caption"><p id="d2e2167"><strong class="caption-number">Figure A2</strong>Average occurrence of 10 d strong wind acceleration and deceleration events, with event definitions following <span class="cit" id="xref_text.77"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx83" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Wu et al.</a> (<a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx83" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2022</a>)</span>, at a given day from initialization in <strong>(a)</strong> all hindcasts, <strong>(b)</strong> large <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts, and <strong>(c)</strong> small <span class="inline-formula"><i>U</i><sub>10,60</sub></span> spread hindcasts. Red and blue bars indicate the average occurrence of wind acceleration and deceleration events, respectively, in a 10 d window following a given day after initialization. Note that the blue bars and red bars are stacked on top of each other, and the bars together indicate the total average occurrence of wind acceleration and deceleration events in a given hindcast. The average number of events that evolve into an extreme state of the vortex, i.e., strong vortex events or sudden stratospheric warmings, during the 10 d event window is hatched.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f07-high-res.pdf" target="_blank">Download</a></p></div><div class="fig" id="App1.Ch1.S1.F8"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f08-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f08" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f08-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f08-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f08.png" data-width="1664" data-height="1162"></a><div class="caption"><p id="d2e2227"><strong class="caption-number">Figure A3</strong>Same as Fig. 2 but for zonal anomalies over geopotential height at 500 hPa (GH<span class="inline-formula">*<sub>500 hPa</sub></span>) averaged over 40–60° N.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f08.png" target="_blank">Download</a></p></div><div class="fig" id="App1.Ch1.S1.F9"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f09-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f09" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f09-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f09-thumb.png" data-width="2067" data-height="1263"></a><div class="caption"><p id="d2e2256"><strong class="caption-number">Figure A4</strong>Difference between the SSW cluster and the strong vortex cluster in geopotential height at 100, 250, 500, and 850 hPa for the hindcast of the 2018 SSW, averaged every 4 d starting from 1 d after initialization (lag <span class="inline-formula">−15</span>) to SSW onset (lag 0). Stippling indicates a significant difference between the two clusters by a <span class="inline-formula"><i>t</i></span> test at the 95 % confidence interval. Note that the range of the color bars is doubled with every time step from lag <span class="inline-formula">−15</span> to <span class="inline-formula">−12</span> to lag <span class="inline-formula">−3</span> to 0. Blue boxes in the 250 hPa panels indicate regions where averages are taken for Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A5</a>, from left to right, the Maritime Continent (15° S–15° N, 100–170° E), the Northwestern Pacific (30–50° N, 150–170° W), Alaska (55–80° N, 5–50° W), and Scandinavia (55–75° N, 5–80° E).</p></div><p class="downloads"></p></div><div class="fig" id="App1.Ch1.S1.F10"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f10-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f10" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f10-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f10-thumb.png" data-printversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f10-high-res.pdf" data-width="2067" data-height="1416"></a><div class="caption"><p id="d2e2320"><strong class="caption-number">Figure A5</strong>Ensemble plumes of geopotential height at 250hPa averaged over the following regions: <strong>(a)</strong> the Maritime Continent (15° S–15° N, 100–170° E), <strong>(b)</strong> the Northwestern Pacific (30–50° N, 150–170° W), <strong>(c)</strong> Alaska (55–80° N, 5–50° W), and <strong>(d)</strong> Scandinavia (55–75° N, 5–80° E). The regions are marked by blue boxes in Fig. <a href="https://acp.copernicus.org/articles/24/12259/2024/#App1.Ch1.S1.F9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">A4</a>. Ensemble members are separated into a strong vortex cluster (red) and SSW cluster (blue). The solid dark-colored lines denote the median of the composite. Solid lines are printed in bold when the ensemble clusters are significantly different from each other at the 95 % confidence interval using a <span class="inline-formula"><i>t</i></span> test. The vertical line denotes the central date of the SSW on 12 February 2018.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f10-high-res.pdf" target="_blank">Download</a></p></div><div class="fig" id="App1.Ch1.S1.F11"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f11-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f11" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f11-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f11-thumb.png" data-width="2067" data-height="610"></a><div class="caption"><p id="d2e2355"><strong class="caption-number">Figure A6</strong>Difference between the SSW cluster and the strong vortex cluster in eddy heat flux (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M103" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>v</mi><mo>′</mo></msup><msup><mi>T</mi><mo>′</mo></msup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="22pt" height="11pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="94d0b60a372799e735a2ab8ea44edf31"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00005.svg" width="100%" height="11pt" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00005.png"></image></svg></span></span>) at 100 hPa for the hindcast of the 2018 SSW. Stippling indicates a significant difference between the two clusters by a <span class="inline-formula"><i>t</i></span> test at the 95 % confidence interval.</p></div><p class="downloads"></p></div><div class="fig" id="App1.Ch1.S1.F12"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f12-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f12" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f12-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f12-thumb.png" data-width="2067" data-height="547"></a><div class="caption"><p id="d2e2393"><strong class="caption-number">Figure A7</strong>Eddy heat flux anomalies (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M105" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>v</mi><mo>′</mo></msup><msubsup><mi>T</mi><mi mathvariant="normal">anom</mi><mo>′</mo></msubsup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="37pt" height="14pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="204dd2d026c456a1da89218d42195181"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00006.svg" width="100%" height="14pt" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-ie00006.png"></image></svg></span></span>) at 100 hPa before the onset of the 2018 SSW in ERA5 reanalysis. Stippling indicates a significant difference from climatology at the 95 % confidence level.</p></div><p class="downloads"></p></div><div class="fig" id="App1.Ch1.S1.F13"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f13-web.png"><img alt="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f13" data-webversion="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f13-web.png" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-f13-thumb.png" data-width="2067" data-height="1056"></a><div class="caption"><p id="d2e2424"><strong class="caption-number">Figure A8</strong>Mean sea level pressure anomalies after onset of the 2018 SSW in ERA5 reanalysis. Stippling indicates significant difference from climatology at the 95 % confidence level.</p></div><p class="downloads"></p></div></div><span class="section7-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section8" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section8 .co-arrow-open,.section8-content" data-show="#section8 .co-arrow-closed,.section8-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Data availability<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section8-content show-no-js hide-on-mobile-soft"><p id="d2e2441">The ERA-Interim (<span class="cit" id="xref_altparen.78"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Dee et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2011</a></span>, <span class="uri"><a href="https://cds.climate.copernicus.eu/#!/home" target="_blank">https://cds.climate.copernicus.eu/#!/home</a></span>; 2019) and ERA5 data (<span class="cit" id="xref_altparen.79"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Hersbach et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2020</a></span>, <span class="uri"><a href="https://cds.climate.copernicus.eu/#!/home" target="_blank">https://cds.climate.copernicus.eu/#!/home</a></span>, 2023) are available from the Copernicus Climate Change Service (C3S). The subseasonal-to-seasonal (S2S) data (<span class="cit" id="xref_altparen.80"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx82" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Vitart et al.</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx82" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2017</a></span>, <span class="uri"><a href="https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous-accum-ecmf/levtype=sfc/type=cf/" target="_blank">https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous-accum-ecmf/levtype=sfc/type=cf/</a></span>, 2019) are available from the ECMWF Public Dataset Service. The re-run of the hindcast data for the 2018 SSW event used in the study is publicly available from <a href="https://doi.org/10.21957/hcmn-0572">https://doi.org/10.21957/hcmn-0572</a> (<span class="cit" id="xref_altparen.81"><a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">ECMWF</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#bib1.bibx26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">2024</a></span>).</p></div><span class="section8-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section9" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section9 .co-arrow-open,.section9-content" data-show="#section9 .co-arrow-closed,.section9-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Author contributions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section9-content show-no-js hide-on-mobile-soft"><p id="d2e2472">RWYW and DIVD designed the study. IP performed the re-run for the hindcast. RWYW performed the analysis, made the figures, and wrote the manuscript draft. RWYW, DIVD, GC, and IP discussed the research and worked on revising the manuscript.</p></div><span class="section9-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section10" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section10 .co-arrow-open,.section10-content" data-show="#section10 .co-arrow-closed,.section10-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Competing interests<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section10-content show-no-js hide-on-mobile-soft"><p id="d2e2478">The contact author has declared that none of the authors has any competing interests.</p></div><span class="section10-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section11" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section11 .co-arrow-open,.section11-content" data-show="#section11 .co-arrow-closed,.section11-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Disclaimer<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section11-content show-no-js hide-on-mobile-soft"><p id="d2e2484">Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.</p></div><span class="section11-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ack sec" id="section12"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section12 .co-arrow-open,.section12-content" data-show="#section12 .co-arrow-closed,.section12-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Acknowledgements<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section12-content show-no-js hide-on-mobile-soft"><p id="d2e2490">The authors would like to thank Frédéric Vitart, Andrew Charlton-Perez, Hilla Afargan-Gerstman, and Zheng Wu for helpful discussions regarding this work. We would also like to thank the editor Petr Šácha and the three anonymous referees for their constructive comments, which helped to improve the manuscript.</p></div><span class="section12-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section13" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section13 .co-arrow-open,.section13-content" data-show="#section13 .co-arrow-closed,.section13-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Financial support<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section13-content show-no-js hide-on-mobile-soft"><p id="d2e2495">This research has been supported by the Eidgenössische Technische Hochschule Zürich (grant no. ETH-05 19-1, “How predictable are sudden stratospheric warming events?”) and the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (grant nos. PP00P2_198896 and Z00P2_180043).</p></div><span class="section13-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section14" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section14 .co-arrow-open,.section14-content" data-show="#section14 .co-arrow-closed,.section14-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Review statement<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section14-content show-no-js hide-on-mobile-soft"><p id="d2e2502">This paper was edited by Petr Šácha and reviewed by three anonymous referees.</p></div><span class="section14-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ref-list sec" id="section15"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section15 .co-arrow-open,.section15-content" data-show="#section15 .co-arrow-closed,.section15-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>References<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section15-content show-no-js hide-on-mobile-soft"><p class="ref" id="bib1.bibx1"><span class="mixed-citation">Afargan-Gerstman, H. and Domeisen, D. I. V.: Pacific Modulation of the North Atlantic Storm Track Response to Sudden Stratospheric Warming Events, Geophys. Res. Lett., 47, e2019GL085007, <a href="https://doi.org/10.1029/2019GL085007">https://doi.org/10.1029/2019GL085007</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx2"><span class="mixed-citation">Afargan-Gerstman, H., Büeler, D., Wulff, C. O., Sprenger, M., and Domeisen, D. I. V.: Stratospheric influence on the winter North Atlantic storm track in subseasonal reforecasts, Weather Clim. Dynam., 5, 231–249, <a href="https://doi.org/10.5194/wcd-5-231-2024">https://doi.org/10.5194/wcd-5-231-2024</a>, 2024. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.49" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx3"><span class="mixed-citation">Albers, J. R. and Birner, T.: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings, J. Atmos. Sci., 71, 4028–4054, <a href="https://doi.org/10.1175/JAS-D-14-0026.1">https://doi.org/10.1175/JAS-D-14-0026.1</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx4"><span class="mixed-citation">Ayarzagüena, B., Barriopedro, D., Garrido-Perez, J. M., Abalos, M., de la Cámara, A., García-Herrera, R., Calvo, N., and Ordóñez, C.: Stratospheric Connection to the Abrupt End of the 2016/2017 Iberian Drought, Geophys. Res. Lett., 45, 12639–12646, <a href="https://doi.org/10.1029/2018GL079802">https://doi.org/10.1029/2018GL079802</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx5"><span class="mixed-citation">Baldwin, M. P. and Dunkerton, T. J.: Stratospheric Harbingers of Anomalous Weather Regimes, Science, 294, 581–584, <a href="https://doi.org/10.1126/science.1063315">https://doi.org/10.1126/science.1063315</a>, 2001. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx6"><span class="mixed-citation">Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A. H., Charlton-Perez, A. J., Domeisen, D. I. V., Garfinkel, C. I., Garny, H., Gerber, E. P., Hegglin, M. I., Langematz, U., and Pedatella, N. M.: Sudden Stratospheric Warmings, Rev. Geophys., 59, e2020RG000708, <a href="https://doi.org/10.1029/2020RG000708">https://doi.org/10.1029/2020RG000708</a>, 2021. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx7"><span class="mixed-citation">Barrett, B. S.: Connections between the Madden–Julian Oscillation and surface temperatures in winter 2018 over eastern North America, Atmos. Sci. Lett., 20, e869, <a href="https://doi.org/10.1002/asl.869">https://doi.org/10.1002/asl.869</a>, 2019. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.69" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx8"><span class="mixed-citation">Barriopedro, D. and Calvo, N.: On the Relationship between ENSO, Stratospheric Sudden Warmings, and Blocking, J. Climate, 27, 4704–4720, <a href="https://doi.org/10.1175/JCLI-D-13-00770.1">https://doi.org/10.1175/JCLI-D-13-00770.1</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx9"><span class="mixed-citation">Birner, T. and Albers, J. R.: Sudden Stratospheric Warmings and Anomalous Upward Wave Activity Flux, SOLA, 13A, 8–12, <a href="https://doi.org/10.2151/sola.13A-002">https://doi.org/10.2151/sola.13A-002</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.74" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx10"><span class="mixed-citation">Butler, A. H., Charlton-Perez, A., Domeisen, D. I. V., Garfinkel, C., Gerber, E. P., Hitchcock, P., Karpechko, A. Y., Maycock, A., Sigmond, M., Simpson, I., and Son, S.-W.: Sub-seasonal Predictability and the Stratosphere, in: Sub-seasonal to Seasonal Prediction, edited by: Robertson, A. W. and Vitart, F., Chap. 11, p. 585, Elsevier, Amsterdam, Netherlands, <a href="https://doi.org/10.1016/C2016-0-01594-2">https://doi.org/10.1016/C2016-0-01594-2</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx11"><span class="mixed-citation">Büeler, D., Beerli, R., Wernli, H., and Grams, C. M.: Stratospheric influence on ECMWF sub-seasonal forecast skill for energy-industry-relevant surface weather in European countries, Q. J. Roy. Meteorolog. Soc., 146, 3675–3694, <a href="https://doi.org/10.1002/qj.3866">https://doi.org/10.1002/qj.3866</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx12"><span class="mixed-citation">Charlton, A. J., O'Neill, A., Lahoz, W. A., and Massacand, A. C.: Sensitivity of tropospheric forecasts to stratospheric initial conditions, Q. J. Roy. Meteorolog. Soc., 130, 1771–1792, <a href="https://doi.org/10.1256/qj.03.167">https://doi.org/10.1256/qj.03.167</a>, 2004. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx13"><span class="mixed-citation">Charlton-Perez, A. J., Ferranti, L., and Lee, R. W.: The influence of the stratospheric state on North Atlantic weather regimes, Q. J. Roy. Meteorolog. Soc., 144, 1140–1151, <a href="https://doi.org/10.1002/qj.3280">https://doi.org/10.1002/qj.3280</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx14"><span class="mixed-citation">Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109, <a href="https://doi.org/10.1029/JZ066i001p00083">https://doi.org/10.1029/JZ066i001p00083</a>, 1961. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.36" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx15"><span class="mixed-citation">Cho, H.-O., Kang, M.-J., and Son, S.-<span id="page12273"></span>W.: The Predictability of the 2021 SSW Event Controlled by the Zonal-Mean State in the Upper Troposphere and Lower Stratosphere, J. Geophys. Res.-Atmos., 128, e2023JD039559, <a href="https://doi.org/10.1029/2023JD039559">https://doi.org/10.1029/2023JD039559</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.16" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_text.55" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx16"><span class="mixed-citation">Chwat, D., Garfinkel, C. I., Chen, W., and Rao, J.: Which Sudden Stratospheric Warming Events Are Most Predictable?, J. Geophys. Res.-Atmos., 127, e2022JD037521, <a href="https://doi.org/10.1029/2022JD037521">https://doi.org/10.1029/2022JD037521</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx17"><span class="mixed-citation">Clark, J. H. E.: Atmospheric Response to the Quasi-Resonant Growth of Forced Planetary Waves, J. Meteorol. Soc. JPN II, 52, 143–163, <a href="https://doi.org/10.2151/jmsj1965.52.2_143">https://doi.org/10.2151/jmsj1965.52.2_143</a>, 1974. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx18"><span class="mixed-citation">Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorolog. Soc., 137, 553–597, <a href="https://doi.org/10.1002/qj.828">https://doi.org/10.1002/qj.828</a>, 2011 (data available at: <span class="uri"><a href="https://cds.climate.copernicus.eu/#!/home" target="_blank">https://cds.climate.copernicus.eu/#!/home</a></span>, last access: 30 October 2024), 2011. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.34" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_altparen.78" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx19"><span class="mixed-citation">de la Cámara, A., Birner, T., and Albers, J. R.: Are Sudden Stratospheric Warmings Preceded by Anomalous Tropospheric Wave Activity?, J. Climate, 32, 7173–7189, <a href="https://doi.org/10.1175/JCLI-D-19-0269.1">https://doi.org/10.1175/JCLI-D-19-0269.1</a>, 2019. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx20"><span class="mixed-citation">Domeisen, D. I., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 1. Predictability of the Stratosphere, J. Geophys. Res.-Atmos., 125, e2019JD030920, <a href="https://doi.org/10.1029/2019JD030920">https://doi.org/10.1029/2019JD030920</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx21"><span class="mixed-citation">Domeisen, D. I. V. and Butler, A. H.: Stratospheric drivers of extreme events at the Earth's surface, Commun. Earth Environ., 1, e2019JD030923, <a href="https://doi.org/10.1038/s43247-020-00060-z">https://doi.org/10.1038/s43247-020-00060-z</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx22"><span class="mixed-citation"> Domeisen, D. I. V., Martius, O., and Esteve, B. J.: Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed, Geophys. Res. Lett., 45, 2064–2071, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx23"><span class="mixed-citation">Domeisen, D. I. V., Garfinkel, C. I., and Butler, A. H.: The Teleconnection of El Niño Southern Oscillation to the Stratosphere, Rev. Geophys., 57, 5–47, <a href="https://doi.org/10.1029/2018RG000596">https://doi.org/10.1029/2018RG000596</a>, 2019. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx24"><span class="mixed-citation">Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena, B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I., Hitchcock, P., Karpechko, A. Y., Kim, H., Knight, J., Lang, A. L., Lim, E.-P., Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S.-W., and Taguchi, M.: The Role of the Stratosphere in Subseasonal to Seasonal Prediction: 2. Predictability Arising From Stratosphere-Troposphere Coupling, J. Geophys. Res.-Atmos., 125, e2019JD030923, <a href="https://doi.org/10.1029/2019JD030923">https://doi.org/10.1029/2019JD030923</a>, 2020a. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.30" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx25"><span class="mixed-citation">Domeisen, D. I. V., Grams, C. M., and Papritz, L.: The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events, Weather Clim. Dyn., 1, 373–388, <a href="https://doi.org/10.5194/wcd-1-373-2020">https://doi.org/10.5194/wcd-1-373-2020</a>, 2020b. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.31" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.50" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx26"><span class="mixed-citation">ECMWF: 2018 SSW S2S hindcast dataset, ECMWF Research Department, ECMWF [data set], <a href="https://doi.org/10.21957/hcmn-0572">https://doi.org/10.21957/hcmn-0572</a>, 2024. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_altparen.81" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx27"><span class="mixed-citation">Erner, I. and Karpechko, A.: Factors influencing subseasonal predictability of northern Eurasian cold spells, Q. J. R. Meteorolog. Soc., 150, 2955–2975, <a href="https://doi.org/10.1002/qj.4744">https://doi.org/10.1002/qj.4744</a>, 2024. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.29" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx28"><span class="mixed-citation">Erner, I., Karpechko, A. Y., and Järvinen, H. J.: Mechanisms and predictability of sudden stratospheric warming in winter 2018, Weather Clim. Dynam., 1, 657–674, <a href="https://doi.org/10.5194/wcd-1-657-2020">https://doi.org/10.5194/wcd-1-657-2020</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.53" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.72" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx29"><span class="mixed-citation">Esler, J. G. and Scott, R. K.: Excitation of Transient Rossby Waves on the Stratospheric Polar Vortex and the Barotropic Sudden Warming, J. Atmos. Sci., 62, 3661–3682, <a href="https://doi.org/10.1175/JAS3557.1">https://doi.org/10.1175/JAS3557.1</a>, 2005. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx30"><span class="mixed-citation">Esler, J. G., Polvani, L. M., and Scott, R. K.: The Antarctic stratospheric sudden warming of 2002: A self-tuned resonance?, Geophys. Res. Lett., 33, L12804, <a href="https://doi.org/10.1029/2006GL026034">https://doi.org/10.1029/2006GL026034</a>, 2006. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx31"><span class="mixed-citation">Ferranti, L., Magnusson, L., Vitart, F., and Richardson, D. S.: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe?, Q. J. Roy. Meteorolog. Soc., 144, 1788–1802, <a href="https://doi.org/10.1002/qj.3341">https://doi.org/10.1002/qj.3341</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx32"><span class="mixed-citation">Garfinkel, C. I. and Schwartz, C.: MJO-Related Tropical Convection Anomalies Lead to More Accurate Stratospheric Vortex Variability in Subseasonal Forecast Models, Geophys. Res. Lett., 44, 10054–10062, <a href="https://doi.org/10.1002/2017GL074470">https://doi.org/10.1002/2017GL074470</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.41" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx33"><span class="mixed-citation">Garfinkel, C. I., Hartmann, D. L., and Sassi, F.: Tropospheric Precursors of Anomalous Northern Hemisphere Stratospheric Polar Vortices, J. Climate, 23, 3282–3299, <a href="https://doi.org/10.1175/2010JCLI3010.1">https://doi.org/10.1175/2010JCLI3010.1</a>, 2010. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.43" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.59" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx34"><span class="mixed-citation">Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C., and Lee, S.: Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation, Geophys. Res. Lett., 39, L18807, <a href="https://doi.org/10.1029/2012GL053144">https://doi.org/10.1029/2012GL053144</a>, 2012. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx35"><span class="mixed-citation">Garfinkel, C. I., Benedict, J. J., and Maloney, E. D.: Impact of the MJO on the boreal winter extratropical circulation, Geophys. Res. Lett., 41, 6055–6062, <a href="https://doi.org/10.1002/2014GL061094">https://doi.org/10.1002/2014GL061094</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.23" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx36"><span class="mixed-citation">González-Alemán, J. J., Grams, C. M., Ayarzagüena, B., Zurita-Gotor, P., Domeisen, D. I., Gómara, I., Rodríguez-Fonseca, B., and Vitart, F.: Tropospheric role in the predictability of the surface impact of the 2018 sudden stratospheric warming event, Geophys. Res. Lett., 49, e2021GL095464, <a href="https://doi.org/10.1029/2021GL095464">https://doi.org/10.1029/2021GL095464</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.32" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.67" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx37"><span class="mixed-citation">Henderson, G. R., Barrett, B. S., Lois, A., and Elsaawy, H.: Time-Lagged Response of the Antarctic and High-Latitude Atmosphere to Tropical MJO Convection, Mon. Weather Rev., 146, 1219–1231, <a href="https://doi.org/10.1175/MWR-D-17-0224.1">https://doi.org/10.1175/MWR-D-17-0224.1</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx38"><span class="mixed-citation">Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horán<span id="page12274"></span>yi, A., Mueñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. R. Meteorolog. Soc., 146, 1999–2049, <a href="https://doi.org/10.1002/qj.3803">https://doi.org/10.1002/qj.3803</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.35" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_altparen.79" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx39"><span class="mixed-citation">Hitchcock, P. and Shepherd, T. G.: Zonal-Mean Dynamics of Extended Recoveries from Stratospheric Sudden Warmings, J. Atmos. Sci., 70, 688–707, <a href="https://doi.org/10.1175/JAS-D-12-0111.1">https://doi.org/10.1175/JAS-D-12-0111.1</a>, 2013 (data available at: <span class="uri"><a href="https://cds.climate.copernicus.eu/#!/home" target="_blank">https://cds.climate.copernicus.eu/#!/home</a></span>, last access: 30 October, 2024). <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx40"><span class="mixed-citation">Hitchcock, P., Butler, A., Charlton-Perez, A., Garfinkel, C. I., Stockdale, T., Anstey, J., Mitchell, D., Domeisen, D. I. V., Wu, T., Lu, Y., Mastrangelo, D., Malguzzi, P., Lin, H., Muncaster, R., Merryfield, B., Sigmond, M., Xiang, B., Jia, L., Hyun, Y.-K., Oh, J., Specq, D., Simpson, I. R., Richter, J. H., Barton, C., Knight, J., Lim, E.-P., and Hendon, H.: Stratospheric Nudging And Predictable Surface Impacts (SNAPSI): a protocol for investigating the role of stratospheric polar vortex disturbances in subseasonal to seasonal forecasts, Geosci. Model Dev., 15, 5073–5092, <a href="https://doi.org/10.5194/gmd-15-5073-2022">https://doi.org/10.5194/gmd-15-5073-2022</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx41"><span class="mixed-citation">Holton, J. R. and Mass, C.: Stratospheric Vacillation Cycles, J. Atmos. Sci., 33, 2218–2225, <a href="https://doi.org/10.1175/1520-0469(1976)033%3C2218:SVC%3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1976)033&lt;2218:SVC&gt;2.0.CO;2</a>, 1976. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx42"><span class="mixed-citation">Kang, W. and Tziperman, E.: The MJO-SSW Teleconnection: Interaction Between MJO-Forced Waves and the Midlatitude Jet, Geophys. Res. Lett., 45, 4400–4409, <a href="https://doi.org/10.1029/2018GL077937">https://doi.org/10.1029/2018GL077937</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx43"><span class="mixed-citation">Karpechko, A. Y., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., and Vitart, F.: Predicting Sudden Stratospheric Warming 2018 and Its Climate Impacts With a Multimodel Ensemble, Geophys. Res. Lett., 45, 513–538, <a href="https://doi.org/10.1029/2018GL081091">https://doi.org/10.1029/2018GL081091</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a></span></p><p class="ref" id="bib1.bibx44"><span class="mixed-citation">Kautz, L.-A., Polichtchouk, I., Birner, T., Garny, H., and Pinto, J. G.: Enhanced extended-range predictability of the 2018 late-winter Eurasian cold spell due to the stratosphere, Q. J. R. Meteorolog. Soc., 146, 1040–1055, <a href="https://doi.org/10.1002/qj.3724">https://doi.org/10.1002/qj.3724</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.51" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_text.54" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx45"><span class="mixed-citation">Kent, C., Scaife, A. A., Seviour, W. J. M., Dunstone, N., Smith, D., and Smout-Day, K.: Identifying Perturbations That Tipped the Stratosphere Into a Sudden Warming During January 2013, Geophys. Res. Lett., 50, e2023GL106288, <a href="https://doi.org/10.1029/2023GL106288">https://doi.org/10.1029/2023GL106288</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_text.20" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_text.58" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.63" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx46"><span class="mixed-citation">Kiladis, G. N., Dias, J., Straub, K. H., Wheeler, M. C., Tulich, S. N., Kikuchi, K., Weickmann, K. M., and Ventrice, M. J.: A Comparison of OLR and Circulation-Based Indices for Tracking the MJO, Mon. Weather Rev., 142, 1697–1715, <a href="https://doi.org/10.1175/MWR-D-13-00301.1">https://doi.org/10.1175/MWR-D-13-00301.1</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.68" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx47"><span class="mixed-citation">Kim, H., Son, S.-W., Kim, H., Seo, K.-H., and Kang, M.-J.: MJO Influence on Subseasonal-to-Seasonal Prediction in the Northern Hemisphere Extratropics, J. Climate, 36, 7943–7956, <a href="https://doi.org/10.1175/JCLI-D-23-0139.1">https://doi.org/10.1175/JCLI-D-23-0139.1</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.24" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx48"><span class="mixed-citation">Lawrence, Z. D., Abalos, M., Ayarzagüena, B., Barriopedro, D., Butler, A. H., Calvo, N., de la Cámara, A., Charlton-Perez, A., Domeisen, D. I. V., Dunn-Sigouin, E., García-Serrano, J., Garfinkel, C. I., Hindley, N. P., Jia, L., Jucker, M., Karpechko, A. Y., Kim, H., Lang, A. L., Lee, S. H., Lin, P., Osman, M., Palmeiro, F. M., Perlwitz, J., Polichtchouk, I., Richter, J. H., Schwartz, C., Son, S.-W., Erner, I., Taguchi, M., Tyrrell, N. L., Wright, C. J., and Wu, R. W.-Y.: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems, Weather Clim. Dynam., 3, 977–1001, <a href="https://doi.org/10.5194/wcd-3-977-2022">https://doi.org/10.5194/wcd-3-977-2022</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx49"><span class="mixed-citation">Lee, S. H., Charlton-Perez, A. J., Furtado, J. C., and Woolnough, S. J.: Abrupt Stratospheric Vortex Weakening Associated With North Atlantic Anticyclonic Wave Breaking, J. Geophys. Res.-Atmos., 124, 8563–8575, <a href="https://doi.org/10.1029/2019JD030940">https://doi.org/10.1029/2019JD030940</a>, 2019. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.19" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.65" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx50"><span class="mixed-citation">Lee, S. H., Charlton-Perez, A. J., Furtado, J. C., and Woolnough, S. J.: Representation of the Scandinavia–Greenland pattern and its relationship with the polar vortex in S2S forecast models, Q. J. Roy. Meteorolog. Soc., 146, 4083–4098, <a href="https://doi.org/10.1002/qj.3892">https://doi.org/10.1002/qj.3892</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.46" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx51"><span class="mixed-citation">Limpasuvan, V., Thompson, D. W. J., and Hartmann, D. L.: The Life Cycle of the Northern Hemisphere Sudden Stratospheric Warmings, J. Climate, 17, 2584–2596, <a href="https://doi.org/10.1175/1520-0442(2004)017%3C2584:TLCOTN%3E2.0.CO;2">https://doi.org/10.1175/1520-0442(2004)017&lt;2584:TLCOTN&gt;2.0.CO;2</a>, 2004. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx52"><span class="mixed-citation">Limpasuvan, V., Hartmann, D. L., Thompson, D. W. J., Jeev, K., and Yung, Y. L.: Stratosphere-troposphere evolution during polar vortex intensification, J. Geophys. Res.-Atmos., 110, D24101, <a href="https://doi.org/10.1029/2005JD006302">https://doi.org/10.1029/2005JD006302</a>, 2005. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.38" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx53"><span class="mixed-citation">Lin, P., Paynter, D., Polvani, L., Correa, G. J. P., Ming, Y., and Ramaswamy, V.: Dependence of model-simulated response to ozone depletion on stratospheric polar vortex climatology, Geophys. Res. Lett., 44, 6391–6398, <a href="https://doi.org/10.1002/2017GL073862">https://doi.org/10.1002/2017GL073862</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx54"><span class="mixed-citation">Liu, C., Tian, B., Li, K.-F., Manney, G. L., Livesey, N. J., Yung, Y. L., and Waliser, D. E.: Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation, J. Geophys. Res.-Atmos., 119, 12599–12620, <a href="https://doi.org/10.1002/2014JD021876">https://doi.org/10.1002/2014JD021876</a>, 2014. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx55"><span class="mixed-citation">Martius, O., Polvani, L. M., and Davies, H. C.: Blocking precursors to stratospheric sudden warming events, Geophys. Res. Lett., 36, L14806, <a href="https://doi.org/10.1029/2009GL038776">https://doi.org/10.1029/2009GL038776</a>, 2009. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.62" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.75" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx56"><span class="mixed-citation">Matsuno, T.: Vertical Propagation of Stationary Planetary Waves in the Winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883, <a href="https://doi.org/10.1175/1520-0469(1970)027%3C0871:VPOSPW%3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1970)027&lt;0871:VPOSPW&gt;2.0.CO;2</a>, 1970. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx57"><span class="mixed-citation">Matthewman, N. J. and Esler, J. G.: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events, J. Atmos. Sci., 68, 2481–2504, <a href="https://doi.org/10.1175/JAS-D-11-07.1">https://doi.org/10.1175/JAS-D-11-07.1</a>, 2011. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx58"><span class="mixed-citation">Maycock, A. C., Masukwedza, G. I. T., Hitchcock, P., and Simpson, I. R.: A Regime Perspective on the North Atlantic Eddy-Driven Jet Response to Sudden Stratospheric Warmings, J. Climate, 33, 3901–3917, <a href="https://doi.org/10.1175/JCLI-D-19-0702.1">https://doi.org/10.1175/JCLI-D-19-0702.1</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.48" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx59"><span class="mixed-citation">Peings, Y.: Ural Blocking as a driver of early winter stratospheric warmings, Geophys. Res. Lett., 46, 5406–5468, <a href="https://doi.org/10.1029/2019GL082097">https://doi.org/10.1029/2019GL082097</a>, 2019. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.44" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx60"><span class="mixed-citation">Plumb, R. A.: Instability of the distorted polar night vortex: A theory of stratospheric warmings, J. Atmos. Sci., 38, 2514–2531, <a href="https://doi.org/10.1175/1520-0469(1981)038%3C2514:IOTDPN%3E2.0.CO;2">https://doi.org/10.1175/1520-0469(1981)038&lt;2514:IOTDPN&gt;2.0.CO;2</a>, 1981. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx61"><span class="mixed-citation">Portal, A., Ruggieri, P., Palmeiro, F. M., García-Serrano, J., Domeisen, D. I. V., and Gualdi, S.: Seasonal prediction of the boreal winter stratosphere, Clim. Dynam., 58, 2109–2130, <a href="https://doi.org/10.1007/s00382-021-05787-9">https://doi.org/10.1007/s00382-021-05787-9</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx62"><span class="mixed-citation">Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The Str<span id="page12275"></span>atospheric Sudden Warming Event in February 2018 and its Prediction by a Climate System Model, J. Geophys. Res.-Atmos., 123, 13,332–13,345, <a href="https://doi.org/10.1029/2018JD028908">https://doi.org/10.1029/2018JD028908</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.52" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.56" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx63"><span class="mixed-citation">Roberts, C. D., Balmaseda, M. A., Ferranti, L., and Vitart, F.: Euro-Atlantic Weather Regimes and Their Modulation by Tropospheric and Stratospheric Teleconnection Pathways in ECMWF Reforecasts, Mon. Weather Rev., 151, 2779–2799, <a href="https://doi.org/10.1175/MWR-D-22-0346.1">https://doi.org/10.1175/MWR-D-22-0346.1</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx64"><span class="mixed-citation"> Rondanelli, R., Hatchett, B., Rutllant, J., Bozkurt, D., and Garreaud, R.: Strongest MJO on record triggers extreme Atacama rainfall and warmth in Antarctica, Geophys. Res. Lett., 46, 3482–3491, 2019. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx65"><span class="mixed-citation">Rupp, P., Spaeth, J., Garny, H., and Birner, T.: Enhanced Polar Vortex Predictability Following Sudden Stratospheric Warming Events, Geophys. Res. Lett., 50, e2023GL104057, <a href="https://doi.org/10.1029/2023GL104057">https://doi.org/10.1029/2023GL104057</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx66"><span class="mixed-citation">Scaife, A. A., Karpechko, A. Yu., Baldwin, M. P., Brookshaw, A., Butler, A. H., Eade, R., Gordon, M., MacLachlan, C., Martin, N., Dunstone, N., and Smith, D.: Seasonal winter forecasts and the stratosphere, Atmos. Sci. Lett., 17, 51–56, <a href="https://doi.org/10.1002/asl.598">https://doi.org/10.1002/asl.598</a>, 2016. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx67"><span class="mixed-citation">Schwartz, C. and Garfinkel, C. I.: Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate, J. Geophys. Res.-Atmos., 122, 4184–4201, <a href="https://doi.org/10.1002/2016JD025829">https://doi.org/10.1002/2016JD025829</a>, 2017. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.22" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.60" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.70" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.71" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx68"><span class="mixed-citation">Schwartz, C. and Garfinkel, C. I.: Troposphere-Stratosphere Coupling in Subseasonal-to-Seasonal Models and Its Importance for a Realistic Extratropical Response to the Madden-Julian Oscillation, J. Geophys. Res.-Atmos., 125, e2019JD032043, <a href="https://doi.org/10.1029/2019JD032043">https://doi.org/10.1029/2019JD032043</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.26" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx69"><span class="mixed-citation">Schwartz, C., Garfinkel, C. I., Yadav, P., Chen, W., and Domeisen, D. I. V.: Stationary wave biases and their effect on upward troposphere–stratosphere coupling in sub-seasonal prediction models, Weather Clim. Dyn., 3, 679–692, <a href="https://doi.org/10.5194/wcd-3-679-2022">https://doi.org/10.5194/wcd-3-679-2022</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.18" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.45" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_text.47" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">d</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.64" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">e</a></span></p><p class="ref" id="bib1.bibx70"><span class="mixed-citation">Sigmond, M., Scinocca, J. F., Kharin, V. V., and Shepherd, T. G.: Enhanced seasonal forecast skill following stratospheric sudden warmings, Nat. Geosci., 6, 98–102, <a href="https://doi.org/10.1038/ngeo1698">https://doi.org/10.1038/ngeo1698</a>, 2013. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx71"><span class="mixed-citation">Simpson, I. R., Blackburn, M., and Haigh, J. D.: The role of eddies in driving the tropospheric response to stratospheric heating perturbations, J. Atmos. Sci., 66, 1347–1365, <a href="https://doi.org/10.1175/2008JAS2758.1">https://doi.org/10.1175/2008JAS2758.1</a>, 2009. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.37" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx72"><span class="mixed-citation">Smith, K. L. and Kushner, P. J.: Linear interference and the initiation of extratropical stratosphere-troposphere interactions, J. Geophys. Res.-Atmos., 117, <a href="https://doi.org/10.1029/2012JD017587">https://doi.org/10.1029/2012JD017587</a>, 2012. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx73"><span class="mixed-citation">Son, S.-W., Kim, H., Song, K., Kim, S.-W., Martineau, P., Hyun, Y.-K., and Kim, Y.: Extratropical Prediction Skill of the Subseasonal-to-Seasonal (S2S) Prediction Models, J. Geophys. Res.-Atmos., 125, e2019JD031273, <a href="https://doi.org/10.1029/2019JD031273">https://doi.org/10.1029/2019JD031273</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx74"><span class="mixed-citation">Spaeth, J., Rupp, P., Garny, H., and Birner, T.: Stratospheric impact on subseasonal forecast uncertainty in the northern extratropics, Commun. Earth Environ., 5, 1–7, <a href="https://doi.org/10.1038/s43247-024-01292-z">https://doi.org/10.1038/s43247-024-01292-z</a>, 2024. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.61" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.66" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx75"><span class="mixed-citation">Stan, C. and Straus, D. M.: Stratospheric predictability and sudden stratospheric warming events, J. Geophys. Res.-Atmos., 114, D12103, <a href="https://doi.org/10.1029/2008JD011277">https://doi.org/10.1029/2008JD011277</a>, 2009. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx76"><span class="mixed-citation">Stan, C., Zheng, C., Chang, E. K.-M., Domeisen, D. I. V., Garfinkel, C. I., Jenney, A. M., Kim, H., Lim, Y.-K., Lin, H., Robertson, A., Schwartz, C., Vitart, F., Wang, J., and Yadav, P.: Advances in the Prediction of MJO Teleconnections in the S2S Forecast Systems, B. Am. Meteorol. Soc., 103, E1426–E1447, <a href="https://doi.org/10.1175/BAMS-D-21-0130.1">https://doi.org/10.1175/BAMS-D-21-0130.1</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.25" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.39" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.57" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">c</a></span></p><p class="ref" id="bib1.bibx77"><span class="mixed-citation">Straus, D. M., Domeisen, D. I. V., Lock, S.-J., Molteni, F., and Yadav, P.: Intrinsic predictability limits arising from Indian Ocean Madden–Julian oscillation (MJO) heating: effects on tropical and extratropical teleconnections, Weather Clim. Dynam., 4, 1001–1018, <a href="https://doi.org/10.5194/wcd-4-1001-2023">https://doi.org/10.5194/wcd-4-1001-2023</a>, 2023. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.21" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.73" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx78"><span class="mixed-citation">Taguchi, M.: Comparison of Subseasonal-to-Seasonal Model Forecasts for Major Stratospheric Sudden Warmings, J. Geophys. Res.-Atmos., 123, 10231–10,247, <a href="https://doi.org/10.1029/2018JD028755">https://doi.org/10.1029/2018JD028755</a>, 2018. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx79"><span class="mixed-citation">Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F., Dommenget, D., Ashok, K., Rodrigues, R. R., and Yeh, S.-W.: ENSO Atmospheric Teleconnections, in: El Niño Southern Oscillation in a Changing Climate, pp. 309–335, American Geophysical Union (AGU), ISBN 978-1-11954816-4, <a href="https://doi.org/10.1002/9781119548164.ch14">https://doi.org/10.1002/9781119548164.ch14</a>, 2020. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.40" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.42" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx80"><span class="mixed-citation">Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Eckermann, S. D., Gerber, E., Harrison, R. G., Jackson, D. R., Kim, B.-M., Kuroda, Y., Lang, A., Mahmood, S., Mizuta, R., Roff, G., Sigmond, M., and Son, S.-W.: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts, Q. J. R. Meteorolog. Soc., 141, 987–1003, <a href="https://doi.org/10.1002/qj.2432">https://doi.org/10.1002/qj.2432</a>, 2015a. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p><p class="ref" id="bib1.bibx81"><span class="mixed-citation">Tripathi, O. P., Charlton-Perez, A., Sigmond, M., and Vitart, F.: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions, Environ. Res. Lett., 10, 104007, <a href="https://doi.org/10.1088/1748-9326/10/10/104007">https://doi.org/10.1088/1748-9326/10/10/104007</a>, 2015b. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.27" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.28" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx82"><span class="mixed-citation">Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., Hendon, H., Hodgson, J., Kang, H. S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, M., Robertson, A. W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., Won, D. J., Xiao, H., Zaripov, R., and Zhang, L.: The subseasonal to seasonal (S2S) prediction project database, B. Am. Meteorol. Soc., 98, 163–173, <a href="https://doi.org/10.1175/BAMS-D-16-0017.1">https://doi.org/10.1175/BAMS-D-16-0017.1</a>, 2017 (data available at: <span class="uri"><a href="https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous-accum-ecmf/levtype=sfc/type=cf/" target="_blank">https://apps.ecmwf.int/datasets/data/s2s-reforecasts-instantaneous-accum-ecmf/levtype=sfc/type=cf/</a></span>, last access: 30 October 2024). <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.33" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_altparen.80" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx83"><span class="mixed-citation">Wu, R. W.-Y., Wu, Z., and Domeisen, D. I. V.: Differences in the sub-seasonal predictability of extreme stratospheric events, Weather Clim. Dynam., 3, 755–776, <a href="https://doi.org/10.5194/wcd-3-755-2022">https://doi.org/10.5194/wcd-3-755-2022</a>, 2022. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.17" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a>, <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_text.77" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">b</a></span></p><p class="ref" id="bib1.bibx84"><span class="mixed-citation">Yadav, P., Garfinkel, C. I., and Domeisen, D. I. V.: The Role of the Stratosphere in Teleconnections Arising From Fast and Slow MJO Episodes, Geophys. Res. Lett., 51, e2023GL104826, <a href="https://doi.org/10.1029/2023GL104826">https://doi.org/10.1029/2023GL104826</a>, 2024. <a href="https://acp.copernicus.org/articles/24/12259/2024/#xref_paren.76" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">a</a></span></p></div><span class="section15-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> </div> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div></div> <!-- CO c_contentmanager_services::callProjectTemplate::899 06.11.2024 01:12:55, memcached, 0.0011570453643799secs --> <div id="page_colum_left_container" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block"> <div class="auto-fixed-top no-shadow old-articleNavigation"> <div id="quicklaunch_buttons" class="cmsbox jo_quicklaunch-bar"> <a href="https://acp.copernicus.org/" class="article-button journal-contentLinkColor journal-contentBorderColor">Articles </a> </div> <div id="main-navigation" class="cmsbox j-navigation"> <ul class="co_function_get_navigation menu_level1"> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#abstract" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section1" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section2" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data and methods</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section3" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Uncertainty in the ensemble prediction of the stratosphere</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section4" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Tropospheric links to stratospheric uncertainty</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section5" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Development of the high uncertainty in the 2018 SSW prediction</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section6" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section7" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Appendix A</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section8" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data availability</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section9" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section10" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section11" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section12" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section13" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section14" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section15" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a></li> </ul> </div> </div> <div id="leftColumnExtras" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block pt-2"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Download</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (13072 KB)" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.pdf">Article</a> <nobr>(13072 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.xml">Full-text XML</a> </li> </ul> </div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.bib">BibTeX</a></li> <li><a class="triangle" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024.ris">EndNote</a></li> </ul> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content hide-js shortSummaryFullOnHighlihgt">There has been much emphasis on the increased predictability of the extratropical tropospheric circulation after stratospheric sudden warmings and the potential value of this to weather forecasting. But it remains the case that the sudden warmings themselves, which are significantly (but not exclusively) driven by variabiliity in the troposphere, have limited predictability. This paper uses ensemble forecasts to identify tropospheric circulation features that, if poorly predicted in the period prior to a sudden warming, lead to a poor prediction of the warming itself and hence provides a potentially useful focus for future improvements to forecast models.</div> <div style="display: none" class="content show-js shortSummaryShortenOnHighlihgt">There has been much emphasis on the increased predictability of the extratropical tropospheric...</div> <div class="content"> <a href="#" class="more-less show-js triangle" data-hide=".shortSummaryFullOnHighlihgt" data-show=".shortSummaryShortenOnHighlihgt" data-toggleCaption='Hide'>Read more</a> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content hide-js shortSummaryFull">Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts.</div> <div style="display: none" class="content show-js shortSummaryShorten">Strong variations in the strength of the stratospheric polar vortex can profoundly affect...</div> <div class="content"> <a href="#" class="more-less show-js triangle" data-hide=".shortSummaryFull" data-show=".shortSummaryShorten" data-toggleCaption='Hide'>Read more</a> </div> </div> <div class="widget dark-border hide-on-mobile hide-on-tablet p-0" id="share"> <div class="legend journal-contentLinkColor">Share</div> <div class="row p-0"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F" title="Mendeley" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F" title="Reddit" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=Tropospheric+links+to+uncertainty+in+stratospheric+subseasonal++predictions https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F" title="Twitter" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F&t=Tropospheric+links+to+uncertainty+in+stratospheric+subseasonal++predictions" title="Facebook" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F24%2F12259%2F2024%2F&title=Tropospheric+links+to+uncertainty+in+stratospheric+subseasonal++predictions" title="LinkedIn" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Atmospheric Chemistry and Physics" data-text="*Tropospheric links to uncertainty in stratospheric subseasonal predictions* Rachel W.-Y. Wu et al." data-url="https://acp.copernicus.org/articles/24/12259/2024/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Altmetrics</div> <div class="wrapper"> <div class="content text-center"> Final-revised paper </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/acp-24-12259-2024"></div> </div> </div> <div class="wrapper"> <div class="content text-center"> Preprint </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/egusphere-2024-1652"></div> </div> </div> </div> <script type="text/javascript"> !function (e, t, n) { var d = "createElement", c = "getElementsByTagName", m = "setAttribute", n = document.getElementById(e); return n && n.parentNode && n.parentNode.removeChild(n), n = document[d + "NS"] && document.documentElement.namespaceURI, n = n ? document[d + "NS"](n, "script") : document[d]("script"), n[m]("id", e), n[m]("src", t), (document[c]("head")[0] || document[c]("body")[0]).appendChild(n), n = new Image, void n[m]("src", "https://www.atmospheric-chemistry-and-physics.net/altmetric_donut.png") }("altmetric-embed-js", "https://www.atmospheric-chemistry-and-physics.net/altmetric_badges.min.js"); $(function () { $('div.altmetric-embed').on('altmetric:hide', function () { if($(this).closest('.widget').find('.altmetric-embed:not(.altmetric-hidden)').length === 0) { $(this).closest('.widget').hide(); } $(this).closest('.wrapper').hide(); }); }); </script> <div class="ajax-content" data-src="https://editor.copernicus.org/similarArticles.php?article=120744&journal=10&isSecondStage=1&ajax=true"> </div> </div> <div class="auto-fixed-top px-1 mb-3 articleNavigation" data-fixet-top-target="#section1"> <button class="btn btn-success mb-3 btn-block" id="mathjax-turn"><i class="fal fa-function"></i> Turn MathJax on</button> <div class="widget dark-border m-0"> <div class="legend journal-contentLinkColor">Sections</div> <div class="content"> <ul class="toc-styling p-0"> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#abstract" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data and methods</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Uncertainty in the ensemble prediction of the stratosphere</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Tropospheric links to stratospheric uncertainty</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Development of the high uncertainty in the 2018 SSW prediction</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Appendix A</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data availability</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section13" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section14" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a> </li> <li> <a href="https://acp.copernicus.org/articles/24/12259/2024/#section15" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a> </li> </ul> </div> </div> </div> </div> </div> </div> </main> <!--=== End Content ===--> <footer class="d-print-none version-2023"> <div class="footer"> <div class="container"> <div class="row align-items-center mb-3"> <div class="col-12 col-lg-auto text-center text-md-left title-wrapper"> <div id="j-header-footer" class="text-center text-md-left"> <div class="h1 text-center text-md-left"> Atmospheric Chemistry and Physics </div> <p>An interactive open-access journal of the European Geosciences Union</p> </div> </div> <div class="col-12 col-lg-auto text-center text-md-left pt-lg-2"> <div class="row align-items-center"> <div class="col-12 col-sm col-md-auto text-center text-md-left mb-3 mb-sm-0"> <span class="egu-logo"><a href="http://www.egu.eu/" target="_blank"><img src="https://contentmanager.copernicus.org/319373/10/ssl" alt="" style="width: 410px; height: 325px;" /></a></span> </div> <div class="col-12 col-sm text-center text-md-left"> <span class="copernicus-logo"><a href="https://publications.copernicus.org/" target="_blank"><img src="https://contentmanager.copernicus.org/319376/10/ssl" alt="" style="width: 1784px; height: 330px;" /></a></span> </div> </div> </div> </div> </div> </div> <div class="links pb-4 pt-4"> <div class="container"> <div class="row align-items-center"> <div class="col-12 col-xl-auto mt-3"> <div class="row align-items-start align-items-lg-center"> <div class="col-12 mb-3 mb-md-0 pl-md-0 text-center text-md-left"><a href="https://creativecommons.org/licenses/by/4.0/" target="_blank"><i class="fab fa-creative-commons fa-lg mr-1"></i><i class="fab fa-creative-commons-by fa-lg"></i></a> All site content, except where otherwise noted, is licensed under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 License</a>.</div> </div> </div> <div class="col-12 text-center text-md-left col-lg-auto mt-3"> <div class="row align-items-center"> <div class="col d-md-none px-0"></div> <div class="col-auto pr-1"><a href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.atmospheric-chemistry-and-physics.net/imprint.html">Imprint</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.copernicus.org/data_protection.html" target="_blank">Data protection</a></div> <div class="col-auto pl-2"></div> <div class="col d-md-none px-0"></div> </div> </div> </div> </div> </div> </footer> <!-- --></body> <!--CMS get_project_template.php::126 06.11.2024 01:12:55, CMS generated: 3.074156999588sec --></html>

Pages: 1 2 3 4 5 6 7 8 9 10