CINXE.COM

Search results for: Mindlin’s 2nd gradient model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Mindlin’s 2nd gradient model</title> <meta name="description" content="Search results for: Mindlin’s 2nd gradient model"> <meta name="keywords" content="Mindlin’s 2nd gradient model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Mindlin’s 2nd gradient model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Mindlin’s 2nd gradient model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17312</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Mindlin’s 2nd gradient model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17312</span> Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Selmi">A. Selmi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bisharat"> A. Bisharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using Fourier transform and based on the Mindlin&#39;s 2<sup>nd</sup> gradient model that involves two length scale parameters, the Green&#39;s function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green&#39;s function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eshelby%20tensor" title="Eshelby tensor">Eshelby tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Eshelby-like%20tensor" title=" Eshelby-like tensor"> Eshelby-like tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title=" Green’s function"> Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model" title=" Mindlin’s 2nd gradient model"> Mindlin’s 2nd gradient model</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20inclusion" title=" spherical inclusion"> spherical inclusion</a> </p> <a href="https://publications.waset.org/abstracts/95413/green-function-and-eshelby-tensor-based-on-mindlins-2nd-gradient-model-an-explicit-study-of-spherical-inclusion-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17311</span> On Radially Symmetric Vibrations of Bi-Directional Functionally Graded Circular Plates on the Basis of Mindlin’s Theory and Neutral Axis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Saini">Rahul Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshan%20Lal"> Roshan Lal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the free axisymmetric vibrations of bi-directional functionally graded circular plates using Mindlin’s plate theory and physical neutral surface. The temperature-dependent, as well as temperature-independent mechanical properties of the plate material, varies in radial and transverse directions. Also, temperature profile for one- and two-dimensional temperature variations has been obtained from the heat conduction equation. A simple computational formulation for the governing differential equation of motion for such a plate model has been derived using Hamilton's principle for the clamped and simply supported plates at the periphery. Employing the generalized differential quadrature method, the corresponding frequency equations have been obtained and solved numerically to retain their lowest three roots as the natural frequencies for the first three modes. The effect of various other parameters such as temperature profile, functionally graded indices, and boundary conditions on the vibration characteristics has been presented. In order to validate the accuracy and efficiency of the method, the results have been compared with those available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-directionally%20FG" title="bi-directionally FG">bi-directionally FG</a>, <a href="https://publications.waset.org/abstracts/search?q=GDQM" title=" GDQM"> GDQM</a>, <a href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%20circular%20plate" title=" Mindlin’s circular plate"> Mindlin’s circular plate</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20axis" title=" neutral axis"> neutral axis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a> </p> <a href="https://publications.waset.org/abstracts/117831/on-radially-symmetric-vibrations-of-bi-directional-functionally-graded-circular-plates-on-the-basis-of-mindlins-theory-and-neutral-axis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17310</span> Mathematical Modeling of the Working Principle of Gravity Gradient Instrument</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danni%20Cong">Danni Cong</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiping%20Wu"> Meiping Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua%20Mu"> Hua Mu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20He"> Xiaofeng He</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxiang%20Lian"> Junxiang Lian</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliang%20Cao"> Juliang Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaokun%20Cai"> Shaokun Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Qin"> Hao Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity field is of great significance in geoscience, national economy and national security, and gravitational gradient measurement has been extensively studied due to its higher accuracy than gravity measurement. Gravity gradient sensor, being one of core devices of the gravity gradient instrument, plays a key role in measuring accuracy. Therefore, this paper starts from analyzing the working principle of the gravity gradient sensor by Newton’s law, and then considers the relative motion between inertial and non-inertial systems to build a relatively adequate mathematical model, laying a foundation for the measurement error calibration, measurement accuracy improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient" title="gravity gradient">gravity gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient%20sensor" title=" gravity gradient sensor"> gravity gradient sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=single-axis%20rotation%20modulation" title=" single-axis rotation modulation"> single-axis rotation modulation</a> </p> <a href="https://publications.waset.org/abstracts/74776/mathematical-modeling-of-the-working-principle-of-gravity-gradient-instrument" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17309</span> Identification of Wiener Model Using Iterative Schemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Saini">Vikram Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20non-linearity" title="hard non-linearity">hard non-linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square" title=" least square"> least square</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20approximation%20gradient" title=" stochastic approximation gradient"> stochastic approximation gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20model" title=" Wiener model"> Wiener model</a> </p> <a href="https://publications.waset.org/abstracts/70632/identification-of-wiener-model-using-iterative-schemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17308</span> Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaqub%20Khan">M. Yaqub Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Shabbir"> Usman Shabbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20shear" title=" velocity shear"> velocity shear</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20temperature%20gradient%20mode" title=" ion temperature gradient mode"> ion temperature gradient mode</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a> </p> <a href="https://publications.waset.org/abstracts/70221/linear-study-of-electrostatic-ion-temperature-gradient-mode-with-entropy-gradient-drift-and-sheared-ion-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17307</span> An Analytical Method for Bending Rectangular Plates with All Edges Clamped Supported</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhong">Yang Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Liu"> Heng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decoupling method and the modified Naiver method are combined for accurate bending analysis of rectangular thick plates with all edges clamped supported. The basic governing equations for Mindlin plates are first decoupled into independent partial differential equations which can be solved separately. Using modified Navier method, the analytic solution of rectangular thick plate with all edges clamped supported is then derived. The solution method used in this paper leave out the complicated derivation for calculating coefficients and obtain the solution to problems directly. Numerical comparisons show the correctness and accuracy of the results at last. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindlin%20plates" title="Mindlin plates">Mindlin plates</a>, <a href="https://publications.waset.org/abstracts/search?q=decoupling%20method" title=" decoupling method"> decoupling method</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Navier%20method" title=" modified Navier method"> modified Navier method</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20rectangular%20plates" title=" bending rectangular plates"> bending rectangular plates</a> </p> <a href="https://publications.waset.org/abstracts/22011/an-analytical-method-for-bending-rectangular-plates-with-all-edges-clamped-supported" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17306</span> Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Ben%20Youssef">Nadia Ben Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bouzid"> Aicha Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient" title="gradient">gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternion" title=" quaternion"> quaternion</a> </p> <a href="https://publications.waset.org/abstracts/141138/review-on-quaternion-gradient-operator-with-marginal-and-vector-approaches-for-colour-edge-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17305</span> A Refined Nonlocal Strain Gradient Theory for Assessing Scaling-Dependent Vibration Behavior of Microbeams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaobai%20Li">Xiaobai Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Li"> Li Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yujin%20Hu"> Yujin Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiming%20Deng"> Weiming Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Ding"> Zhe Ding</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A size-dependent Euler&ndash;Bernoulli beam model, which accounts for nonlocal stress field, strain gradient field and higher order inertia force field, is derived based on the nonlocal strain gradient theory considering velocity gradient effect. The governing equations and boundary conditions are derived both in dimensional and dimensionless form by employed the Hamilton principle. The analytical solutions based on different continuum theories are compared. The effect of higher order inertia terms is extremely significant in high frequency range. It is found that there exists an asymptotic frequency for the proposed beam model, while for the nonlocal strain gradient theory the solutions diverge. The effect of strain gradient field in thickness direction is significant in low frequencies domain and it cannot be neglected when the material strain length scale parameter is considerable with beam thickness. The influence of each of three size effect parameters on the natural frequencies are investigated. The natural frequencies increase with the increasing material strain gradient length scale parameter or decreasing velocity gradient length scale parameter and nonlocal parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euler-Bernoulli%20Beams" title="Euler-Bernoulli Beams">Euler-Bernoulli Beams</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20order%20inertia" title=" higher order inertia"> higher order inertia</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlocal%20Strain%20Gradient%20Theory" title=" Nonlocal Strain Gradient Theory"> Nonlocal Strain Gradient Theory</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20gradient" title=" velocity gradient"> velocity gradient</a> </p> <a href="https://publications.waset.org/abstracts/60330/a-refined-nonlocal-strain-gradient-theory-for-assessing-scaling-dependent-vibration-behavior-of-microbeams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17304</span> A Cellular Automaton Model Examining the Effects of Oxygen, Hydrogen Ions, and Lactate on Early Tumour Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maymona%20Al-Husari">Maymona Al-Husari</a>, <a href="https://publications.waset.org/abstracts/search?q=Craig%20Murdoch"> Craig Murdoch</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Webb"> Steven Webb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some tumors are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a 'reversed pH gradient' across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na+/H+ exchanger or a high rate of anaerobic glycolysis can give rise to a 'fingering' tumour morphology; and a high activity of the lactate/H+ symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogenous within the tumour, with a normal pH gradient observed within an intermediate growth layer, that is the layer between the proliferative inner and outermost layer of the tumour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidic%20pH" title="acidic pH">acidic pH</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20automaton" title=" cellular automaton"> cellular automaton</a>, <a href="https://publications.waset.org/abstracts/search?q=ebola" title=" ebola"> ebola</a>, <a href="https://publications.waset.org/abstracts/search?q=tumour%20growth" title=" tumour growth"> tumour growth</a> </p> <a href="https://publications.waset.org/abstracts/41359/a-cellular-automaton-model-examining-the-effects-of-oxygen-hydrogen-ions-and-lactate-on-early-tumour-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17303</span> Dynamic Measurement System Modeling with Machine Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changqiao%20Wu">Changqiao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Ding"> Guoqing Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Chen"> Xin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20system%20modeling" title="dynamic system modeling">dynamic system modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20equation" title=" normal equation"> normal equation</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20gradient%20descent" title=" second order gradient descent"> second order gradient descent</a> </p> <a href="https://publications.waset.org/abstracts/98265/dynamic-measurement-system-modeling-with-machine-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17302</span> A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safwan%20Kanan">Safwan Kanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Dewsbury"> Jonathan Dewsbury</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20Lane-Serff"> Gregory Lane-Serff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A salinity gradient solar pond is a free energy source system for collecting, converting and storing solar energy as heat. In this paper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transfer behavior of salinity gradient solar pond. Matlab codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results are found to be in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=salt-gradient%20solar-pond" title=" salt-gradient solar-pond"> salt-gradient solar-pond</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20heat%20and%20mass%20transfer" title=" transient heat and mass transfer"> transient heat and mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/2480/a-simple-heat-and-mass-transfer-model-for-salt-gradient-solar-ponds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17301</span> Approaches to Vibration Analysis of Thick Plates Subjected to Different Supports, Loadings and Boundary Conditions: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazl%20E.%20Ahad">Fazl E. Ahad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Dongyan"> Shi Dongyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anees%20Ur%20Rehman"> Anees Ur Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plates are one of the most important structural components used in many industries like aerospace, marine and various other engineering fields and thus motivate designers and engineers to study the vibrational characteristics of these structures. This paper is a review of existing literature on vibration analysis of plates. Focus has been kept on prominent studies related to isotropic plates based on Mindlin plate theory; however few citations on orthotropic plates and higher order shear deformation theories have also been included. All citations are in English language. This review is aimed to provide contemporarily relevant survey of papers on vibrational characteristics of thick plates and will be useful for scientists, designers and researchers to locate important and relevant literature/research quickly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mindlin%20plates" title="mindlin plates">mindlin plates</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=arbitrary%20boundary%20conditions" title=" arbitrary boundary conditions"> arbitrary boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20shapes" title=" mode shapes"> mode shapes</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/33468/approaches-to-vibration-analysis-of-thick-plates-subjected-to-different-supports-loadings-and-boundary-conditions-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17300</span> A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alhawarat">Ahmad Alhawarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Mamat"> Mustafa Mamat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rivaie"> Mohd Rivaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Mohd"> Ismail Mohd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title="conjugate gradient method">conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20coefficient" title=" conjugate gradient coefficient"> conjugate gradient coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20convergence" title=" global convergence"> global convergence</a> </p> <a href="https://publications.waset.org/abstracts/1392/a-new-modification-of-nonlinear-conjugate-gradient-coefficients-with-global-convergence-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17299</span> Global Convergence of a Modified Three-Term Conjugate Gradient Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belloufi%20Mohammed">Belloufi Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sellami%20Badreddine"> Sellami Badreddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a new nonlinear modified three-term conjugate gradient algorithm for solving large-scale unstrained optimization problems. The search direction of the algorithms from this class has three terms and is computed as modifications of the classical conjugate gradient algorithms to satisfy both the descent and the conjugacy conditions. An example of three-term conjugate gradient algorithm from this class, as modifications of the classical and well known Hestenes and Stiefel or of the CG_DESCENT by Hager and Zhang conjugate gradient algorithms, satisfying both the descent and the conjugacy conditions is presented. Under mild conditions, we prove that the modified three-term conjugate gradient algorithm with Wolfe type line search is globally convergent. Preliminary numerical results show the proposed method is very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20optimization" title="unconstrained optimization">unconstrained optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=three-term%20conjugate%20gradient" title=" three-term conjugate gradient"> three-term conjugate gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=sufficient%20descent%20property" title=" sufficient descent property"> sufficient descent property</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search" title=" line search"> line search</a> </p> <a href="https://publications.waset.org/abstracts/41727/global-convergence-of-a-modified-three-term-conjugate-gradient-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17298</span> Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Arda">Mustafa Arda</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Aydogdu"> Metin Aydogdu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torsional%20vibration" title="torsional vibration">torsional vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20gradient%20theory" title=" nonlocal gradient theory"> nonlocal gradient theory</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/48828/torsional-vibration-of-carbon-nanotubes-via-nonlocal-gradient-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17297</span> The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phanida%20Phukoetphim">Phanida Phukoetphim</a>, <a href="https://publications.waset.org/abstracts/search?q=Asaad%20Y.%20Shamseldin"> Asaad Y. Shamseldin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-model%20combination" title="multi-model combination">multi-model combination</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20modeling" title=" rainfall-runoff modeling"> rainfall-runoff modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20gradient%20boosting" title=" stochastic gradient boosting"> stochastic gradient boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/3455/the-use-of-stochastic-gradient-boosting-method-for-multi-model-combination-of-rainfall-runoff-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17296</span> A New Family of Globally Convergent Conjugate Gradient Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sellami">B. Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Laskri"> Y. Laskri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belloufi"> M. Belloufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, a new family of conjugate gradient method is proposed for unconstrained optimization. This method includes the already existing two practical nonlinear conjugate gradient methods, which produces a descent search direction at every iteration and converges globally provided that the line search satisfies the Wolfe conditions. The numerical experiments are done to test the efficiency of the new method, which implies the new method is promising. In addition the methods related to this family are uniformly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title="conjugate gradient method">conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20convergence" title=" global convergence"> global convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search" title=" line search"> line search</a>, <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20optimization" title=" unconstrained optimization"> unconstrained optimization</a> </p> <a href="https://publications.waset.org/abstracts/40381/a-new-family-of-globally-convergent-conjugate-gradient-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17295</span> A New Conjugate Gradient Method with Guaranteed Descent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sellami">B. Sellami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belloufi"> M. Belloufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unconstrained%20optimization" title="unconstrained optimization">unconstrained optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20gradient%20method" title=" conjugate gradient method"> conjugate gradient method</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20search" title=" line search"> line search</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20convergence" title=" global convergence"> global convergence</a> </p> <a href="https://publications.waset.org/abstracts/41734/a-new-conjugate-gradient-method-with-guaranteed-descent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17294</span> A Concept for Design of Road Super-Elevation Based on Horizontal Radius, Vertical Gradient and Accident Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Chattaraj">U. Chattaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Meena"> D. Meena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth of traffic brings various negative effects, such as road accidents. To avoid such problems, a model is developed for the purpose of highway safety. In such areas, fuzzy logic is the most well-known simulation in the larger field. A model is accomplished for hilly and steep terrain based on Fuzzy Inference System (FIS), for which output is super elevation and input data is horizontal radius, vertical gradient, accident rate (AR). This result shows that the system can be efficaciously applied as for highway safety tool distinguishing hazards components correlated to the characteristics of the highway and has a great influence to the making of decision for accident precaution in transportation models. From this model, a positive relationship between geometric elements, accident rate, and super elevation is also identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20rate" title="accident rate">accident rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient" title=" gradient"> gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=radius" title=" radius"> radius</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20elevation" title=" super elevation"> super elevation</a> </p> <a href="https://publications.waset.org/abstracts/97961/a-concept-for-design-of-road-super-elevation-based-on-horizontal-radius-vertical-gradient-and-accident-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17293</span> Transformer Fault Diagnostic Predicting Model Using Support Vector Machine with Gradient Decent Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20O.%20Osaseri">R. O. Osaseri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Usiobaifo"> A. R. Usiobaifo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power transformer which is responsible for the voltage transformation is of great relevance in the power system and oil-immerse transformer is widely used all over the world. A prompt and proper maintenance of the transformer is of utmost importance. The dissolved gasses content in power transformer, oil is of enormous importance in detecting incipient fault of the transformer. There is a need for accurate prediction of the incipient fault in transformer oil in order to facilitate the prompt maintenance and reducing the cost and error minimization. Study on fault prediction and diagnostic has been the center of many researchers and many previous works have been reported on the use of artificial intelligence to predict incipient failure of transformer faults. In this study machine learning technique was employed by using gradient decent algorithms and Support Vector Machine (SVM) in predicting incipient fault diagnosis of transformer. The method focuses on creating a system that improves its performance on previous result and historical data. The system design approach is basically in two phases; training and testing phase. The gradient decent algorithm is trained with a training dataset while the learned algorithm is applied to a set of new data. This two dataset is used to prove the accuracy of the proposed model. In this study a transformer fault diagnostic model based on Support Vector Machine (SVM) and gradient decent algorithms has been presented with a satisfactory diagnostic capability with high percentage in predicting incipient failure of transformer faults than existing diagnostic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20model" title="diagnostic model">diagnostic model</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20decent" title=" gradient decent"> gradient decent</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine%20%28SVM%29" title=" support vector machine (SVM)"> support vector machine (SVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=transformer%20fault" title=" transformer fault "> transformer fault </a> </p> <a href="https://publications.waset.org/abstracts/42364/transformer-fault-diagnostic-predicting-model-using-support-vector-machine-with-gradient-decent-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17292</span> Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mantai%20Chen">Mantai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnny%20Ching%20Ming%20Ho"> Johnny Ching Ming Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20concrete%20stress%20block" title=" equivalent concrete stress block"> equivalent concrete stress block</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gradient" title=" strain gradient"> strain gradient</a> </p> <a href="https://publications.waset.org/abstracts/5486/flexural-strength-design-of-rc-beams-with-consideration-of-strain-gradient-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17291</span> Best Resource Recommendation for a Stochastic Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Likewin%20Thomas">Likewin Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Manoj%20Kumar"> M. V. Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Annappa"> B. Annappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADALINE" title="ADALINE">ADALINE</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20decent" title=" gradient decent"> gradient decent</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title=" process mining"> process mining</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20behaviour" title=" resource behaviour"> resource behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20regression%20model" title=" polynomial regression model"> polynomial regression model</a> </p> <a href="https://publications.waset.org/abstracts/45008/best-resource-recommendation-for-a-stochastic-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17290</span> Variable-Fidelity Surrogate Modelling with Kriging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selvakumar%20Ulaganathan">Selvakumar Ulaganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Couckuyt"> Ivo Couckuyt</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Ferranti"> Francesco Ferranti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Dhaene"> Tom Dhaene</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Laermans"> Eric Laermans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriging" title="Kriging">Kriging</a>, <a href="https://publications.waset.org/abstracts/search?q=CoKriging" title=" CoKriging"> CoKriging</a>, <a href="https://publications.waset.org/abstracts/search?q=Surrogate%20modelling" title=" Surrogate modelling"> Surrogate modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Variable-%20fidelity%20modelling" title=" Variable- fidelity modelling"> Variable- fidelity modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Gradients" title=" Gradients"> Gradients</a> </p> <a href="https://publications.waset.org/abstracts/19031/variable-fidelity-surrogate-modelling-with-kriging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17289</span> Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng%20Wu">Meng Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title="motion planning">motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient%20inversion%20algorithm" title=" gravity gradient inversion algorithm"> gravity gradient inversion algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization" title=" ant colony optimization"> ant colony optimization</a> </p> <a href="https://publications.waset.org/abstracts/110462/hybrid-gravity-gradient-inversion-ant-colony-optimization-algorithm-for-motion-planning-of-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17288</span> Modeling Revolution Shell Structures by MATLAB Programming-Axisymmetric and Nonaxisymmetric Shells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamadi%20Djamal">Hamadi Djamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Labiodh%20Bachir"> Labiodh Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ounis%20Abdelhafid"> Ounis Abdelhafid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaalane%20Mourad"> Chaalane Mourad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is setting numerically operational finite element CAXI_L for the axisymmetric and nonaxisymmetric shells. This element is based on the Reissner-Mindlin theory and mixed model formulation. The MATLAB language is used for the programming. In order to test the elaborated program, some applications are carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axisymmetric%20shells" title="axisymmetric shells">axisymmetric shells</a>, <a href="https://publications.waset.org/abstracts/search?q=nonaxisymmetric%20behaviour" title=" nonaxisymmetric behaviour"> nonaxisymmetric behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20programming" title=" MATLAB programming"> MATLAB programming</a> </p> <a href="https://publications.waset.org/abstracts/3301/modeling-revolution-shell-structures-by-matlab-programming-axisymmetric-and-nonaxisymmetric-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17287</span> Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jixiao%20Tao">Jixiao Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoqiao%20He"> Xiaoqiao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman&rsquo;s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bistable" title="Bistable">Bistable</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20nonlinearity" title=" geometrical nonlinearity"> geometrical nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrilateral%20plate%20elements" title=" quadrilateral plate elements"> quadrilateral plate elements</a> </p> <a href="https://publications.waset.org/abstracts/124454/finite-element-analysis-of-thermally-induced-bistable-plate-using-four-plate-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17286</span> Robot Movement Using the Trust Region Policy Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Romisaa%20Ali">Romisaa Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20neural%20networks" title="deep neural networks">deep neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=proximal%20policy%20optimization" title=" proximal policy optimization"> proximal policy optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=state-of-the-art" title=" state-of-the-art"> state-of-the-art</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20region%20policy%20optimization" title=" trust region policy optimization"> trust region policy optimization</a> </p> <a href="https://publications.waset.org/abstracts/158075/robot-movement-using-the-trust-region-policy-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17285</span> Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dragan%20Ribari%C4%87">Dragan Ribarić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindlin%20plate%20theory" title="Mindlin plate theory">Mindlin plate theory</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-independent%20linked%20interpolation" title=" problem-independent linked interpolation"> problem-independent linked interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-dependent%20interpolation" title=" problem-dependent interpolation"> problem-dependent interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrilateral%20displacement-based%20plate%20finite%20elements" title=" quadrilateral displacement-based plate finite elements"> quadrilateral displacement-based plate finite elements</a> </p> <a href="https://publications.waset.org/abstracts/47597/comparison-between-the-quadratic-and-the-cubic-linked-interpolation-on-the-mindlin-plate-four-node-quadrilateral-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17284</span> Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Parashar">Nishant Parashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawan%20S.%20Sinha"> Sawan S. Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Balaji%20Srinivasan"> Balaji Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20turbulence" title="compressible turbulence">compressible turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20gradient%20tensor" title=" velocity gradient tensor"> velocity gradient tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title=" direct numerical simulation"> direct numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/101552/data-driven-analysis-of-velocity-gradient-dynamics-using-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17283</span> Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20van%20Ling">Robert van Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Schwahn"> Alexander Schwahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanhua%20Lin"> Shanhua Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Cook"> Ken Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Steiner"> Frank Steiner</a>, <a href="https://publications.waset.org/abstracts/search?q=Rowan%20Moore"> Rowan Moore</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20de%20Pra"> Mauro de Pra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20variants" title="charge variants">charge variants</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange%20chromatography" title=" ion exchange chromatography"> ion exchange chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclonal%20antibody" title=" monoclonal antibody"> monoclonal antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=UHPLC" title=" UHPLC"> UHPLC</a> </p> <a href="https://publications.waset.org/abstracts/63884/ultra-fast-ph-gradient-ion-exchange-chromatography-for-the-separation-of-monoclonal-antibody-charge-variants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=577">577</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=578">578</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mindlin%E2%80%99s%202nd%20gradient%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10