CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;34 of 34 results for author: <span class="mathjax">Broekgaarden, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Broekgaarden%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Broekgaarden, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Broekgaarden%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Broekgaarden, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02484">arXiv:2411.02484</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02484">pdf</a>, <a href="https://arxiv.org/format/2411.02484">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Winds of change: why binary black hole formation is metallicity dependent, while binary neutron star formation is not </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Son%2C+L+A+C">L. A. C. van Son</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roy%2C+S+K">S. K. Roy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">I. Mandel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farr%2C+W+M">W. M. Farr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lam%2C+A">A. Lam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Merritt%2C+J">J. Merritt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">F. S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sander%2C+A">A. Sander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrews%2C+J+J">J. J. Andrews</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02484v1-abstract-short" style="display: inline;"> Both detailed and rapid population studies alike predict that binary black hole (BHBH) formation is orders of magnitude more efficient at low metallicity than high metallicity, while binary neutron star (NSNS) formation remains mostly flat with metallicity, and black hole-neutron star (BHNS) mergers show intermediate behavior. This finding is a key input to employ double compact objects as tracers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02484v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02484v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02484v1-abstract-full" style="display: none;"> Both detailed and rapid population studies alike predict that binary black hole (BHBH) formation is orders of magnitude more efficient at low metallicity than high metallicity, while binary neutron star (NSNS) formation remains mostly flat with metallicity, and black hole-neutron star (BHNS) mergers show intermediate behavior. This finding is a key input to employ double compact objects as tracers of low-metallicity star formation, as spectral sirens, and for merger rate calculations. Yet, the literature offers various (sometimes contradicting) explanations for these trends. We investigate the dominant cause for the metallicity dependence of double compact object formation. We find that the BHBH formation efficiency at low metallicity is set by initial condition distributions, and conventional simulations suggest that about one in eight interacting binary systems with sufficient mass to form black holes will lead to a merging BHBH. We further find that the significance of metallicities in double compact object formation is a question of formation channel. The stable mass transfer and chemically homogeneous evolution channels mainly diminish at high metallicities due to changes in stellar radii, while the common envelope channel is primarily impacted by the combined effects of stellar winds and mass-scaled natal kicks. Outdated giant wind prescriptions exacerbate the latter effect, suggesting BHBH formation may be much less metallicity dependent than previously assumed. NSNS formation efficiency remains metallicity independent as they form exclusively through the common envelope channel, with natal kicks that are uncorrelated with mass. Forthcoming GW observations will provide valuable constraints on these findings <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02484v1-abstract-full').style.display = 'none'; document.getElementById('2411.02484v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 Figures, Submitted to ApJ, Scripts and data to reproduce this work are at https://github.com/LiekeVanSon/ZdependentFormEff , and https://zenodo.org/records/13999532</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04405">arXiv:2406.04405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04405">pdf</a>, <a href="https://arxiv.org/format/2406.04405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> </div> </div> <p class="title is-5 mathjax"> Streamlining and standardizing software citations with The Software Citation Station </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+T">Tom Wagg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04405v1-abstract-short" style="display: inline;"> Software is crucial for the advancement of astronomy especially in the context of rapidly growing datasets that increasingly require algorithm and pipeline development to process the data and produce results. However, software has not always been consistently cited, despite its importance to strengthen support for software development. To encourage, streamline, and standardize the process of citin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04405v1-abstract-full').style.display = 'inline'; document.getElementById('2406.04405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04405v1-abstract-full" style="display: none;"> Software is crucial for the advancement of astronomy especially in the context of rapidly growing datasets that increasingly require algorithm and pipeline development to process the data and produce results. However, software has not always been consistently cited, despite its importance to strengthen support for software development. To encourage, streamline, and standardize the process of citing software in academic work such as publications we introduce &#39;The Software Citation Station&#39;: a publicly available website and tool to quickly find or add software citations <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04405v1-abstract-full').style.display = 'none'; document.getElementById('2406.04405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Visit the Software citation station at https://www.tomwagg.com/software-citation-station/ which includes a very easy form to add your own software package! comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01630">arXiv:2405.01630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01630">pdf</a>, <a href="https://arxiv.org/format/2405.01630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Investigating the Cosmological Rate of Compact Object Mergers from Isolated Massive Binary Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Boesky%2C+A">Adam Boesky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01630v1-abstract-short" style="display: inline;"> Gravitational wave detectors are observing compact object mergers from increasingly far distances, revealing the redshift evolution of the binary black hole (BBH) -- and soon the black hole-neutron star (BHNS) and binary neutron star (BNS) -- merger rate. To help interpret these observations, we investigate the expected redshift evolution of the compact object merger rate from the isolated binary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01630v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01630v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01630v1-abstract-full" style="display: none;"> Gravitational wave detectors are observing compact object mergers from increasingly far distances, revealing the redshift evolution of the binary black hole (BBH) -- and soon the black hole-neutron star (BHNS) and binary neutron star (BNS) -- merger rate. To help interpret these observations, we investigate the expected redshift evolution of the compact object merger rate from the isolated binary evolution channel. We present a publicly available catalog of compact object mergers and their accompanying cosmological merger rates from population synthesis simulations conducted with the COMPAS software. To explore the impact of uncertainties in stellar and binary evolution, our simulations use two-parameter grids of binary evolution models that vary the common-envelope efficiency with mass transfer accretion efficiency, and supernova remnant mass prescription with supernova natal kick velocity, respectively. We quantify the redshift evolution of our simulated merger rates using the local ($z\sim 0$) rate, the redshift at which the merger rate peaks, and the normalized differential rates (as a proxy for slope). We find that although the local rates span a range of $\sim 10^3$ across our model variations, their redshift-evolutions are remarkably similar for BBHs, BHNSs, and BNSs, with differentials typically within a factor $3$ and peaks of $z\approx 1.2-2.4$ across models. Furthermore, several trends in our simulated rates are correlated with the model parameters we explore. We conclude that future observations of the redshift evolution of the compact object merger rate can help constrain binary models for stellar evolution and gravitational-wave formation channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01630v1-abstract-full').style.display = 'none'; document.getElementById('2405.01630v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, link to code https://github.com/Adam-Boesky/Exploring_Parameter_Space, link to data https://gwlandscape.org.au/compas/publication/Q29tcGFzUHVibGljYXRpb25Ob2RlOjYz/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01623">arXiv:2405.01623</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01623">pdf</a>, <a href="https://arxiv.org/format/2405.01623">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Binary Black Hole Merger Rate Deviates From the Cosmic Star Formation Rate: A Tug of War Between Metallicity and Delay Times </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Boesky%2C+A">Adam Boesky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01623v1-abstract-short" style="display: inline;"> Gravitational-wave detectors are now making it possible to investigate how the merger rate of binary black holes (BBHs) evolves with redshift. In this study, we examine whether the BBH merger rate of isolated binaries deviates from a scaled star formation rate density (SFRD) -- a frequently used model in state-of-the-art research. To address this question, we conduct population synthesis simulatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01623v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01623v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01623v1-abstract-full" style="display: none;"> Gravitational-wave detectors are now making it possible to investigate how the merger rate of binary black holes (BBHs) evolves with redshift. In this study, we examine whether the BBH merger rate of isolated binaries deviates from a scaled star formation rate density (SFRD) -- a frequently used model in state-of-the-art research. To address this question, we conduct population synthesis simulations using COMPAS with a grid of stellar evolution models, calculate their cosmological merger rates, and compare them to a scaled SFRD. We find that our simulated rates deviate by factors up to $3.5\times$ at $z\sim0$ and $5\times$ at $z\sim 9$ due to two main phenomena: (i) The formation efficiency of BBHs is an order of magnitude higher at low metallicities than at solar metallicity; and (ii) BBHs experience a wide range of delays (from a few Myr to many Gyr) between formation and merger. Deviations are similar when comparing to a $\textit{delayed}$ SFRD, and even larger (up to $\sim 10\times$) when comparing to SFRD-based models scaled to the local merger rate. Interestingly, our simulations find that the BBH delay time distribution is redshift-dependent, increasing the complexity of the redshift distribution of mergers. We find similar results for simulated merger rates of BHNSs and BNSs. We conclude that the rate of BBH, BHNS, and BNS mergers from the isolated channel can significantly deviate from a scaled SFRD, and that future measurements of the merger rate will provide insights into the formation pathways of gravitational-wave sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01623v1-abstract-full').style.display = 'none'; document.getElementById('2405.01623v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, link to code https://github.com/Adam-Boesky/Exploring_Parameter_Space, link to data https://gwlandscape.org.au/compas/publication/Q29tcGFzUHVibGljYXRpb25Ob2RlOjYz/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.13038">arXiv:2401.13038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.13038">pdf</a>, <a href="https://arxiv.org/format/2401.13038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Beyond the far side: Observing black hole mergers beyond the pair-instability mass gap with next-generation gravitational wave detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Franciolini%2C+G">Gabriele Franciolini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kritos%2C+K">Konstantinos Kritos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reali%2C+L">Luca Reali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berti%2C+E">Emanuele Berti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.13038v1-abstract-short" style="display: inline;"> Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around ${m_\text{min}} \sim130M_\odot$, using gravitational wave observations of compact bi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13038v1-abstract-full').style.display = 'inline'; document.getElementById('2401.13038v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.13038v1-abstract-full" style="display: none;"> Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around ${m_\text{min}} \sim130M_\odot$, using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the &#34;far side&#34; beyond the gap, metal-poor environments containing Population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to $螖{m_\text{min}}/{m_\text{min}} \simeq 4\% (N_\text{det}/100 )^{-1/2}$ at 90% C.L., where $N_\text{det} $ is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.13038v1-abstract-full').style.display = 'none'; document.getElementById('2401.13038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15778">arXiv:2311.15778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15778">pdf</a>, <a href="https://arxiv.org/format/2311.15778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Stellar Black Holes and Compact Stellar Remnants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Costa%2C+G">Guglielmo Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chru%C5%9Bli%C5%84ska%2C+M">Martyna Chru艣li艅ska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klencki%2C+J">Jakub Klencki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+C+L">Carl L. Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joseph%2C+T+D">Tana D. Joseph</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saracino%2C+S">Sara Saracino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15778v1-abstract-short" style="display: inline;"> The recent observations of gravitational waves (GWs) by the LIGO-Virgo-KAGRA collaboration (LVK) have provided a new opportunity for studying our Universe. By detecting several merging events of black holes (BHs), LVK has spurred the astronomical community to improve theoretical models of single, binary, and multiple star evolution in order to better understand the formation of binary black hole (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15778v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15778v1-abstract-full" style="display: none;"> The recent observations of gravitational waves (GWs) by the LIGO-Virgo-KAGRA collaboration (LVK) have provided a new opportunity for studying our Universe. By detecting several merging events of black holes (BHs), LVK has spurred the astronomical community to improve theoretical models of single, binary, and multiple star evolution in order to better understand the formation of binary black hole (BBH) systems and interpret their observed properties. The final BBH system configuration before the merger depends on several processes, including those related to the evolution of the inner stellar structure and those due to the interaction with the companion and the environment (such as in stellar clusters). This chapter provides a summary of the formation scenarios of stellar BHs in single, binary, and multiple systems. We review all the important physical processes that affect the formation of BHs and discuss the methodologies used to detect these elusive objects and constrain their properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15778v1-abstract-full').style.display = 'none'; document.getElementById('2311.15778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Chapter 1 in the book Black Holes in the Era of Gravitational Wave Astronomy, ed. Arca Sedda, Bortolas, Spera, pub. Elsevier. All authors equally contributed to the chapter. Figures from other publications have been reproduced with permission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16894">arXiv:2310.16894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16894">pdf</a>, <a href="https://arxiv.org/format/2310.16894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348384">10.1051/0004-6361/202348384 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-messenger prospects for black hole - neutron star mergers in the O4 and O5 runs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Colombo%2C+A">Alberto Colombo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duqu%C3%A9%2C+R">Rapha毛l Duqu茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salafia%2C+O+S">Om Sharan Salafia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iacovelli%2C+F">Francesco Iacovelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mancarella%2C+M">Michele Mancarella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gabrielli%2C+F">Francesco Gabrielli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ragosta%2C+F">Fabio Ragosta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghirlanda%2C+G">Giancarlo Ghirlanda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fragos%2C+T">Tassos Fragos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piranomonte%2C+S">Silvia Piranomonte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giacomazzo%2C+B">Bruno Giacomazzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colpi%2C+M">Monica Colpi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16894v3-abstract-short" style="display: inline;"> The existence of merging black hole-neutron star (BHNS) binaries has been ascertained through the observation of their gravitational wave (GW) signals. However, to date, no definitive electromagnetic (EM) emission has been confidently associated with these mergers. Such an association could help unravel crucial information on these systems, for example, their BH spin distribution, the equation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16894v3-abstract-full').style.display = 'inline'; document.getElementById('2310.16894v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16894v3-abstract-full" style="display: none;"> The existence of merging black hole-neutron star (BHNS) binaries has been ascertained through the observation of their gravitational wave (GW) signals. However, to date, no definitive electromagnetic (EM) emission has been confidently associated with these mergers. Such an association could help unravel crucial information on these systems, for example, their BH spin distribution, the equation of state (EoS) of NS and the rate of heavy element production. We model the multi-messenger (MM) emission from BHNS mergers detectable during the fourth (O4) and fifth (O5) observing runs of the LIGO-Virgo-KAGRA GW detector network, in order to provide detailed predictions that can help enhance the effectiveness of observational efforts and extract the highest possible scientific information from such remarkable events. Our methodology is based on a population synthesis-approach, which includes the modelling of the signal-to-noise ratio of the GW signal in the detectors, the GW-inferred sky localization of the source, the kilonova (KN) optical and near-infrared light curves, the relativistic jet gamma-ray burst (GRB) prompt emission peak photon flux, and the GRB afterglow light curves in the radio, optical and X-ray bands. The resulting prospects for BHNS MM detections during O4 are not promising, with a GW detection rate of $15.0^{+15.4}_{-8.8}$ yr$^{-1}$, but joint MM rates of $\sim 10^{-1}$ yr$^{-1}$ for the KN and $\sim 10^{-2}$ yr$^{-1}$ for the jet-related emission. In O5 we find an overall increase in expected detection rates by around an order of magnitude, owing to both the enhanced sensitivity of the GW detector network, and the coming online of future EM facilities. Finally, we discuss direct searches for the GRB radio afterglow with large-field-of-view instruments as a new possible follow-up strategy in the context of ever-dimming prospects for KN detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16894v3-abstract-full').style.display = 'none'; document.getElementById('2310.16894v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&amp;A. 17 pages, 11 figures, 2 tables. Comments are welcome!</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A265 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.04485">arXiv:2308.04485</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.04485">pdf</a>, <a href="https://arxiv.org/format/2308.04485">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Gamma-ray Transient Network Science Analysis Group Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M">Michael Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">Kendall Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bizouard%2C+M">Marie-Anne Bizouard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+N+L">Nelson L. Christensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Ammando%2C+F">Filippo D&#39;Ammando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeLaunay%2C+J">James DeLaunay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fleischhack%2C+H">Henrike Fleischhack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frey%2C+R">Raymond Frey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fryer%2C+C+L">Chris L. Fryer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grossan%2C+B">Bruce Grossan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamburg%2C+R">Rachel Hamburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">Dieter H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Howell%2C+E+J">Eric J. Howell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hui%2C+C+M">C. Michelle Hui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jenks%2C+L">Leah Jenks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joens%2C+A">Alyson Joens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">Andrew J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lien%2C+A">Amy Lien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meli%2C+A">Athina Meli</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.04485v2-abstract-short" style="display: inline;"> The Interplanetary Network (IPN) is a detection, localization and alert system that utilizes the arrival time of transient signals in gamma-ray detectors on spacecraft separated by planetary baselines to geometrically locate the origin of these transients. Due to the changing astrophysical landscape and the new emphasis on time domain and multi-messenger astrophysics (TDAMM) from the Pathways to D&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04485v2-abstract-full').style.display = 'inline'; document.getElementById('2308.04485v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.04485v2-abstract-full" style="display: none;"> The Interplanetary Network (IPN) is a detection, localization and alert system that utilizes the arrival time of transient signals in gamma-ray detectors on spacecraft separated by planetary baselines to geometrically locate the origin of these transients. Due to the changing astrophysical landscape and the new emphasis on time domain and multi-messenger astrophysics (TDAMM) from the Pathways to Discovery in Astronomy and Astrophysics for the 2020s, this Gamma-ray Transient Network Science Analysis Group was tasked to understand the role of the IPN and high-energy monitors in this new era. The charge includes describing the science made possible with these facilities, tracing the corresponding requirements and capabilities, and highlighting where improved operations of existing instruments and the IPN would enhance TDAMM science. While this study considers the full multiwavelength and multimessenger context, the findings are specific to space-based high-energy monitors. These facilities are important both for full characterization of these transients as well as facilitating follow-up observations through discovery and localization. The full document reports a brief history of this field, followed by our detailed analyses and findings in some 68 pages, providing a holistic overview of the role of the IPN and high-energy monitors in the coming decades. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.04485v2-abstract-full').style.display = 'none'; document.getElementById('2308.04485v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Terms of Reference and additional information on the Science Analysis Group are available at https://pcos.gsfc.nasa.gov/sags/gtn-sag.php</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10421">arXiv:2307.10421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10421">pdf</a>, <a href="https://arxiv.org/format/2307.10421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Characterizing Gravitational Wave Detector Networks: From A$^\sharp$ to Cosmic Explorer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+I">Ish Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Afle%2C+C">Chaitanya Afle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+K+G">K. G. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bandopadhyay%2C+A">Ananya Bandopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baryakhtar%2C+M">Masha Baryakhtar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borhanian%2C+S">Ssohrab Borhanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhani%2C+A">Arnab Dhani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hall%2C+E+D">Evan D. Hall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hannuksela%2C+O+A">Otto A. Hannuksela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kacanja%2C+K">Keisi Kacanja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kashyap%2C+R">Rahul Kashyap</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khadkikar%2C+S">Sanika Khadkikar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuns%2C+K">Kevin Kuns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+T+G+F">Tjonnie G. F. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+A+L">Andrew L. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nitz%2C+A+H">Alexander Harvey Nitz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Owen%2C+B+J">Benjamin J. Owen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palomba%2C+C">Cristiano Palomba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearce%2C+A">Anthony Pearce</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Phurailatpam%2C+H">Hemantakumar Phurailatpam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rajbhandari%2C+B">Binod Rajbhandari</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10421v2-abstract-short" style="display: inline;"> Gravitational-wave observations by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of L&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10421v2-abstract-full').style.display = 'inline'; document.getElementById('2307.10421v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10421v2-abstract-full" style="display: none;"> Gravitational-wave observations by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A#, given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped Cosmic Explorer observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein Telescope with 10 km arms in Europe. The presence of one or two A# observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy and precision measurement of the Hubble parameter. Two Cosmic Explorer observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming multimessenger astronomy. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two Cosmic Explorer observatories is critical for accomplishing all the identified science metrics. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A# observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10421v2-abstract-full').style.display = 'none'; document.getElementById('2307.10421v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 20 figures, 14 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CE Document No. P2300019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17233">arXiv:2306.17233</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.17233">pdf</a>, <a href="https://arxiv.org/format/2306.17233">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Roman CCS White Paper: Characterizing Superluminous Supernovae with Roman </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+S">Sebastian Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K">Kate Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanchard%2C+P+K">Peter K. Blanchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eftekhari%2C+T">Tarraneh Eftekhari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O">Ori Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+K">Kiranjyot Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hiramatsu%2C+D">Daichi Hiramatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joshi%2C+B">Bhavin Joshi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karmen%2C+M">Mitchell Karmen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T">Takashi Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quimby%2C+R">Robert Quimby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Regos%2C+E">Eniko Regos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+B">Benjamin Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shahbandeh%2C+M">Melissa Shahbandeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villar%2C+V+A">V. Ashley Villar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17233v1-abstract-short" style="display: inline;"> Type-I Superluminous Supernovae (SLSNe) are an exotic class of core-collapse SN (CCSN) that can be up to 100 times brighter and more slowly-evolving than normal CCSNe. SLSNe represent the end-stages of the most massive stripped stars, and are thought to be powered by the spin-down energy of a millisecond magnetar. Studying them and measuring their physical parameters can help us to better understa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17233v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17233v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17233v1-abstract-full" style="display: none;"> Type-I Superluminous Supernovae (SLSNe) are an exotic class of core-collapse SN (CCSN) that can be up to 100 times brighter and more slowly-evolving than normal CCSNe. SLSNe represent the end-stages of the most massive stripped stars, and are thought to be powered by the spin-down energy of a millisecond magnetar. Studying them and measuring their physical parameters can help us to better understand stellar mass-loss, evolution, and explosions. Moreover, thanks to their high luminosities, SLSNe can be seen up to greater distances, allowing us to explore how stellar physics evolves as a function of redshift. The High Latitude Time Domain Survey (HLTDS) will provide us with an exquisite dataset that will discover 100s of SLSNe. Here, we focus on the question of which sets of filters and cadences will allow us to best characterize the physical parameters of these SLSNe. We simulate a set of SLSNe at redshifts ranging from z = 0.1 to z = 5.0, using six different sets of filters, and cadences ranging from 5 to 100 days. We then fit these simulated light curves to attempt to recover the input parameter values for their ejecta mass, ejecta velocity, magnetic field strength, and magnetar spin period. We find that four filters are sufficient to accurately characterize SLSNe at redshifts below $z = 3$, and that cadences faster than 20 days are required to obtain measurements with an uncertainty below 10\%, although a cadence of 70 days is still acceptable under certain conditions. Finally, we find that the nominal survey strategy will not be able to properly characterize the most distant SLSNe at $z = 5$. We find that the addition of 60-day cadence observations for 4 years to the nominal HLTDS survey can greatly improve the prospect of characterizing these most extreme and distant SNe, with only an 8\% increase to the time commitment of the survey. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17233v1-abstract-full').style.display = 'none'; document.getElementById('2306.17233v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted as part of the Nancy Grace Roman Space Telescope&#39;s Core Community Surveys call for white papers</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.13745">arXiv:2306.13745</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.13745">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+M">Matthew Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Afle%2C+C">Chaitanya Afle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ananyeva%2C+A">Alena Ananyeva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+K+G">K. G. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ballmer%2C+S">Stefan Ballmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bandopadhyay%2C+A">Ananya Bandopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barsotti%2C+L">Lisa Barsotti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baryakhtar%2C+M">Masha Baryakhtar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berti%2C+E">Emanuele Berti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biscoveanu%2C+S">Sylvia Biscoveanu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Borhanian%2C+S">Ssohrab Borhanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cahillane%2C+C">Craig Cahillane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campbell%2C+L">Lorna Campbell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+H">Hsin-Yu Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daniel%2C+K+J">Kathryne J. Daniel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhani%2C+A">Arnab Dhani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Driggers%2C+J+C">Jennifer C. Driggers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Effler%2C+A">Anamaria Effler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eisenstein%2C+R">Robert Eisenstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fairhurst%2C+S">Stephen Fairhurst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feicht%2C+J">Jon Feicht</a> , et al. (51 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.13745v1-abstract-short" style="display: inline;"> Gravitational-wave astronomy has revolutionized humanity&#39;s view of the universe, a revolution driven by observations that no other field can make. This white paper describes an observatory that builds on decades of investment by the National Science Foundation and that will drive discovery for decades to come: Cosmic Explorer. Major discoveries in astronomy are driven by three related improvements&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13745v1-abstract-full').style.display = 'inline'; document.getElementById('2306.13745v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.13745v1-abstract-full" style="display: none;"> Gravitational-wave astronomy has revolutionized humanity&#39;s view of the universe, a revolution driven by observations that no other field can make. This white paper describes an observatory that builds on decades of investment by the National Science Foundation and that will drive discovery for decades to come: Cosmic Explorer. Major discoveries in astronomy are driven by three related improvements: better sensitivity, higher precision, and opening new observational windows. Cosmic Explorer promises all three and will deliver an order-of-magnitude greater sensitivity than LIGO. Cosmic Explorer will push the gravitational-wave frontier to almost the edge of the observable universe using technologies that have been proven by LIGO during its development. With the unprecedented sensitivity that only a new facility can deliver, Cosmic Explorer will make discoveries that cannot yet be anticipated, especially since gravitational waves are both synergistic with electromagnetic observations and can reach into regions of the universe that electromagnetic observations cannot explore. With Cosmic Explorer, scientists can use the universe as a laboratory to test the laws of physics and study the nature of matter. Cosmic Explorer allows the United States to continue its leading role in gravitational-wave science and the international network of next-generation observatories. With its extraordinary discovery potential, Cosmic Explorer will deliver revolutionary observations across astronomy, physics, and cosmology including: Black Holes and Neutron Stars Throughout Cosmic Time, Multi-Messenger Astrophysics and Dynamics of Dense Matter, New Probes of Extreme Astrophysics, Fundamental Physics and Precision Cosmology, Dark Matter and the Early Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.13745v1-abstract-full').style.display = 'none'; document.getElementById('2306.13745v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12514">arXiv:2306.12514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.12514">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Roman CCS White Paper: Characterizing the Galactic population of isolated black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lam%2C+C+Y">Casey Y. Lam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abrams%2C+N">Natasha Abrams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrews%2C+J">Jeff Andrews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bachelet%2C+E">Etienne Bachelet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bahramian%2C+A">Arash Bahramian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+D">David Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bozza%2C+V">Valerio Bozza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chakrabarti%2C+S">Sukanya Chakrabarti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dawson%2C+W">William Dawson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fishbach%2C+M">Maya Fishbach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fragione%2C+G">Giacomo Fragione</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaudi%2C+S">Scott Gaudi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gautam%2C+A">Abhimat Gautam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+R">Ryosuke Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holz%2C+D">Daniel Holz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hosek%2C+M">Matthew Hosek Jr.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huston%2C+M">Macy Huston</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jayasinghe%2C+T">Tharindu Jayasinghe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+S">Samson Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawata%2C+D">Daisuke Kawata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koshimoto%2C+N">Naoki Koshimoto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+J+R">Jessica R. Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12514v2-abstract-short" style="display: inline;"> Although there are estimated to be 100 million isolated black holes (BHs) in the Milky Way, only one has been found so far, resulting in significant uncertainty about their properties. The Galactic Bulge Time Domain Survey provides the only opportunity in the coming decades to grow this catalog by order(s) of magnitude. This can be achieved if 1) Roman&#39;s astrometric potential is fully realized in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12514v2-abstract-full').style.display = 'inline'; document.getElementById('2306.12514v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12514v2-abstract-full" style="display: none;"> Although there are estimated to be 100 million isolated black holes (BHs) in the Milky Way, only one has been found so far, resulting in significant uncertainty about their properties. The Galactic Bulge Time Domain Survey provides the only opportunity in the coming decades to grow this catalog by order(s) of magnitude. This can be achieved if 1) Roman&#39;s astrometric potential is fully realized in the observation strategy and software pipelines, 2) Roman&#39;s observational gaps of the Bulge are minimized, and 3) observations with ground-based facilities are taken of the Bulge to fill in gaps during non-Bulge seasons. A large sample of isolated BHs will enable a broad range of astrophysical questions to be answered, such as massive stellar evolution, origin of gravitational wave sources, supernova physics, and the growth of supermassive BHs, maximizing Roman&#39;s scientific return. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12514v2-abstract-full').style.display = 'none'; document.getElementById('2306.12514v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages. Submitted in response to Nancy Grace Roman Space Telescope white paper call: https://roman.gsfc.nasa.gov/science/ccs_white_papers.html. v2 fixes a typo in Figure 5 axis label (days --&gt; year)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11784">arXiv:2306.11784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11784">pdf</a>, <a href="https://arxiv.org/format/2306.11784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> NANCY: Next-generation All-sky Near-infrared Community surveY </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+J+J">Jiwon Jesse Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+A">Arjun Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Price-Whelan%2C+A+M">Adrian M. Price-Whelan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Najita%2C+J">Joan Najita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schlafly%2C+E+F">Edward F. Schlafly</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saydjari%2C+A">Andrew Saydjari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wechsler%2C+R+H">Risa H. Wechsler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonaca%2C+A">Ana Bonaca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schlegel%2C+D+J">David J Schlegel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Conroy%2C+C">Charlie Conroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raichoor%2C+A">Anand Raichoor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drlica-Wagner%2C+A">Alex Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kollmeier%2C+J+A">Juna A. Kollmeier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koposov%2C+S+E">Sergey E. Koposov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Besla%2C+G">Gurtina Besla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rix%2C+H">Hans-Walter Rix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goodman%2C+A">Alyssa Goodman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finkbeiner%2C+D">Douglas Finkbeiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+A">Abhijeet Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashby%2C+M">Matthew Ashby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bahr-Kalus%2C+B">Benedict Bahr-Kalus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">Rachel Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Behera%2C+J">Jayashree Behera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+E+F">Eric F. Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C Bellm</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11784v1-abstract-short" style="display: inline;"> The Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GAL&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11784v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11784v1-abstract-full" style="display: none;"> The Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GALAH, 4MOST, WEAVE, MOONS, PFS, UVEX, NEO Surveyor, etc.). Roman can uniquely provide uniform high-spatial-resolution (~0.1 arcsec) imaging over the entire sky, vastly expanding the science reach and precision of all of these near-term and future surveys. This imaging will not only enhance other surveys, but also facilitate completely new science. By imaging the full sky over two epochs, Roman can measure the proper motions for stars across the entire Milky Way, probing 100 times fainter than Gaia out to the very edge of the Galaxy. Here, we propose NANCY: a completely public, all-sky survey that will create a high-value legacy dataset benefiting innumerable ongoing and forthcoming studies of the universe. NANCY is a pure expression of Roman&#39;s potential: it images the entire sky, at high spatial resolution, in a broad infrared bandpass that collects as many photons as possible. The majority of all ongoing astronomical surveys would benefit from incorporating observations of NANCY into their analyses, whether these surveys focus on nearby stars, the Milky Way, near-field cosmology, or the broader universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11784v1-abstract-full').style.display = 'none'; document.getElementById('2306.11784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the call for white papers for the Roman Core Community Survey (June 16th, 2023), and to the Bulletin of the AAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17628">arXiv:2303.17628</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17628">pdf</a>, <a href="https://arxiv.org/format/2303.17628">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> </div> </div> <p class="title is-5 mathjax"> Visualizing the Number of Existing and Future Gravitational-Wave Detections from Merging Double Compact Objects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banagiri%2C+S">Sharan Banagiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Payne%2C+E">Ethan Payne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17628v2-abstract-short" style="display: inline;"> How many gravitational-wave observations from double compact object mergers have we seen to date? This seemingly simple question surprisingly yields a somewhat ambiguous answer that depends on the chosen data-analysis pipeline, detection threshold and other underlying assumptions. To illustrate this we provide visualizations of the number of existing detections from double compact object mergers b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17628v2-abstract-full').style.display = 'inline'; document.getElementById('2303.17628v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17628v2-abstract-full" style="display: none;"> How many gravitational-wave observations from double compact object mergers have we seen to date? This seemingly simple question surprisingly yields a somewhat ambiguous answer that depends on the chosen data-analysis pipeline, detection threshold and other underlying assumptions. To illustrate this we provide visualizations of the number of existing detections from double compact object mergers by the end of the third observing run (O3) based on recent results from the literature. Additionally, we visualize the expected number of observations from future-generation detectors, highlighting the possibility of up to millions of detections per year by the time next-generation ground-based detectors like Cosmic Explorer and Einstein Telescope come online. We present a publicly available code that highlights the exponential growth in gravitational-wave observations in the coming decades and the exciting prospects of gravitational-wave (astro)physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17628v2-abstract-full').style.display = 'none'; document.getElementById('2303.17628v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1 was 1 April ArXiv paper, now accepted in ApJS, See http://www.broekgaarden.nl/floor/wordpress/elementor-967/ for GW videos</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.12329">arXiv:2205.12329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.12329">pdf</a>, <a href="https://arxiv.org/format/2205.12329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2859">10.1093/mnras/stac2859 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Which black hole formed first? Mass-ratio reversal in massive binary stars from gravitational-wave data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mould%2C+M">Matthew Mould</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gerosa%2C+D">Davide Gerosa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Steinle%2C+N">Nathan Steinle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.12329v2-abstract-short" style="display: inline;"> Population inference of gravitational-wave catalogues is a useful tool to translate observations of black-hole mergers into constraints on compact-binary formation. Different formation channels predict identifiable signatures in the astrophysical distributions of source parameters, such as masses and spins. One example within the scenario of isolated binary evolution is mass-ratio reversal: even a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12329v2-abstract-full').style.display = 'inline'; document.getElementById('2205.12329v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.12329v2-abstract-full" style="display: none;"> Population inference of gravitational-wave catalogues is a useful tool to translate observations of black-hole mergers into constraints on compact-binary formation. Different formation channels predict identifiable signatures in the astrophysical distributions of source parameters, such as masses and spins. One example within the scenario of isolated binary evolution is mass-ratio reversal: even assuming efficient core-envelope coupling in massive stars and tidal spin-up of the stellar companion by the first-born black hole, a compact binary with a lighter, non-spinning first-born black hole and a heavier, spinning second-born black hole can still form through mass transfer from the initially more to less massive progenitor. Using current LIGO/Virgo observations, we measure the fraction of sources in the underlying population with this mass-spin combination and interpret it as a constraint on the occurrence of mass-ratio reversal in massive binary stars. We modify commonly used population models by including negligible-spin subpopulations and, most crucially, non-identical component spin distributions. We do not find evidence for subpopulations of black holes with negligible spins and measure the fraction of massive binary stars undergoing mass-ratio reversal to be consistent with zero and $&lt;32\%$ ($99\%$ confidence). The dimensionless spin peaks around $0.2\unicode{x2013}0.3$ appear robust, however, and are yet to be explained by progenitor formation scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.12329v2-abstract-full').style.display = 'none'; document.getElementById('2205.12329v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 main figures, 1 appendix with 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, Volume 517, Issue 2, December 2022, Pages 2738-2745 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03989">arXiv:2205.03989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.03989">pdf</a>, <a href="https://arxiv.org/format/2205.03989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1322">10.1093/mnras/stac1322 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Wide binary pulsars from electron-capture supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Willcox%2C+R">Reinhold Willcox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vigna-Gomez%2C+A">Alejandro Vigna-Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03989v1-abstract-short" style="display: inline;"> Neutron stars receive velocity kicks at birth in supernovae. Those formed in electron-capture supernovae from super asymptotic giant branch stars -- the lowest mass stars to end their lives in supernovae -- may receive significantly lower kicks than typical neutron stars. Given that many massive stars are members of wide binaries, this suggests the existence of a population of low-mass (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03989v1-abstract-full').style.display = 'inline'; document.getElementById('2205.03989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03989v1-abstract-full" style="display: none;"> Neutron stars receive velocity kicks at birth in supernovae. Those formed in electron-capture supernovae from super asymptotic giant branch stars -- the lowest mass stars to end their lives in supernovae -- may receive significantly lower kicks than typical neutron stars. Given that many massive stars are members of wide binaries, this suggests the existence of a population of low-mass ($1.25 &lt; M_\mathrm{psr} / $M$_\odot &lt; 1.3$), wide ($P_\mathrm{orb} \gtrsim 10^{4}$\,day), eccentric ($e \sim 0.7$), unrecycled ($P_\mathrm{spin} \sim 1$\,s) binary pulsars. The formation rate of such binaries is sensitive to the mass range of (effectively) single stars leading to electron capture supernovae, the amount of mass lost prior to the supernova, and the magnitude of any natal kick imparted on the neutron star. We estimate that one such binary pulsar should be observable in the Milky Way for every 10,000 isolated pulsars, assuming that the width of the mass range of single stars leading to electron-capture supernovae is $\lesssim 0.2$\,M$_\odot$, and that neutron stars formed in electron-capture supernovae receive typical kicks less than 10\,km s$^{-1}$. We have searched the catalog of observed binary pulsars, but find no convincing candidates that could be formed through this channel, consistent with this low predicted rate. Future observations with the Square Kilometre Array may detect this rare sub-class of binary pulsar and provide strong constraints on the properties of electron-capture supernovae and their progenitors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03989v1-abstract-full').style.display = 'none'; document.getElementById('2205.03989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to MNRAS. 7 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01693">arXiv:2205.01693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01693">pdf</a>, <a href="https://arxiv.org/format/2205.01693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8879">10.3847/1538-4357/ac8879 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of mass ratio reversal in gravitational waves from merging binary black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thrane%2C+E">Eric Thrane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01693v1-abstract-short" style="display: inline;"> The spins of merging binary black holes offer insights into their formation history. Recently it has been argued that in isolated binary evolution of two massive stars the firstborn black hole is slowly rotating, whilst the progenitor of the second-born black hole can be tidally spun up if the binary is tight enough. Naively, one might therefore expect that only the less massive black hole in merg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01693v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01693v1-abstract-full" style="display: none;"> The spins of merging binary black holes offer insights into their formation history. Recently it has been argued that in isolated binary evolution of two massive stars the firstborn black hole is slowly rotating, whilst the progenitor of the second-born black hole can be tidally spun up if the binary is tight enough. Naively, one might therefore expect that only the less massive black hole in merging binaries exhibits non-negligible spin. However, if the mass ratio of the binary is &#34;reversed&#34; (typically during the first mass transfer episode), it is possible for the tidally spun up second-born to become the more massive black hole. We study the properties of such mass-ratio reversed (MRR) binary black hole mergers using a large set of 560 population synthesis models. We find that the more massive black hole is formed second in $\gtrsim 70\%$ of binary black holes observable by LIGO, Virgo, and KAGRA for most model variations we consider, with typical total masses $\gtrsim 20$ M$_{\odot}$ and mass ratios $q = m_2 / m_1 \sim 0.7$ (where $m_1 &gt; m_2$). The formation history of these systems typically involves only stable mass transfer episodes. The second-born black hole has non-negligible spin ($蠂&gt; 0.05$) in up to $25\%$ of binary black holes, with among those the more (less) massive black hole spinning in $0\%$--$80\%$ ($20\%$--$100\%$) of cases, varying greatly in our models. We discuss our models in the context of several observed gravitational-wave events and the observed mass ratio - effective spin correlation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01693v1-abstract-full').style.display = 'none'; document.getElementById('2205.01693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">All code and data publicly available at https://github.com/FloorBroekgaarden/MRR_Project</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.05850">arXiv:2203.05850</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.05850">pdf</a>, <a href="https://arxiv.org/format/2203.05850">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1283">10.1093/mnras/stac1283 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling the formation of the first two neutron star-black hole mergers, GW200105 and GW200115: metallicity, chirp masses and merger remnant spins </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chattopadhyay%2C+D">Debatri Chattopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antonini%2C+F">Fabio Antonini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belczynski%2C+K">Krzysztof Belczynski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.05850v2-abstract-short" style="display: inline;"> The two neutron star-black hole mergers (GW200105 and GW200115) observed in gravitational waves by advanced LIGO and Virgo, mark the first ever discovery of such binaries in nature. We study these two neutron star-black hole systems through isolated binary evolution, using a grid of population synthesis models. Using both mass and spin observations (chirp mass, effective spin and remnant spin) of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05850v2-abstract-full').style.display = 'inline'; document.getElementById('2203.05850v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.05850v2-abstract-full" style="display: none;"> The two neutron star-black hole mergers (GW200105 and GW200115) observed in gravitational waves by advanced LIGO and Virgo, mark the first ever discovery of such binaries in nature. We study these two neutron star-black hole systems through isolated binary evolution, using a grid of population synthesis models. Using both mass and spin observations (chirp mass, effective spin and remnant spin) of the binaries, we probe their different possible formation channels in different metallicity environments. Our models only support LIGO data when assuming the black hole is non spinning. Our results show a strong preference that GW200105 and GW200115 formed from stars with sub-solar metallicities $Z\lesssim 0.005$. Only two metal-rich ($Z=0.02$) models are in agreement with GW200115. We also find that chirp mass and remnant spins jointly aid in constraining the models, whilst the effective spin parameter does not add any further information. We also present the observable (i.e. post selection effects) median values of spin and mass distribution from all our models, which maybe used as a reference for future mergers. Further, we show that the remnant spin parameter distribution exhibits distinguishable features in different neutron star-black hole sub-populations. We find that non-spinning, first born black holes dominate significantly the merging neutron star-black hole population, ensuring electromagnetic counterparts to such mergers a rare affair. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.05850v2-abstract-full').style.display = 'none'; document.getElementById('2203.05850v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted (MNRAS), comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Volume 513, Issue 4, Pages 5780--5789 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, July 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05763">arXiv:2112.05763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05763">pdf</a>, <a href="https://arxiv.org/format/2112.05763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac1677">10.1093/mnras/stac1677 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of Massive Binary Star and Cosmic Evolution on Gravitational Wave Observations II: Double Compact Object Rates and Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">Stephen Justham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chru%C5%9Bli%C5%84ska%2C+M">Martyna Chru艣li艅ska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Son%2C+L+A+C">Lieke A. C. van Son</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+T">Tom Wagg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vigna-G%C3%B3mez%2C+A">Alejandro Vigna-G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">Selma E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chattopadhyay%2C+D">Debatri Chattopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neijssel%2C+C+J">Coenraad J. Neijssel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05763v2-abstract-short" style="display: inline;"> Making the most of the rapidly increasing population of gravitational-wave detections of black hole (BH) and neutron star (NS) mergers requires comparing observations with population synthesis predictions. In this work we investigate the combined impact from the key uncertainties in population synthesis modelling of the isolated binary evolution channel: the physical processes in massive binary-st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05763v2-abstract-full').style.display = 'inline'; document.getElementById('2112.05763v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05763v2-abstract-full" style="display: none;"> Making the most of the rapidly increasing population of gravitational-wave detections of black hole (BH) and neutron star (NS) mergers requires comparing observations with population synthesis predictions. In this work we investigate the combined impact from the key uncertainties in population synthesis modelling of the isolated binary evolution channel: the physical processes in massive binary-star evolution and the star formation history as a function of metallicity, $Z$, and redshift $z, \mathcal{S}(Z,z)$. Considering these uncertainties we create 560 different publicly available model realizations and calculate the rate and distribution characteristics of detectable BHBH, BHNS, and NSNS mergers. We find that our stellar evolution and $\mathcal{S}(Z,z)$ variations can impact the predicted intrinsic and detectable merger rates by factors $10^2$-$10^4$. We find that BHBH rates are dominantly impacted by $\mathcal{S}(Z,z)$ variations, NSNS rates by stellar evolution variations and BHNS rates by both. We then consider the combined impact from all uncertainties considered in this work on the detectable mass distribution shapes (chirp mass, individual masses and mass ratio). We find that the BHNS mass distributions are predominantly impacted by massive binary-star evolution changes. For BHBH and NSNS we find that both uncertainties are important. We also find that the shape of the delay time and birth metallicity distributions are typically dominated by the choice of $\mathcal{S}(Z,z)$ for BHBH, BHNS and NSNS. We identify several examples of robust features in the mass distributions predicted by all 560 models, such that we expect more than 95% of BHBH detections to contain a BH $\gtrsim 8\,\rm{M}_{\odot}$ and have mass ratios $\lesssim 4$. Our work demonstrates that it is essential to consider a wide range of allowed models to study double compact object merger rates and properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05763v2-abstract-full').style.display = 'none'; document.getElementById('2112.05763v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages of which 12 are (rainbow) figures. Main results: Fig 2, 4, 5 and 6. Code/results publicly available at https://github.com/FloorBroekgaarden/Double-Compact-Object-Mergers. Comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.13704">arXiv:2111.13704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.13704">pdf</a>, <a href="https://arxiv.org/format/2111.13704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8675">10.3847/1538-4357/ac8675 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gravitational wave sources in our Galactic backyard: Predictions for BHBH, BHNS and NSNS binaries detectable with LISA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+T">Tom Wagg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">Selma E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Son%2C+L+A+C">Lieke A. C. van Son</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frankel%2C+N">Neige Frankel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">Stephen Justham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.13704v1-abstract-short" style="display: inline;"> Future searches for gravitational waves from space will be sensitive to double compact objects (DCOs) in our Milky Way. We present new simulations of the populations of double black holes (BHBHs), black hole neutron stars (BHNSs) and double neutron stars (NSNSs) that will be detectable by the planned space-based gravitational wave detector LISA. For our estimates, we use an empirically-informed mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13704v1-abstract-full').style.display = 'inline'; document.getElementById('2111.13704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.13704v1-abstract-full" style="display: none;"> Future searches for gravitational waves from space will be sensitive to double compact objects (DCOs) in our Milky Way. We present new simulations of the populations of double black holes (BHBHs), black hole neutron stars (BHNSs) and double neutron stars (NSNSs) that will be detectable by the planned space-based gravitational wave detector LISA. For our estimates, we use an empirically-informed model of the metallicity dependent star formation history of the Milky Way. We populate it using an extensive suite of binary population-synthesis predictions for varying assumptions relating to mass transfer, common-envelope, supernova kicks, remnant masses and wind mass loss physics. For a 4(10)-year LISA mission, we predict between 30-370(50-550) detections over these variations, out of which 6-154(9-238) are BHBHs, 2-198(3-289) are BHNSs and 3-35(4-57) are NSNSs. We discuss how the variations in the physics assumptions alter the distribution of properties of the detectable systems, even when the detection rates are unchanged. In particular we discuss the observable characteristics such as the chirp mass, eccentricity and sky localisation and how the BHBH, BHNS and NSNS populations can be distinguished, both from each other and from the more numerous double white dwarf population. We further discuss the possibility of multi-messenger observations of pulsar populations with the Square Kilometre Array (SKA) and assess the benefits of extending the LISA mission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.13704v1-abstract-full').style.display = 'none'; document.getElementById('2111.13704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted. All code for reproducing results and figures is available https://github.com/TomWagg/detecting-DCOs-in-LISA. Data is available https://doi.org/10.5281/zenodo.4699712</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.14652">arXiv:2110.14652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.14652">pdf</a>, <a href="https://arxiv.org/format/2110.14652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac5589">10.3847/2041-8213/ac5589 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence from Disrupted Halo Dwarfs that $r$-process Enrichment via Neutron Star Mergers is Delayed by $\gtrsim500$ Myrs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Naidu%2C+R+P">Rohan P. Naidu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+A+P">Alexander P. Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Conroy%2C+C">Charlie Conroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonaca%2C+A">Ana Bonaca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ting%2C+Y">Yuan-Sen Ting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zaritsky%2C+D">Dennis Zaritsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Son%2C+L+A+C">Lieke A. C. van Son</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tacchella%2C+S">Sandro Tacchella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+V">Vedant Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caldwell%2C+N">Nelson Caldwell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cargile%2C+P">Phillip Cargile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Speagle%2C+J+S">Joshua S. Speagle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.14652v1-abstract-short" style="display: inline;"> The astrophysical origins of $r$-process elements remain elusive. Neutron star mergers (NSMs) and special classes of core-collapse supernovae (rCCSNe) are leading candidates. Due to these channels&#39; distinct characteristic timescales (rCCSNe: prompt, NSMs: delayed), measuring $r$-process enrichment in galaxies of similar mass, but differing star-formation durations might prove informative. Two rece&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14652v1-abstract-full').style.display = 'inline'; document.getElementById('2110.14652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.14652v1-abstract-full" style="display: none;"> The astrophysical origins of $r$-process elements remain elusive. Neutron star mergers (NSMs) and special classes of core-collapse supernovae (rCCSNe) are leading candidates. Due to these channels&#39; distinct characteristic timescales (rCCSNe: prompt, NSMs: delayed), measuring $r$-process enrichment in galaxies of similar mass, but differing star-formation durations might prove informative. Two recently discovered disrupted dwarfs in the Milky Way&#39;s stellar halo, Kraken and \textit{Gaia}-Sausage Enceladus (GSE), afford precisely this opportunity: both have $M_{\star}\approx10^{8}M_{\rm{\odot}}$, but differing star-formation durations of ${\approx}2$ Gyrs and ${\approx}3.6$ Gyrs. Here we present $R\approx50,000$ Magellan/MIKE spectroscopy for 31 stars from these systems, detecting the $r$-process element Eu in all stars. Stars from both systems have similar [Mg/H]$\approx-1$, but Kraken has a median [Eu/Mg]$\approx-0.1$ while GSE has an elevated [Eu/Mg]$\approx0.2$. With simple models we argue NSM enrichment must be delayed by $500-1000$ Myrs to produce this difference. rCCSNe must also contribute, especially at early epochs, otherwise stars formed during the delay period would be Eu-free. In this picture, rCCSNe account for $\approx50\%$ of the Eu in Kraken, $\approx25\%$ in GSE, and $\approx15\%$ in dwarfs with extended star-formation durations like Sagittarius. The inferred delay time for NSM enrichment is $10-100\times$ longer than merger delay times from stellar population synthesis -- this is not necessarily surprising because the enrichment delay includes time taken for NSM ejecta to be incorporated into subsequent generations of stars. For example, this may be due to natal kicks that result in $r$-enriched material deposited far from star-forming gas, which then takes $\approx10^{8}-10^{9}$ years to cool in these galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.14652v1-abstract-full').style.display = 'none'; document.getElementById('2110.14652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJL. Figure 3 shows the key empirical result, and Figure 5 summarizes the proposed scenario. Comments very welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.01634">arXiv:2110.01634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.01634">pdf</a>, <a href="https://arxiv.org/format/2110.01634">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac64a3">10.3847/1538-4357/ac64a3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The redshift evolution of the binary black hole merger rate: a weighty matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Son%2C+L+A+C">L. A. C. van Son</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">S. E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Callister%2C+T">T. Callister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">S. Justham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Renzo%2C+M">M. Renzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+T">T. Wagg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">F. S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kummer%2C+F">F. Kummer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pakmor%2C+R">R. Pakmor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">I. Mandel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.01634v2-abstract-short" style="display: inline;"> Gravitational wave detectors are starting to reveal the redshift evolution of the binary black hole (BBH) merger rate, $R_{\mathrm{BBH}}(z)$. We make predictions for $R_{\mathrm{BBH}}(z)$ as a function of black hole mass for systems originating from isolated binaries. To this end, we investigate correlations between the delay time and black hole mass by means of the suite of binary population synt&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01634v2-abstract-full').style.display = 'inline'; document.getElementById('2110.01634v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.01634v2-abstract-full" style="display: none;"> Gravitational wave detectors are starting to reveal the redshift evolution of the binary black hole (BBH) merger rate, $R_{\mathrm{BBH}}(z)$. We make predictions for $R_{\mathrm{BBH}}(z)$ as a function of black hole mass for systems originating from isolated binaries. To this end, we investigate correlations between the delay time and black hole mass by means of the suite of binary population synthesis simulations, COMPAS. We distinguish two channels: the common envelope (CE), and the stable Roche-lobe overflow (RLOF) channel, characterised by whether the system has experienced a common envelope or not. We find that the CE channel preferentially produces BHs with masses below about $30\rm{M}_{\odot}$ and short delay times ($t_{\rm delay} \lesssim 1$Gyr), while the stable RLOF channel primarily forms systems with BH masses above $30\rm{M}_{\odot}$ and long delay times ($t_{\rm delay} \gtrsim 1$Gyr). We provide a new fit for the metallicity specific star-formation rate density based on the Illustris TNG simulations, and use this to convert the delay time distributions into a prediction of $R_{\mathrm{BBH}}(z)$. This leads to a distinct redshift evolution of $R_{\mathrm{BBH}}(z)$ for high and low primary BH masses. We furthermore find that, at high redshift, $R_{\mathrm{BBH}}(z)$ is dominated by the CE channel, while at low redshift it contains a large contribution ($\sim 40\%$) from the stable RLOF channel. Our results predict that, for increasing redshifts, BBHs with component masses above $30\rm{M}_{\odot}$ will become increasingly scarce relative to less massive BBH systems. Evidence of this distinct evolution of $R_{\mathrm{BBH}}(z)$ for different BH masses can be tested with future detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.01634v2-abstract-full').style.display = 'none'; document.getElementById('2110.01634v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages + appendices, data is available at https://doi.org/10.5281/zenodo.5544170</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 931, (2022) 17 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10352">arXiv:2109.10352</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10352">pdf</a>, <a href="https://arxiv.org/format/2109.10352">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ac416c">10.3847/1538-4365/ac416c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rapid stellar and binary population synthesis with COMPAS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=COMPAS%2C+T">Team COMPAS</a>, <a href="/search/astro-ph?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riley%2C+J">Jeff Riley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agrawal%2C+P">Poojan Agrawal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrett%2C+J+W">Jim W. Barrett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boyett%2C+K+N+K">Kristan N. K. Boyett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chattopadhyay%2C+D">Debatri Chattopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaebel%2C+S+M">Sebastian M. Gaebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gittins%2C+F">Fabian Gittins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+R">Ryosuke Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Howitt%2C+G">George Howitt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">Stephen Justham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khandelwal%2C+L">Lokesh Khandelwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kummer%2C+F">Floris Kummer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lau%2C+M+Y+M">Mike Y. M. Lau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">Selma E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neijssel%2C+C">Coenraad Neijssel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riley%2C+T">Tim Riley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Son%2C+L">Lieke van Son</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vigna-Gomez%2C+A">Alejandro Vigna-Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vinciguerra%2C+S">Serena Vinciguerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wagg%2C+T">Tom Wagg</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10352v3-abstract-short" style="display: inline;"> Compact Object Mergers: Population Astrophysics and Statistics (COMPAS; https://compas.science) is a public rapid binary population synthesis code. COMPAS generates populations of isolated stellar binaries under a set of parametrized assumptions in order to allow comparisons against observational data sets, such as those coming from gravitational-wave observations of merging compact remnants. It i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10352v3-abstract-full').style.display = 'inline'; document.getElementById('2109.10352v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10352v3-abstract-full" style="display: none;"> Compact Object Mergers: Population Astrophysics and Statistics (COMPAS; https://compas.science) is a public rapid binary population synthesis code. COMPAS generates populations of isolated stellar binaries under a set of parametrized assumptions in order to allow comparisons against observational data sets, such as those coming from gravitational-wave observations of merging compact remnants. It includes a number of tools for population processing in addition to the core binary evolution components. COMPAS is publicly available via the github repository https://github.com/TeamCOMPAS/COMPAS/, and is designed to allow for flexible modifications as evolutionary models improve. This paper describes the methodology and implementation of COMPAS. It is a living document which will be updated as new features are added to COMPAS; the current document describes COMPAS v02.21.00. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10352v3-abstract-full').style.display = 'none'; document.getElementById('2109.10352v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Code publicly available via https://compas.science . Minor updates to match version accepted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.05763">arXiv:2108.05763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.05763">pdf</a>, <a href="https://arxiv.org/format/2108.05763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac2832">10.3847/2041-8213/ac2832 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation of the First Two Black Hole-Neutron Star Mergers (GW200115 and GW200105) from Isolated Binary Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.05763v2-abstract-short" style="display: inline;"> In this work we study the formation of the first two black hole-neutron star (BHNS) mergers detected in gravitational waves (GW200115 and GW200105) from massive stars in wide isolated binary systems - the isolated binary evolution channel. We use 560 BHNS binary population synthesis model realizations from Broekgaarden et al. (2021a) and show that the system properties (chirp mass, component masse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05763v2-abstract-full').style.display = 'inline'; document.getElementById('2108.05763v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.05763v2-abstract-full" style="display: none;"> In this work we study the formation of the first two black hole-neutron star (BHNS) mergers detected in gravitational waves (GW200115 and GW200105) from massive stars in wide isolated binary systems - the isolated binary evolution channel. We use 560 BHNS binary population synthesis model realizations from Broekgaarden et al. (2021a) and show that the system properties (chirp mass, component masses and mass ratios) of both GW200115 and GW200105 match predictions from the isolated binary evolution channel. We also show that most model realizations can account for the local BHNS merger rate densities inferred by LIGO-Virgo. However, to simultaneously also match the inferred local merger rate densities for BHBH and NSNS systems we find we need models with moderate kick velocities ($蟽\lesssim 10^2\,\rm{km}\,\rm{s}^{-1}$) or high common-envelope efficiencies ($伪_{\rm{CE}}\gtrsim 2$) within our model explorations. We conclude that the first two observed BHNS mergers can be explained from the isolated binary evolution channel for reasonable model realizations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.05763v2-abstract-full').style.display = 'none'; document.getElementById('2108.05763v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ Letters, all code and data is publicly available at: https://github.com/FloorBroekgaarden/NSBH_GW200105_and_GW200115</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.14239">arXiv:2107.14239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.14239">pdf</a>, <a href="https://arxiv.org/format/2107.14239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s41114-021-00034-3">10.1007/s41114-021-00034-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rates of Compact Object Coalescences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.14239v5-abstract-short" style="display: inline;"> Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects -- neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14239v5-abstract-full').style.display = 'inline'; document.getElementById('2107.14239v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.14239v5-abstract-full" style="display: none;"> Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects -- neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.14239v5-abstract-full').style.display = 'none'; document.getElementById('2107.14239v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited review article for Living Reviews in Relativity. Updates relative to published version based on recent observations and models. The authors very much welcome further suggestions. All code and data are publicly available via https://zenodo.org/record/7017532 (version 7)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Living Reviews in Relativity 25, 1 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.01552">arXiv:2106.01552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.01552">pdf</a>, <a href="https://arxiv.org/format/2106.01552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> Uncertainty Quantification of a Computer Model for Binary Black Hole Formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+L">Luyao Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bingham%2C+D">Derek Bingham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.01552v1-abstract-short" style="display: inline;"> In this paper, a fast and parallelizable method based on Gaussian Processes (GPs) is introduced to emulate computer models that simulate the formation of binary black holes (BBHs) through the evolution of pairs of massive stars. Two obstacles that arise in this application are the a priori unknown conditions of BBH formation and the large scale of the simulation data. We address them by proposing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01552v1-abstract-full').style.display = 'inline'; document.getElementById('2106.01552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.01552v1-abstract-full" style="display: none;"> In this paper, a fast and parallelizable method based on Gaussian Processes (GPs) is introduced to emulate computer models that simulate the formation of binary black holes (BBHs) through the evolution of pairs of massive stars. Two obstacles that arise in this application are the a priori unknown conditions of BBH formation and the large scale of the simulation data. We address them by proposing a local emulator which combines a GP classifier and a GP regression model. The resulting emulator can also be utilized in planning future computer simulations through a proposed criterion for sequential design. By propagating uncertainties of simulation input through the emulator, we are able to obtain the distribution of BBH properties under the distribution of physical parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.01552v1-abstract-full').style.display = 'none'; document.getElementById('2106.01552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10870">arXiv:2104.10870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10870">pdf</a>, <a href="https://arxiv.org/format/2104.10870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1160">10.1093/mnras/stab1160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Population synthesis of accreting white dwarfs: Rates and evolutionary pathways of H and He novae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kemp%2C+A+J">Alex J. Kemp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karakas%2C+A+I">Amanda I. Karakas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casey%2C+A+R">Andrew R. Casey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzard%2C+R+G">Robert G. Izzard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruiter%2C+A+J">Ashley J. Ruiter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agrawal%2C+P">Poojan Agrawal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Temmink%2C+K+D">Karel D. Temmink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10870v4-abstract-short" style="display: inline;"> Novae are some of the most commonly detected optical transients and have the potential to provide valuable information about binary evolution. Binary population synthesis codes have emerged as the most effective tool for modelling populations of binary systems, but such codes have traditionally employed greatly simplified nova physics, precluding detailed study. In this work, we implement a model&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10870v4-abstract-full').style.display = 'inline'; document.getElementById('2104.10870v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10870v4-abstract-full" style="display: none;"> Novae are some of the most commonly detected optical transients and have the potential to provide valuable information about binary evolution. Binary population synthesis codes have emerged as the most effective tool for modelling populations of binary systems, but such codes have traditionally employed greatly simplified nova physics, precluding detailed study. In this work, we implement a model treating H and He novae as individual events into the binary population synthesis code \binaryc. This treatment of novae represents a significant improvement on the `averaging&#39; treatment currently employed in modern population synthesis codes. We discuss the evolutionary pathways leading to these phenomena and present nova event rates and distributions of several important physical parameters. Most novae are produced on massive white dwarfs, with approximately 70 and 55 per cent of nova events occurring on O/Ne white dwarfs for H and He novae respectively. Only 15 per cent of H-nova systems undergo a common-envelope phase, but these systems are responsible for the majority of H nova events. All He-accreting He-nova systems are considered post-common-envelope systems, and almost all will merge with their donor star in a gravitational-wave driven inspiral. We estimate the current annual rate of novae in M31 (Andromeda) to be approximately $41 \pm 4$ for H novae, underpredicting the current observational estimate of $65^{+15}_{-16}$, and $0.14\pm0.015$ for He novae. When varying common-envelope parameters, the H nova rate varies between 20 and 80 events per year. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10870v4-abstract-full').style.display = 'none'; document.getElementById('2104.10870v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted, MNRAS. 7 Jun 2020: Minor correction regarding AM CVn masses at period bounce, courtesy of P. Neuteufel</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.02070">arXiv:2104.02070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.02070">pdf</a>, <a href="https://arxiv.org/format/2104.02070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac504a">10.3847/2041-8213/ac504a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for X-ray Emission in Excess to the Jet Afterglow Decay 3.5 yrs After the Binary Neutron Star Merger GW 170817: A New Emission Component </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hajela%2C+A">A. Hajela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">R. Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+J+S">J. S. Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexander%2C+K+D">K. D. Alexander</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nedora%2C+V">V. Nedora</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kathirgamaraju%2C+A">A. Kathirgamaraju</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margalit%2C+B">B. Margalit</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radice%2C+D">D. Radice</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guidorzi%2C+C">C. Guidorzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">E. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacFadyen%2C+A">A. MacFadyen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannios%2C+D">D. Giannios</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">R. Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sironi%2C+L">L. Sironi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gottlieb%2C+O">O. Gottlieb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coppejans%2C+D">D. Coppejans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laskar%2C+T">T. Laskar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cendes%2C+Y">Y. Cendes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duran%2C+R+B">R. Barniol Duran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eftekhari%2C+T">T. Eftekhari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McDowell%2C+A">A. McDowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">M. Nicholl</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.02070v2-abstract-short" style="display: inline;"> For the first $\sim3$ years after the binary neutron star merger event GW 170817 the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium with n $&lt; 0.01\,\rm{cm^{-3}}$. We report on observational evidence for an excess of X-ray emission at $未t&gt;900$ days after the merger. With&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02070v2-abstract-full').style.display = 'inline'; document.getElementById('2104.02070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.02070v2-abstract-full" style="display: none;"> For the first $\sim3$ years after the binary neutron star merger event GW 170817 the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium with n $&lt; 0.01\,\rm{cm^{-3}}$. We report on observational evidence for an excess of X-ray emission at $未t&gt;900$ days after the merger. With $L_x\approx5\times 10^{38}\,\rm{erg\,s^{-1}}$ at 1234 days, the recently detected X-ray emission represents a $\ge 3.2\,蟽$ (Gaussian equivalent) deviation from the universal post jet-break model that best fits the multi-wavelength afterglow at earlier times. In the context of JetFit afterglow models, current data represent a departure with statistical significance $\ge 3.1\,蟽$, depending on the fireball collimation, with the most realistic models showing excesses at the level of $\ge 3.7\,蟽$. A lack of detectable 3 GHz radio emission suggests a harder broad-band spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e. a kilonova afterglow. In this context, we present a set of ab-initio numerical-relativity BNS merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.02070v2-abstract-full').style.display = 'none'; document.getElementById('2104.02070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 13 figures, Accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.02608">arXiv:2103.02608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.02608">pdf</a>, <a href="https://arxiv.org/format/2103.02608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2716">10.1093/mnras/stab2716 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of Massive Binary Star and Cosmic Evolution on Gravitational Wave Observations I: Black Hole-Neutron Star Mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neijssel%2C+C+J">Coenraad J. Neijssel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vigna-G%C3%B3mez%2C+A">Alejandro Vigna-G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chattopadhyay%2C+D">Debatri Chattopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chruslinska%2C+M">Martyna Chruslinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">Stephen Justham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">Selma E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.02608v3-abstract-short" style="display: inline;"> Mergers of black hole-neutron star (BHNS) binaries have now been observed by GW detectors with the recent announcement of GW200105 and GW200115. Such observations not only provide confirmation that these systems exist, but will also give unique insights into the death of massive stars, the evolution of binary systems and their possible association with gamma-ray bursts, $r$-process enrichment and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02608v3-abstract-full').style.display = 'inline'; document.getElementById('2103.02608v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.02608v3-abstract-full" style="display: none;"> Mergers of black hole-neutron star (BHNS) binaries have now been observed by GW detectors with the recent announcement of GW200105 and GW200115. Such observations not only provide confirmation that these systems exist, but will also give unique insights into the death of massive stars, the evolution of binary systems and their possible association with gamma-ray bursts, $r$-process enrichment and kilonovae. Here we perform binary population synthesis of isolated BHNS systems in order to present their merger rate and characteristics for ground-based GW observatories. We present the results for 420 different model permutations that explore key uncertainties in our assumptions about massive binary star evolution (e.g. mass transfer, common-envelope evolution, supernovae), and the metallicity-specific star formation rate density, and characterize their relative impacts on our predictions. We find intrinsic local BHNS merger rates spanning $\mathcal{R}_{\rm{m}}^0 \approx 4$-$830\,\rm{Gpc}^{-3}\,\rm{yr}^{-1}$ for our full range of assumptions. This encompasses the rate inferred from recent BHNS GW detections, and would yield detection rates of $\mathcal{R}_{\rm{det}} \approx 1$-$180\, \rm{yr}^{-1}$ for a GW network consisting of LIGO, Virgo and KAGRA at design sensitivity. We find that the binary evolution and metallicity-specific star formation rate density each impact the predicted merger rates by order $\mathcal{O}(10)$. We also present predictions for the GW detected BHNS merger properties and find that all 420 model variations predict that $\lesssim 5\%$ of the BHNS mergers have BH masses $\gtrsim 18\,M_{\odot}$, total masses $ \gtrsim 20\,M_{\odot}$, chirp masses $\gtrsim 5.5\,M_{\odot}$, mass ratios $ \gtrsim 12$ or $\lesssim 2$. Moreover, we find that massive NSs $\gtrsim 2\,M_{\odot}$ are expected to be commonly detected in BHNS mergers in almost all our model variations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.02608v3-abstract-full').style.display = 'none'; document.getElementById('2103.02608v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 18 figures, accepted to MNRAS. The authors welcome suggestions and feedback. All data and code to reproduce the results in this paper are publicly available</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13503">arXiv:2011.13503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13503">pdf</a>, <a href="https://arxiv.org/format/2011.13503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab973">10.1093/mnras/stab973 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modelling Neutron Star-Black Hole Binaries: Future Pulsar Surveys and Gravitational Wave Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chattopadhyay%2C+D">Debatri Chattopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hurley%2C+J+R">Jarrod R. Hurley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bailes%2C+M">Matthew Bailes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13503v2-abstract-short" style="display: inline;"> Binaries comprised of a neutron star (NS) and a black hole (BH) have so far eluded observations as pulsars and with gravitational waves (GWs). We model the formation and evolution of these NS+BH binaries - including pulsar evolution - using the binary population synthesis code COMPAS. We predict the presence of a total of 50-2000 binaries containing a pulsar and a BH (PSR+BHs) in the Galactic fiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13503v2-abstract-full').style.display = 'inline'; document.getElementById('2011.13503v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13503v2-abstract-full" style="display: none;"> Binaries comprised of a neutron star (NS) and a black hole (BH) have so far eluded observations as pulsars and with gravitational waves (GWs). We model the formation and evolution of these NS+BH binaries - including pulsar evolution - using the binary population synthesis code COMPAS. We predict the presence of a total of 50-2000 binaries containing a pulsar and a BH (PSR+BHs) in the Galactic field. We find the population observable by the next generation of radio telescopes, represented by the SKA and MeerKAT, current (LIGO/Virgo) and future (LISA) GW detectors. We conclude that the SKA will observe 1-80 PSR+BHs, with 0-4 binaries containing millisecond pulsars. MeerKAT is expected to observe 0-40 PSR+BH systems. Future radio detections of NS+BHs will constrain uncertain binary evolution processes such as BH natal kicks. We show that systems in which the NS formed first (NSBH) can be distinguished from those where the BH formed first (BHNS) by their pulsar and binary properties. We find 40% of the LIGO/Virgo observed NS+BHs from a Milky-Way like field population will have a chirp mass $\geq 3.0$ M$_\odot$. We estimate the spin distributions of NS+BHs with two models for the spins of BHs. The remnants of BHNS mergers will have a spin of $\sim$0.4, whilst NSBH merger remnants can have a spin of $\sim$0.6 or $\sim$0.9 depending on the model for BH spins. We estimate that approximately 25-1400 PSR+BHs will be radio alive whilst emitting GWs in the LISA frequency band, raising the possibility of joint observation by the SKA and LISA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13503v2-abstract-full').style.display = 'none'; document.getElementById('2011.13503v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, accepted for publication in MNRAS COMPAS data available https://zenodo.org/record/4659385#.YH0iypMzau4</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.05187">arXiv:2004.05187</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.05187">pdf</a>, <a href="https://arxiv.org/format/2004.05187">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab9809">10.3847/1538-4357/ab9809 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polluting the pair-instability mass gap for binary black holes through super-Eddington accretion in isolated binaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Son%2C+L+A+C">L. A. C. van Son</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">S. E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">F. S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Renzo%2C+M">M. Renzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">S. Justham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laplace%2C+E">E. Laplace</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moran-Fraile%2C+J">J. Moran-Fraile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hendriks%2C+D+D">D. D. Hendriks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farmer%2C+R">R. Farmer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.05187v2-abstract-short" style="display: inline;"> The theory for single stellar evolution predicts a gap in the mass distribution of black holes (BHs) between approximately 45-130M$_{\odot}$, the so-called &#34;pair-instability mass gap&#34;. We examine whether BHs can pollute the gap after accreting from a stellar companion. To this end, we simulate the evolution of isolated binaries using a population synthesis code, where we allow for super-Eddington&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05187v2-abstract-full').style.display = 'inline'; document.getElementById('2004.05187v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.05187v2-abstract-full" style="display: none;"> The theory for single stellar evolution predicts a gap in the mass distribution of black holes (BHs) between approximately 45-130M$_{\odot}$, the so-called &#34;pair-instability mass gap&#34;. We examine whether BHs can pollute the gap after accreting from a stellar companion. To this end, we simulate the evolution of isolated binaries using a population synthesis code, where we allow for super-Eddington accretion. Under our most extreme assumptions, we find that at most about 2% of all merging binary BH systems contains a BH with a mass in the pair-instability mass gap, and we find that less than 0.5% of the merging systems has a total mass larger than 90M$_{\odot}$. We find no merging binary BH systems with a total mass exceeding 100M$_{\odot}$. We compare our results to predictions from several dynamical pathways to pair-instability mass gap events and discuss the distinguishable features. We conclude that the classical isolated binary formation scenario will not significantly contribute to the pollution of the pair-instability mass gap. The robustness of the predicted mass gap for the isolated binary channel is promising for the prospective of placing constraints on (i) the relative contribution of different formation channels, (ii) the physics of the progenitors including nuclear reaction rates, and (iii), tentatively, the Hubble parameter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05187v2-abstract-full').style.display = 'none'; document.getElementById('2004.05187v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 Figures, to be published in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09829">arXiv:2001.09829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.09829">pdf</a>, <a href="https://arxiv.org/format/2001.09829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2020.31">10.1017/pasa.2020.31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Common-Envelope Episodes that lead to Double Neutron Star formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vigna-G%C3%B3mez%2C+A">Alejandro Vigna-G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacLeod%2C+M">Morgan MacLeod</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neijssel%2C+C+J">Coenraad J. Neijssel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">Stephen Justham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Howitt%2C+G">George Howitt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">Selma E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vinciguerra%2C+S">Serena Vinciguerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09829v3-abstract-short" style="display: inline;"> Close double neutron stars have been observed as Galactic radio pulsars, while their mergers have been detected as gamma-ray bursts and gravitational-wave sources. They are believed to have experienced at least one common-envelope episode during their evolution prior to double neutron star formation. In the last decades there have been numerous efforts to understand the details of the common-envel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09829v3-abstract-full').style.display = 'inline'; document.getElementById('2001.09829v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09829v3-abstract-full" style="display: none;"> Close double neutron stars have been observed as Galactic radio pulsars, while their mergers have been detected as gamma-ray bursts and gravitational-wave sources. They are believed to have experienced at least one common-envelope episode during their evolution prior to double neutron star formation. In the last decades there have been numerous efforts to understand the details of the common-envelope phase, but its computational modelling remains challenging. We present and discuss the properties of the donor and the binary at the onset of the Roche-lobe overflow leading to these common-envelope episodes as predicted by rapid binary population synthesis models. These properties can be used as initial conditions for detailed simulations of the common-envelope phase. There are three distinctive populations, classified by the evolutionary stage of the donor at the moment of the onset of the Roche-lobe overflow: giant donors with fully-convective envelopes, cool donors with partially-convective envelopes, and hot donors with radiative envelopes. We also estimate that, for standard assumptions, tides would not circularise a large fraction of these systems by the onset of Roche-lobe overflow. This makes the study and understanding of eccentric mass-transferring systems relevant for double neutron star populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09829v3-abstract-full').style.display = 'none'; document.getElementById('2001.09829v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 10 figures. Includes bug fix. Two new figures and an appendix added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.08136">arXiv:1906.08136</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.08136">pdf</a>, <a href="https://arxiv.org/format/1906.08136">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2840">10.1093/mnras/stz2840 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of the metallicity-specific star formation history on double compact object mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Neijssel%2C+C+J">Coenraad J. Neijssel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vigna-G%C3%B3mez%2C+A">Alejandro Vigna-G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrett%2C+J+W">Jim W. Barrett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaebel%2C+S+M">Sebastian M. Gaebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F">Floor Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">Selma E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sz%C3%A9csi%2C+D">Dorottya Sz茅csi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vinciguerra%2C+S">Serena Vinciguerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.08136v1-abstract-short" style="display: inline;"> We investigate the impact of uncertainty in the metallicity-specific star formation rate over cosmic time on predictions of the rates and masses of double compact object mergers observable through gravitational waves. We find that this uncertainty can change the predicted detectable merger rate by more than an order of magnitude, comparable to contributions from uncertain physical assumptions rega&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08136v1-abstract-full').style.display = 'inline'; document.getElementById('1906.08136v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.08136v1-abstract-full" style="display: none;"> We investigate the impact of uncertainty in the metallicity-specific star formation rate over cosmic time on predictions of the rates and masses of double compact object mergers observable through gravitational waves. We find that this uncertainty can change the predicted detectable merger rate by more than an order of magnitude, comparable to contributions from uncertain physical assumptions regarding binary evolution, such as mass transfer efficiency or supernova kicks. We statistically compare the results produced by the COMPAS population synthesis suite against a catalog of gravitational-wave detections from the first two Advanced LIGO and Virgo observing runs. We find that the rate and chirp mass of observed binary black hole mergers can be well matched under our default evolutionary model with a star formation metallicity spread of $0.39$ dex around a mean metallicity $\left&lt;Z\right&gt;$ that scales with redshift $z$ as $\left&lt;Z\right&gt;=0.035 \times 10^{-0.23 z}$, assuming a star formation rate of $0.01 \times (1+z)^{2.77} / (1+((1+z)/2.9)^{4.7}) \, \rm{M}_\odot$ Mpc$^{-3}$ yr$^{-1}$. Intriguingly, this default model predicts that 80\% of the approximately one binary black hole merger per day that will be detectable at design sensitivity will have formed through isolated binary evolution with only dynamically stable mass transfer, i.e., without experiencing a common-envelope event. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08136v1-abstract-full').style.display = 'none'; document.getElementById('1906.08136v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 17 figures. Data from the COMPAS simulation will be publicly available</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00910">arXiv:1905.00910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00910">pdf</a>, <a href="https://arxiv.org/format/1905.00910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2558">10.1093/mnras/stz2558 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STROOPWAFEL: Simulating rare outcomes from astrophysical populations, with application to gravitational-wave sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Broekgaarden%2C+F+S">Floor S. Broekgaarden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Justham%2C+S">Stephen Justham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Mink%2C+S+E">Selma E. de Mink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gair%2C+J">Jonathan Gair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mandel%2C+I">Ilya Mandel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevenson%2C+S">Simon Stevenson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barrett%2C+J+W">Jim W. Barrett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vigna-G%C3%B3mez%2C+A">Alejandro Vigna-G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neijssel%2C+C+J">Coenraad J. Neijssel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00910v2-abstract-short" style="display: inline;"> Gravitational-wave observations of double compact object (DCO) mergers are providing new insights into the physics of massive stars and the evolution of binary systems. Making the most of expected near-future observations for understanding stellar physics will rely on comparisons with binary population synthesis models. However, the vast majority of simulated binaries never produce DCOs, which mak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00910v2-abstract-full').style.display = 'inline'; document.getElementById('1905.00910v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00910v2-abstract-full" style="display: none;"> Gravitational-wave observations of double compact object (DCO) mergers are providing new insights into the physics of massive stars and the evolution of binary systems. Making the most of expected near-future observations for understanding stellar physics will rely on comparisons with binary population synthesis models. However, the vast majority of simulated binaries never produce DCOs, which makes calculating such populations computationally inefficient. We present an importance sampling algorithm, STROOPWAFEL, that improves the computational efficiency of population studies of rare events, by focusing the simulation around regions of the initial parameter space found to produce outputs of interest. We implement the algorithm in the binary population synthesis code COMPAS, and compare the efficiency of our implementation to the standard method of Monte Carlo sampling from the birth probability distributions. STROOPWAFEL finds $\sim$25-200 times more DCO mergers than the standard sampling method with the same simulation size, and so speeds up simulations by up to two orders of magnitude. Finding more DCO mergers automatically maps the parameter space with far higher resolution than when using the traditional sampling. This increase in efficiency also leads to a decrease of a factor $\sim$3-10 in statistical sampling uncertainty for the predictions from the simulations. This is particularly notable for the distribution functions of observable quantities such as the black hole and neutron star chirp mass distribution, including in the tails of the distribution functions where predictions using standard sampling can be dominated by sampling noise. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00910v2-abstract-full').style.display = 'none'; document.getElementById('1905.00910v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted. Data and scripts to reproduce main results is publicly available. The code for the STROOPWAFEL algorithm will be made publicly available. Early inquiries can be addressed to the lead author</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10