CINXE.COM

Search results for: group dynamics

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: group dynamics</title> <meta name="description" content="Search results for: group dynamics"> <meta name="keywords" content="group dynamics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="group dynamics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="group dynamics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10929</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: group dynamics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10929</span> The Role of Group Dynamics in Creativity: A Study Case from Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofya%20Komarova">Sofya Komarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Frashia%20Ndungu"> Frashia Ndungu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessia%20Gavazzoli"> Alessia Gavazzoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Mineo"> Roberta Mineo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20dynamics" title="group dynamics">group dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=creative%20thinking" title=" creative thinking"> creative thinking</a>, <a href="https://publications.waset.org/abstracts/search?q=creative%20action" title=" creative action"> creative action</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20interactions" title=" social interactions"> social interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20play" title=" group play"> group play</a> </p> <a href="https://publications.waset.org/abstracts/154197/the-role-of-group-dynamics-in-creativity-a-study-case-from-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10928</span> Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akarsh%20Verma">Akarsh Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Parashar"> Avinash Parashar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ReaxFF" title=" ReaxFF"> ReaxFF</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84672/effect-of-hydroxyl-functionalization-on-the-mechanical-and-fracture-behaviour-of-monolayer-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10927</span> The Development of Integrated Real-Life Video and Animation with Addie Based on Constructive for Improving Students’ Mastery Concept in Rotational Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silka%20Abyadati">Silka Abyadati</a>, <a href="https://publications.waset.org/abstracts/search?q=Dadi%20Rusdiana"> Dadi Rusdiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Enjang%20Akhmad%20Juanda"> Enjang Akhmad Juanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the students’ mastery concepts enhancement between students who are studying by using Integrated Real-Life Video and Animation (IRVA) and students who are studying without using IRVA. The development of IRVA is conducted by five stages: Analyze, Design, Development, Implementation and Evaluation (ADDIE) based on constructivist for Rotational Dynamics material in Physics learning. A constructivist model-based learning used is Interpretation Construction (ICON), which has the following phases: 1) Observation, 2) Construction interpretation, 3) Contextualization prior knowledge, 4) Conflict cognitive, 5) Learning cognitive, 6) Collaboration, 7) Multiple interpretation, 8) Multiple manifestation. The IRVA is developed for the stages of observation, cognitive conflict and cognitive learning. The sample of this study consisted of 32 students experimental group and a control group of 32 students in class XI of the school year 2015/2016 in one of Senior High Schools Bandung. The study was conducted by giving the pretest and posttest in the form of 20 items of multiple choice questions to determine the enhancement of mastery concept of Rotational Dynamics. Hypothesis testing is done by using T-test on the value of N-gain average of mastery concepts. The results showed that there is a significant difference in an enhancement of students’ mastery concepts between students who are studying by using IRVA and students who are studying without IRVA. Students in the experimental group increased by 0.468 while students in the control group increased by 0.207. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADDIE" title="ADDIE">ADDIE</a>, <a href="https://publications.waset.org/abstracts/search?q=constructivist%20learning" title=" constructivist learning"> constructivist learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Integrated%20Real-Life%20Video%20and%20Animation" title=" Integrated Real-Life Video and Animation"> Integrated Real-Life Video and Animation</a>, <a href="https://publications.waset.org/abstracts/search?q=mastery%20concepts" title=" mastery concepts"> mastery concepts</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20dynamics" title=" rotational dynamics"> rotational dynamics</a> </p> <a href="https://publications.waset.org/abstracts/56413/the-development-of-integrated-real-life-video-and-animation-with-addie-based-on-constructive-for-improving-students-mastery-concept-in-rotational-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10926</span> The Role of Human Cartilage Glycoprotein in Osteoporosis and Osteoporotic Fractures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasanzade%20Nazenin">Hasanzade Nazenin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasanova%20Naila"> Hasanova Naila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the WHO, osteoporosis is one of the most important health problems in the world and occupies the 4th place in its importance after cardiovascular pathology, oncological diseases and diabetes mellitus. The significance of osteoporosis is determined by its prevalence among the population, the severity of the course, the cause of death, disability, reduced quality of life, high economic costs for prevention and treatment. Osteoporosis is a systemic skeletal disease characterized by a decrease in bone mass and a violation of the structure of bone tissue, leading to an increase in bone fragility and the risk of fractures. Osteoporosis is manifested by low-traumatic fractures. Due to the complexity of the recovery process, the treatment of osteoporotic fractures is one of the important problems of modern traumatology. Diagnostic markers are needed to monitor the recovery period. Human cartilage glycoprotein -39, which has been studied so far in inflammatory processes in the bones, may allow the development of the correct treatment regimen, reflecting the level of metabolic processes in the bone tissue. The study was performed to examine the dynamics of human cartilage glycoprotein-39 (HCgp39) in the blood serum during osteoporosis and fracture healing. The material of the study is formed by the examination results of 68 people aged 38-83. Group I - control group consisted of 14 practically healthy people, group II - 14 patients with osteoporosis, group III - 15 patients with non-osteoporotic fractures, group IV - 25 patients with osteoporotic fractures. In groups, they were analyzed by enzyme-linked immunosorbent assay 3 times during the first month. As a result, in the first month of the recovery period, no significant difference was observed in the HCgp39 dynamics for groups II and IV (p> 0.05). However, there was a significant reduction in group III (p <0.05). As no osteoporotic changes were observed in this patient group, bone healing was rapid and it was possible to monitor the dynamics of HCgp39 changes within 1 month. Patients with osteoporosis and other bone fractures in the process of complete recovery need to study HCgp39 more as a diagnostic indicator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title="osteoporosis">osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporotic%20fractures" title=" osteoporotic fractures"> osteoporotic fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20cartilage%20glycoprotein" title=" human cartilage glycoprotein"> human cartilage glycoprotein</a>, <a href="https://publications.waset.org/abstracts/search?q=HCgp39" title=" HCgp39"> HCgp39</a> </p> <a href="https://publications.waset.org/abstracts/193565/the-role-of-human-cartilage-glycoprotein-in-osteoporosis-and-osteoporotic-fractures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10925</span> The Role of Homocysteine in Bone and Cartilage Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arif%20%C4%B0smailov">Arif İsmailov</a>, <a href="https://publications.waset.org/abstracts/search?q=Naila%20Hasanova"> Naila Hasanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunay%20Orujalieva"> Gunay Orujalieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Homocysteine (HCY) is an indicator of prognostic value in monitoring regenerative processes in osteoporosis and osteoporotic fractures. The osteoporosis is known to be a serious health and economic problem, especially for women in the postmenopausal period. The study was carried out on patients 45-83 years old divided into 3 groups: group I – 14 patients with osteoporosis , group II – 15 patients with non-osteoporotic fractures, group III – 25 patients with osteoporotic fractures. The control group consisted of practically healthy 14 people. A blood sample was taken at 3 stages to monitor the dynamics of HCY level: on the 1st day before treatment, on the 10th day of treatment and 1 month after it. Blood levels of Hcy were determined at a wavelength of 450 nm by the ELİSA(Cloud Clone Corp.Elisa kits,USA). The statistical evaluation was performed by using SPSS 26.0 program (IBM SPSS Inc., USA).The results showed that on the 1st day before the treatment HCY concentration was statistically increased 2.7 times(PU = 0.108) in group I, 5.6 times (PU <0.001) in group II and 6.5 times (PU <0.001) in group III compared to the control group. Thus, the average value of HCY in group I was 1.76 ± 0.56 μg/ml; in group II – 3.57 ± 0.62 μg/ml; in group III – 4.2 ± 0.50 μg/ml. HCY level increases more sharply after fractures,especially in osteoporotic patients. In treatment period Vitamin D plays an important role in synthesis of the Cystathionine β‐synthase enzyme, which regulates HCY metabolism. Increased Hcy levels could lead to an increase in the risk of fracture through the interference in collagen cross-linking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homocysteine" title="homocysteine">homocysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporotic%20fractures" title=" osteoporotic fractures"> osteoporotic fractures</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitamin%20D" title=" Vitamin D"> Vitamin D</a> </p> <a href="https://publications.waset.org/abstracts/182454/the-role-of-homocysteine-in-bone-and-cartilage-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10924</span> Ice Breakers: A Tool for Esl Learners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Shehzad">Nazia Shehzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An icebreaker is a facilitation exercise intended to help a group to begin the process of forming themselves into a team. Icebreakers are commonly presented as a game to ‘warm up’ the group by helping the members to get to know each other. They often focus on sharing personal information such as names, hobbies, etc. Challenging icebreakers also have the ability to allow a group to be better prepared to complete its assigned tasks. For example, if the team's objective is to redesign a business process such as Accounts Payable, the icebreaker activity might take the team through a process analysis. The analysis could include the identification of failure points, challenging assumptions, and development of new solutions — all in a simpler and ‘safer’ setting where the team can practice the group dynamics which they will use to solve the assigned problem. Icebreakers help establish a positive environment and provide an opportunity for students to get to know one another and the instructor. Both are critical to the retention and success of students. There are a number of benefits of using ice-breakers activities in the classroom. It reduces both student and instructor anxiety prior to introducing the course, fosters in a powerful way both student-student and faculty-student interactions. It creates an environment where the learner is expected to participate and the instructor is willing to listen, actively engage students from the onset. It conveys the message that the instructor cares about getting to know the students and makes it easier for students to form relationships early in the semester so they can work together both in and out of class. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actively%20engages%20students" title="actively engages students">actively engages students</a>, <a href="https://publications.waset.org/abstracts/search?q=facilitation%20exercise" title=" facilitation exercise"> facilitation exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=faculty-%20student%20interactions" title=" faculty- student interactions"> faculty- student interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20dynamics" title="group dynamics">group dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20up" title=" warm up "> warm up </a> </p> <a href="https://publications.waset.org/abstracts/32104/ice-breakers-a-tool-for-esl-learners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10923</span> Fractional Calculus into Structural Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Lopez">Jorge Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we introduce fractional calculus in order to study the dynamics of a damped multistory building with some symmetry. Initially we make a review of the dynamics of a free and damped multistory building. Then we introduce those concepts of fractional calculus that will be involved in our study. It has been noticed that fractional calculus provides models with less parameters than those based on classical calculus. In particular, a damped classical oscilator is more naturally described by using fractional derivatives. Accordingly, we model our multistory building as a set of coupled fractional oscillators and compare its dynamics with the results coming from traditional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20oscillators" title="coupled oscillators">coupled oscillators</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20oscillator" title=" fractional oscillator"> fractional oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamics" title=" structural dynamics"> structural dynamics</a> </p> <a href="https://publications.waset.org/abstracts/124822/fractional-calculus-into-structural-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10922</span> Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Ozturk">Ayse Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling process <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognition" title="cognition">cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=collective%20learning" title=" collective learning"> collective learning</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling%20competencies" title=" mathematical modeling competencies"> mathematical modeling competencies</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-solving" title=" problem-solving"> problem-solving</a> </p> <a href="https://publications.waset.org/abstracts/146619/characterization-of-group-dynamics-for-fostering-mathematical-modeling-competencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10921</span> Quadrotor in Horizontal Motion Control and Maneuverability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Oveysi%20Sarabi">Ali Oveysi Sarabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, controller design for the attitude and altitude dynamics of an outdoor quadrotor, which is constructed with low cost actuators and drivers, is aimed. Before designing the controller, the quadrotor is modeled mathematically in Matlab-Simulink environment. To control attitude dynamics, linear quadratic regulator (LQR) based controllers are designed, simulated and applied to the system. Two different proportional-integral-derivative action (PID) controllers are designed to control yaw and altitude dynamics. During the implementation of the designed controllers, different test setups are used. Designed controllers are implemented and tuned on the real system using xPC Target. Tests show that these basic control structures are successful to control the attitude and altitude dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20balance" title="helicopter balance">helicopter balance</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20dynamics" title=" flight dynamics"> flight dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20landing" title=" autonomous landing"> autonomous landing</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20robotics" title=" control robotics"> control robotics</a> </p> <a href="https://publications.waset.org/abstracts/19100/quadrotor-in-horizontal-motion-control-and-maneuverability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10920</span> A Social Decision Support Mechanism for Group Purchasing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lien-Fa%20Lin">Lien-Fa Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Ming%20Li"> Yung-Ming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu-Shun%20Hsieh"> Fu-Shun Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers&rsquo; opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20network" title="social network">social network</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20decision" title=" group decision"> group decision</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20commerce" title=" group commerce"> group commerce</a> </p> <a href="https://publications.waset.org/abstracts/46955/a-social-decision-support-mechanism-for-group-purchasing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10919</span> Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathish%20Kumar%20Jayaraj">Sathish Kumar Jayaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20flow%20factor%20%28TFF%29" title="traffic flow factor (TFF)">traffic flow factor (TFF)</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20traffic%20dynamics" title=" urban traffic dynamics"> urban traffic dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics%20principles" title=" fluid dynamics principles"> fluid dynamics principles</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20shearing%20resistance%20%28VSR%29" title=" vehicle shearing resistance (VSR)"> vehicle shearing resistance (VSR)</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20congestion%20management" title=" traffic congestion management"> traffic congestion management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20mobility" title=" sustainable urban mobility"> sustainable urban mobility</a> </p> <a href="https://publications.waset.org/abstracts/182540/urban-traffic-understanding-the-traffic-flow-factor-through-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10918</span> Computational Team Dynamics in Student New Product Development Teams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shankaran%20Sitarama">Shankaran Sitarama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Teamwork is an extremely effective pedagogical tool in engineering education. New Product Development (NPD) has been an effective strategy of companies to streamline and bring innovative products and solutions to customers. Thus, Engineering curriculum in many schools, some collaboratively with business schools, have brought NPD into the curriculum at the graduate level. Teamwork is invariably used during instruction, where students work in teams to come up with new products and solutions. There is a significant emphasis of grade on the semester long teamwork for it to be taken seriously by students. As the students work in teams and go through this process to develop the new product prototypes, their effectiveness and learning to a great extent depends on how they function as a team and go through the creative process, come together, and work towards the common goal. A core attribute of a successful NPD team is their creativity and innovation. The team needs to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas resulting in a POC (proof-of-concept) implementation or a prototype of the product. The simultaneous requirement of teams to be creative and at the same time also converge and work together imposes different types of tensions in their team interactions. These ideational tensions / conflicts and sometimes relational tensions / conflicts are inevitable. Effective teams will have to deal with the Team dynamics and manage it to be resilient enough and yet be creative. This research paper provides a computational analysis of the teams’ communication that is reflective of the team dynamics, and through a superimposition of latent semantic analysis with social network analysis, provides a computational methodology of arriving at patterns of visual interaction. These team interaction patterns have clear correlations to the team dynamics and provide insights into the functioning and thus the effectiveness of the teams. 23 student NPD teams over 2 years of a course on Managing NPD that has a blend of engineering and business school students is considered, and the results are presented. It is also correlated with the teams’ detailed and tailored individual and group feedback and self-reflection and evaluation questionnaire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=team%20dynamics" title="team dynamics">team dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=team%20interaction%20patterns" title=" team interaction patterns"> team interaction patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20product%20development%20teamwork" title=" new product development teamwork"> new product development teamwork</a>, <a href="https://publications.waset.org/abstracts/search?q=NPD%20teams" title=" NPD teams"> NPD teams</a> </p> <a href="https://publications.waset.org/abstracts/146083/computational-team-dynamics-in-student-new-product-development-teams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10917</span> Population Dynamics of Juvenile Dusky Groupers, Epinephelus Marginatus: &quot;Lowe, 1834&quot; From Two Sites in Terceira Island, Azores, Portugal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20Streltsov">Regina Streltsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Archipelago of the Azores in the NE Atlantic is a hot spot of marine biodiversity, both pelagic and demersal. Epinephelus marginatus is a solitary species commonly observed in these waters, with distinct territorial/residential behaviors from their post- larva and juvenile stages to the adult phase. Being commercially high valued species, about 13% of all groupers (Family Epinephelidae) face an increasing pressure that has produced known impacts in both the abundance and distribution of this group of fishes. Epinephelus marginatus is currently assessed by the IUCN as a vulnerable species. Dusky gropers inhabit rocky bottoms from shallow waters down to 200 m. Juveniles are usually found in shallow shoreline waters. Population dynamics of juveniles can lead to a better understanding of the competition for resources and predation and further conservation measures that must be taken upon dusky groupers. This study is carried out in rocky reefs from two sheltered bays on the south and north coast of the island in two different spots with four sampling sites in total. Using Transects individuals are counted at the peak of high tide and all abiotic factors are recorded. Our goal is to complete a statistically significant number of observations in order to detail these populations and to better understand their dynamics and dimension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azores" title="Azores">Azores</a>, <a href="https://publications.waset.org/abstracts/search?q=dusky%20groupers" title=" dusky groupers"> dusky groupers</a>, <a href="https://publications.waset.org/abstracts/search?q=Epinephelus%20marginatus" title=" Epinephelus marginatus"> Epinephelus marginatus</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20dynamics" title=" population dynamics"> population dynamics</a> </p> <a href="https://publications.waset.org/abstracts/146330/population-dynamics-of-juvenile-dusky-groupers-epinephelus-marginatus-lowe-1834-from-two-sites-in-terceira-island-azores-portugal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10916</span> Universality and Synchronization in Complex Quadratic Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anca%20Radulescu">Anca Radulescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Danae%20Evans"> Danae Evans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=canonical%20model" title="canonical model">canonical model</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20dynamics" title=" complex dynamics"> complex dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20networks" title=" dynamic networks"> dynamic networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fractals" title=" fractals"> fractals</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandelbrot%20set" title=" Mandelbrot set"> Mandelbrot set</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20connectivity" title=" network connectivity"> network connectivity</a> </p> <a href="https://publications.waset.org/abstracts/146585/universality-and-synchronization-in-complex-quadratic-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10915</span> Examining Social Connectivity through Email Network Analysis: Study of Librarians&#039; Emailing Groups in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arif%20Khan">Muhammad Arif Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haroon%20Idrees"> Haroon Idrees</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Aziz"> Imran Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidra%20Mushtaq"> Sidra Mushtaq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social platforms like online discussion and mailing groups are well aligned with academic as well as professional learning spaces. Professional communities are increasingly moving to online forums for sharing and capturing the intellectual abilities. This study investigated dynamics of social connectivity of yahoo mailing groups of Pakistani Library and Information Science (LIS) professionals using Graph Theory technique. Design/Methodology: Social Network Analysis is the increasingly concerned domain for scientists in identifying whether people grow together through online social interaction or, whether they just reflect connectivity. We have conducted a longitudinal study using Network Graph Theory technique to analyze the large data-set of email communication. The data was collected from three yahoo mailing groups using network analysis software over a period of six months i.e. January to June 2016. Findings of the network analysis were reviewed through focus group discussion with LIS experts and selected respondents of the study. Data were analyzed in Microsoft Excel and network diagrams were visualized using NodeXL and ORA-Net Scene package. Findings: Findings demonstrate that professionals and students exhibit intellectual growth the more they get tied within a network by interacting and participating in communication through online forums. The study reports on dynamics of the large network by visualizing the email correspondence among group members in a network consisting vertices (members) and edges (randomized correspondence). The model pair wise relationship between group members was illustrated to show characteristics, reasons, and strength of ties. Connectivity of nodes illustrated the frequency of communication among group members through examining node coupling, diffusion of networks, and node clustering has been demonstrated in-depth. Network analysis was found to be a useful technique in investigating the dynamics of the large network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emailing%20networks" title="emailing networks">emailing networks</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20graph%20theory" title=" network graph theory"> network graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20social%20platforms" title=" online social platforms"> online social platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=yahoo%20mailing%20groups" title=" yahoo mailing groups"> yahoo mailing groups</a> </p> <a href="https://publications.waset.org/abstracts/60149/examining-social-connectivity-through-email-network-analysis-study-of-librarians-emailing-groups-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10914</span> Spatiotemporal Propagation and Pattern of Epileptic Spike Predict Seizure Onset Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Mohammadpour">Mostafa Mohammadpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Kapeller"> Christoph Kapeller</a>, <a href="https://publications.waset.org/abstracts/search?q=Christy%20Li"> Christy Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Scharinger"> Josef Scharinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Guger"> Christoph Guger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interictal spikes provide valuable information on electrocorticography (ECoG), which aids in surgical planning for patients who suffer from refractory epilepsy. However, the shape and temporal dynamics of these spikes remain unclear. The purpose of this work was to analyze the shape of interictal spikes and measure their distance to the seizure onset zone (SOZ) to use in epilepsy surgery. Thirteen patients' data from the iEEG portal were retrospectively studied. For analysis, half an hour of ECoG data was used from each patient, with the data being truncated before the onset of a seizure. Spikes were first detected and grouped in a sequence, then clustered into interictal epileptiform discharges (IEDs) and non-IED groups using two-step clustering. The distance of the spikes from IED and non-IED groups to SOZ was quantified and compared using the Wilcoxon rank-sum test. Spikes in the IED group tended to be in SOZ or close to it, while spikes in the non-IED group were in distance of SOZ or non-SOZ area. At the group level, the distribution for sharp wave, positive baseline shift, slow wave, and slow wave to sharp wave ratio was significantly different for IED and non-IED groups. The distance of the IED cluster was 10.00mm and significantly closer to the SOZ than the 17.65mm for non-IEDs. These findings provide insights into the shape and spatiotemporal dynamics of spikes that could influence the network mechanisms underlying refractory epilepsy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spike%20propagation" title="spike propagation">spike propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=spike%20pattern" title=" spike pattern"> spike pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=SOZ" title=" SOZ"> SOZ</a> </p> <a href="https://publications.waset.org/abstracts/176533/spatiotemporal-propagation-and-pattern-of-epileptic-spike-predict-seizure-onset-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10913</span> Belt Conveyor Dynamics in Transient Operation for Speed Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20He">D. He</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Pang"> Y. Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lodewijks"> G. Lodewijks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Belt conveyors play an important role in continuous dry bulk material transport, especially at the mining industry. Speed control is expected to reduce the energy consumption of belt conveyors. Transient operation is the operation of increasing or decreasing conveyor speed for speed control. According to literature review, current research rarely takes the conveyor dynamics in transient operation into account. However, in belt conveyor speed control, the conveyor dynamic behaviors are significantly important since the poor dynamics might result in risks. In this paper, the potential risks in transient operation will be analyzed. An existing finite element model will be applied to build a conveyor model, and simulations will be carried out to analyze the conveyor dynamics. In order to realize the soft speed regulation, Harrison’s sinusoid acceleration profile will be applied, and Lodewijks estimator will be built to approximate the required acceleration time. A long inclined belt conveyor will be studied with two major simulations. The conveyor dynamics will be given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belt%20conveyor" title="belt conveyor ">belt conveyor </a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20control" title=" speed control"> speed control</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20operation" title=" transient operation"> transient operation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a> </p> <a href="https://publications.waset.org/abstracts/52380/belt-conveyor-dynamics-in-transient-operation-for-speed-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10912</span> Disability, Stigma and In-Group Identification: An Exploration across Different Disability Subgroups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Rathee">Sharmila Rathee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with disability/ies often face negative attitudes, discrimination, exclusion, and inequality of treatment due to stigmatization and stigmatized treatment. While a significant number of studies in field of stigma suggest that group-identification has positive consequences for stigmatized individuals, ironically very miniscule empirical work in sight has attempted to investigate in-group identification as a coping measure against stigma, humiliation and related experiences among disability group. In view of death of empirical research on in-group identification among disability group, through present work, an attempt has been made to examine the experiences of stigma, humiliation, and in-group identification among disability group. Results of the study suggest that use of in-group identification as a coping strategy is not uniform across members of disability group and degree of in-group identification differs across different sub-groups of disability groups. Further, in-group identification among members of disability group depends on variables like degree and impact of disability, factors like onset of disability, nature, and visibility of disability, educational experiences and resources available to deal with disabling conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disability" title="disability">disability</a>, <a href="https://publications.waset.org/abstracts/search?q=stigma" title=" stigma"> stigma</a>, <a href="https://publications.waset.org/abstracts/search?q=in-group%20identification" title=" in-group identification"> in-group identification</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20identity" title=" social identity"> social identity</a> </p> <a href="https://publications.waset.org/abstracts/48888/disability-stigma-and-in-group-identification-an-exploration-across-different-disability-subgroups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10911</span> Multi-Scale Control Model for Network Group Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuyuan%20Ma">Fuyuan Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Wang"> Ying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Wang"> Xin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influence%20blocking%20maximization" title="influence blocking maximization">influence blocking maximization</a>, <a href="https://publications.waset.org/abstracts/search?q=competitive%20linear%20threshold%20model" title=" competitive linear threshold model"> competitive linear threshold model</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title=" social networks"> social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20group%20behavior" title=" network group behavior"> network group behavior</a> </p> <a href="https://publications.waset.org/abstracts/191264/multi-scale-control-model-for-network-group-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10910</span> Dynamics, Hierarchy and Commensalities: A Study of Inter Caste Relationship in a North Indian Village</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Pandey">K. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is a functional analysis of the relationship between castes which indicates the dynamics of the caste structure in the rural setting. The researcher has tried to show both the cooperation and competition on important ceremonial and social occasions. The real India exists in the villages, so we need to know about their solidarity and also what the village life is and has been shaping into. We need to emphasize a microcosmic study of Indian rural life. Furthermore, caste integration is an acute problem country faces today. To resolve this we are required to know the dynamics of behavior of the people of different castes and for the study of the caste dynamics a study of caste relations are needed. The present study is an attempt in this direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchial%20groups" title="hierarchial groups">hierarchial groups</a>, <a href="https://publications.waset.org/abstracts/search?q=jajmani%20system" title=" jajmani system"> jajmani system</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20dependence" title=" functional dependence"> functional dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=commensalities" title=" commensalities"> commensalities</a> </p> <a href="https://publications.waset.org/abstracts/30747/dynamics-hierarchy-and-commensalities-a-study-of-inter-caste-relationship-in-a-north-indian-village" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10909</span> 3D Microbubble Dynamics in a Weakly Viscous Fluid Near a Rigid Boundary Subject to Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Manmi">K. Manmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20X.%20Wang"> Q. X. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates microbubble dynamics subject to ultrasound in a weakly viscous fluid near a rigid boundary. The phenomenon is simulated using a boundary integral method. The weak viscous effects are incorporated into the model through the normal stress balance across the bubble surface. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble for several cycles. The effects of the fluid viscosity in the bubble dynamics are analyzed, including jet development, centroid movement and bubble volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbubble%20dynamics" title="microbubble dynamics">microbubble dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=bubble%20jetting" title=" bubble jetting"> bubble jetting</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20effect" title=" viscous effect"> viscous effect</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20integral%20method" title=" boundary integral method"> boundary integral method</a> </p> <a href="https://publications.waset.org/abstracts/12981/3d-microbubble-dynamics-in-a-weakly-viscous-fluid-near-a-rigid-boundary-subject-to-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10908</span> Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramdas%20Sonawane">Ramdas Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahaveer%20Gadiya"> Mahaveer Gadiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20control" title="approximate control">approximate control</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20control" title=" exact control"> exact control</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20control" title=" bilinear control"> bilinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20dynamics" title=" nuclear dynamics"> nuclear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=integro-differential%20equations" title=" integro-differential equations"> integro-differential equations</a> </p> <a href="https://publications.waset.org/abstracts/58619/exact-and-approximate-controllability-of-nuclear-dynamics-using-bilinear-controls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10907</span> Consensus Reaching Process and False Consensus Effect in a Problem of Portfolio Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Ventre">Viviana Ventre</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Di%20Tollo"> Giacomo Di Tollo</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberta%20Martino"> Roberta Martino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The portfolio selection problem includes the evaluation of many criteria that are difficult to compare directly and is characterized by uncertain elements. The portfolio selection problem can be modeled as a group decision problem in which several experts are invited to present their assessment. In this context, it is important to study and analyze the process of reaching a consensus among group members. Indeed, due to the various diversities among experts, reaching consensus is not necessarily always simple and easily achievable. Moreover, the concept of consensus is accompanied by the concept of false consensus, which is particularly interesting in the dynamics of group decision-making processes. False consensus can alter the evaluation and selection phase of the alternative and is the consequence of the decision maker's inability to recognize that his preferences are conditioned by subjective structures. The present work aims to investigate the dynamics of consensus attainment in a group decision problem in which equivalent portfolios are proposed. In particular, the study aims to analyze the impact of the subjective structure of the decision-maker during the evaluation and selection phase of the alternatives. Therefore, the experimental framework is divided into three phases. In the first phase, experts are sent to evaluate the characteristics of all portfolios individually, without peer comparison, arriving independently at the selection of the preferred portfolio. The experts' evaluations are used to obtain individual Analytical Hierarchical Processes that define the weight that each expert gives to all criteria with respect to the proposed alternatives. This step provides insight into how the decision maker's decision process develops, step by step, from goal analysis to alternative selection. The second phase includes the description of the decision maker's state through Markov chains. In fact, the individual weights obtained in the first phase can be reviewed and described as transition weights from one state to another. Thus, with the construction of the individual transition matrices, the possible next state of the expert is determined from the individual weights at the end of the first phase. Finally, the experts meet, and the process of reaching consensus is analyzed by considering the single individual state obtained at the previous stage and the false consensus bias. The work contributes to the study of the impact of subjective structures, quantified through the Analytical Hierarchical Process, and how they combine with the false consensus bias in group decision-making dynamics and the consensus reaching process in problems involving the selection of equivalent portfolios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20hierarchical%20process" title="analytical hierarchical process">analytical hierarchical process</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus%20building" title=" consensus building"> consensus building</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20consensus%20effect" title=" false consensus effect"> false consensus effect</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chains" title=" markov chains"> markov chains</a>, <a href="https://publications.waset.org/abstracts/search?q=portfolio%20selection%20problem" title=" portfolio selection problem"> portfolio selection problem</a> </p> <a href="https://publications.waset.org/abstracts/147806/consensus-reaching-process-and-false-consensus-effect-in-a-problem-of-portfolio-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10906</span> A Weighted Group EI Incorporating Role Information for More Representative Group EI Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siyu%20Wang">Siyu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Ward"> Anthony Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emotional intelligence (EI) is a well-established personal characteristic. It has been viewed as a critical factor which can influence an individual&#39;s academic achievement, ability to work and potential to succeed. When working in a group, EI is fundamentally connected to the group members&#39; interaction and ability to work as a team. The ability of a group member to intelligently perceive and understand own emotions (Intrapersonal EI), to intelligently perceive and understand other members&#39; emotions (Interpersonal EI), and to intelligently perceive and understand emotions between different groups (Cross-boundary EI) can be considered as Group emotional intelligence (Group EI). In this research, a more representative Group EI measurement approach, which incorporates the information of the composition of a group and an individual&rsquo;s role in that group, is proposed. To demonstrate the claim of being more representative Group EI measurement approach, this study adopts a multi-method research design, involving a combination of both qualitative and quantitative techniques to establish a metric of Group EI. From the results, it can be concluded that by introducing the weight coefficient of each group member on group work into the measurement of Group EI, Group EI will be more representative and more capable of understanding what happens during teamwork than previous approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20study" title="case study">case study</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20intelligence" title=" emotional intelligence"> emotional intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20EI" title=" group EI"> group EI</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-method%20research" title=" multi-method research"> multi-method research</a> </p> <a href="https://publications.waset.org/abstracts/101666/a-weighted-group-ei-incorporating-role-information-for-more-representative-group-ei-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10905</span> Understanding the Nature of Capital Allocation Problem in Corporate Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Gurunlu">Meltem Gurunlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the central problems in corporate finance is the allocation of funds. This usually takes two forms: allocation of funds across firms in an economy or allocation of funds across projects or business units within a firm. The first one is typically related to the external markets (the bond market, the stock market, banks and finance companies) whereas the second form of the capital allocation is related to the internal capital markets in which corporate headquarters allocate capital to their business units. (within-group transfers, within-group credit markets, and within-group equity market). The main aim of this study is to investigate the nature of capital allocation dynamics by comparing the relevant studies carried out on external and internal capital markets with paying special significance to the business groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20capital%20markets" title="internal capital markets">internal capital markets</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20capital%20markets" title=" external capital markets"> external capital markets</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20structure" title=" capital structure"> capital structure</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20allocation" title=" capital allocation"> capital allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20groups" title=" business groups"> business groups</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20finance" title=" corporate finance"> corporate finance</a> </p> <a href="https://publications.waset.org/abstracts/89423/understanding-the-nature-of-capital-allocation-problem-in-corporate-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10904</span> Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20Bani-Khaled">Mohammad A. Bani-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coupled%20dynamics" title="coupled dynamics">coupled dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20complexity" title=" geometric complexity"> geometric complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=proper%20orthogonal%20decomposition%20%28POD%29" title=" proper orthogonal decomposition (POD)"> proper orthogonal decomposition (POD)</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20walled%20beams" title=" thin walled beams"> thin walled beams</a> </p> <a href="https://publications.waset.org/abstracts/22175/extracting-the-coupled-dynamics-in-thin-walled-beams-from-numerical-data-bases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10903</span> Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardeep%20Bishnoi">Pardeep Bishnoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Srivastava"> Mayank Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrityunjay%20Kumar%20Sinha"> Mrityunjay Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20contour" title="pressure contour">pressure contour</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid" title=" volume of fluid"> volume of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20field" title=" velocity field"> velocity field</a> </p> <a href="https://publications.waset.org/abstracts/56670/numerical-investigation-of-pressure-and-velocity-field-contours-of-dynamics-of-drop-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10902</span> Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Ting%20Chen">Po-Ting Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title="lithium-ion batteries">lithium-ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte%20simulation" title=" electrolyte simulation"> electrolyte simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/192137/accelerating-molecular-dynamics-simulations-of-electrolytes-with-neural-network-bridging-the-gap-between-ab-initio-molecular-dynamics-and-classical-molecular-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10901</span> On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meziane%20Belkacem">Meziane Belkacem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Physics" title="Physics">Physics</a>, <a href="https://publications.waset.org/abstracts/search?q=optics" title=" optics"> optics</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a> </p> <a href="https://publications.waset.org/abstracts/140512/on-deterministic-chaos-disclosing-the-missing-mathematics-from-the-lorenz-haken-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10900</span> Fast-Forward Problem in Asymmetric Double-Well Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iwan%20Setiawan">Iwan Setiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bobby%20Eka%20Gunara"> Bobby Eka Gunara</a>, <a href="https://publications.waset.org/abstracts/search?q=Katshuhiro%20Nakamura"> Katshuhiro Nakamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driving%20potential" title="driving potential">driving potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Adiabatic%20Quantum%20Dynamics" title=" Adiabatic Quantum Dynamics"> Adiabatic Quantum Dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20field" title=" electromagnetic field"> electromagnetic field</a> </p> <a href="https://publications.waset.org/abstracts/46220/fast-forward-problem-in-asymmetric-double-well-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=364">364</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=365">365</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=group%20dynamics&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10