CINXE.COM

Search results for: non-circular grinding

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non-circular grinding</title> <meta name="description" content="Search results for: non-circular grinding"> <meta name="keywords" content="non-circular grinding"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non-circular grinding" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non-circular grinding"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 134</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non-circular grinding</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Steffan">Matthias Steffan</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Haas"> Franz Haas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency%20enhancement" title="efficiency enhancement">efficiency enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=finishing%20machining" title=" finishing machining"> finishing machining</a>, <a href="https://publications.waset.org/abstracts/search?q=non-circular%20grinding" title=" non-circular grinding"> non-circular grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=rpm-synchronous%20grinding" title=" rpm-synchronous grinding"> rpm-synchronous grinding</a> </p> <a href="https://publications.waset.org/abstracts/69537/rpm-synchronous-non-circular-grinding-an-approach-to-enhance-efficiency-in-grinding-of-non-circular-workpieces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Effects of Different Processing Methods on Composition, Physicochemical and Morphological Properties of MR263 Rice Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Asmeda">R. Asmeda</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Noorlaila"> A. Noorlaila</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Norziah"> M. H. Norziah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work was conducted to investigate the effects of different grinding techniques during the milling process of rice grains on physicochemical characteristics of rice flour produced. Dry grinding, semi-wet grinding, and wet grinding were employed to produce the rice flour. The results indicated that different grinding methods significantly (p ≤ 0.05) affected physicochemical and functional properties of starch except for the carbohydrate content, x-ray diffraction pattern and breakdown viscosity. Dry grinding technique caused highest percentage of starch damage compared to semi-wet and wet grinding. Protein, fat and ash content were highest in rice flour obtained by dry grinding. It was found that wet grinding produce flour with smallest average particle size (8.52 µm), resulting in highest process yield (73.14%). Pasting profiles revealed that dry grinding produce rice flour with significantly lowest pasting temperature and highest setback viscosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=average%20particle%20size" title="average particle size">average particle size</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding%20techniques" title=" grinding techniques"> grinding techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20characteristics" title=" physicochemical characteristics"> physicochemical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20flour" title=" rice flour"> rice flour</a> </p> <a href="https://publications.waset.org/abstracts/7018/effects-of-different-processing-methods-on-composition-physicochemical-and-morphological-properties-of-mr263-rice-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> The Effect of the Parameters of the Grinding on the Characteristics of the Deposit Phosphate Ore of Kef Es Sennoun, Djebel Onk-Tebessa, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Benabdeslam">N. Benabdeslam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bouzidi"> N. Bouzidi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Atmani"> F. Atmani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Boucif"> R. Boucif</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sakhri"> A. Sakhri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to provide answers for a better understanding of the mechanisms involved during grinding. To obtain a phosphate powder, we carry out sieving - grinding circuits for each parameter influencing the process. The analysis of the average particle size of the different tests carried out served in the first place as a basis for the determination of the granulometric curve area, the characteristics and the granular coefficients, then the exploitation of the different results for the calculation of the energies consumed for the fragmentation of different ore types, the energy coefficients as well as the ability to grind. Indeed, a time of 5 to 10 minutes can be chosen as the optimal grinding time in a disc mill for a % in weight of the highest pass. However, grinding time can influence the granular characteristics of ore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20granular" title="characteristic granular">characteristic granular</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogical%20composition" title=" mineralogical composition"> mineralogical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20ore" title=" phosphate ore"> phosphate ore</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a> </p> <a href="https://publications.waset.org/abstracts/88918/the-effect-of-the-parameters-of-the-grinding-on-the-characteristics-of-the-deposit-phosphate-ore-of-kef-es-sennoun-djebel-onk-tebessa-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Effect of Liquid Additive on Dry Grinding for Desired Surface Structure of CaO Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiyanti%20Fransisca%20Simanullang">Wiyanti Fransisca Simanullang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinya%20Yamanaka"> Shinya Yamanaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grinding method was used to control the active site and to improve the specific surface area (SSA) of calcium oxide (CaO) derived from scallop shell as a sustainable resource. The dry grinding of CaO with acetone and tertiary butanol as a liquid additive was carried out using a planetary ball mill with a laboratory scale. The experiments were operated by stepwise addition with time variations to determine the grinding limit. The active site of CaO was measured by X-Ray Diffraction and FT-IR. The SSA variations of products with grinding time were measured by BET method. The morphology structure of CaO was observed by SEM. The use of liquid additive was effective for increasing the SSA and controlling the active site of CaO. SSA of CaO was increased in proportion to the amount of the liquid additive and the grinding time. The performance of CaO as a solid base catalyst for biodiesel production was tested in the transesterification reaction of used cooking oil to produce fatty acid methyl ester (FAME). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20site" title="active site">active site</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20oxide" title=" calcium oxide"> calcium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20surface%20area" title=" specific surface area"> specific surface area</a> </p> <a href="https://publications.waset.org/abstracts/68649/effect-of-liquid-additive-on-dry-grinding-for-desired-surface-structure-of-cao-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Spectral Coherence Analysis between Grinding Interaction Forces and the Relative Motion of the Workpiece and the Cutting Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulhamit%20Donder">Abdulhamit Donder</a>, <a href="https://publications.waset.org/abstracts/search?q=Erhan%20Ilhan%20Konukseven"> Erhan Ilhan Konukseven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grinding operation is performed in order to obtain desired surfaces precisely in machining process. The needed relative motion between the cutting tool and the workpiece is generally created either by the movement of the cutting tool or by the movement of the workpiece or by the movement of both of them as in our case. For all these cases, the coherence level between the movements and the interaction forces is a key influential parameter for efficient grinding. Therefore, in this work, spectral coherence analysis has been performed to investigate the coherence level between grinding interaction forces and the movement of the workpiece on our robotic-grinding experimental setup in METU Mechatronics Laboratory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coherence%20analysis" title="coherence analysis">coherence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=hanning%20window" title=" hanning window"> hanning window</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a>, <a href="https://publications.waset.org/abstracts/search?q=Piezo%20actuator" title=" Piezo actuator"> Piezo actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20arrangements%20test" title=" reverse arrangements test"> reverse arrangements test</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a> </p> <a href="https://publications.waset.org/abstracts/51057/spectral-coherence-analysis-between-grinding-interaction-forces-and-the-relative-motion-of-the-workpiece-and-the-cutting-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Technology of Thermal Spray Coating Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petr%C5%AF">Jana Petrů</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%C3%A1%C5%A1%20Zl%C3%A1mal"> Tomáš Zlámal</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20%C4%8Cep"> Robert Čep</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20%C4%8Cepov%C3%A1"> Lenka Čepová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/2535/technology-of-thermal-spray-coating-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Study on The Model of Microscopic Contact Parameters for Grinding M300 Using Elastic Abrasive Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Xiaojun">Wu Xiaojun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Ruiping"> Liu Ruiping</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Xingzhan"> Yu Xingzhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Qian"> Wu Qian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In precision grinding, utilizing the elastic matrix ball has higher processing efficiency and better superficial quality than traditional grinding. The diversity of characteristics which elastic abrasive tool contact with bend surface results in irregular wear abrasion,and abrasive tool machining status get complicated. There is no theoretical interpretation that parameters affect the grinding accuracy.Aiming at corrosion resistance, wear resistance and other characteristics of M 300 material, it is often used as a material on aerospace precision components. The paper carried out grinding and polishing experiments by using material of M 300,to theoretically show the relationship between stress magnitude and grinding efficiency,and predict the optimal combination of grinding parameter for effective grinding, just for the high abrasion resistance features of M 300, analyzing the micro-contact of elastic ball abrasive tool (Whetstone), using mathematical methods deduce the functional relationship between residual peak removal rate and the main parameters which impact the grinding accuracy on the plane case.Thus laying the foundation for the study of elastic abrasive prediction and compensation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20abrasive%20tool" title="flexible abrasive tool">flexible abrasive tool</a>, <a href="https://publications.waset.org/abstracts/search?q=polishing%20parameters" title=" polishing parameters"> polishing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Hertz%20theory" title=" Hertz theory"> Hertz theory</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20rate" title=" removal rate"> removal rate</a> </p> <a href="https://publications.waset.org/abstracts/26654/study-on-the-model-of-microscopic-contact-parameters-for-grinding-m300-using-elastic-abrasive-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20R.%20Bhoi">Monika R. Bhoi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Sutar"> R. F. Sutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaumik%20B.%20Patel"> Bhaumik B. Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cinnamon%20bark" title="cinnamon bark">cinnamon bark</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20grinding" title=" cryogenic grinding"> cryogenic grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20oil" title=" volatile oil"> volatile oil</a> </p> <a href="https://publications.waset.org/abstracts/136064/production-of-premium-quality-cinnamon-bark-powder-using-cryogenic-grinding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20W.%20Zhong">Z. W. Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Xu"> C. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20K.%20Choi"> W. K. Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FOWLP%20strength" title="FOWLP strength">FOWLP strength</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20bending" title=" three-point bending"> three-point bending</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a> </p> <a href="https://publications.waset.org/abstracts/91441/the-grinding-influence-on-the-strength-of-fan-out-wafer-level-packages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Effect of Feed Rate on Grinding Circuits and Cyclone Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Himeshkumar%20Ashokbhai">Patel Himeshkumar Ashokbhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchit%20Sharma"> Suchit Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Garg"> Arvind Kumar Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to study the effect of change in feed rate on grinding circuit and cyclone efficiency in case of lead-zinc ore. The following experiments and analysis were conducted on beneficiation circuit of Sindesar Khurd (SK) mines under Hindustan Zinc Ltd. subsidiary of Vedanta Group of Companies, a leading producer of lead-Zinc, silver and cadmium (as by products) in India. Feed rate is an important variable in beneficiation circuit operation. Optimizing feed rate is indispensable for any grinding circuit and directly effects cyclone efficiency. The size analysis of ore in grinding circuit along with cyclone efficiency on varying feed rates establishes their interdependence. Feed rate determines retention time ore gets within grinding circuit. Retention time in turn determines degree of liberation of mineral. Inadequate liberation causes decreased circuit efficiency. In this paper we have studied the effect of varying feed rate on (1) D80 particle size of different sections of different streams of grinding circuit (2) Re-circulating load (3) Cyclone efficiency. As a conclusion, this study gives some clues to operate grinding circuits and hydro-cyclones in more efficient way regarding beneficiation of Lead-zinc ore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone%20efficiency" title="cyclone efficiency">cyclone efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20rate" title=" feed rate"> feed rate</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding%20circuit" title=" grinding circuit"> grinding circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=re-circulating%20load" title=" re-circulating load"> re-circulating load</a> </p> <a href="https://publications.waset.org/abstracts/38698/effect-of-feed-rate-on-grinding-circuits-and-cyclone-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Intelligent System of the Grinding Robot for Spiral Welded Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getachew%20Demeissie%20Ayalew">Getachew Demeissie Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongtao%20Sun"> Yongtao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yang"> Yang Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spiral welded pipe manufacturing industry requires strict production standards for automated grinders for welding seams. However, traditional grinding machines in this sector are insufficient due to a lack of quality control protocols and inconsistent performance. This research aims to improve the quality of spiral welded pipes by developing intelligent automated abrasive belt grinding equipment. The system has equipped with six degrees of freedom (6 DOF) KUKA KR360 industrial robots, enabling concurrent grinding operations on both internal and external welds. The grinding robot control system is designed with a PLC, and a human-machine interface (HMI) system is employed for operations. The system includes an electric speed controller, data connection card, DC driver, analog amplifier, and HMI for input data. This control system enables the grinding of spiral welded pipe. It ensures consistent production quality and cost-effectiveness by reducing the product life cycle and minimizing risks in the working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Intelligent%20Systems" title="Intelligent Systems">Intelligent Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiral%20Welded%20Pipe" title=" Spiral Welded Pipe"> Spiral Welded Pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=Grinding" title=" Grinding"> Grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=Industrial%20Robot" title=" Industrial Robot"> Industrial Robot</a>, <a href="https://publications.waset.org/abstracts/search?q=End-Effector" title=" End-Effector"> End-Effector</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC%20Controller%20System" title=" PLC Controller System"> PLC Controller System</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%0D%0ALaser%20Sensor" title=" 3D Laser Sensor"> 3D Laser Sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=HMI." title=" HMI."> HMI.</a> </p> <a href="https://publications.waset.org/abstracts/175922/intelligent-system-of-the-grinding-robot-for-spiral-welded-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20D.%20Sarhan">Ahmed A. D. Sarhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Wan%20Ping"> Hong Wan Ping</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sayuti"> M. Sayuti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grinding" title="grinding">grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=MQL" title=" MQL"> MQL</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20grinding" title=" precision grinding"> precision grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20optimization" title=" Taguchi optimization"> Taguchi optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloy" title=" titanium alloy"> titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/46596/precision-grinding-of-titanium-ti-6al-4v-alloy-using-nanolubrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20standard" title="electric power standard">electric power standard</a>, <a href="https://publications.waset.org/abstracts/search?q=factor" title=" factor"> factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20grinding" title=" ore grinding"> ore grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=technological" title=" technological"> technological</a> </p> <a href="https://publications.waset.org/abstracts/69150/assessing-the-ways-of-improving-the-power-saving-modes-in-the-ore-grinding-technological-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Alshare">Aiman Alshare</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Qaadan"> Sahar Qaadan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABB%20industrial%20robot" title="ABB industrial robot">ABB industrial robot</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding%20process" title=" grinding process"> grinding process</a>, <a href="https://publications.waset.org/abstracts/search?q=offline%20programming" title=" offline programming"> offline programming</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20data%20extraction" title=" CAD data extraction"> CAD data extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20correction%20algorithm" title=" force correction algorithm"> force correction algorithm</a> </p> <a href="https://publications.waset.org/abstracts/49221/development-and-implementation-of-curvature-dependent-force-correction-algorithm-for-the-planning-of-forced-controlled-robotic-grinding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Effect of Particle Size on Alkali-Activation of Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Petrakis">E. Petrakis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Karmali"> V. Karmali</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Komnitsas"> K. Komnitsas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 &mu;m to 11.9 &mu;m. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding%20time" title=" grinding time"> grinding time</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/103046/effect-of-particle-size-on-alkali-activation-of-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Estimation of Grinding Force and Material Characterization of Ceramic Matrix Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshminarayanan">Lakshminarayanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijayaraghavan"> Vijayaraghavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishnamurthy"> Krishnamurthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-increasing demand for high efficiency in automotive and aerospace applications requires new materials to suit to high temperature applications. The Ceramic Matrix Composites nowadays find its applications for high strength and high temperature environments. In this paper, Al2O3 and Sic ceramic materials are taken in particulate form as matrix and reinforcement respectively. They are blended together in Ball Milling and compacted in Cold Compaction Machine by powder metallurgy technique. Scanning Electron Microscope images are taken for the samples in order to find out proper blending of powders. Micro harness testing is also carried out for the samples in Vickers Micro Hardness Testing Equipment. Surface grinding of the samples is also carried out in Surface Grinding Machine in order to find out grinding force estimates. The surface roughness of the grounded samples is also taken in Surface Profilometer. These are yielding promising results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20matrix%20composite" title="ceramic matrix composite">ceramic matrix composite</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20compaction" title=" cold compaction"> cold compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20and%20surface%20grinding" title=" particulate and surface grinding"> particulate and surface grinding</a> </p> <a href="https://publications.waset.org/abstracts/42287/estimation-of-grinding-force-and-material-characterization-of-ceramic-matrix-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pan%20Long">Pan Long</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi%20Dongjie"> Bi Dongjie</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xifeng"> Li Xifeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xie%20Yongle"> Xie Yongle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&amp;E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex-valued%20signal%20processing" title="complex-valued signal processing">complex-valued signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title=" synthetic aperture radar"> synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=2-D%20radar%20imaging" title=" 2-D radar imaging"> 2-D radar imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20sensing" title=" compressive sensing"> compressive sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20Bayesian%20learning" title=" sparse Bayesian learning"> sparse Bayesian learning</a> </p> <a href="https://publications.waset.org/abstracts/108404/a-generalized-sparse-bayesian-learning-algorithm-for-near-field-synthetic-aperture-radar-imaging-by-exploiting-impropriety-and-noncircularity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20J.%20Pillewan">V. J. Pillewan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Raut"> D. N. Raut</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Patil"> K. N. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Shinde"> D. K. Shinde </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grinding%20waste" title="grinding waste">grinding waste</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20injection%20molding%20%28PIM%29" title=" powder injection molding (PIM)"> powder injection molding (PIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes%20%28CNTs%29" title=" carbon nanotubes (CNTs)"> carbon nanotubes (CNTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20composites%20%28MMCs%29" title=" matrix composites (MMCs)"> matrix composites (MMCs)</a> </p> <a href="https://publications.waset.org/abstracts/64194/carbon-nanotubes-based-porous-framework-for-filtration-applications-using-industrial-grinding-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Modelisation of a Full-Scale Closed Cement Grinding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Touil">D. Touil</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ouadah"> L. Ouadah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grinding%20circuit" title="grinding circuit">grinding circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=clinker" title=" clinker"> clinker</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance" title=" population balance"> population balance</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy "> energy </a> </p> <a href="https://publications.waset.org/abstracts/10771/modelisation-of-a-full-scale-closed-cement-grinding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Influence of Cryo-Grinding on Particle Size Distribution of Proso Millet Bran Fraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maja%20Benkovic">Maja Benkovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Dubravka%20Novotni"> Dubravka Novotni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojana%20Voucko"> Bojana Voucko</a>, <a href="https://publications.waset.org/abstracts/search?q=Duska%20Curic"> Duska Curic</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Jezek"> Damir Jezek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolina%20Cukelj"> Nikolina Cukelj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryo-grinding is an ultra-fine grinding method used in the pharmaceutical industry, production of herbs and spices and in the production and handling of cereals, due to its ability to produce powders with small particle sizes which maintain their favorable bioactive profile. The aim of this study was to determine the particle size distributions of the proso millet (Panicum miliaceum) bran fraction grinded at cryogenic temperature (using liquid nitrogen (LN₂) cooling, T = - 196 °C), in comparison to non-cooled grinding. Proso millet bran is primarily used as an animal feed, but has a potential in food applications, either as a substrate for extraction of bioactive compounds or raw material in the bakery industry. For both applications finer particle sizes of the bran could be beneficial. Thus, millet bran was ground for 2, 4, 8 and 12 minutes using the ball mill (CryoMill, Retsch GmbH, Haan, Germany) at three grinding modes: (I) without cooling, (II) at cryo-temperature, and (III) at cryo-temperature with included 1 minute of intermediate cryo-cooling step after every 2 minutes of grinding, which is usually applied when samples require longer grinding times. The sample was placed in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm). The oscillation frequency in all three modes was 30 Hz. Particle size distributions of the bran were determined by a laser diffraction particle sizing method (Mastersizer 2000) using the Scirocco 2000 dry dispersion unit (Malvern Instruments, Malvern, UK). Three main effects of the grinding set-up were visible from the results. Firstly, grinding time at all three modes had a significant effect on all particle size parameters: d(0.1), d(0.5), d(0.9), D[3,2], D[4,3], span and specific surface area. Longer grinding times resulted in lower values of the above-listed parameters, e.g. the averaged d(0.5) of the sample (229.57±1.46 µm) dropped to 51.29±1.28 µm after 2 minutes grinding without LN₂, and additionally to 43.00±1.33 µm after 4 minutes of grinding without LN₂. The only exception was the sample ground for 12 minutes without cooling, where an increase in particle diameters occurred (d(0.5)=62.85±2.20 µm), probably due to particles adhering to one another and forming larger particle clusters. Secondly, samples with LN₂ cooling exhibited lower diameters in comparison to non-cooled. For example, after 8 minutes of non-cooled grinding d(0.5)=46.97±1.05 µm was achieved, while the LN₂ cooling enabled collection of particles with average sizes of d(0.5)=18.57±0.18 µm. Thirdly, the application of intermediate cryo-cooling step resulted in similar particle diameters (d(0.5)=15.83±0.36 µm, 12 min of grinding) as cryo-milling without this step (d(0.5)=16.33±2.09 µm, 12 min of grinding). This indicates that intermediate cooling is not necessary for the current application, which consequently reduces the consumption of LN₂. These results point out the potential beneficial effects of millet bran grinding at cryo-temperatures. Further research will show if the lower particle size achieved in comparison to non-cooled grinding could result in increased bioavailability of bioactive compounds, as well as protein digestibility and solubility of dietary fibers of the proso millet bran fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20mill" title="ball mill">ball mill</a>, <a href="https://publications.waset.org/abstracts/search?q=cryo-milling" title=" cryo-milling"> cryo-milling</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=proso%20millet%20%28Panicum%20miliaceum%29%20bran" title=" proso millet (Panicum miliaceum) bran"> proso millet (Panicum miliaceum) bran</a> </p> <a href="https://publications.waset.org/abstracts/90643/influence-of-cryo-grinding-on-particle-size-distribution-of-proso-millet-bran-fraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Prediction of Product Size Distribution of a Vertical Stirred Mill Based on Breakage Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Danielle">C. R. Danielle</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Erik"> S. Erik</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Patrick"> T. Patrick</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hugh"> M. Hugh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade there has been an increase in demand for fine grinding due to the depletion of coarse-grained orebodies and an increase of processing fine disseminated minerals and complex orebodies. These ores have provided new challenges in concentrator design because fine and ultra-fine grinding is required to achieve acceptable recovery rates. Therefore, the correct design of a grinding circuit is important for minimizing unit costs and increasing product quality. The use of ball mills for grinding in fine size ranges is inefficient and, therefore, vertical stirred grinding mills are becoming increasingly popular in the mineral processing industry due to its already known high energy efficiency. This work presents a hypothesis of a methodology to predict the product size distribution of a vertical stirred mill using a Bond ball mill. The Population Balance Model (PBM) was used to empirically analyze the performance of a vertical mill and a Bond ball mill. The breakage parameters obtained for both grinding mills are compared to determine the possibility of predicting the product size distribution of a vertical mill based on the results obtained from the Bond ball mill. The biggest advantage of this methodology is that most of the minerals processing laboratories already have a Bond ball mill to perform the tests suggested in this study. Preliminary results show the possibility of predicting the performance of a laboratory vertical stirred mill using a Bond ball mill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond%20ball%20mill" title="bond ball mill">bond ball mill</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20balance%20model" title=" population balance model"> population balance model</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20size%20distribution" title=" product size distribution"> product size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20stirred%20mill" title=" vertical stirred mill"> vertical stirred mill</a> </p> <a href="https://publications.waset.org/abstracts/62771/prediction-of-product-size-distribution-of-a-vertical-stirred-mill-based-on-breakage-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> An Algorithm for Preventing the Irregular Operation Modes of the Drive Synchronous Motor Providing the Ore Grinding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current scientific and engineering interest concerning the problems of preventing the emergency manifestations of drive synchronous motors, ensuring the ore grinding technological process has been justified. The analysis of the known works devoted to the abnormal operation modes of synchronous motors and possibilities of protection against them, has shown that their application is inexpedient for preventing the impermissible displays arising in the electrical drive synchronous motors ensuring the ore-grinding process. The main energy and technological factors affecting the technical condition of synchronous motors are evaluated. An algorithm for preventing the irregular operation modes of the electrical drive synchronous motor applied in the ore-grinding technological process has been developed and proposed for further application which gives an opportunity to provide smart solutions, ensuring the safe operation of the drive synchronous motor by a comprehensive consideration of the energy and technological factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20motor" title="synchronous motor">synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20operating%20mode" title=" abnormal operating mode"> abnormal operating mode</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20drive" title=" electric drive"> electric drive</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20factor" title=" energy factor"> energy factor</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20factor" title=" technological factor"> technological factor</a> </p> <a href="https://publications.waset.org/abstracts/122065/an-algorithm-for-preventing-the-irregular-operation-modes-of-the-drive-synchronous-motor-providing-the-ore-grinding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Modeling the Moment of Resistance Generated by an Ore-Grinding Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinka%20Baghdasaryan">Marinka Baghdasaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigran%20Mnoyan"> Tigran Mnoyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pertinence of modeling the moment of resistance generated by the ore-grinding mill is substantiated. Based on the ranking of technological indices obtained in the result of the survey among the specialists of several beneficiating plants, the factors determining the level of the moment of resistance generated by the mill are revealed. A priori diagram of the ranks is obtained in which the factors are arranged in the descending order of the impact degree on the level of the moment. The obtained model of the moment of resistance shows the technological character of the operation modes of the ore-grinding mill and can be used for improving the operation modes of the system motor-mill and preventing the abnormal mode of the drive synchronous motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20mode" title=" abnormal mode"> abnormal mode</a>, <a href="https://publications.waset.org/abstracts/search?q=mill" title=" mill"> mill</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20of%20resistance" title=" moment of resistance"> moment of resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20speed" title=" rotational speed"> rotational speed</a> </p> <a href="https://publications.waset.org/abstracts/47772/modeling-the-moment-of-resistance-generated-by-an-ore-grinding-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Torcato">Ricardo Torcato</a>, <a href="https://publications.waset.org/abstracts/search?q=Helder%20Morais"> Helder Morais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNC%20machining" title="CNC machining">CNC machining</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20glass" title=" crystal glass"> crystal glass</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/143427/mechanical-characterization-and-cnc-rotary-ultrasonic-grinding-of-crystal-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Graur">I. Graur</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Bria"> V. Bria</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Muntenita"> C. Muntenita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20powder" title=" organic powder"> organic powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pine%20needles" title=" pine needles"> pine needles</a> </p> <a href="https://publications.waset.org/abstracts/96794/friction-coefficient-of-epiphen-epoxy-system-filled-with-powder-resulting-from-the-grinding-of-pine-needles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goodness%20Onwuka">Goodness Onwuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Abou-El-Hossein"> Khaled Abou-El-Hossein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=borosilicate-crown%20glass" title=" borosilicate-crown glass"> borosilicate-crown glass</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20precision%20grinding" title=" ultra high precision grinding"> ultra high precision grinding</a> </p> <a href="https://publications.waset.org/abstracts/71595/acoustic-emission-monitoring-of-surface-roughness-in-ultra-high-precision-grinding-of-borosilicate-crown-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Mechanical Activation of a Waste Material Used as Cement Replacement in Soft Soil Stabilisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassnen%20M.%20Jafer">Hassnen M. Jafer</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Atherton"> W. Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ruddock"> F. Ruddock</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Loffil"> E. Loffil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste materials or sometimes called by-product materials have been increasingly used as construction material to reduce the usage of cement in different construction projects. In the field of soil stabilisation, waste materials such as pulverised fuel ash (PFA), biomass fly ash (BFA), sewage sludge ash (SSA), etc., have been used since 1960s in last century. In this study, a particular type of a waste material (WM) was used in soft soil stabilisation as a cement replacement, as well as, the effect of mechanical activation, using grinding, on the performance of this WM was also investigated. The WM used in this study is a by-product resulted from the incineration processes between 1000 and 1200oc in domestic power generation plant using a fluidized bed combustion system. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were conducted first to find the optimum content of WM by carrying out Atterberg limits and unconfined compressive strength (UCS) tests on soil samples contained (0, 3, 6, 9, 12, and 15%) of WM by the dry weight of soil. The UCS test was carried out on specimens provided to different curing periods (zero, 7, 14, and 28 days). Moreover, the optimum percentage of the WM was subject to different periods of grinding (10, 20, 30, 40mins) using mortar and pestle grinder to find the effect of grinding and its optimum time by conducting UCS test. The results indicated that the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.10 with 15% of WM. Meanwhile, the results of UCS test indicated that 12% of WM was the optimum and this percentage developed the UCS value from 202kPa to 700kPa for 28 days cured samples. Along with the time of grinding, the results revealed that 10 minutes of grinding was the best for mechanical activation for the WM used in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20soil%20stabilisation" title="soft soil stabilisation">soft soil stabilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20materials" title=" waste materials"> waste materials</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20unconfined%20compressive%20strength" title=" and unconfined compressive strength"> and unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/40050/mechanical-activation-of-a-waste-material-used-as-cement-replacement-in-soft-soil-stabilisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Exploring the Influences on Entrainment of Serpentines by Grinding and Reagents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tang">M. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Wen"> S. M. Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Liu"> D. W. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the influences on the entrainment of serpentines by grinding and reagents during copper–nickel sulfide flotation. The previous bench flotation tests were performed to extract the metallic values from the ore in Yunnan Mine, China and the relatively satisfied results with recoveries of 86.92% Cu, 54.92% Ni, and 74.73% Pt+Pd in the concentrate were harvested at their grades of 4.02%, 3.24% and 76.61 g/t, respectively. However, the content of MgO in the concentrate was still more than 19%. Micro-flotation tests were conducted with the objective of figuring out the influences on the entrainment of serpentines into the concentrate by particle size, flocculants or depressants and collectors, as well as visual observations in suspension by OLYMPUS camera. All the tests results pointed to the presences of both “entrapped-in” serpentines and its coating on the hydrophobic flocs resulted from strong collectors (combination of butyl xanthate, butyl ammonium dithophosphate, even after adding carboxymethyl cellulose as effective depressant. And fine grinding may escalate the entrainment of serpentines in the concentrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=serpentine" title="serpentine">serpentine</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20and%20nickel%20sulfides" title=" copper and nickel sulfides"> copper and nickel sulfides</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a> </p> <a href="https://publications.waset.org/abstracts/5044/exploring-the-influences-on-entrainment-of-serpentines-by-grinding-and-reagents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Salim">Joseph Salim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20insights" title=" predictive insights"> predictive insights</a>, <a href="https://publications.waset.org/abstracts/search?q=bruxism" title=" bruxism"> bruxism</a>, <a href="https://publications.waset.org/abstracts/search?q=teeth%20grinding" title=" teeth grinding"> teeth grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20botox" title=" therapeutic botox"> therapeutic botox</a>, <a href="https://publications.waset.org/abstracts/search?q=nightguard" title=" nightguard"> nightguard</a>, <a href="https://publications.waset.org/abstracts/search?q=gingival%20recession" title=" gingival recession"> gingival recession</a>, <a href="https://publications.waset.org/abstracts/search?q=gum%20recession" title=" gum recession"> gum recession</a>, <a href="https://publications.waset.org/abstracts/search?q=jaw%20pain" title=" jaw pain"> jaw pain</a> </p> <a href="https://publications.waset.org/abstracts/170031/predictive-machine-learning-model-for-assessing-the-impact-of-untreated-teeth-grinding-on-gingival-recession-and-jaw-pain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Effect of Different Contact Rollers on the Surface Texture during the Belt Grinding Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Hamdi">Amine Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidi%20Mohammed%20Merghache"> Sidi Mohammed Merghache</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Fernini"> Brahim Fernini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During abrasive machining of hard steels by belt grinding, the finished surface texture is influenced by the pressure between the abrasive belt and the workpiece; this pressure is the force applied by the contact roller on the workpiece. Therefore, the contact roller has an important role and has a direct impact on process efficiency. The objective of this article is to study and compare the influence of different contact rollers on the belt ground surface texture. The quality of the surface texture is characterized by eight roughness parameters (Ra, Rz, Rp, Rv, Rsk, Rku, Rsm, and Rdq) and five parameters of the bearing area curve (Rpk, Rk, Rvk, Mr1, and Mr2). The results of the experimental tests indicate a better surface texture obtained by the PA 6 polyamide roller (hardness 60 Shore D) compared to that obtained with other rollers of the same hardness or of different hardness. Simultaneously, optimum medium pressure between the belt and the workpiece allows chip removal without fracturing the abrasive grains. This generates a good surface texture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belt%20grinding" title="belt grinding">belt grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20roller" title=" contact roller"> contact roller</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasive%20belt" title=" abrasive belt"> abrasive belt</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20texture" title=" surface texture"> surface texture</a> </p> <a href="https://publications.waset.org/abstracts/132926/effect-of-different-contact-rollers-on-the-surface-texture-during-the-belt-grinding-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-circular%20grinding&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-circular%20grinding&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-circular%20grinding&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-circular%20grinding&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-circular%20grinding&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10