CINXE.COM
Peanoaritmetik – Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="sv" dir="ltr"> <head> <meta charset="UTF-8"> <title>Peanoaritmetik – Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )svwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","januari","februari","mars","april","maj","juni","juli","augusti","september","oktober","november","december"],"wgRequestId":"615d8beb-719e-4e6f-a5a1-3b573f782916","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Peanoaritmetik","wgTitle":"Peanoaritmetik","wgCurRevisionId":34240589,"wgRevisionId":34240589,"wgArticleId":4966404,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Talteori"],"wgPageViewLanguage":"sv","wgPageContentLanguage":"sv","wgPageContentModel":"wikitext","wgRelevantPageName":"Peanoaritmetik","wgRelevantArticleId":4966404,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{ "pageLanguageCode":"sv","pageLanguageDir":"ltr","pageVariantFallbacks":"sv"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":5000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q49938","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.babel":"ready","ext.gadget.geo":"ready","ext.gadget.warnings":"ready","ext.gadget.tags":"ready","ext.gadget.error":"ready","ext.gadget.referenser":"ready", "ext.gadget.printonly":"ready","ext.gadget.tables":"ready","ext.gadget.toccolours":"ready","ext.gadget.smallTagFontSize":"ready","ext.gadget.videoPlayButton":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.editsection0","ext.gadget.ProtectionIndicators","ext.gadget.GeoboxLocatorMulti","ext.gadget.InterwikiBadges","ext.gadget.collapsibleTables","ext.gadget.NewSection","ext.gadget.ExkluderaRobotskapadeSidor", "ext.gadget.Nearby","ext.gadget.InterProjectLinks","ext.gadget.cgiircbox","ext.gadget.withJS","ext.gadget.CommonsFileLinks","ext.gadget.tableSorterCollation","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=sv&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=sv&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=sv&modules=ext.gadget.babel%2Cerror%2Cgeo%2Cprintonly%2Creferenser%2CsmallTagFontSize%2Ctables%2Ctags%2Ctoccolours%2CvideoPlayButton%2Cwarnings&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=sv&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Peanoaritmetik – Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//sv.m.wikipedia.org/wiki/Peanoaritmetik"> <link rel="alternate" type="application/x-wiki" title="Redigera" href="/w/index.php?title=Peanoaritmetik&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (sv)"> <link rel="EditURI" type="application/rsd+xml" href="//sv.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://sv.wikipedia.org/wiki/Peanoaritmetik"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.sv"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom-flöde" href="/w/index.php?title=Special:Senaste_%C3%A4ndringar&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Peanoaritmetik rootpage-Peanoaritmetik skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Hoppa till innehållet</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Webbplats"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Huvudmeny" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Huvudmeny</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Huvudmeny</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">flytta till sidofältet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">dölj</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigering </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Portal:Huvudsida" title="Besök huvudsidan [z]" accesskey="z"><span>Huvudsida</span></a></li><li id="n-Introduktion" class="mw-list-item"><a href="/wiki/Wikipedia:Introduktion"><span>Introduktion</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Deltagarportalen" title="Om projektet, vad du kan göra, var man kan hitta saker"><span>Deltagarportalen</span></a></li><li id="n-Bybrunnen" class="mw-list-item"><a href="/wiki/Wikipedia:Bybrunnen"><span>Bybrunnen</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:Senaste_%C3%A4ndringar" title="Lista över de senaste ändringarna på wikin [r]" accesskey="r"><span>Senaste ändringarna</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Slumpsida" title="Gå till en slumpmässigt vald sida [x]" accesskey="x"><span>Slumpartikel</span></a></li><li id="n-filuppladdning" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard" title="Ladda upp filer till Wikimedia Commons"><span>Ladda upp filer</span></a></li><li id="n-Kontakta-Wikipedia" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt"><span>Kontakta Wikipedia</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Wikipedia:Hj%C3%A4lp" title="Platsen där du hittar hjälp"><span>Hjälp</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Portal:Huvudsida" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-sv.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:S%C3%B6k" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Sök i svenskspråkiga Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Sök</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Sök på Wikipedia" aria-label="Sök på Wikipedia" autocapitalize="sentences" title="Sök i svenskspråkiga Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Sök"> </div> <button class="cdx-button cdx-search-input__end-button">Sök</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personliga verktyg"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Utseende"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Ändra utseendet på sidans teckenstorlek, bredd och färg" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Utseende" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Utseende</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_sv.wikipedia.org&uselang=sv" class=""><span>Stöd Wikipedia</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:Skapa_konto&returnto=Peanoaritmetik" title="Du uppmuntras att skapa ett konto och logga in, men det är inte obligatoriskt" class=""><span>Skapa konto</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:Inloggning&returnto=Peanoaritmetik" title="Inloggning ger tillgång till fler funktioner för den som vill skriva och redigera artiklar. [o]" accesskey="o" class=""><span>Logga in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Fler alternativ" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personliga verktyg" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personliga verktyg</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Användarmeny" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_sv.wikipedia.org&uselang=sv"><span>Stöd Wikipedia</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:Skapa_konto&returnto=Peanoaritmetik" title="Du uppmuntras att skapa ett konto och logga in, men det är inte obligatoriskt"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Skapa konto</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:Inloggning&returnto=Peanoaritmetik" title="Inloggning ger tillgång till fler funktioner för den som vill skriva och redigera artiklar. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Logga in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Sidor för utloggade redigerare <a href="/wiki/Hj%C3%A4lp:Introduktion" aria-label="Läs mer om redigering"><span>läs mer</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:Mina_bidrag" title="En lista över redigeringar från denna IP-adress [y]" accesskey="y"><span>Bidrag</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:Min_diskussion" title="Diskussion om redigeringar från det här IP-numret [n]" accesskey="n"><span>Diskussion</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Webbplats"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Innehåll" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Innehåll</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">flytta till sidofältet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">dölj</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inledning</div> </a> </li> <li id="toc-Formulering_av_de_naturliga_talen" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formulering_av_de_naturliga_talen"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Formulering av de naturliga talen</span> </div> </a> <ul id="toc-Formulering_av_de_naturliga_talen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition_av_operatorer" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition_av_operatorer"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition av operatorer</span> </div> </a> <button aria-controls="toc-Definition_av_operatorer-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Växla underavsnittet Definition av operatorer</span> </button> <ul id="toc-Definition_av_operatorer-sublist" class="vector-toc-list"> <li id="toc-Addition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Addition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Addition</span> </div> </a> <ul id="toc-Addition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiplikation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiplikation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Multiplikation</span> </div> </a> <ul id="toc-Multiplikation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Axiomatisering_med_första_ordningens_logik" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Axiomatisering_med_första_ordningens_logik"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Axiomatisering med första ordningens logik</span> </div> </a> <ul id="toc-Axiomatisering_med_första_ordningens_logik-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Källor" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Källor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Källor</span> </div> </a> <button aria-controls="toc-Källor-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Växla underavsnittet Källor</span> </button> <ul id="toc-Källor-sublist" class="vector-toc-list"> <li id="toc-Noter" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Noter"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Noter</span> </div> </a> <ul id="toc-Noter-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Innehåll" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Växla innehållsförteckningen" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Växla innehållsförteckningen</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Peanoaritmetik</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Gå till en artikel på ett annat språk. Tillgänglig på 19 språk" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 språk</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-be badge-Q70894304 mw-list-item" title=""><a href="https://be.wikipedia.org/wiki/%D0%90%D1%80%D1%8B%D1%84%D0%BC%D0%B5%D1%82%D1%8B%D0%BA%D0%B0_%D0%9F%D0%B5%D0%B0%D0%BD%D0%B0" title="Арыфметыка Пеана – belarusiska" lang="be" hreflang="be" data-title="Арыфметыка Пеана" data-language-autonym="Беларуская" data-language-local-name="belarusiska" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca badge-Q70894304 mw-list-item" title=""><a href="https://ca.wikipedia.org/wiki/Aritm%C3%A8tica_de_Peano" title="Aritmètica de Peano – katalanska" lang="ca" hreflang="ca" data-title="Aritmètica de Peano" data-language-autonym="Català" data-language-local-name="katalanska" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D0%BB%C4%95_%D0%B0%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D0%BA%D0%B0" title="Формаллĕ арифметика – tjuvasjiska" lang="cv" hreflang="cv" data-title="Формаллĕ арифметика" data-language-autonym="Чӑвашла" data-language-local-name="tjuvasjiska" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Peanova_aritmetika" title="Peanova aritmetika – tjeckiska" lang="cs" hreflang="cs" data-title="Peanova aritmetika" data-language-autonym="Čeština" data-language-local-name="tjeckiska" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Peano-Arithmetik" title="Peano-Arithmetik – tyska" lang="de" hreflang="de" data-title="Peano-Arithmetik" data-language-autonym="Deutsch" data-language-local-name="tyska" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en badge-Q70894304 mw-list-item" title=""><a href="https://en.wikipedia.org/wiki/Peano_arithmetic" title="Peano arithmetic – engelska" lang="en" hreflang="en" data-title="Peano arithmetic" data-language-autonym="English" data-language-local-name="engelska" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es badge-Q70894304 mw-list-item" title=""><a href="https://es.wikipedia.org/wiki/Aritmetica_de_Peano" title="Aritmetica de Peano – spanska" lang="es" hreflang="es" data-title="Aritmetica de Peano" data-language-autonym="Español" data-language-local-name="spanska" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr badge-Q70894304 mw-list-item" title=""><a href="https://fr.wikipedia.org/wiki/Arithm%C3%A9tique_de_Peano" title="Arithmétique de Peano – franska" lang="fr" hreflang="fr" data-title="Arithmétique de Peano" data-language-autonym="Français" data-language-local-name="franska" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko badge-Q70894304 mw-list-item" title=""><a href="https://ko.wikipedia.org/wiki/%ED%8E%98%EC%95%84%EB%85%B8_%EC%82%B0%EC%88%A0" title="페아노 산술 – koreanska" lang="ko" hreflang="ko" data-title="페아노 산술" data-language-autonym="한국어" data-language-local-name="koreanska" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id badge-Q70894304 mw-list-item" title=""><a href="https://id.wikipedia.org/wiki/Aritmetika_Peano" title="Aritmetika Peano – indonesiska" lang="id" hreflang="id" data-title="Aritmetika Peano" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesiska" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Aritmetica_di_Peano" title="Aritmetica di Peano – italienska" lang="it" hreflang="it" data-title="Aritmetica di Peano" data-language-autonym="Italiano" data-language-local-name="italienska" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Peano-aritmetika" title="Peano-aritmetika – ungerska" lang="hu" hreflang="hu" data-title="Peano-aritmetika" data-language-autonym="Magyar" data-language-local-name="ungerska" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl badge-Q70894304 mw-list-item" title=""><a href="https://nl.wikipedia.org/wiki/Peano-rekenkunde" title="Peano-rekenkunde – nederländska" lang="nl" hreflang="nl" data-title="Peano-rekenkunde" data-language-autonym="Nederlands" data-language-local-name="nederländska" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja badge-Q70894304 mw-list-item" title=""><a href="https://ja.wikipedia.org/wiki/%E3%83%9A%E3%82%A2%E3%83%8E%E7%AE%97%E8%A1%93" title="ペアノ算術 – japanska" lang="ja" hreflang="ja" data-title="ペアノ算術" data-language-autonym="日本語" data-language-local-name="japanska" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt badge-Q70894304 mw-list-item" title=""><a href="https://pt.wikipedia.org/wiki/Aritm%C3%A9tica_de_Peano" title="Aritmética de Peano – portugisiska" lang="pt" hreflang="pt" data-title="Aritmética de Peano" data-language-autonym="Português" data-language-local-name="portugisiska" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru badge-Q70894304 mw-list-item" title=""><a href="https://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D0%BA%D0%B0_%D0%9F%D0%B5%D0%B0%D0%BD%D0%BE" title="Арифметика Пеано – ryska" lang="ru" hreflang="ru" data-title="Арифметика Пеано" data-language-autonym="Русский" data-language-local-name="ryska" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Peanova_aritmetika" title="Peanova aritmetika – slovakiska" lang="sk" hreflang="sk" data-title="Peanova aritmetika" data-language-autonym="Slovenčina" data-language-local-name="slovakiska" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D0%B0%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D0%BA%D0%B0" title="Формальна арифметика – ukrainska" lang="uk" hreflang="uk" data-title="Формальна арифметика" data-language-autonym="Українська" data-language-local-name="ukrainska" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh badge-Q70894304 mw-list-item" title=""><a href="https://zh.wikipedia.org/wiki/%E7%9A%AE%E4%BA%9A%E8%AF%BA%E7%AE%97%E6%9C%AF" title="皮亚诺算术 – kinesiska" lang="zh" hreflang="zh" data-title="皮亚诺算术" data-language-autonym="中文" data-language-local-name="kinesiska" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q49938#sitelinks-wikipedia" title="Redigera interwikilänkar" class="wbc-editpage">Redigera länkar</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namnrymder"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Peanoaritmetik" title="Visa innehållssidan [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Diskussion:Peanoaritmetik&action=edit&redlink=1" rel="discussion" class="new" title="Diskussion om innehållssidan [inte skriven än] [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Ändra språkvariant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">svenska</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visningar"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Peanoaritmetik"><span>Läs</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&veaction=edit" title="Redigera denna sida [v]" accesskey="v"><span>Redigera</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&action=edit" title="Redigera wikitexten för den här sidan [e]" accesskey="e"><span>Redigera wikitext</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&action=history" title="Tidigare versioner av sidan [h]" accesskey="h"><span>Visa historik</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Sidverktyg"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Verktyg" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Verktyg</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Verktyg</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">flytta till sidofältet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">dölj</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Fler alternativ" > <div class="vector-menu-heading"> Åtgärder </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Peanoaritmetik"><span>Läs</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&veaction=edit" title="Redigera denna sida [v]" accesskey="v"><span>Redigera</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&action=edit" title="Redigera wikitexten för den här sidan [e]" accesskey="e"><span>Redigera wikitext</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&action=history"><span>Visa historik</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Allmänt </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:L%C3%A4nkar_hit/Peanoaritmetik" title="Lista över alla wikisidor som länkar hit [j]" accesskey="j"><span>Sidor som länkar hit</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:Senaste_relaterade_%C3%A4ndringar/Peanoaritmetik" rel="nofollow" title="Visa senaste ändringarna av sidor som den här sidan länkar till [k]" accesskey="k"><span>Relaterade ändringar</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:Specialsidor" title="Lista över alla specialsidor [q]" accesskey="q"><span>Specialsidor</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&oldid=34240589" title="Permanent länk till den här versionen av sidan"><span>Permanent länk</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&action=info" title="Mer information om denna sida"><span>Sidinformation</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:Citera&page=Peanoaritmetik&id=34240589&wpFormIdentifier=titleform" title="Information om hur den här artikeln kan användas som referens"><span>Använd som referens</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fsv.wikipedia.org%2Fwiki%2FPeanoaritmetik"><span>Hämta förkortad url</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fsv.wikipedia.org%2Fwiki%2FPeanoaritmetik"><span>Ladda ner QR-kod</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Skriv ut/exportera </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Special:Bok&bookcmd=book_creator&referer=Peanoaritmetik"><span>Skapa en bok</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Peanoaritmetik&action=show-download-screen"><span>Ladda ned som PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Peanoaritmetik&printable=yes" title="Utskriftsvänlig version av den här sidan [p]" accesskey="p"><span>Utskriftsvänlig version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> På andra projekt </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q49938" title="Länk till anslutet databasobjekt [g]" accesskey="g"><span>Wikidata-objekt</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Sidverktyg"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Utseende"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Utseende</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">flytta till sidofältet</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">dölj</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Från Wikipedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="sv" dir="ltr"><p><b>Peanoaritmetik</b> (ibland förkortat <b>PA</b>) är inom <a href="/wiki/Talteori" title="Talteori">talteorin</a> ett sätt att konstruera de <a href="/wiki/Naturligt_tal" class="mw-redirect" title="Naturligt tal">naturliga talen</a> <i>N</i>, samt addition och multiplikation med hjälp av <a href="/wiki/Peanos_axiom" title="Peanos axiom">Peanos axiom</a>. Peanoaritmetiken kan ses som en <a href="/wiki/Slutenhet_(matematik)" title="Slutenhet (matematik)">sluten</a> <a href="/wiki/Algebraisk_struktur" title="Algebraisk struktur">algebraisk struktur</a> (<i>N</i>, +, 0, ·, 1), där 0 och 1 är neutrala element för addition respektive multiplikation. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Formulering_av_de_naturliga_talen">Formulering av de naturliga talen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Peanoaritmetik&veaction=edit&section=1" title="Redigera avsnitt: Formulering av de naturliga talen" class="mw-editsection-visualeditor"><span>redigera</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Peanoaritmetik&action=edit&section=1" title="Redigera avsnitts källkod: Formulering av de naturliga talen"><span>redigera wikitext</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Peanoaritmetiken behandlar de aritmetiska egenskaperna hos de naturliga talen, ofta representerade av en mängd <i>N</i> (ibland dubbeltecknat, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf9a96b565ea202d0f4322e9195613fb26a9bed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {N} }"></span>). Peanos axiom definierar dessa tal genom en konstant 0 och en ”efterföljarfunktion” (eng. <a href="https://en.wikipedia.org/wiki/successor_function" class="extiw" title="en:successor function">successor function</a>) <i>S</i> sådan att <i>S</i>(<i>n</i>) ger det på <i>n</i> efterföljande talet (<i>S</i>(0) ger 1, <i>S</i>(1) ger 2, etc.). I moderna anpassningar har Peanos ursprungliga nio axiom reducerats till fem, ty fyra av dem endast beskriver underförstådda egenskaper hos likhet. Dessa fem är: </p> <dl><dd><ol><li>0 är ett naturligt tal.</li> <li>För varje naturligt tal <i>n</i> så är <i>S</i>(<i>n</i>) ett naturligt tal. Den naturliga talmängden är sluten under <i>S</i>.</li> <li>För alla naturliga tal <i>m</i> och <i>n</i>, så är <i>S</i>(<i>m</i>)=<i>S</i>(<i>n</i>) om och endast om <i>m</i> = <i>n</i>. <i>S</i> är en <a href="/wiki/Injektiv_funktion" title="Injektiv funktion">injektiv funktion</a>.</li> <li>Det finns inget naturligt tal <i>n</i> sådant att <i>S</i>(<i>n</i>) = 0.</li> <li>Om <i>K</i> är en mängd sådan att</li></ol> <dl><dd><dl><dd><ul><li><i>K</i> innehåller 0, och</li> <li>för varje naturligt tal <i>n</i>, om <i>K</i> innehåller <i>n</i> så innehåller <i>K</i> också <i>S</i>(<i>n</i>)</li></ul></dd> <dd>så innehåller <i>K</i> alla naturliga tal.</dd></dl></dd></dl></dd></dl> <p>För att visa att <i>K</i> innehåller <i>S</i>(<i>n</i>), så räcker det att veta att <i>K</i> innehåller <i>n</i>. Det femte axiomet ger alltså ett sätt att definiera den naturliga talmängden genom <a href="/wiki/Matematisk_induktion" title="Matematisk induktion">matematisk induktion</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Definition_av_operatorer">Definition av operatorer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Peanoaritmetik&veaction=edit&section=2" title="Redigera avsnitt: Definition av operatorer" class="mw-editsection-visualeditor"><span>redigera</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Peanoaritmetik&action=edit&section=2" title="Redigera avsnitts källkod: Definition av operatorer"><span>redigera wikitext</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Med hjälp av efterföljarfunktionen <i>S</i> kan man definiera addition och multiplikation som <a href="/wiki/Bin%C3%A4r_operator" title="Binär operator">binära funktioner</a>. De tar två element i <i>N</i> och ger tillbaka ett tredje; de naturliga talen är således slutna under addition och multiplikation. </p> <div class="mw-heading mw-heading3"><h3 id="Addition">Addition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Peanoaritmetik&veaction=edit&section=3" title="Redigera avsnitt: Addition" class="mw-editsection-visualeditor"><span>redigera</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Peanoaritmetik&action=edit&section=3" title="Redigera avsnitts källkod: Addition"><span>redigera wikitext</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Addition definieras rekursivt som </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+0=a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+0=a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/813799da4092f843d6f9e96d10967e9faa6729a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.208ex; height:2.509ex;" alt="{\displaystyle a+0=a,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+S(b)=S(a+b).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+S(b)=S(a+b).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04216b7fb2ae7d97e77433e68f5149f781a050ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.498ex; height:2.843ex;" alt="{\displaystyle a+S(b)=S(a+b).}"></span></dd></dl></dd></dl> <p>Till exempel, </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3+2=3+S(1)=S(3+1)=S(3+S(0))=S(S(3+0))=S(S(3))=S(4)=5.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mo>=</mo> <mn>3</mn> <mo>+</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo>+</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>5.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3+2=3+S(1)=S(3+1)=S(3+S(0))=S(S(3+0))=S(S(3))=S(4)=5.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b8908815e4c779f3c1e68336f7196f42e370f6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:81.427ex; height:2.843ex;" alt="{\displaystyle 3+2=3+S(1)=S(3+1)=S(3+S(0))=S(S(3+0))=S(S(3))=S(4)=5.}"></span></dd></dl></dd></dl> <p><br /> </p> <div class="mw-heading mw-heading3"><h3 id="Multiplikation">Multiplikation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Peanoaritmetik&veaction=edit&section=4" title="Redigera avsnitt: Multiplikation" class="mw-editsection-visualeditor"><span>redigera</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Peanoaritmetik&action=edit&section=4" title="Redigera avsnitts källkod: Multiplikation"><span>redigera wikitext</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Givet addition definieras multiplikation rekursivt som </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot 0=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot 0=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/540d7a7b6f63e28d8cc6fa99854ac2f598f40570" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.979ex; height:2.509ex;" alt="{\displaystyle a\cdot 0=0,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot S(b)=a+(a\cdot b).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>⋅<!-- ⋅ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot S(b)=a+(a\cdot b).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd9b68253f2690a93db39b24f9fbabeb46d8c73a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.746ex; height:2.843ex;" alt="{\displaystyle a\cdot S(b)=a+(a\cdot b).}"></span></dd></dl></dd></dl> <p>Till exempel, </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\cdot 1=4\cdot S(0)=4+(4\cdot 0)=4+0=4.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> <mo>=</mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mn>4.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\cdot 1=4\cdot S(0)=4+(4\cdot 0)=4+0=4.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89068f1318950608be87fc8b6e6e9d39b9678458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.501ex; height:2.843ex;" alt="{\displaystyle 4\cdot 1=4\cdot S(0)=4+(4\cdot 0)=4+0=4.}"></span></dd></dl></dd></dl> <p>Då man låter 0 vara det <a href="/wiki/Neutralt_element" title="Neutralt element">neutrala elementet</a> för addition följer att 1 är det neutrala elementet för multiplikation. Vidare uppvisar både addition och multiplikation här <a href="/wiki/Kommutativitet" title="Kommutativitet">kommutativa</a> och <a href="/wiki/Associativitet" title="Associativitet">associativa</a> egenskaper, och multiplikation är <a href="/wiki/Distributivitet" title="Distributivitet">distributiv</a> över addition. Den algebraiska strukturen (N, +, 0, ·, 1) bildar således en kommutativ halv<a href="/wiki/Ring_(matematik)" title="Ring (matematik)">ring</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Axiomatisering_med_första_ordningens_logik"><span id="Axiomatisering_med_f.C3.B6rsta_ordningens_logik"></span>Axiomatisering med första ordningens logik</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Peanoaritmetik&veaction=edit&section=5" title="Redigera avsnitt: Axiomatisering med första ordningens logik" class="mw-editsection-visualeditor"><span>redigera</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Peanoaritmetik&action=edit&section=5" title="Redigera avsnitts källkod: Axiomatisering med första ordningens logik"><span>redigera wikitext</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Inom logisk analys är det önskvärt att uttrycka Peanoaritmetik med hjälp av <a href="/wiki/F%C3%B6rsta_ordningens_logik" title="Första ordningens logik">första ordningens logik</a>, då det underlättar vid exempelvis <a href="/wiki/Bevisteori" title="Bevisteori">bevisteori</a>. Det är då nödvändigt att låta addition och multiplikation vara en del av axiomen, istället för att definiera dem med hjälp av efterföljarfunktionen. De nya axiomen består delvis av några av de ursprungliga axiomen, delvis av definitionerna för addition och multiplikation ovan. </p> <dl><dd><ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\in N.\ S(x)\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> <mo>.</mo> <mtext> </mtext> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\in N.\ S(x)\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/291a1f32127831f245b4b6ec7532d135f1fc690e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.04ex; height:2.843ex;" alt="{\displaystyle \forall x\in N.\ S(x)\neq 0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x,y\in N.\ S(x)=S(y)\Rightarrow x=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> <mo>.</mo> <mtext> </mtext> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">⇒<!-- ⇒ --></mo> <mi>x</mi> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x,y\in N.\ S(x)=S(y)\Rightarrow x=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a433020a10e3a40862f6ceafb062039bbe80dcd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.729ex; height:2.843ex;" alt="{\displaystyle \forall x,y\in N.\ S(x)=S(y)\Rightarrow x=y}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\in N.\ x+0=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> <mo>.</mo> <mtext> </mtext> <mi>x</mi> <mo>+</mo> <mn>0</mn> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\in N.\ x+0=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/908140ebb816e8362fa3949cc115fb56aa948725" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.902ex; height:2.343ex;" alt="{\displaystyle \forall x\in N.\ x+0=x}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x,y\in N.\ x+S(y)=S(x+y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> <mo>.</mo> <mtext> </mtext> <mi>x</mi> <mo>+</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x,y\in N.\ x+S(y)=S(x+y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd22f1e32dd4868976b74b7f006805b1ace8c14d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.697ex; height:2.843ex;" alt="{\displaystyle \forall x,y\in N.\ x+S(y)=S(x+y)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x\in N.\ x\cdot 0=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> <mo>.</mo> <mtext> </mtext> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mn>0</mn> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x\in N.\ x\cdot 0=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a431adfbfe6b02f49c9a50afe9ec3f8be1472273" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.573ex; height:2.176ex;" alt="{\displaystyle \forall x\in N.\ x\cdot 0=0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall x,y\in N.\ x\cdot S(y)=x+(x\cdot y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>N</mi> <mo>.</mo> <mtext> </mtext> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>S</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall x,y\in N.\ x\cdot S(y)=x+(x\cdot y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b477aa463f67df7a218974673bbeecf01d88d19c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.045ex; height:2.843ex;" alt="{\displaystyle \forall x,y\in N.\ x\cdot S(y)=x+(x\cdot y)}"></span></li></ol></dd></dl> <p>Att konstatera att en mängd som innehåller 0 och efterföljaren av alla tal i mängden innehåller alla naturliga tal är inte heller möjligt utan <a href="/wiki/Andra_ordningens_logik" title="Andra ordningens logik">andra ordningens logik</a>. Lösningen är att omvandla det ursprungliga femte axiomet till ett första ordningens <i>axiomschema</i> som gäller för alla naturliga tal: </p> <dl><dd><ul><li>Om φ(<i>n</i>) är en sats sådan att <ul><li>φ(<i>n</i>) = 0 är sann, och</li> <li>för varje naturligt tal <i>n</i>, om φ(<i>n</i>) är sann, så är också φ(<i>S</i>(<i>n</i>)) sann</li></ul></li></ul> <dl><dd>så är φ(<i>n</i>) sann för alla naturliga tal.</dd></dl></dd></dl> <p>Detta ger ett axiom för varje tal <i>n</i> och totalt ett oändligt men <a href="/wiki/Uppr%C3%A4knelig" class="mw-redirect" title="Uppräknelig">uppräkneligt</a> antal axiom; man säger då att systemet inte är <i>ändligt axiomatiserat</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Källor"><span id="K.C3.A4llor"></span>Källor</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Peanoaritmetik&veaction=edit&section=6" title="Redigera avsnitt: Källor" class="mw-editsection-visualeditor"><span>redigera</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Peanoaritmetik&action=edit&section=6" title="Redigera avsnitts källkod: Källor"><span>redigera wikitext</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Hofstadter, Douglas R., 1985. <i>Gödel, Escher, Bach : ett evigt gyllene band</i>. Svensk uppl. Stockholm: Bromberg.</li> <li>van Oosten, Jaap, <i>Introduction to Peano Arithmetic - Gödel Incompleteness and Nonstandard Models</i> <a rel="nofollow" class="external free" href="http://www.staff.science.uu.nl/~ooste110/syllabi/peanomoeder.pdf">http://www.staff.science.uu.nl/~ooste110/syllabi/peanomoeder.pdf</a> (Hämtad 5 maj 2015)</li> <li>Weisstein, Eric W. "Peano Arithmetic." From MathWorld--A Wolfram Web Resource. <a rel="nofollow" class="external free" href="http://mathworld.wolfram.com/PeanoArithmetic.html">http://mathworld.wolfram.com/PeanoArithmetic.html</a> (Hämtad 5 maj 2015)</li> <li>Weisstein, Eric W. "Peano's Axioms." From MathWorld--A Wolfram Web Resource. <a rel="nofollow" class="external free" href="http://mathworld.wolfram.com/PeanosAxioms.html">http://mathworld.wolfram.com/PeanosAxioms.html</a> (Hämtad 5 maj 2015)</li></ul> <div class="mw-heading mw-heading3"><h3 id="Noter">Noter</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Peanoaritmetik&veaction=edit&section=7" title="Redigera avsnitt: Noter" class="mw-editsection-visualeditor"><span>redigera</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Peanoaritmetik&action=edit&section=7" title="Redigera avsnitts källkod: Noter"><span>redigera wikitext</span></a><span class="mw-editsection-bracket">]</span></span></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐f2r5r Cached time: 20241122033612 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.030 seconds Real time usage: 0.097 seconds Preprocessor visited node count: 106/1000000 Post‐expand include size: 0/2097152 bytes Template argument size: 0/2097152 bytes Highest expansion depth: 2/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 468/5000000 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 0.000 1 -total --> <!-- Saved in parser cache with key svwiki:pcache:4966404:|#|:idhash:canonical and timestamp 20241122033612 and revision id 34240589. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Hämtad från ”<a dir="ltr" href="https://sv.wikipedia.org/w/index.php?title=Peanoaritmetik&oldid=34240589">https://sv.wikipedia.org/w/index.php?title=Peanoaritmetik&oldid=34240589</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikipedia:Kategorier" title="Wikipedia:Kategorier">Kategori</a>: <ul><li><a href="/wiki/Kategori:Talteori" title="Kategori:Talteori">Talteori</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Sidan redigerades senast den 24 april 2016 kl. 22.20.</li> <li id="footer-info-copyright">Wikipedias text är tillgänglig under licensen <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.sv">Creative Commons Erkännande-dela-lika 4.0 Unported</a>. För bilder, se respektive bildsida (klicka på bilden). Se vidare <a href="/wiki/Wikipedia:Upphovsr%C3%A4tt" title="Wikipedia:Upphovsrätt">Wikipedia:Upphovsrätt</a> och <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">användarvillkor</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Wikimedias integritetspolicy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Om">Om Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Allm%C3%A4nt_f%C3%B6rbeh%C3%A5ll">Förbehåll</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Uppförandekod</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Utvecklare</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/sv.wikipedia.org">Statistik</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Information om kakor</a></li> <li id="footer-places-mobileview"><a href="//sv.m.wikipedia.org/w/index.php?title=Peanoaritmetik&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilvy</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-f2r5r","wgBackendResponseTime":343,"wgPageParseReport":{"limitreport":{"cputime":"0.030","walltime":"0.097","ppvisitednodes":{"value":106,"limit":1000000},"postexpandincludesize":{"value":0,"limit":2097152},"templateargumentsize":{"value":0,"limit":2097152},"expansiondepth":{"value":2,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":468,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 0.000 1 -total"]},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-f2r5r","timestamp":"20241122033612","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Peanoaritmetik","url":"https:\/\/sv.wikipedia.org\/wiki\/Peanoaritmetik","sameAs":"http:\/\/www.wikidata.org\/entity\/Q49938","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q49938","author":{"@type":"Organization","name":"Bidragsgivare till Wikimedia-projekten"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2015-05-12T07:01:02Z","dateModified":"2016-04-24T21:20:31Z"}</script> </body> </html>