CINXE.COM

group object in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> group object in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> group object </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/101/#Item_28" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="categorical_algebra">Categorical algebra</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>+<a class="existingWikiWord" href="/nlab/show/algebra">algebra</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/internalization">internalization</a> and <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+object">group object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+object">algebra object</a> (associative, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+object">Lie</a>, …)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+object">module object</a>/<a class="existingWikiWord" href="/nlab/show/action+object">action object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+locale">internal locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/internal+infinity-categories+contents">more</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+groupoid">internal groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+site">internal site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+diagram">internal diagram</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+Lawvere+theory">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/algebraic+theories">algebraic theories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/monads">monads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/operads">operads</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a>, <a class="existingWikiWord" href="/nlab/show/internal+language">internal language</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+category+theory+and+type+theory">relation between category theory and type theory</a></p> </li> </ul> </div></div> <h4 id="group_theory">Group Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/group+theory">group theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+object">group object</a>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></li> <li><a class="existingWikiWord" href="/nlab/show/super+abelian+group">super abelian group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></li> <li><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></li> <li><a class="existingWikiWord" href="/nlab/show/progroup">progroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>. <a class="existingWikiWord" href="/nlab/show/projective+unitary+group">projective unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+group">symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a>, <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classification+of+finite+simple+groups">classification of finite simple groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sporadic+finite+simple+groups">sporadic finite simple groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Monster+group">Monster group</a>, <a class="existingWikiWord" href="/nlab/show/Mathieu+group">Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+variety">abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+group">string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kac-Moody+group">Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Lie+group">super Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Euclidean+group">super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-group">2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a>, <a class="existingWikiWord" href="/nlab/show/strict+2-group">strict 2-group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-group">n-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+groupal+n-groupoid">k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a>, <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>, <a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-group">fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a>, <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#InCartesianMonoidalCategory'>In a cartesian monoidal category</a></li> <li><a href='#InABraidedMonoidalCategory'>In a braided monoidal category</a></li> <li><a href='#InTermsOfPresheavesOfGroups'>In terms of presheaves of groups</a></li> <li><a href='#AsDataStructure'>As data structure</a></li> </ul> <li><a href='#Examples'>Examples</a></li> <li><a href='#theory'>Theory</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#References'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <em>group object</em> in a <a class="existingWikiWord" href="/nlab/show/cartesian+category">cartesian</a> <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/group">group</a> <a class="existingWikiWord" href="/nlab/show/internalization">internal</a> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> (see at <em><a class="existingWikiWord" href="/nlab/show/internalization">internalization</a></em> for more on the general idea).</p> <p>In other words, a group object is something that behaves “just like” a <a class="existingWikiWord" href="/nlab/show/group">group</a> but which need not have (just) an <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/set">set</a>.</p> <p>For example, group objects in <a class="existingWikiWord" href="/nlab/show/Top">Top</a> are <a class="existingWikiWord" href="/nlab/show/topological+groups">topological groups</a>, while group objects in <a class="existingWikiWord" href="/nlab/show/SmthMfd">SmthMfd</a> are <a class="existingWikiWord" href="/nlab/show/Lie+groups">Lie groups</a>, etc., see the <em><a href="#Examples">Examples</a></em> below.</p> <p>Given a non-cartesian but <a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a> one can still make sense of group objects in the <a class="existingWikiWord" href="/nlab/show/formal+duality">dual</a> guise of <em><a class="existingWikiWord" href="/nlab/show/Hopf+monoids">Hopf monoids</a></em>, see there for more and see <a href="#InABraidedMonoidalCategory">further below</a>.</p> <h2 id="definition">Definition</h2> <h3 id="InCartesianMonoidalCategory">In a cartesian monoidal category</h3> <p> <div class='num_defn' id='GroupObjectInCartesianCategory'> <h6>Definition</h6> <p><strong>(group object in <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a>)</strong> <br /> A <strong>group object</strong> or <strong>internal group</strong> <a class="existingWikiWord" href="/nlab/show/internalization">internal to</a> a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/finite+products">finite products</a> (binary <a class="existingWikiWord" href="/nlab/show/Cartesian+products">Cartesian products</a> and a <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">\ast</annotation></semantics></math>) is</p> <ul> <li> <p>an <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> (say with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>→</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">p \colon G \to \ast</annotation></semantics></math> the unique morphism to the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a>)</p> </li> <li> <p>and <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> as follows:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/binary+operation">binary operation</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">m \colon G\times G \to G</annotation></semantics></math>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/neutral+element">neutral element</a>:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">e</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mo>*</mo><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathrm{e} \,\colon\, \ast \to G</annotation></semantics></math></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverse+elements">inverse elements</a>:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">(-)^{-1} \,\colon\, G\to G</annotation></semantics></math></p> </li> </ul> </li> </ul> <p>such that the following <a class="existingWikiWord" href="/nlab/show/commuting+diagram">diagrams commute</a>:</p> <p>(<a class="existingWikiWord" href="/nlab/show/associativity">associativity</a>)</p> <div class="maruku-equation" id="eq:Associativity"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mi>id</mi><mo>×</mo><mi>m</mi></mrow></mover></mtd> <mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mi>m</mi><mo>×</mo><mi>id</mi></mrow></mpadded></msup><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mi>m</mi></mtd></mtr> <mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mi>m</mi></mover></mtd> <mtd><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G\times G\times G &amp; \stackrel{id\times m}{\longrightarrow} &amp; G\times G \\ {}^{ \mathllap{ m\times id } } \big\downarrow &amp;&amp; \big\downarrow m \\ G\times G &amp; \stackrel{m}{\longrightarrow} &amp; G } </annotation></semantics></math></div> <p>(<a class="existingWikiWord" href="/nlab/show/unitality">unitality</a>)</p> <div class="maruku-equation" id="eq:Unitality"><span class="maruku-eq-number">(2)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mi mathvariant="normal">e</mi><mo>,</mo><mi>id</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">id</mo><mo>,</mo><mi mathvariant="normal">e</mi><mo stretchy="false">)</mo></mrow></mpadded></msup><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd><munder><mo>↘</mo><mo lspace="0em" rspace="thinmathspace">id</mo></munder></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mi>m</mi></mtd></mtr> <mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><munder><mo>⟶</mo><mi>m</mi></munder></mtd> <mtd><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G &amp; \stackrel{(\mathrm{e},id)}{\longrightarrow} &amp; G\times G \\ {}^{\mathllap{(\id,\mathrm{e})}} \big\downarrow &amp;\underset{\id}{\searrow}&amp; \big\downarrow m \\ G\times G &amp; \underset{m}{\longrightarrow} &amp;G } </annotation></semantics></math></div> <p>(<a class="existingWikiWord" href="/nlab/show/inverses">invertibility</a>):</p> <div class="maruku-equation" id="eq:Invertibility"><span class="maruku-eq-number">(3)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>,</mo><mi>id</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mo stretchy="false">(</mo><mi>id</mi><mo>,</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo></mrow></mpadded></msup><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd><munder><mo>↘</mo><mrow><mi mathvariant="normal">e</mi><mo>∘</mo><mi>p</mi></mrow></munder></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mi>m</mi></mtd></mtr> <mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mi>m</mi></mover></mtd> <mtd><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G &amp; \overset{ ((-)^{-1},id) } {\longrightarrow} &amp; G\times G \\ {}^{ \mathllap{ (id,(-)^{-1}) } } \big\downarrow &amp; \underset{\mathrm{e} \circ p}{\searrow} &amp; \big\downarrow m \\ G\times G &amp; \stackrel{m}{\longrightarrow} &amp; G } </annotation></semantics></math></div> <p></p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>More pedantically, the <a class="existingWikiWord" href="/nlab/show/associativity+law">associativity law</a> <a class="maruku-eqref" href="#eq:Associativity">(1)</a> actually factors through the <a class="existingWikiWord" href="/nlab/show/associator">associator</a> <a class="existingWikiWord" href="/nlab/show/isomorphisms">isomorphisms</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mover><mo>→</mo><mphantom><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo></mrow></mphantom></mover><mi>G</mi><mo>×</mo><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(G\times G)\times G \xrightarrow{\phantom{--}} G\times (G\times G)</annotation></semantics></math>, which is notationally suppressed above.</p> </div> </p> <p> <div class='num_remark' id='UseOfDiagonalMorphism'> <h6>Remark</h6> <p>The <a class="existingWikiWord" href="/nlab/show/pairing">pairing</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(f,g)</annotation></semantics></math> denotes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>×</mo><mi>g</mi><mo stretchy="false">)</mo><mo>∘</mo><mi>Δ</mi></mrow><annotation encoding="application/x-tex">(f\times g)\circ\Delta</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi></mrow><annotation encoding="application/x-tex">\Delta</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/diagonal+morphism">diagonal morphism</a>.</p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>Even if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> does not have <em>all</em> binary products, as long as products with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> (and the terminal object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">*</annotation></semantics></math>) exist, then one can clearly still speak of a group object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, as above.</p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>The first two structures in Def. <a class="maruku-ref" href="#GroupObjectInCartesianCategory"></a> (<a class="existingWikiWord" href="/nlab/show/binary+operation">binary operation</a> and <a class="existingWikiWord" href="/nlab/show/neutral+element">neutral element</a>) together with the first two properties (<a class="existingWikiWord" href="/nlab/show/associativity">associativity</a> and <a class="existingWikiWord" href="/nlab/show/unitality">unitality</a>) make a internal <em><a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a></em>. The remaining structure (<a class="existingWikiWord" href="/nlab/show/inverses">inverses</a>) is what specializes this monoid object to a group object.</p> </div> </p> <p>There is an alternative way to encode the specialization from monoid objects to group objects:</p> <p> <div class='num_prop' id='GroupsAsMonoidsWithCartesianAssociativity'> <h6>Proposition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi mathvariant="normal">e</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(G, m, \mathrm{e})</annotation></semantics></math> can be made into a group object according to Def. <a class="maruku-ref" href="#GroupObjectInCartesianCategory"></a> iff its <a class="existingWikiWord" href="/nlab/show/associativity">associativity</a> <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> <a class="maruku-eqref" href="#eq:Associativity">(1)</a> is <a class="existingWikiWord" href="/nlab/show/cartesian+square">cartesian</a> (meaning: exhibiting a <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> or <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a>).</p> </div> <div class='proof'> <h6>Proof</h6> <p>First assume that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi mathvariant="normal">e</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(G,m,\mathrm{e})</annotation></semantics></math> becomes a group object via some <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">(-)^{-1} \,\colon\, G \to G</annotation></semantics></math>. In order to show that then <a class="maruku-eqref" href="#eq:Associativity">(1)</a> is Cartesian we may verify the <a class="existingWikiWord" href="/nlab/show/universal+property">universal property</a> of a <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a>:</p> <p>Given any <a class="existingWikiWord" href="/nlab/show/domain">domain</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>l</mi> <mi>i</mi></msub><mo>,</mo><msub><mi>r</mi> <mi>i</mi></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thickmathspace"></mspace><mi>D</mi><mo>⟶</mo><mi>G</mi><mo>×</mo><mi>G</mi><mspace width="thinmathspace"></mspace><mo>,</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>i</mi><mo>∈</mo><mo stretchy="false">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex"> (l_i, r_i) \;\colon\; D \longrightarrow G \times G \,,\;\;\;\;\;\;\; i \in \{1,2\} </annotation></semantics></math></div> <p>such that the following solid <a class="existingWikiWord" href="/nlab/show/commuting+diagram">diagram commutes</a></p> <div class="maruku-equation" id="eq:CartesianAssociativity"><span class="maruku-eq-number">(4)</span><code class="maruku-mathml"></code></div><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="304.836pt" height="213.515pt" viewBox="0 0 304.836 213.515" version="1.2"> <defs> <g> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-1"> <path style="stroke:none;" d="M 2.34375 -1.109375 C 2.203125 -0.578125 2.171875 -0.4375 1.140625 -0.4375 C 0.84375 -0.4375 0.703125 -0.4375 0.703125 -0.15625 C 0.703125 0 0.796875 0 1.09375 0 L 5.8125 0 C 8.828125 0 11.765625 -3.109375 11.765625 -6.4375 C 11.765625 -8.59375 10.484375 -10.1875 8.34375 -10.1875 L 3.5625 -10.1875 C 3.28125 -10.1875 3.140625 -10.1875 3.140625 -9.890625 C 3.140625 -9.75 3.28125 -9.75 3.5 -9.75 C 4.40625 -9.75 4.40625 -9.625 4.40625 -9.46875 C 4.40625 -9.4375 4.40625 -9.34375 4.359375 -9.125 Z M 5.484375 -9.171875 C 5.625 -9.71875 5.671875 -9.75 6.265625 -9.75 L 7.90625 -9.75 C 9.296875 -9.75 10.578125 -8.984375 10.578125 -6.9375 C 10.578125 -6.1875 10.28125 -3.59375 8.84375 -1.953125 C 8.421875 -1.453125 7.296875 -0.4375 5.578125 -0.4375 L 3.875 -0.4375 C 3.671875 -0.4375 3.640625 -0.4375 3.546875 -0.453125 C 3.390625 -0.46875 3.375 -0.484375 3.375 -0.609375 C 3.375 -0.71875 3.40625 -0.8125 3.421875 -0.9375 Z M 5.484375 -9.171875 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2"> <path style="stroke:none;" d="M 11.125 -10.359375 C 11.125 -10.5 11.015625 -10.5 10.984375 -10.5 C 10.953125 -10.5 10.890625 -10.5 10.78125 -10.34375 L 9.75 -9.109375 C 9.671875 -9.234375 9.375 -9.75 8.796875 -10.09375 C 8.15625 -10.5 7.515625 -10.5 7.296875 -10.5 C 4.09375 -10.5 0.75 -7.25 0.75 -3.71875 C 0.75 -1.265625 2.4375 0.3125 4.6875 0.3125 C 5.75 0.3125 7.109375 -0.046875 7.859375 -0.984375 C 8.015625 -0.421875 8.34375 -0.015625 8.453125 -0.015625 C 8.53125 -0.015625 8.546875 -0.0625 8.5625 -0.0625 C 8.578125 -0.09375 8.6875 -0.609375 8.765625 -0.875 L 9 -1.828125 C 9.125 -2.328125 9.1875 -2.53125 9.28125 -2.984375 C 9.4375 -3.546875 9.46875 -3.59375 10.28125 -3.609375 C 10.34375 -3.609375 10.53125 -3.609375 10.53125 -3.890625 C 10.53125 -4.046875 10.375 -4.046875 10.328125 -4.046875 C 10.078125 -4.046875 9.796875 -4.015625 9.53125 -4.015625 L 8.71875 -4.015625 C 8.09375 -4.015625 7.4375 -4.046875 6.828125 -4.046875 C 6.6875 -4.046875 6.515625 -4.046875 6.515625 -3.765625 C 6.515625 -3.625 6.640625 -3.625 6.640625 -3.609375 L 7 -3.609375 C 8.1875 -3.609375 8.1875 -3.484375 8.1875 -3.265625 C 8.1875 -3.25 7.90625 -1.75 7.609375 -1.296875 C 7.046875 -0.46875 5.875 -0.125 5 -0.125 C 3.84375 -0.125 1.984375 -0.71875 1.984375 -3.296875 C 1.984375 -4.296875 2.34375 -6.578125 3.78125 -8.265625 C 4.71875 -9.328125 6.109375 -10.0625 7.421875 -10.0625 C 9.1875 -10.0625 9.8125 -8.5625 9.8125 -7.1875 C 9.8125 -6.953125 9.75 -6.625 9.75 -6.40625 C 9.75 -6.28125 9.890625 -6.28125 9.9375 -6.28125 C 10.109375 -6.28125 10.125 -6.296875 10.1875 -6.5625 Z M 11.125 -10.359375 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph1-1"> <path style="stroke:none;" d="M 5.796875 -4.140625 L 2.8125 -7.109375 C 2.640625 -7.296875 2.609375 -7.3125 2.484375 -7.3125 C 2.34375 -7.3125 2.1875 -7.1875 2.1875 -7.015625 C 2.1875 -6.921875 2.21875 -6.890625 2.390625 -6.71875 L 5.359375 -3.71875 L 2.390625 -0.734375 C 2.21875 -0.5625 2.1875 -0.53125 2.1875 -0.4375 C 2.1875 -0.265625 2.34375 -0.140625 2.484375 -0.140625 C 2.609375 -0.140625 2.640625 -0.15625 2.8125 -0.34375 L 5.78125 -3.3125 L 8.875 -0.21875 C 8.90625 -0.203125 9 -0.140625 9.09375 -0.140625 C 9.265625 -0.140625 9.390625 -0.265625 9.390625 -0.4375 C 9.390625 -0.46875 9.390625 -0.515625 9.34375 -0.59375 C 9.328125 -0.625 6.96875 -2.96875 6.21875 -3.71875 L 8.9375 -6.453125 C 9.015625 -6.546875 9.234375 -6.734375 9.3125 -6.828125 C 9.328125 -6.859375 9.390625 -6.921875 9.390625 -7.015625 C 9.390625 -7.1875 9.265625 -7.3125 9.09375 -7.3125 C 8.96875 -7.3125 8.90625 -7.265625 8.75 -7.09375 Z M 5.796875 -4.140625 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-1"> <path style="stroke:none;" d="M 3.3125 2.484375 C 3.390625 2.484375 3.515625 2.484375 3.515625 2.359375 C 3.515625 2.328125 3.5 2.3125 3.375 2.1875 C 2 0.90625 1.671875 -0.9375 1.671875 -2.484375 C 1.671875 -5.34375 2.859375 -6.6875 3.359375 -7.140625 C 3.5 -7.28125 3.515625 -7.28125 3.515625 -7.328125 C 3.515625 -7.390625 3.46875 -7.453125 3.375 -7.453125 C 3.203125 -7.453125 2.71875 -6.953125 2.640625 -6.859375 C 1.296875 -5.46875 1.03125 -3.671875 1.03125 -2.484375 C 1.03125 -0.265625 1.953125 1.53125 3.3125 2.484375 Z M 3.3125 2.484375 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-2"> <path style="stroke:none;" d="M 3.078125 -2.484375 C 3.078125 -3.421875 2.90625 -4.5625 2.296875 -5.734375 C 1.8125 -6.640625 0.90625 -7.453125 0.71875 -7.453125 C 0.625 -7.453125 0.59375 -7.390625 0.59375 -7.328125 C 0.59375 -7.296875 0.59375 -7.28125 0.71875 -7.15625 C 2.109375 -5.828125 2.421875 -4.015625 2.421875 -2.484375 C 2.421875 0.375 1.25 1.71875 0.734375 2.171875 C 0.609375 2.3125 0.59375 2.3125 0.59375 2.359375 C 0.59375 2.421875 0.625 2.484375 0.71875 2.484375 C 0.890625 2.484375 1.375 1.984375 1.453125 1.890625 C 2.796875 0.5 3.078125 -1.296875 3.078125 -2.484375 Z M 3.078125 -2.484375 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-3"> <path style="stroke:none;" d="M 2.015625 -6.578125 C 2.015625 -6.921875 1.734375 -7.109375 1.46875 -7.109375 C 1.1875 -7.109375 0.921875 -6.890625 0.921875 -6.578125 C 0.921875 -6.546875 0.9375 -6.375 0.9375 -6.328125 L 1.296875 -2.125 C 1.328125 -1.953125 1.328125 -1.890625 1.46875 -1.890625 C 1.609375 -1.890625 1.625 -1.953125 1.625 -2.109375 Z M 2.015625 -0.546875 C 2.015625 -0.890625 1.75 -1.109375 1.46875 -1.109375 C 1.140625 -1.109375 0.921875 -0.828125 0.921875 -0.5625 C 0.921875 -0.25 1.15625 0 1.46875 0 C 1.765625 0 2.015625 -0.234375 2.015625 -0.546875 Z M 2.015625 -0.546875 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-4"> <path style="stroke:none;" d="M 1.9375 -6.125 C 1.9375 -6.40625 1.703125 -6.671875 1.375 -6.671875 C 1.09375 -6.671875 0.828125 -6.453125 0.828125 -6.125 C 0.828125 -5.78125 1.125 -5.578125 1.375 -5.578125 C 1.734375 -5.578125 1.9375 -5.859375 1.9375 -6.125 Z M 0.453125 -4.265625 L 0.453125 -3.9375 C 1.078125 -3.9375 1.171875 -3.890625 1.171875 -3.40625 L 1.171875 -0.78125 C 1.171875 -0.328125 1.046875 -0.328125 0.421875 -0.328125 L 0.421875 0 C 0.8125 -0.03125 1.359375 -0.03125 1.515625 -0.03125 C 1.640625 -0.03125 2.234375 -0.03125 2.578125 0 L 2.578125 -0.328125 C 1.9375 -0.328125 1.890625 -0.375 1.890625 -0.765625 L 1.890625 -4.375 Z M 0.453125 -4.265625 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-5"> <path style="stroke:none;" d="M 3.265625 -6.78125 L 3.265625 -6.453125 C 3.9375 -6.453125 4.03125 -6.390625 4.03125 -5.90625 L 4.03125 -3.8125 C 3.671875 -4.1875 3.203125 -4.375 2.6875 -4.375 C 1.453125 -4.375 0.34375 -3.421875 0.34375 -2.140625 C 0.34375 -0.921875 1.34375 0.09375 2.59375 0.09375 C 3.1875 0.09375 3.671875 -0.171875 4 -0.53125 L 4 0.09375 L 5.5 0 L 5.5 -0.328125 C 4.828125 -0.328125 4.75 -0.390625 4.75 -0.890625 L 4.75 -6.890625 Z M 4 -1.234375 C 4 -1.046875 4 -1.015625 3.84375 -0.8125 C 3.5625 -0.421875 3.109375 -0.171875 2.640625 -0.171875 C 2.1875 -0.171875 1.78125 -0.421875 1.546875 -0.78125 C 1.28125 -1.171875 1.234375 -1.65625 1.234375 -2.125 C 1.234375 -2.703125 1.328125 -3.109375 1.546875 -3.453125 C 1.78125 -3.828125 2.234375 -4.109375 2.75 -4.109375 C 3.21875 -4.109375 3.703125 -3.859375 4 -3.34375 Z M 4 -1.234375 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-1"> <path style="stroke:none;" d="M 2.609375 -6.59375 C 2.609375 -6.625 2.640625 -6.75 2.640625 -6.75 C 2.640625 -6.8125 2.609375 -6.890625 2.484375 -6.890625 L 1.484375 -6.8125 C 1.109375 -6.78125 1.03125 -6.78125 1.03125 -6.59375 C 1.03125 -6.453125 1.171875 -6.453125 1.296875 -6.453125 C 1.765625 -6.453125 1.765625 -6.40625 1.765625 -6.3125 C 1.765625 -6.28125 1.765625 -6.265625 1.71875 -6.078125 L 0.484375 -1.15625 C 0.453125 -1 0.453125 -0.84375 0.453125 -0.828125 C 0.453125 -0.21875 0.953125 0.09375 1.453125 0.09375 C 1.875 0.09375 2.109375 -0.234375 2.21875 -0.453125 C 2.390625 -0.78125 2.546875 -1.375 2.546875 -1.421875 C 2.546875 -1.484375 2.515625 -1.546875 2.390625 -1.546875 C 2.296875 -1.546875 2.265625 -1.5 2.265625 -1.484375 C 2.25 -1.453125 2.203125 -1.28125 2.171875 -1.171875 C 2.015625 -0.59375 1.828125 -0.171875 1.46875 -0.171875 C 1.234375 -0.171875 1.15625 -0.40625 1.15625 -0.640625 C 1.15625 -0.828125 1.1875 -0.9375 1.21875 -1.078125 Z M 2.609375 -6.59375 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-2"> <path style="stroke:none;" d="M 1.859375 -0.15625 C 1.859375 0.5 1.71875 1.0625 1.109375 1.671875 C 1.0625 1.703125 1.046875 1.734375 1.046875 1.78125 C 1.046875 1.859375 1.125 1.921875 1.1875 1.921875 C 1.3125 1.921875 2.140625 1.140625 2.140625 -0.03125 C 2.140625 -0.671875 1.890625 -1.109375 1.453125 -1.109375 C 1.109375 -1.109375 0.921875 -0.828125 0.921875 -0.5625 C 0.921875 -0.28125 1.109375 0 1.46875 0 C 1.703125 0 1.859375 -0.140625 1.859375 -0.15625 Z M 1.859375 -0.15625 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-3"> <path style="stroke:none;" d="M 1.921875 -1.375 C 2.03125 -1.796875 2.140625 -2.21875 2.234375 -2.65625 C 2.25 -2.6875 2.3125 -2.96875 2.328125 -3.015625 C 2.359375 -3.109375 2.609375 -3.515625 2.859375 -3.765625 C 3.1875 -4.046875 3.515625 -4.109375 3.703125 -4.109375 C 3.8125 -4.109375 3.984375 -4.09375 4.125 -3.96875 C 3.703125 -3.890625 3.640625 -3.515625 3.640625 -3.421875 C 3.640625 -3.203125 3.8125 -3.0625 4.03125 -3.0625 C 4.296875 -3.0625 4.59375 -3.28125 4.59375 -3.671875 C 4.59375 -4.03125 4.28125 -4.375 3.71875 -4.375 C 3.046875 -4.375 2.578125 -3.9375 2.375 -3.671875 C 2.171875 -4.375 1.5 -4.375 1.40625 -4.375 C 1.046875 -4.375 0.796875 -4.15625 0.640625 -3.84375 C 0.40625 -3.40625 0.296875 -2.890625 0.296875 -2.859375 C 0.296875 -2.765625 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.765625 0.65625 -3.03125 C 0.78125 -3.515625 0.953125 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.859375 1.6875 -3.640625 C 1.6875 -3.453125 1.640625 -3.265625 1.5625 -2.9375 C 1.546875 -2.859375 1.390625 -2.28125 1.34375 -2.140625 L 0.984375 -0.640625 C 0.9375 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.546875 0.09375 1.625 -0.171875 1.703125 -0.515625 Z M 1.921875 -1.375 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-4"> <path style="stroke:none;" d="M 1.984375 -1.625 C 2.015625 -1.78125 2.109375 -2.15625 2.140625 -2.3125 C 2.171875 -2.40625 2.234375 -2.640625 2.25 -2.75 C 2.28125 -2.796875 2.609375 -3.4375 3.046875 -3.765625 C 3.375 -4.03125 3.703125 -4.109375 3.984375 -4.109375 C 4.359375 -4.109375 4.546875 -3.890625 4.546875 -3.421875 C 4.546875 -3.1875 4.484375 -2.96875 4.375 -2.515625 C 4.3125 -2.25 4.140625 -1.59375 4.078125 -1.328125 L 3.9375 -0.71875 C 3.890625 -0.5625 3.8125 -0.265625 3.8125 -0.203125 C 3.8125 0.015625 4 0.09375 4.140625 0.09375 C 4.3125 0.09375 4.46875 -0.015625 4.53125 -0.140625 C 4.5625 -0.203125 4.640625 -0.53125 4.6875 -0.75 L 4.921875 -1.625 C 4.953125 -1.78125 5.046875 -2.15625 5.078125 -2.3125 C 5.21875 -2.84375 5.21875 -2.859375 5.453125 -3.1875 C 5.78125 -3.671875 6.234375 -4.109375 6.90625 -4.109375 C 7.265625 -4.109375 7.46875 -3.890625 7.46875 -3.421875 C 7.46875 -2.875 7.0625 -1.734375 6.859375 -1.265625 C 6.765625 -1 6.734375 -0.9375 6.734375 -0.75 C 6.734375 -0.171875 7.203125 0.09375 7.625 0.09375 C 8.609375 0.09375 9.015625 -1.296875 9.015625 -1.421875 C 9.015625 -1.515625 8.9375 -1.546875 8.859375 -1.546875 C 8.75 -1.546875 8.71875 -1.484375 8.703125 -1.375 C 8.453125 -0.5625 8.046875 -0.171875 7.65625 -0.171875 C 7.5 -0.171875 7.421875 -0.28125 7.421875 -0.5 C 7.421875 -0.734375 7.5 -0.953125 7.609375 -1.203125 C 7.75 -1.578125 8.1875 -2.71875 8.1875 -3.28125 C 8.1875 -4.03125 7.671875 -4.375 6.953125 -4.375 C 6.265625 -4.375 5.703125 -4.03125 5.25 -3.40625 C 5.171875 -4.203125 4.546875 -4.375 4.03125 -4.375 C 3.5625 -4.375 2.96875 -4.21875 2.421875 -3.515625 C 2.34375 -4.109375 1.875 -4.375 1.40625 -4.375 C 1.046875 -4.375 0.8125 -4.171875 0.640625 -3.828125 C 0.390625 -3.375 0.296875 -2.875 0.296875 -2.859375 C 0.296875 -2.765625 0.375 -2.734375 0.453125 -2.734375 C 0.578125 -2.734375 0.59375 -2.765625 0.65625 -3.03125 C 0.78125 -3.515625 0.953125 -4.109375 1.375 -4.109375 C 1.625 -4.109375 1.6875 -3.859375 1.6875 -3.640625 C 1.6875 -3.453125 1.640625 -3.265625 1.5625 -2.9375 C 1.546875 -2.859375 1.390625 -2.28125 1.34375 -2.140625 L 0.984375 -0.640625 C 0.9375 -0.5 0.890625 -0.25 0.890625 -0.203125 C 0.890625 0.015625 1.078125 0.09375 1.203125 0.09375 C 1.375 0.09375 1.53125 -0.015625 1.59375 -0.140625 C 1.625 -0.203125 1.703125 -0.53125 1.765625 -0.75 Z M 1.984375 -1.625 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph4-1"> <path style="stroke:none;" d="M 2.671875 -4.734375 C 2.671875 -4.953125 2.640625 -4.953125 2.421875 -4.953125 C 1.9375 -4.484375 1.171875 -4.484375 0.90625 -4.484375 L 0.90625 -4.1875 C 1.09375 -4.1875 1.59375 -4.1875 2.03125 -4.390625 L 2.03125 -0.640625 C 2.03125 -0.390625 2.03125 -0.296875 1.265625 -0.296875 L 0.953125 -0.296875 L 0.953125 0 C 1.359375 -0.03125 1.9375 -0.03125 2.359375 -0.03125 C 2.765625 -0.03125 3.359375 -0.03125 3.765625 0 L 3.765625 -0.296875 L 3.4375 -0.296875 C 2.671875 -0.296875 2.671875 -0.390625 2.671875 -0.640625 Z M 2.671875 -4.734375 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph4-2"> <path style="stroke:none;" d="M 4.015625 -1.390625 L 3.734375 -1.390625 C 3.71875 -1.296875 3.640625 -0.796875 3.53125 -0.71875 C 3.484375 -0.671875 2.875 -0.671875 2.765625 -0.671875 L 1.375 -0.671875 L 2.328125 -1.453125 C 2.59375 -1.640625 3.25 -2.125 3.484375 -2.34375 C 3.703125 -2.578125 4.015625 -2.953125 4.015625 -3.484375 C 4.015625 -4.40625 3.171875 -4.953125 2.171875 -4.953125 C 1.203125 -4.953125 0.53125 -4.328125 0.53125 -3.625 C 0.53125 -3.234375 0.859375 -3.203125 0.9375 -3.203125 C 1.125 -3.203125 1.34375 -3.328125 1.34375 -3.59375 C 1.34375 -3.765625 1.25 -4 0.921875 -4 C 1.09375 -4.375 1.546875 -4.671875 2.0625 -4.671875 C 2.84375 -4.671875 3.25 -4.078125 3.25 -3.484375 C 3.25 -2.953125 2.90625 -2.40625 2.390625 -1.9375 L 0.625 -0.3125 C 0.546875 -0.234375 0.53125 -0.234375 0.53125 0 L 3.78125 0 Z M 4.015625 -1.390625 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph5-1"> <path style="stroke:none;" d="M 5.265625 -6.515625 C 5.265625 -6.84375 5.234375 -6.890625 4.890625 -6.890625 L 0.96875 -6.890625 C 0.8125 -6.890625 0.59375 -6.890625 0.59375 -6.671875 C 0.59375 -6.4375 0.8125 -6.4375 0.96875 -6.4375 L 4.8125 -6.4375 L 4.8125 -3.671875 L 1.109375 -3.671875 C 0.953125 -3.671875 0.734375 -3.671875 0.734375 -3.453125 C 0.734375 -3.21875 0.953125 -3.21875 1.109375 -3.21875 L 4.8125 -3.21875 L 4.8125 -0.453125 L 0.96875 -0.453125 C 0.8125 -0.453125 0.59375 -0.453125 0.59375 -0.234375 C 0.59375 0 0.8125 0 0.96875 0 L 4.890625 0 C 5.21875 0 5.265625 -0.046875 5.265625 -0.375 Z M 5.265625 -6.515625 "></path> </symbol> <symbol overflow="visible" id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph5-2"> <path style="stroke:none;" d="M 6.515625 -4.578125 C 6.625 -4.6875 6.640625 -4.734375 6.640625 -4.8125 C 6.640625 -4.921875 6.546875 -5.03125 6.421875 -5.03125 C 6.328125 -5.03125 6.296875 -5 6.1875 -4.890625 L 4.109375 -2.8125 L 2.015625 -4.90625 C 1.890625 -5.015625 1.84375 -5.03125 1.78125 -5.03125 C 1.65625 -5.03125 1.546875 -4.9375 1.546875 -4.8125 C 1.546875 -4.71875 1.59375 -4.6875 1.6875 -4.578125 L 3.78125 -2.484375 L 1.703125 -0.40625 C 1.5625 -0.28125 1.546875 -0.234375 1.546875 -0.15625 C 1.546875 -0.03125 1.65625 0.0625 1.78125 0.0625 C 1.875 0.0625 1.890625 0.046875 2 -0.0625 L 4.09375 -2.15625 L 6.265625 0.015625 C 6.3125 0.046875 6.375 0.0625 6.421875 0.0625 C 6.546875 0.0625 6.640625 -0.046875 6.640625 -0.15625 C 6.640625 -0.234375 6.59375 -0.28125 6.59375 -0.28125 C 6.5625 -0.34375 4.96875 -1.921875 4.421875 -2.484375 Z M 6.515625 -4.578125 "></path> </symbol> </g> </defs> <g id="ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-1" x="146.072414" y="15.645461"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="116.838818" y="78.793021"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph1-1" x="131.667635" y="78.793021"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="146.578764" y="78.793021"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph1-1" x="161.40758" y="78.793021"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="176.317462" y="78.793021"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="6.683037" y="143.183758"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph1-1" x="21.511854" y="143.183758"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="36.422983" y="143.183758"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="256.734046" y="143.183758"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph1-1" x="271.562862" y="143.183758"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="286.472744" y="143.183758"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph0-2" x="146.578265" y="207.574494"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -9.259515 85.360852 L -113.029852 -20.480584 " transform="matrix(0.997734,0,0,-0.997734,152.336186,106.515051)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.488048 2.869933 C -2.031641 1.146051 -1.020792 0.333131 0.000355425 0.00186552 C -1.019083 -0.334145 -2.032156 -1.146436 -2.486648 -2.869618 " transform="matrix(-0.698453,0.712402,0.712402,0.698453,39.397357,127.119538)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-1" x="58.235935" y="68.326795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-1" x="62.342856" y="68.326795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph4-1" x="65.495694" y="69.707409"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-2" x="70.672685" y="68.326795"></use> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-3" x="73.605992" y="68.326795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph4-1" x="78.372694" y="69.707409"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-2" x="83.549685" y="68.326795"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 9.259017 85.360852 L 113.029354 -20.480584 " transform="matrix(0.997734,0,0,-0.997734,152.336186,106.515051)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487641 2.868606 C -2.030408 1.148219 -1.020076 0.333132 0.00210385 -0.0000821737 C -1.021785 -0.334144 -2.032634 -1.147064 -2.486299 -2.868149 " transform="matrix(0.698453,0.712402,0.712402,-0.698453,265.275933,127.119538)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-1" x="217.016265" y="68.326795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-1" x="221.123186" y="68.326795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph4-2" x="224.276024" y="69.707409"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-2" x="229.453015" y="68.326795"></use> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-3" x="232.386322" y="68.326795"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph4-2" x="237.153024" y="69.707409"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-2" x="242.330015" y="68.326795"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:3.34735,1.91277;stroke-miterlimit:10;" d="M -0.000248905 85.360852 L -0.000248905 44.193334 " transform="matrix(0.997734,0,0,-0.997734,152.336186,106.515051)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485897 2.868183 C -2.031768 1.149401 -1.021662 0.335019 0.000198964 -0.00170894 C -1.021675 -0.334481 -2.031813 -1.148822 -2.486011 -2.867587 " transform="matrix(0.0000199547,0.997714,0.997714,-0.0000199547,152.337643,62.659958)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 159.949219 35.460938 L 144.726562 35.460938 L 144.726562 48.785156 L 159.949219 48.785156 Z M 159.949219 35.460938 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph5-1" x="147.93618" y="45.576473"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-3" x="153.804101" y="45.576473"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -20.762146 20.820049 L -101.21401 -20.601953 " transform="matrix(0.997734,0,0,-0.997734,152.336186,106.515051)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487432 2.869489 C -2.031556 1.14625 -1.018537 0.333988 -0.00160426 -0.000268914 C -1.019461 -0.334924 -2.032478 -1.147688 -2.487153 -2.868889 " transform="matrix(-0.887005,0.456723,0.456723,0.887005,51.139325,127.180659)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-4" x="94.782918" y="116.926401"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph5-2" x="104.1242" y="116.926401"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-4" x="112.339289" y="116.926401"></use> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-5" x="115.272597" y="116.926401"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 20.765564 20.820049 L 101.217428 -20.601953 " transform="matrix(0.997734,0,0,-0.997734,152.336186,106.515051)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.485848 2.869626 C -2.031149 1.148398 -1.021588 0.333836 -0.000228545 0.000977298 C -1.020658 -0.335087 -2.033687 -1.147373 -2.486074 -2.868854 " transform="matrix(0.886985,0.456723,0.456723,-0.886985,253.534913,127.180659)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-4" x="183.535317" y="116.926401"></use> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph2-5" x="186.468625" y="116.926401"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph5-2" x="192.336575" y="116.926401"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-4" x="200.550417" y="116.926401"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -104.54578 -43.71684 L -12.881004 -90.921478 " transform="matrix(0.997734,0,0,-0.997734,152.336186,106.515051)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.484658 2.869271 C -2.033362 1.146296 -1.020294 0.333588 0.00106761 0.000783958 C -1.019331 -0.335326 -2.032306 -1.14765 -2.484602 -2.869129 " transform="matrix(0.886975,0.456772,0.456772,-0.886975,139.697914,197.340051)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-4" x="81.118956" y="181.577546"></use> </g> <path style="fill:none;stroke-width:0.47818;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 104.549197 -43.71684 L 12.880506 -90.921478 " transform="matrix(0.997734,0,0,-0.997734,152.336186,106.515051)"></path> <path style="fill:none;stroke-width:0.47818;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -2.487669 2.870626 C -2.03187 1.147368 -1.018889 0.33506 0.00150995 -0.00103422 C -1.019842 -0.333851 -2.032895 -1.146569 -2.487647 -2.867749 " transform="matrix(-0.886985,0.456762,0.456762,0.886985,164.974468,197.340071)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#ibXJMASfORoMxJ2XOZ7Vr-ibn8Y=-glyph3-4" x="214.212633" y="181.577546"></use> </g> </g> </svg> <p>we need to show that there exists a unique dashed morphism making the left and right triangles commute.</p> <p>By alternative <a class="existingWikiWord" href="/nlab/show/projection">projection</a> to the two factors in the codomain <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">G \times G</annotation></semantics></math> of these triangles, one immediately finds that the dashed morphism must be equal to both</p> <div class="maruku-equation" id="eq:TheDashedMap"><span class="maruku-eq-number">(5)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>l</mi> <mn>2</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><mi>m</mi><mo stretchy="false">(</mo><msubsup><mi>l</mi> <mn>2</mn> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msubsup><mo>,</mo><msub><mi>l</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>r</mi> <mn>1</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mtext>and</mtext><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">(</mo><msub><mi>l</mi> <mn>2</mn></msub><mo>,</mo><mspace width="thinmathspace"></mspace><mi>m</mi><mo stretchy="false">(</mo><msub><mi>r</mi> <mn>2</mn></msub><mo>,</mo><msubsup><mi>r</mi> <mn>1</mn> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">)</mo><mo>,</mo><mspace width="thinmathspace"></mspace><msub><mi>r</mi> <mn>1</mn></msub><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \big( l_2 ,\, m(l_2^{-1},l_1) ,\, r_1 \big) \;\;\; \text{and} \;\;\; \big( l_2 ,\, m(r_2,r_1^{-1}) ,\, r_1 \big) \,, </annotation></semantics></math></div> <p>which is indeed consistent by the assumption that the solid diagram commutes, and using again the assumed inverses, since this says that:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><msub><mi>l</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>r</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mi>m</mi><mo stretchy="false">(</mo><msub><mi>l</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>r</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>⇔</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>m</mi><mo stretchy="false">(</mo><msubsup><mi>l</mi> <mn>2</mn> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msubsup><mo>,</mo><msub><mi>l</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mi>m</mi><mo stretchy="false">(</mo><msub><mi>r</mi> <mn>2</mn></msub><mo>,</mo><msubsup><mi>r</mi> <mn>1</mn> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msubsup><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> m(l_1, r_1) \;=\; m(l_2, r_2) \;\;\;\;\;\;\; \Leftrightarrow \;\;\;\;\;\;\; m(l_2^{-1}, l_1) \;=\; m(r_2, r_1^{-1}) \,. </annotation></semantics></math></div> <p>Conversely, assuming that the associativity square is Cartesian, we need to produce a consistent inverse-assigning map. To this end, specialize the maps in <a class="maruku-eqref" href="#eq:CartesianAssociativity">(4)</a> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mspace width="thinmathspace"></mspace><mo>≔</mo><mspace width="thinmathspace"></mspace><mi>G</mi></mrow><annotation encoding="application/x-tex">D \,\coloneqq\, G</annotation></semantics></math> and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>l</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>r</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>≔</mo><mo stretchy="false">(</mo><mi mathvariant="normal">e</mi><mo>∘</mo><mi>p</mi><mo>,</mo><mi>id</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mtext>and</mtext><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo stretchy="false">(</mo><msub><mi>l</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>r</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>≔</mo><mo stretchy="false">(</mo><mi>id</mi><mo>,</mo><mi mathvariant="normal">e</mi><mo>∘</mo><mi>p</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> (l_1, r_1) \coloneqq (\mathrm{e}\circ p, id) \;\;\;\;\;\; \text{and} \;\;\;\;\;\; (l_2, r_2) \coloneqq (id, \mathrm{e}\circ p) \,, </annotation></semantics></math></div> <p>whence the dashed map <a class="maruku-eqref" href="#eq:TheDashedMap">(5)</a> gives</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>G</mi><mover><mo>→</mo><mrow><mspace width="thickmathspace"></mspace><mo maxsize="1.2em" minsize="1.2em">(</mo><mi mathvariant="normal">e</mi><mo>∘</mo><mi>p</mi><mo>,</mo><mspace width="thinmathspace"></mspace><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>,</mo><mspace width="thinmathspace"></mspace><mi mathvariant="normal">e</mi><mo>∘</mo><mi>p</mi><mo maxsize="1.2em" minsize="1.2em">)</mo><mspace width="thickmathspace"></mspace></mrow></mover><mi>G</mi><mo>×</mo><mi>G</mi><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex"> G \xrightarrow{ \; \big( \mathrm{e}\circ p ,\, (-)^{-1} ,\, \mathrm{e} \circ p \big) \; } G \times G \times G </annotation></semantics></math></div> <p>from which we may project out the desired map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">(-)^{-1}</annotation></semantics></math>, that one readily checks to satisfy the invertibility law.</p> </div> </p> <h3 id="InABraidedMonoidalCategory">In a braided monoidal category</h3> <p>Notice (with Rem. <a class="maruku-ref" href="#UseOfDiagonalMorphism"></a>) that the use of <a class="existingWikiWord" href="/nlab/show/diagonal+maps">diagonal maps</a> in Def. <a class="maruku-ref" href="#GroupObjectInCartesianCategory"></a> precludes direct generalization of this definition of group objects to non-<a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian</a> <a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a>, where such maps in general do not exist.</p> <p>Hence, while the <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a> may generally be defined in any <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, the internal formulation of existence of <a class="existingWikiWord" href="/nlab/show/inverse+elements">inverse elements</a> typically uses <a class="existingWikiWord" href="/nlab/show/extra+structure">extra structure</a>, such as that of a compatible <a class="existingWikiWord" href="/nlab/show/comonoid+object">comonoid object</a>-<a class="existingWikiWord" href="/nlab/show/structure">structure</a> to substitute for the missing <a class="existingWikiWord" href="/nlab/show/diagonal+maps">diagonal maps</a>.</p> <p>Given this, inverses may be encoded by an <em><a class="existingWikiWord" href="/nlab/show/antipode">antipode</a></em> map and the resulting “monoidal group objects” are known as <em><a class="existingWikiWord" href="/nlab/show/Hopf+monoids">Hopf monoids</a></em>. These subsume and generalize <em><a class="existingWikiWord" href="/nlab/show/Hopf+algebras">Hopf algebras</a></em>, which are widely studied, for instance in their role as <a class="existingWikiWord" href="/nlab/show/quantum+groups">quantum groups</a>.</p> <p>Hopf monoids may be defined in any <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a>, or more generally any <a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a>, where the <a class="existingWikiWord" href="/nlab/show/braiding">braiding</a> is used in stating the fact that the comultiplication is a <a class="existingWikiWord" href="/nlab/show/homomorphism">homomorphism</a> of monoid objects.</p> <h3 id="InTermsOfPresheavesOfGroups">In terms of presheaves of groups</h3> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>Given a <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, the category of internal groups in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> (in the sense of Def. <a class="maruku-ref" href="#GroupObjectInCartesianCategory"></a>) is <a class="existingWikiWord" href="/nlab/show/equivalence+of+categories">equivalent</a> to the <a class="existingWikiWord" href="/nlab/show/full+subcategory">full subcategory</a> of the category of <a class="existingWikiWord" href="/nlab/show/presheaves">presheaves</a> of <a class="existingWikiWord" href="/nlab/show/groups">groups</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Grp</mi> <mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">Grp^{C^{op}}</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, spanned by those presheaves whose underlying set part in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Set</mi> <mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">Set^{C^{op}}</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/representable+functor">representable</a>.</p> </div> <p>This is a special case of the general theory of <em><a class="existingWikiWord" href="/nlab/show/structures+in+presheaf+toposes">structures in presheaf toposes</a></em>.</p> <p>It means that the <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a> from the <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Func</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi>Grp</mi><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex">Func\big(\mathcal{C}^{op}, Grp\big)</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/presheaf+category">presheaf category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Func</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex">Func\big(\mathcal{C}^{op}, Set\big)</annotation></semantics></math> (obtained by composing with the <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a> <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Set">Set</a>) creates representable group objects from representable objects.</p> <p>We unwind how this works:</p> <p>An object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> equipped with internal group structure is identified equivalently with a <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> of <a class="existingWikiWord" href="/nlab/show/functors">functors</a> of the form</p> <div class="maruku-equation" id="eq:PresheafWithValuesInGroups"><span class="maruku-eq-number">(6)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>Grp</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mpadded width="0" lspace="-100%width"><mrow><msup><mrow></mrow> <mrow><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mo>⋅</mo><mo stretchy="false">)</mo></mrow></msup></mrow></mpadded><mo>↗</mo></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd></mtr> <mtr><mtd><msup><mi>𝒞</mi> <mi>op</mi></msup></mtd> <mtd><munder><mo>⟶</mo><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></munder></mtd> <mtd><mi>Set</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \array{ &amp;&amp; Grp \\ &amp; \mathllap{{}^{(G,\cdot)}}\nearrow &amp; \big\downarrow \\ \mathcal{C}^{op} &amp;\underset{y(G)}{\longrightarrow}&amp; Set } \,, </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝒞</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">\mathcal{C}^{op}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> is the category of <a class="existingWikiWord" href="/nlab/show/groups">groups</a> with <a class="existingWikiWord" href="/nlab/show/group+homomorphisms">group homomorphisms</a> between them, and <a class="existingWikiWord" href="/nlab/show/Set">Set</a> is the category of <a class="existingWikiWord" href="/nlab/show/sets">sets</a> with <a class="existingWikiWord" href="/nlab/show/maps">maps</a>/<a class="existingWikiWord" href="/nlab/show/functions">functions</a> between them. Finally,</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>y</mi><mo lspace="verythinmathspace">:</mo></mtd> <mtd><mi>C</mi></mtd> <mtd><mover><mo>↪</mo><mphantom><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo></mrow></mphantom></mover></mtd> <mtd><mi>PSh</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mi>G</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ y \colon &amp; C &amp;\xhookrightarrow{\phantom{--}}&amp; PSh(C) \\ &amp; G &amp;\mapsto&amp; Hom_C(-,G) } </annotation></semantics></math></div> <p>is the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> into its <a class="existingWikiWord" href="/nlab/show/category+of+presheaves">category of presheaves</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>PSh</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>≔</mo><mspace width="thinmathspace"></mspace><mi>Func</mi><mo stretchy="false">(</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSh(C) \,\coloneqq\, Func(C^{op}, Set)</annotation></semantics></math>, which sends each <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/representable+presheaf">representable presheaf</a> that it represents.</p> <p>Since the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> is <a class="existingWikiWord" href="/nlab/show/fully+faithful+functor">fully faithful</a>, it is natural to leave it notationally implicit and to write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G(S)</annotation></semantics></math> (for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">S \in \mathcal{C}</annotation></semantics></math>) as shorthand for</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy="false">(</mo><mi>S</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> G(S) \coloneqq y(G)(S) \coloneqq Hom_C(S,G) \,. </annotation></semantics></math></div> <p>(This a also referred to as “<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> seen at stage <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>”, or similar.)</p> <p>Now, the lift <a class="maruku-eqref" href="#eq:PresheafWithValuesInGroups">(6)</a> of such a presheaf of sets to a presheaf of groups equips for each object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">S \in \mathcal{C}</annotation></semantics></math> the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy="false">(</mo><mi>S</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G(S) \coloneqq y(G)(S) \coloneqq Hom_C(S,G) </annotation></semantics></math> with an ordinary group <a class="existingWikiWord" href="/nlab/show/structure">structure</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>,</mo><msub><mo>⋅</mo> <mi>S</mi></msub><mo>,</mo><msub><mi mathvariant="normal">e</mi> <mi>S</mi></msub><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex">\big(G(S), \cdot_S, \mathrm{e}_S\big)</annotation></semantics></math>, in particular with a product operation (a map of sets) of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mo>⋅</mo> <mi>S</mi></msub><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>⟶</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \cdot_S \,\colon\, G(S) \times G(S) \longrightarrow G(S) \,. </annotation></semantics></math></div> <p>Moreover, since morphisms in <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> are <a class="existingWikiWord" href="/nlab/show/group+homomorphisms">group homomorphisms</a>, it follows that for every morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>S</mi><mo>→</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">f \colon S \to T</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> we get a <a class="existingWikiWord" href="/nlab/show/commuting+diagram">commuting diagram</a> of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><msub><mo>⋅</mo> <mi>S</mi></msub></mrow></mover></mtd> <mtd><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo maxsize="1.2em" minsize="1.2em">↑</mo><mpadded width="0"><mrow><msup><mo></mo><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msup></mrow></mpadded></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↑</mo><mpadded width="0"><mrow><msup><mo></mo><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msup></mrow></mpadded></mtd></mtr> <mtr><mtd><mi>G</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mtd> <mtd><munder><mo>⟶</mo><mrow><msub><mo>⋅</mo> <mi>T</mi></msub></mrow></munder></mtd> <mtd><mi>G</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G(S) \times G(S) &amp;\stackrel{\cdot_S}{\to}&amp; G(S) \\ \big\uparrow\mathrlap{^{G(f)\times G(f)}} &amp;&amp; \big\uparrow\mathrlap{^{G(f)}} \\ G(T) \times G(T) &amp;\underset{\cdot_T}{\longrightarrow}&amp; G(T) \mathrlap{\,.} } </annotation></semantics></math></div> <p>Taken together this means that there is a morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo stretchy="false">)</mo><mo>⟶</mo><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> y(G \times G) \longrightarrow y(G) </annotation></semantics></math></div> <p>of <a class="existingWikiWord" href="/nlab/show/representable+presheaves">representable presheaves</a>. By the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>, this <em>uniquely</em> comes from a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⋅</mo><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\cdot \colon G \times G \to G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, which is the product of the group structure on the object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> that we are after.</p> <p>etc.</p> <h3 id="AsDataStructure">As data structure</h3> <p>In the language of <a class="existingWikiWord" href="/nlab/show/dependent+type+theory">dependent type theory</a> (using the notation for <a class="existingWikiWord" href="/nlab/show/dependent+pair+types">dependent pair types</a> <em><a class="existingWikiWord" href="/nlab/show/dependent+functions+and+dependent+pairs+--+table">here</a></em>) the type of group data structures is:</p> <p><img src="/nlab/files/GroupDataType-230121.jpg" width="740" /></p> <h2 id="Examples">Examples</h2> <ul> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Sets">Sets</a> is a <a class="existingWikiWord" href="/nlab/show/group">group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/TopologicalSpaces">TopologicalSpaces</a> is a <a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/SimplicialSets">SimplicialSets</a> is a <a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a> is an <a class="existingWikiWord" href="/nlab/show/H-group">H-group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Diff">Diff</a> is a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/SDiff">SDiff</a> is a <a class="existingWikiWord" href="/nlab/show/supergroup">super Lie group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> is an <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a> (using the <a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+argument">Eckmann-Hilton argument</a>).</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a> is an abelian group again.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> is a strict <a class="existingWikiWord" href="/nlab/show/2-group">2-group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a> is a strict <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-group again.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/CRing">CRing</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mo></mo><mi>op</mi></msup></mrow><annotation encoding="application/x-tex">^{op}</annotation></semantics></math> is a commutative <a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a>.</p> </li> <li> <p>A group object in a <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a> is a <a class="existingWikiWord" href="/nlab/show/group+functor">group functor</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/schemes">schemes</a> is a <a class="existingWikiWord" href="/nlab/show/group+scheme">group scheme</a>.</p> </li> <li> <p>A group object in an <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> is a <a class="existingWikiWord" href="/nlab/show/cogroup+object">cogroup object</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/G-sets">G-sets</a>/<a class="existingWikiWord" href="/nlab/show/G-spaces">G-spaces</a> is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/equivariant+group">equivariant group</a>, namely a <a class="existingWikiWord" href="/nlab/show/semidirect+product+group">semidirect product group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/stacks">stacks</a> is a <a class="existingWikiWord" href="/nlab/show/group+stack">group stack</a>.</p> </li> </ul> <h2 id="theory">Theory</h2> <p>The basic results of elementary group theory apply to group objects in any category with finite products. (Arguably, it is precisely the <em>elementary</em> results that apply in any such category.)</p> <p>The theory of group objects is an example of a <a class="existingWikiWord" href="/nlab/show/Lawvere+theory">Lawvere theory</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid">monoid</a>, <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a>, <a class="existingWikiWord" href="/nlab/show/monoid+object+in+an+%28%E2%88%9E%2C1%29-category">monoid object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group">group</a>, <strong>group object</strong>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/action+object">action object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid">groupoid</a>, <a class="existingWikiWord" href="/nlab/show/groupoid+object">groupoid object</a>, <a class="existingWikiWord" href="/nlab/show/groupoid+object+in+an+%28%E2%88%9E%2C1%29-category">groupoid object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinity-groupoid">infinity-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/infinity-groupoid+object">infinity-groupoid object</a>, <a class="existingWikiWord" href="/nlab/show/groupoid+object+in+an+%28%E2%88%9E%2C1%29-category">groupoid object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring">ring</a>, <a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a></p> </li> </ul> <h2 id="References">References</h2> <p>The general definition of internal groups seems to have first been formulated in:</p> <ul> <li id="Grothendieck61"><a class="existingWikiWord" href="/nlab/show/Alexander+Grothendieck">Alexander Grothendieck</a>, p. 104 (7 of 21) of: <a class="existingWikiWord" href="/nlab/show/FGA">FGA</a> <em>Techniques de construction et théorèmes d’existence en géométrie algébrique III: préschémas quotients</em>, Séminaire Bourbaki: années 1960/61, exposés 205-222, Séminaire Bourbaki, no. 6 (1961), Exposé no. 212, (<a href="http://www.numdam.org/item/?id=SB_1960-1961__6__99_0">numdam:SB_1960-1961__6__99_0</a>, <a href="http://www.numdam.org/item/SB_1960-1961__6__99_0.pdf">pdf</a>, English translation: <a href="https://translations.thosgood.com/fga/fga3.iii.xml">web version</a>)</li> </ul> <p>following the general principle of <a class="existingWikiWord" href="/nlab/show/internalization">internalization</a> formulated in:</p> <ul> <li id="Grothendieck60"><a class="existingWikiWord" href="/nlab/show/Alexander+Grothendieck">Alexander Grothendieck</a>, p. 340 (3 of 23) in: <a class="existingWikiWord" href="/nlab/show/FGA">FGA</a> <em>Technique de descente et théorèmes d’existence en géométrie algébriques. II: Le théorème d’existence en théorie formelle des modules</em>, Séminaire Bourbaki : années 1958/59 - 1959/60, exposés 169-204, Séminaire Bourbaki, no. 5 (1960), Exposé no. 195 (<a href="http://www.numdam.org/item/SB_1958-1960__5__369_0">numdam:SB_1958-1960__5__369_0</a>, <a href="http://www.numdam.org/item/SB_1958-1960__5__369_0.pdf">pdf</a>, English translation: <a href="https://translations.thosgood.com/fga/fga3.ii.xml">web version</a>)</li> </ul> <p>reviewed in:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Barbara+Fantechi">Barbara Fantechi</a>, <a class="existingWikiWord" href="/nlab/show/Lothar+G%C3%B6ttsche">Lothar Göttsche</a>, <a class="existingWikiWord" href="/nlab/show/Luc+Illusie">Luc Illusie</a>, <a class="existingWikiWord" href="/nlab/show/Steven+L.+Kleiman">Steven L. Kleiman</a>, <a class="existingWikiWord" href="/nlab/show/Nitin+Nitsure">Nitin Nitsure</a>, <a class="existingWikiWord" href="/nlab/show/Angelo+Vistoli">Angelo Vistoli</a>, Section 2.2 of: <em>Fundamental algebraic geometry. Grothendieck’s <a class="existingWikiWord" href="/nlab/show/FGA+explained">FGA explained</a></em>, Mathematical Surveys and Monographs <strong>123</strong>, Amer. Math. Soc. (2005) &lbrack;<a href="http://www.ams.org/mathscinet-getitem?mr=2007f:14001">MR2007f:14001</a>, <a href="https://bookstore.ams.org/surv-123-s">ISBN:978-0-8218-4245-4</a>, <a href="http://indico.ictp.it/event/a0255/other-view?view=ictptimetable">lecture notes</a>&rbrack;</li> </ul> <p>On <a class="existingWikiWord" href="/nlab/show/internalization">internalization</a>, <a class="existingWikiWord" href="/nlab/show/H-spaces">H-spaces</a>, <a class="existingWikiWord" href="/nlab/show/monoid+objects">monoid objects</a>, <a class="existingWikiWord" href="/nlab/show/group+objects">group objects</a> in <a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a>/<a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> and introducing the <a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+argument">Eckmann-Hilton argument</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Hilton">Peter Hilton</a>, <em>Structure maps in group theory</em>, Fundamenta Mathematicae 50 (1961), 207-221 (<a href="https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/all/50/2/94854/structure-maps-in-group-theory">doi:10.4064/fm-50-2-207-221</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Hilton">Peter Hilton</a>, <em>Group-like structures in general categories I multiplications and comultiplications</em>, Math. Ann. 145, 227–255 (1962) (<a href="https://doi.org/10.1007/BF01451367">doi:10.1007/BF01451367</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Hilton">Peter Hilton</a>, <em>Group-like structures in general categories III primitive categories</em>, Math. Ann. <strong>150</strong> 165–187 (1963) (<a href="https://doi.org/10.1007/BF01470843">doi:10.1007/BF01470843</a>)</p> </li> </ul> <p>With emphasis of the role of the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Saunders+MacLane">Saunders MacLane</a>, chapter III, section 6 in: <em><a class="existingWikiWord" href="/nlab/show/Categories+for+the+Working+Mathematician">Categories for the Working Mathematician</a></em>, Springer (1971)</li> </ul> <p>Review:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/John+Michael+Boardman">John Michael Boardman</a>, <em>Algebraic objects in categories</em>, Chapter 7 of: <em>Stable Operations in Generalized Cohomology</em> &lbrack;<a href="https://math.jhu.edu/~wsw/papers2/math/28a-boardman-stable.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Boardman-StableOperations.pdf" title="pdf">pdf</a>&rbrack; in: <a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a> (ed.) <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Algebraic+Topology">Handbook of Algebraic Topology</a></em> Oxford (1995) &lbrack;<a href="https://doi.org/10.1016/B978-0-444-81779-2.X5000-7">doi:10.1016/B978-0-444-81779-2.X5000-7</a>&rbrack;</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Magnus+Forrester-Barker">Magnus Forrester-Barker</a>, <em>Group Objects and Internal Categories</em> &lbrack;<a href="https://arxiv.org/abs/math/0212065">arXiv:math/0212065</a>&rbrack;</p> </li> </ul> <p>In the broader context of internalization via <a class="existingWikiWord" href="/nlab/show/sketches">sketches</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <a class="existingWikiWord" href="/nlab/show/Charles+Wells">Charles Wells</a>, Section 4.1 of: <em><a class="existingWikiWord" href="/nlab/show/Toposes%2C+Triples%2C+and+Theories">Toposes, Triples, and Theories</a></em>, Originally published by: Springer-Verlag, New York, 1985, republished in: Reprints in <a href="http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html">Theory and Applications of Categories, No. 12 (2005) pp. 1-287</a></li> </ul> <p>With focus on internalization in <a class="existingWikiWord" href="/nlab/show/sheaf+toposes">sheaf toposes</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Saunders+Mac+Lane">Saunders Mac Lane</a>, <a class="existingWikiWord" href="/nlab/show/Ieke+Moerdijk">Ieke Moerdijk</a>, Section II.7 of: <em><a class="existingWikiWord" href="/nlab/show/Sheaves+in+Geometry+and+Logic">Sheaves in Geometry and Logic</a></em>, Springer 1992 (<a href="https://link.springer.com/book/10.1007/978-1-4612-0927-0">doi:10.1007/978-1-4612-0927-0</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on December 11, 2024 at 17:52:16. See the <a href="/nlab/history/group+object" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/group+object" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/101/#Item_28">Discuss</a><span class="backintime"><a href="/nlab/revision/group+object/58" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/group+object" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/group+object" accesskey="S" class="navlink" id="history" rel="nofollow">History (58 revisions)</a> <a href="/nlab/show/group+object/cite" style="color: black">Cite</a> <a href="/nlab/print/group+object" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/group+object" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10