CINXE.COM
group object in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> group object in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> group object </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/101/#Item_16" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="categorical_algebra">Categorical algebra</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>+<a class="existingWikiWord" href="/nlab/show/algebra">algebra</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/internalization">internalization</a> and <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+object">group object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+object">algebra object</a> (associative, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+object">Lie</a>, …)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+object">module object</a>/<a class="existingWikiWord" href="/nlab/show/action+object">action object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+locale">internal locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/internal+infinity-categories+contents">more</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+groupoid">internal groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+site">internal site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+diagram">internal diagram</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+Lawvere+theory">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/algebraic+theories">algebraic theories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/monads">monads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/operads">operads</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a>, <a class="existingWikiWord" href="/nlab/show/internal+language">internal language</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+category+theory+and+type+theory">relation between category theory and type theory</a></p> </li> </ul> </div></div> <h4 id="group_theory">Group Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/group+theory">group theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/group">group</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+object">group object</a>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></li> <li><a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a>, <a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></li> <li><a class="existingWikiWord" href="/nlab/show/super+abelian+group">super abelian group</a></li> <li><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></li> <li><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></li> <li><a class="existingWikiWord" href="/nlab/show/progroup">progroup</a></li> <li><a class="existingWikiWord" href="/nlab/show/homogeneous+space">homogeneous space</a></li> </ul> <p><strong>Classical groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/general+linear+group">general linear group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>. <a class="existingWikiWord" href="/nlab/show/projective+unitary+group">projective unitary group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/orthogonal+group">orthogonal group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/special+orthogonal+group">special orthogonal group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symplectic+group">symplectic group</a></p> </li> </ul> <p><strong>Finite groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/finite+group">finite group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+group">symmetric group</a>, <a class="existingWikiWord" href="/nlab/show/cyclic+group">cyclic group</a>, <a class="existingWikiWord" href="/nlab/show/braid+group">braid group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classification+of+finite+simple+groups">classification of finite simple groups</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sporadic+finite+simple+groups">sporadic finite simple groups</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Monster+group">Monster group</a>, <a class="existingWikiWord" href="/nlab/show/Mathieu+group">Mathieu group</a></li> </ul> </li> </ul> <p><strong>Group schemes</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+group">algebraic group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+variety">abelian variety</a></p> </li> </ul> <p><strong>Topological groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+topological+group">compact topological group</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+group">locally compact topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/maximal+compact+subgroup">maximal compact subgroup</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/string+group">string group</a></p> </li> </ul> <p><strong>Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+Lie+group">compact Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kac-Moody+group">Kac-Moody group</a></p> </li> </ul> <p><strong>Super-Lie groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Lie+group">super Lie group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/super+Euclidean+group">super Euclidean group</a></p> </li> </ul> <p><strong>Higher groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-group">2-group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/crossed+module">crossed module</a>, <a class="existingWikiWord" href="/nlab/show/strict+2-group">strict 2-group</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/n-group">n-group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group">∞-group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/crossed+complex">crossed complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/k-tuply+groupal+n-groupoid">k-tuply groupal n-groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectrum">spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-group">circle n-group</a>, <a class="existingWikiWord" href="/nlab/show/string+2-group">string 2-group</a>, <a class="existingWikiWord" href="/nlab/show/fivebrane+Lie+6-group">fivebrane Lie 6-group</a></p> </li> </ul> <p><strong>Cohomology and Extensions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/group+cohomology">group cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+extension">group extension</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-group+extension">∞-group extension</a>, <a class="existingWikiWord" href="/nlab/show/Ext-group">Ext-group</a></p> </li> </ul> <p><strong>Related concepts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/quantum+group">quantum group</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <ul> <li><a href='#in_a_cartesian_monoidal_category'>In a cartesian monoidal category</a></li> <li><a href='#in_a_braided_monoidal_category'>In a braided monoidal category</a></li> <li><a href='#in_a_monoidal_category'>In a monoidal category</a></li> <li><a href='#InTermsOfPresheavesOfGroups'>In terms of presheaves of groups</a></li> <li><a href='#AsDataStructure'>As data structure</a></li> </ul> <li><a href='#Examples'>Examples</a></li> <li><a href='#theory'>Theory</a></li> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#References'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <em>group object</em> in a <a class="existingWikiWord" href="/nlab/show/cartesian+category">cartesian</a> <a class="existingWikiWord" href="/nlab/show/category">category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/group">group</a> <a class="existingWikiWord" href="/nlab/show/internalization">internal</a> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> (see at <em><a class="existingWikiWord" href="/nlab/show/internalization">internalization</a></em> for more on the general idea).</p> <p>Given a non-cartesian <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a> one can still make sense of group objects in the <a class="existingWikiWord" href="/nlab/show/formal+duality">dual</a> guise of <a class="existingWikiWord" href="/nlab/show/Hopf+monoids">Hopf monoids</a>, see there for more and see Rem. <a class="maruku-ref" href="#GroupObjectsInGeneralMonoidalCategories"></a> below.</p> <h2 id="definition">Definition</h2> <h3 id="in_a_cartesian_monoidal_category">In a cartesian monoidal category</h3> <p> <div class='num_defn' id='GroupObjectInCartesianCategory'> <h6>Definition</h6> <p><strong>(group object in <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a>)</strong> <br /> A <strong>group object</strong> or <strong>internal group</strong> <a class="existingWikiWord" href="/nlab/show/internalization">internal to</a> a category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/finite+products">finite products</a> (binary <a class="existingWikiWord" href="/nlab/show/Cartesian+products">Cartesian products</a> and a <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">\ast</annotation></semantics></math>) is</p> <ul> <li> <p>an <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math></p> </li> <li> <p>and <a class="existingWikiWord" href="/nlab/show/morphisms">morphisms</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> as follows:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/neutral+element">neutral element</a>:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi mathvariant="normal">e</mi><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mo>*</mo><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\mathrm{e} \,\colon\, \ast \to G</annotation></semantics></math></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/inverse+elements">inverse elements</a>:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">(-)^{-1} \,\colon\, G\to G</annotation></semantics></math></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/binary+operation">binary operation</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">m \colon G\times G \to G</annotation></semantics></math>,</p> </li> </ul> </li> </ul> <p>such that the following <a class="existingWikiWord" href="/nlab/show/commuting+diagram">diagrams commute</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mi>id</mi><mo>×</mo><mi>m</mi></mrow></mover></mtd> <mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mi>m</mi><mo>×</mo><mi>id</mi></mrow></mpadded></msup><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mi>m</mi></mtd></mtr> <mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mi>m</mi></mover></mtd> <mtd><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G\times G\times G & \stackrel{id\times m}{\longrightarrow} & G\times G \\ {}^{ \mathllap{ m\times id } } \big\downarrow && \big\downarrow m \\ G\times G & \stackrel{m}{\longrightarrow} & G } </annotation></semantics></math></div> <p>(expressing the fact multiplication is associative),</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mi mathvariant="normal">e</mi><mo>,</mo><mi>id</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">id</mo><mo>,</mo><mi mathvariant="normal">e</mi><mo stretchy="false">)</mo></mrow></mpadded></msup><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd><munder><mo>↘</mo><mo lspace="0em" rspace="thinmathspace">id</mo></munder></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mi>m</mi></mtd></mtr> <mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><munder><mo>⟶</mo><mi>m</mi></munder></mtd> <mtd><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G & \stackrel{(\mathrm{e},id)}{\longrightarrow} & G\times G \\ {}^{\mathllap{(\id,\mathrm{e})}} \big\downarrow &\underset{\id}{\searrow}& \big\downarrow m \\ G\times G & \underset{m}{\longrightarrow} &G } </annotation></semantics></math></div> <p>(telling us that the <a class="existingWikiWord" href="/nlab/show/neutral+element">neutral element</a> is a left and right <a class="existingWikiWord" href="/nlab/show/unit+element">unit element</a>), and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>,</mo><mi>id</mi><mo stretchy="false">)</mo></mrow></mover></mtd> <mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mo stretchy="false">(</mo><mi>id</mi><mo>,</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo></mrow></mpadded></msup><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd><munder><mo>↘</mo><mi mathvariant="normal">e</mi></munder></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mi>m</mi></mtd></mtr> <mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mi>m</mi></mover></mtd> <mtd><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G & \overset{ ((-)^{-1},id) } {\longrightarrow} & G\times G \\ {}^{ \mathllap{ (id,(-)^{-1}) } } \big\downarrow & \underset{\mathrm{e}}{\searrow} & \big\downarrow m \\ G\times G & \stackrel{m}{\longrightarrow} & G } </annotation></semantics></math></div> <p>(telling us that the inverse map really does take an <a class="existingWikiWord" href="/nlab/show/inverse+element">inverse</a>).</p> </div> </p> <p> <div class='num_remark' id='UseOfDiagonalMorphism'> <h6>Remark</h6> <p>The <a class="existingWikiWord" href="/nlab/show/associativity+law">associativity law</a> technically factors through the <a class="existingWikiWord" href="/nlab/show/isomorphisms">isomorphisms</a> between <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">(G\times G)\times G</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>×</mo><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G\times (G\times G)</annotation></semantics></math>.</p> <p>The <a class="existingWikiWord" href="/nlab/show/pairing">pairing</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(f,g)</annotation></semantics></math> denotes <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>×</mo><mi>g</mi><mo stretchy="false">)</mo><mo>∘</mo><mi>Δ</mi></mrow><annotation encoding="application/x-tex">(f\times g)\circ\Delta</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi></mrow><annotation encoding="application/x-tex">\Delta</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/diagonal+morphism">diagonal morphism</a>.</p> </div> </p> <p> <div class='num_remark'> <h6>Remark</h6> <p>Even if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> doesn't have <em>all</em> binary products, as long as products with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> (and the terminal object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo></mrow><annotation encoding="application/x-tex">*</annotation></semantics></math>) exist, then one can still speak of a group object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, as above.</p> </div> </p> <h3 id="in_a_braided_monoidal_category">In a braided monoidal category</h3> <p>Notice that the use of <a class="existingWikiWord" href="/nlab/show/diagonal+maps">diagonal maps</a> (Rem. <a class="maruku-ref" href="#UseOfDiagonalMorphism"></a>) in Def. <a class="maruku-ref" href="#GroupObjectInCartesianCategory"></a> precludes direct generalization of this definition of group objects to non-<a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian</a> <a class="existingWikiWord" href="/nlab/show/monoidal+categories">monoidal categories</a>, where such maps in general do not exist.</p> <p>Hence, while the <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a> may generally be defined in any <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, the internal formulation of existence of <a class="existingWikiWord" href="/nlab/show/inverse+elements">inverse elements</a> typically uses <a class="existingWikiWord" href="/nlab/show/extra+structure">extra structure</a>, such as that of a compatible <a class="existingWikiWord" href="/nlab/show/comonoid+object">comonoid object</a>-<a class="existingWikiWord" href="/nlab/show/structure">structure</a> to substitute for the missing <a class="existingWikiWord" href="/nlab/show/diagonal+maps">diagonal maps</a>.</p> <p>Given this, inverses may be encoded by an <em><a class="existingWikiWord" href="/nlab/show/antipode">antipode</a></em> map and the resulting “monoidal group objects” are known as <em><a class="existingWikiWord" href="/nlab/show/Hopf+monoids">Hopf monoids</a></em>. These subsume and generalize <em><a class="existingWikiWord" href="/nlab/show/Hopf+algebras">Hopf algebras</a></em>, which are widely studied, for instance in their role as <a class="existingWikiWord" href="/nlab/show/quantum+groups">quantum groups</a>.</p> <p>Hopf monoids may be defined in any <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal category</a>, or more generally any <a class="existingWikiWord" href="/nlab/show/braided+monoidal+category">braided monoidal category</a>, where the braiding is used in stating the fact that the comultiplication is a homomorphism of monoid objects.</p> <h3 id="in_a_monoidal_category">In a monoidal category</h3> <p>A surprising fact reported by Tom Leinster is that in the category of sets, a group is the same as a monoid with the extra property that the associativity square</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mrow><mi>id</mi><mo>×</mo><mi>m</mi></mrow></mover></mtd> <mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><mi>m</mi><mo>×</mo><mi>id</mi></mrow></mpadded></msup><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo><mi>m</mi></mtd></mtr> <mtr><mtd><mi>G</mi><mo>×</mo><mi>G</mi></mtd> <mtd><mover><mo>⟶</mo><mi>m</mi></mover></mtd> <mtd><mi>G</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G\times G\times G & \stackrel{id\times m}{\longrightarrow} & G\times G \\ {}^{ \mathllap{ m\times id } } \big\downarrow && \big\downarrow m \\ G\times G & \stackrel{m}{\longrightarrow} & G } </annotation></semantics></math></div> <p>is a pullback. Presumably it is also true that a group object in a cartesian monoidal category is the same as a monoid object in that category where the associativity square is a pullback. This suggests that we can define a group object in <em>any</em> monoidal category to be a monoid object where the associativity square is a pullback. The category does not need to have all pullbacks for this definition to parse. However, the usefulness of this generalization remains to be studied.</p> <h3 id="InTermsOfPresheavesOfGroups">In terms of presheaves of groups</h3> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>Given a <a class="existingWikiWord" href="/nlab/show/cartesian+monoidal+category">cartesian monoidal category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, the category of internal groups in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> (in the sense of Def. <a class="maruku-ref" href="#GroupObjectInCartesianCategory"></a>) is <a class="existingWikiWord" href="/nlab/show/equivalence+of+categories">equivalent</a> to the <a class="existingWikiWord" href="/nlab/show/full+subcategory">full subcategory</a> of the category of <a class="existingWikiWord" href="/nlab/show/presheaves">presheaves</a> of <a class="existingWikiWord" href="/nlab/show/groups">groups</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Grp</mi> <mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">Grp^{C^{op}}</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, spanned by those presheaves whose underlying set part in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Set</mi> <mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">Set^{C^{op}}</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/representable+functor">representable</a>.</p> </div> <p>This is a special case of the general theory of <em><a class="existingWikiWord" href="/nlab/show/structures+in+presheaf+toposes">structures in presheaf toposes</a></em>.</p> <p>It means that the <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a> from the <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Func</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi>Grp</mi><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex">Func\big(\mathcal{C}^{op}, Grp\big)</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/presheaf+category">presheaf category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Func</mi><mo maxsize="1.2em" minsize="1.2em">(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex">Func\big(\mathcal{C}^{op}, Set\big)</annotation></semantics></math> (obtained by composing with the <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful functor</a> <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Set">Set</a>) creates representable group objects from representable objects.</p> <p>We unwind how this works:</p> <p>An object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> equipped with internal group structure is identified equivalently with a <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> of <a class="existingWikiWord" href="/nlab/show/functors">functors</a> of the form</p> <div class="maruku-equation" id="eq:PresheafWithValuesInGroups"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>Grp</mi></mtd></mtr> <mtr><mtd></mtd> <mtd><mpadded width="0" lspace="-100%width"><mrow><msup><mrow></mrow> <mrow><mo stretchy="false">(</mo><mi>G</mi><mo>,</mo><mo>⋅</mo><mo stretchy="false">)</mo></mrow></msup></mrow></mpadded><mo>↗</mo></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↓</mo></mtd></mtr> <mtr><mtd><msup><mi>𝒞</mi> <mi>op</mi></msup></mtd> <mtd><munder><mo>⟶</mo><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></munder></mtd> <mtd><mi>Set</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> \array{ && Grp \\ & \mathllap{{}^{(G,\cdot)}}\nearrow & \big\downarrow \\ \mathcal{C}^{op} &\underset{y(G)}{\longrightarrow}& Set } \,, </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>𝒞</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">\mathcal{C}^{op}</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> is the category of <a class="existingWikiWord" href="/nlab/show/groups">groups</a> with <a class="existingWikiWord" href="/nlab/show/group+homomorphisms">group homomorphisms</a> between them, and <a class="existingWikiWord" href="/nlab/show/Set">Set</a> is the category of <a class="existingWikiWord" href="/nlab/show/sets">sets</a> with <a class="existingWikiWord" href="/nlab/show/maps">maps</a>/<a class="existingWikiWord" href="/nlab/show/functions">functions</a> between them. Finally,</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>y</mi><mo lspace="verythinmathspace">:</mo></mtd> <mtd><mi>C</mi></mtd> <mtd><mover><mo>↪</mo><mphantom><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>−</mo></mrow></mphantom></mover></mtd> <mtd><mi>PSh</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mi>G</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ y \colon & C &\xhookrightarrow{\phantom{--}}& PSh(C) \\ & G &\mapsto& Hom_C(-,G) } </annotation></semantics></math></div> <p>is the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> into its <a class="existingWikiWord" href="/nlab/show/category+of+presheaves">category of presheaves</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>PSh</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>≔</mo><mspace width="thinmathspace"></mspace><mi>Func</mi><mo stretchy="false">(</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">PSh(C) \,\coloneqq\, Func(C^{op}, Set)</annotation></semantics></math>, which sends each <a class="existingWikiWord" href="/nlab/show/object">object</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> to the <a class="existingWikiWord" href="/nlab/show/representable+presheaf">representable presheaf</a> that it represents.</p> <p>Since the <a class="existingWikiWord" href="/nlab/show/Yoneda+embedding">Yoneda embedding</a> is <a class="existingWikiWord" href="/nlab/show/fully+faithful+functor">fully faithful</a>, it is natural to leave it notationally implicit and to write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G(S)</annotation></semantics></math> (for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">S \in \mathcal{C}</annotation></semantics></math>) as shorthand for</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy="false">(</mo><mi>S</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> G(S) \coloneqq y(G)(S) \coloneqq Hom_C(S,G) \,. </annotation></semantics></math></div> <p>(This a also referred to as “<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> seen at stage <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>”, or similar.)</p> <p>Now, the lift <a class="maruku-eqref" href="#eq:PresheafWithValuesInGroups">(1)</a> of such a presheaf of sets to a presheaf of groups equips for each object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">S \in \mathcal{C}</annotation></semantics></math> the set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>≔</mo><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy="false">(</mo><mi>S</mi><mo>,</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">G(S) \coloneqq y(G)(S) \coloneqq Hom_C(S,G) </annotation></semantics></math> with an ordinary group <a class="existingWikiWord" href="/nlab/show/structure">structure</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo maxsize="1.2em" minsize="1.2em">(</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>,</mo><msub><mo>⋅</mo> <mi>S</mi></msub><mo>,</mo><msub><mi mathvariant="normal">e</mi> <mi>S</mi></msub><mo maxsize="1.2em" minsize="1.2em">)</mo></mrow><annotation encoding="application/x-tex">\big(G(S), \cdot_S, \mathrm{e}_S\big)</annotation></semantics></math>, in particular with a product operation (a map of sets) of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mo>⋅</mo> <mi>S</mi></msub><mspace width="thinmathspace"></mspace><mo lspace="verythinmathspace">:</mo><mspace width="thinmathspace"></mspace><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>⟶</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \cdot_S \,\colon\, G(S) \times G(S) \longrightarrow G(S) \,. </annotation></semantics></math></div> <p>Moreover, since morphisms in <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> are <a class="existingWikiWord" href="/nlab/show/group+homomorphisms">group homomorphisms</a>, it follows that for every morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>S</mi><mo>→</mo><mi>T</mi></mrow><annotation encoding="application/x-tex">f \colon S \to T</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> we get a <a class="existingWikiWord" href="/nlab/show/commuting+diagram">commuting diagram</a> of the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><msub><mo>⋅</mo> <mi>S</mi></msub></mrow></mover></mtd> <mtd><mi>G</mi><mo stretchy="false">(</mo><mi>S</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo maxsize="1.2em" minsize="1.2em">↑</mo><mpadded width="0"><mrow><msup><mo></mo><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msup></mrow></mpadded></mtd> <mtd></mtd> <mtd><mo maxsize="1.2em" minsize="1.2em">↑</mo><mpadded width="0"><mrow><msup><mo></mo><mrow><mi>G</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msup></mrow></mpadded></mtd></mtr> <mtr><mtd><mi>G</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mo>×</mo><mi>G</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></mtd> <mtd><munder><mo>⟶</mo><mrow><msub><mo>⋅</mo> <mi>T</mi></msub></mrow></munder></mtd> <mtd><mi>G</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo><mpadded width="0"><mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow></mpadded></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ G(S) \times G(S) &\stackrel{\cdot_S}{\to}& G(S) \\ \big\uparrow\mathrlap{^{G(f)\times G(f)}} && \big\uparrow\mathrlap{^{G(f)}} \\ G(T) \times G(T) &\underset{\cdot_T}{\longrightarrow}& G(T) \mathrlap{\,.} } </annotation></semantics></math></div> <p>Taken together this means that there is a morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo stretchy="false">)</mo><mo>⟶</mo><mi>y</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> y(G \times G) \longrightarrow y(G) </annotation></semantics></math></div> <p>of <a class="existingWikiWord" href="/nlab/show/representable+presheaves">representable presheaves</a>. By the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>, this <em>uniquely</em> comes from a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>⋅</mo><mo lspace="verythinmathspace">:</mo><mi>G</mi><mo>×</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow><annotation encoding="application/x-tex">\cdot \colon G \times G \to G</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, which is the product of the group structure on the object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> that we are after.</p> <p>etc.</p> <h3 id="AsDataStructure">As data structure</h3> <p>In the language of <a class="existingWikiWord" href="/nlab/show/dependent+type+theory">dependent type theory</a> (using the notation for <a class="existingWikiWord" href="/nlab/show/dependent+pair+types">dependent pair types</a> <em><a class="existingWikiWord" href="/nlab/show/dependent+functions+and+dependent+pairs+--+table">here</a></em>) the type of group data structures is:</p> <p><img src="/nlab/files/GroupDataType-230121.jpg" width="740" /></p> <h2 id="Examples">Examples</h2> <ul> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Sets">Sets</a> is a <a class="existingWikiWord" href="/nlab/show/group">group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/TopologicalSpaces">TopologicalSpaces</a> is a <a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/SimplicialSets">SimplicialSets</a> is a <a class="existingWikiWord" href="/nlab/show/simplicial+group">simplicial group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a> is an <a class="existingWikiWord" href="/nlab/show/H-group">H-group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Diff">Diff</a> is a <a class="existingWikiWord" href="/nlab/show/Lie+group">Lie group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/SDiff">SDiff</a> is a <a class="existingWikiWord" href="/nlab/show/supergroup">super Lie group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Grp">Grp</a> is an <a class="existingWikiWord" href="/nlab/show/abelian+group">abelian group</a> (using the <a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+argument">Eckmann-Hilton argument</a>).</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Ab">Ab</a> is an abelian group again.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a> is a strict <a class="existingWikiWord" href="/nlab/show/2-group">2-group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/Grpd">Grpd</a> is a strict <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>2</mn></mrow><annotation encoding="application/x-tex">2</annotation></semantics></math>-group again.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/CRing">CRing</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mo></mo><mi>op</mi></msup></mrow><annotation encoding="application/x-tex">^{op}</annotation></semantics></math> is a commutative <a class="existingWikiWord" href="/nlab/show/Hopf+algebra">Hopf algebra</a>.</p> </li> <li> <p>A group object in a <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a> is a <a class="existingWikiWord" href="/nlab/show/group+functor">group functor</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/schemes">schemes</a> is a <a class="existingWikiWord" href="/nlab/show/group+scheme">group scheme</a>.</p> </li> <li> <p>A group object in an <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> is a <a class="existingWikiWord" href="/nlab/show/cogroup+object">cogroup object</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/G-sets">G-sets</a>/<a class="existingWikiWord" href="/nlab/show/G-spaces">G-spaces</a> is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/equivariant+group">equivariant group</a>, namely a <a class="existingWikiWord" href="/nlab/show/semidirect+product+group">semidirect product group</a>.</p> </li> <li> <p>A group object in <a class="existingWikiWord" href="/nlab/show/stacks">stacks</a> is a <a class="existingWikiWord" href="/nlab/show/group+stack">group stack</a>.</p> </li> </ul> <h2 id="theory">Theory</h2> <p>The basic results of elementary group theory apply to group objects in any category with finite products. (Arguably, it is precisely the <em>elementary</em> results that apply in any such category.)</p> <p>The theory of group objects is an example of a <a class="existingWikiWord" href="/nlab/show/Lawvere+theory">Lawvere theory</a>.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid">monoid</a>, <a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a>, <a class="existingWikiWord" href="/nlab/show/monoid+object+in+an+%28%E2%88%9E%2C1%29-category">monoid object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group">group</a>, <strong>group object</strong>, <a class="existingWikiWord" href="/nlab/show/group+object+in+an+%28%E2%88%9E%2C1%29-category">group object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+action">group action</a>, <a class="existingWikiWord" href="/nlab/show/action+object">action object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/groupoid">groupoid</a>, <a class="existingWikiWord" href="/nlab/show/groupoid+object">groupoid object</a>, <a class="existingWikiWord" href="/nlab/show/groupoid+object+in+an+%28%E2%88%9E%2C1%29-category">groupoid object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinity-groupoid">infinity-groupoid</a>, <a class="existingWikiWord" href="/nlab/show/infinity-groupoid+object">infinity-groupoid object</a>, <a class="existingWikiWord" href="/nlab/show/groupoid+object+in+an+%28%E2%88%9E%2C1%29-category">groupoid object in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring">ring</a>, <a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a></p> </li> </ul> <h2 id="References">References</h2> <p>The general definition of internal groups seems to have first been formulated in:</p> <ul> <li id="Grothendieck61"><a class="existingWikiWord" href="/nlab/show/Alexander+Grothendieck">Alexander Grothendieck</a>, p. 104 (7 of 21) of: <a class="existingWikiWord" href="/nlab/show/FGA">FGA</a> <em>Techniques de construction et théorèmes d’existence en géométrie algébrique III: préschémas quotients</em>, Séminaire Bourbaki: années 1960/61, exposés 205-222, Séminaire Bourbaki, no. 6 (1961), Exposé no. 212, (<a href="http://www.numdam.org/item/?id=SB_1960-1961__6__99_0">numdam:SB_1960-1961__6__99_0</a>, <a href="http://www.numdam.org/item/SB_1960-1961__6__99_0.pdf">pdf</a>, English translation: <a href="https://translations.thosgood.com/fga/fga3.iii.xml">web version</a>)</li> </ul> <p>following the general principle of <a class="existingWikiWord" href="/nlab/show/internalization">internalization</a> formulated in:</p> <ul> <li id="Grothendieck60"><a class="existingWikiWord" href="/nlab/show/Alexander+Grothendieck">Alexander Grothendieck</a>, p. 340 (3 of 23) in: <a class="existingWikiWord" href="/nlab/show/FGA">FGA</a> <em>Technique de descente et théorèmes d’existence en géométrie algébriques. II: Le théorème d’existence en théorie formelle des modules</em>, Séminaire Bourbaki : années 1958/59 - 1959/60, exposés 169-204, Séminaire Bourbaki, no. 5 (1960), Exposé no. 195 (<a href="http://www.numdam.org/item/SB_1958-1960__5__369_0">numdam:SB_1958-1960__5__369_0</a>, <a href="http://www.numdam.org/item/SB_1958-1960__5__369_0.pdf">pdf</a>, English translation: <a href="https://translations.thosgood.com/fga/fga3.ii.xml">web version</a>)</li> </ul> <p>reviewed in:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Barbara+Fantechi">Barbara Fantechi</a>, <a class="existingWikiWord" href="/nlab/show/Lothar+G%C3%B6ttsche">Lothar Göttsche</a>, <a class="existingWikiWord" href="/nlab/show/Luc+Illusie">Luc Illusie</a>, <a class="existingWikiWord" href="/nlab/show/Steven+L.+Kleiman">Steven L. Kleiman</a>, <a class="existingWikiWord" href="/nlab/show/Nitin+Nitsure">Nitin Nitsure</a>, <a class="existingWikiWord" href="/nlab/show/Angelo+Vistoli">Angelo Vistoli</a>, Section 2.2 of: <em>Fundamental algebraic geometry. Grothendieck’s <a class="existingWikiWord" href="/nlab/show/FGA+explained">FGA explained</a></em>, Mathematical Surveys and Monographs <strong>123</strong>, Amer. Math. Soc. (2005) [<a href="http://www.ams.org/mathscinet-getitem?mr=2007f:14001">MR2007f:14001</a>, <a href="https://bookstore.ams.org/surv-123-s">ISBN:978-0-8218-4245-4</a>, <a href="http://indico.ictp.it/event/a0255/other-view?view=ictptimetable">lecture notes</a>]</li> </ul> <p>On <a class="existingWikiWord" href="/nlab/show/internalization">internalization</a>, <a class="existingWikiWord" href="/nlab/show/H-spaces">H-spaces</a>, <a class="existingWikiWord" href="/nlab/show/monoid+objects">monoid objects</a>, <a class="existingWikiWord" href="/nlab/show/group+objects">group objects</a> in <a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a>/<a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a> and introducing the <a class="existingWikiWord" href="/nlab/show/Eckmann-Hilton+argument">Eckmann-Hilton argument</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Hilton">Peter Hilton</a>, <em>Structure maps in group theory</em>, Fundamenta Mathematicae 50 (1961), 207-221 (<a href="https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/all/50/2/94854/structure-maps-in-group-theory">doi:10.4064/fm-50-2-207-221</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Hilton">Peter Hilton</a>, <em>Group-like structures in general categories I multiplications and comultiplications</em>, Math. Ann. 145, 227–255 (1962) (<a href="https://doi.org/10.1007/BF01451367">doi:10.1007/BF01451367</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Beno+Eckmann">Beno Eckmann</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Hilton">Peter Hilton</a>, <em>Group-like structures in general categories III primitive categories</em>, Math. Ann. <strong>150</strong> 165–187 (1963) (<a href="https://doi.org/10.1007/BF01470843">doi:10.1007/BF01470843</a>)</p> </li> </ul> <p>With emphasis of the role of the <a class="existingWikiWord" href="/nlab/show/Yoneda+lemma">Yoneda lemma</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Saunders+MacLane">Saunders MacLane</a>, chapter III, section 6 in: <em><a class="existingWikiWord" href="/nlab/show/Categories+for+the+Working+Mathematician">Categories for the Working Mathematician</a></em>, Springer (1971)</li> </ul> <p>Review:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/John+Michael+Boardman">John Michael Boardman</a>, <em>Algebraic objects in categories</em>, Chapter 7 of: <em>Stable Operations in Generalized Cohomology</em> [<a href="https://math.jhu.edu/~wsw/papers2/math/28a-boardman-stable.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/Boardman-StableOperations.pdf" title="pdf">pdf</a>] in: <a class="existingWikiWord" href="/nlab/show/Ioan+Mackenzie+James">Ioan Mackenzie James</a> (ed.) <em><a class="existingWikiWord" href="/nlab/show/Handbook+of+Algebraic+Topology">Handbook of Algebraic Topology</a></em> Oxford (1995) [<a href="https://doi.org/10.1016/B978-0-444-81779-2.X5000-7">doi:10.1016/B978-0-444-81779-2.X5000-7</a>]</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Magnus+Forrester-Barker">Magnus Forrester-Barker</a>, <em>Group Objects and Internal Categories</em> [<a href="https://arxiv.org/abs/math/0212065">arXiv:math/0212065</a>]</p> </li> </ul> <p>In the broader context of internalization via <a class="existingWikiWord" href="/nlab/show/sketches">sketches</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Michael+Barr">Michael Barr</a>, <a class="existingWikiWord" href="/nlab/show/Charles+Wells">Charles Wells</a>, Section 4.1 of: <em><a class="existingWikiWord" href="/nlab/show/Toposes%2C+Triples%2C+and+Theories">Toposes, Triples, and Theories</a></em>, Originally published by: Springer-Verlag, New York, 1985, republished in: Reprints in <a href="http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html">Theory and Applications of Categories, No. 12 (2005) pp. 1-287</a></li> </ul> <p>With focus on internalization in <a class="existingWikiWord" href="/nlab/show/sheaf+toposes">sheaf toposes</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Saunders+Mac+Lane">Saunders Mac Lane</a>, <a class="existingWikiWord" href="/nlab/show/Ieke+Moerdijk">Ieke Moerdijk</a>, Section II.7 of: <em><a class="existingWikiWord" href="/nlab/show/Sheaves+in+Geometry+and+Logic">Sheaves in Geometry and Logic</a></em>, Springer 1992 (<a href="https://link.springer.com/book/10.1007/978-1-4612-0927-0">doi:10.1007/978-1-4612-0927-0</a>)</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on November 7, 2024 at 13:17:25. See the <a href="/nlab/history/group+object" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/group+object" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/101/#Item_16">Discuss</a><span class="backintime"><a href="/nlab/revision/group+object/54" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/group+object" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/group+object" accesskey="S" class="navlink" id="history" rel="nofollow">History (54 revisions)</a> <a href="/nlab/show/group+object/cite" style="color: black">Cite</a> <a href="/nlab/print/group+object" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/group+object" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>