CINXE.COM
Search results for: genetic improvement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: genetic improvement</title> <meta name="description" content="Search results for: genetic improvement"> <meta name="keywords" content="genetic improvement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="genetic improvement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="genetic improvement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5790</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: genetic improvement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5790</span> Genetic Diversity of Sorghum bicolor (L.) Moench Genotypes as Revealed by Microsatellite Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maletsema%20Alina%20Mofokeng">Maletsema Alina Mofokeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Shimelis"> Hussein Shimelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Laing"> Mark Laing</a>, <a href="https://publications.waset.org/abstracts/search?q=Pangirayi%20Tongoona"> Pangirayi Tongoona</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is one of the most important cereal crops grown for food, feed and bioenergy. Knowledge of genetic diversity is important for conservation of genetic resources and improvement of crop plants through breeding. The objective of this study was to assess the level of genetic diversity among sorghum genotypes using microsatellite markers. A total of 103 accessions of sorghum genotypes obtained from the Department of Agriculture, Forestry and Fisheries, the African Centre for Crop Improvement and Agricultural Research Council-Grain Crops Institute collections in South Africa were estimated using 30 microsatellite markers. For all the loci analysed, 306 polymorphic alleles were detected with a mean value of 6.4 per locus. The polymorphic information content had an average value of 0.50 with heterozygosity mean value of 0.55 suggesting an important genetic diversity within the sorghum genotypes used. The unweighted pair group method with arithmetic mean clustering based on Euclidian coefficients revealed two major distinct groups without allocating genotypes based on the source of collection or origin. The genotypes 4154.1.1.1, 2055.1.1.1, 4441.1.1.1, 4442.1.1.1, 4722.1.1.1, and 4606.1.1.1 were the most diverse. The sorghum genotypes with high genetic diversity could serve as important sources of novel alleles for breeding and strategic genetic conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Genetic%20Diversity" title="Genetic Diversity">Genetic Diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Genotypes" title=" Genotypes"> Genotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=Microsatellites" title=" Microsatellites"> Microsatellites</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorghum" title=" Sorghum"> Sorghum</a> </p> <a href="https://publications.waset.org/abstracts/52154/genetic-diversity-of-sorghum-bicolor-l-moench-genotypes-as-revealed-by-microsatellite-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5789</span> A Survey of Grammar-Based Genetic Programming and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20T.%20Wilson">Matthew T. Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper covers a selection of research utilizing grammar-based genetic programming, and illustrates how context-free grammar can be used to constrain genetic programming. It focuses heavily on grammatical evolution, one of the most popular variants of grammar-based genetic programming, and the way its operators and terminals are specialized and modified from those in genetic programming. A variety of implementations of grammatical evolution for general use are covered, as well as research each focused on using grammatical evolution or grammar-based genetic programming on a single application, or to solve a specific problem, including some of the classically considered genetic programming problems, such as the Santa Fe Trail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=context-free%20grammar" title="context-free grammar">context-free grammar</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20programming" title=" genetic programming"> genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=grammatical%20evolution" title=" grammatical evolution"> grammatical evolution</a> </p> <a href="https://publications.waset.org/abstracts/120249/a-survey-of-grammar-based-genetic-programming-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5788</span> Level of Awareness of Genetic Counselling in Benue State Nigeria: Its Advocacy on the Inheritance of Sickle Cell Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agi%20Sunday">Agi Sunday</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A descriptive analysis of reported cases of sickle cell disease and the level of awareness about genetic counselling in 30 hospitals were carried out. Additionally, 150 individuals between ages 16-45 were randomly selected for evaluation of genetic counselling awareness. The main tools for this study were questionnaires which were taken to hospitals, and individuals completed the others. The numbers of reported cases of sickle cell disease recorded in private, public and teaching hospitals were 14 and 57; 143 and 89; 272 and 57 for the periods of 1995-2000 and 2001-2005, respectively. A general informal genetic counselling took place mostly in the hospitals visited. 122 (86%) individuals had the knowledge of genetic disease and only 43 (30.3%) individuals have been exposed to genetic counselling. 64% of individuals agreed that genetic counselling would help in the prevention of genetic disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sickle%20disease" title="sickle disease">sickle disease</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20counseling" title=" genetic counseling"> genetic counseling</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20testing" title=" genetic testing"> genetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=advocacy" title=" advocacy"> advocacy</a> </p> <a href="https://publications.waset.org/abstracts/8810/level-of-awareness-of-genetic-counselling-in-benue-state-nigeria-its-advocacy-on-the-inheritance-of-sickle-cell-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5787</span> Application of Molecular Markers for Crop Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac">Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20markers" title="molecular markers">molecular markers</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20productivity" title=" crop productivity"> crop productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a> </p> <a href="https://publications.waset.org/abstracts/69621/application-of-molecular-markers-for-crop-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5786</span> Advances in Sesame Molecular Breeding: A Comprehensive Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micheale%20Yifter%20Weldemichael">Micheale Yifter Weldemichael</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sesame (Sesamum indicum L.) is among the most important oilseed crops for its high edible oil quality and quantity. Sesame is grown for food, medicinal, pharmaceutical, and industrial uses. Sesame is also cultivated as a main cash crop in Asia and Africa by smallholder farmers. Despite the global exponential increase in sesame cultivation area, its production and productivity remain low, mainly due to biotic and abiotic constraints. Notwithstanding the efforts to solve these problems, a low level of genetic variation and inadequate genomic resources hinder the progress of sesame improvement. The objective of this paper is, therefore, to review recent advances in the area of molecular breeding and transformation to overcome major production constraints and could result in enhanced and sustained sesame production. This paper reviews various researches conducted to date on molecular breeding and genetic transformation in sesame focusing on molecular markers used in assessing the available online database resources, genes responsible for key agronomic traits as well as transgenic technology and genome editing. The review concentrates on quantitative and semi-quantitative studies on molecular breeding for key agronomic traits such as improvement of yield components, oil and oil-related traits, disease and insect/pest resistance, and drought, waterlogging and salt tolerance, as well as sesame genetic transformation and genome editing techniques. Pitfalls and limitations of existing studies and methodologies used so far are identified and some priorities for future research directions in sesame genetic improvement are identified in this review. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stress" title="abiotic stress">abiotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=biotic%20stress" title=" biotic stress"> biotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20breeding" title=" molecular breeding"> molecular breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sesame" title=" sesame"> sesame</a>, <a href="https://publications.waset.org/abstracts/search?q=shattering" title=" shattering"> shattering</a> </p> <a href="https://publications.waset.org/abstracts/187714/advances-in-sesame-molecular-breeding-a-comprehensive-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5785</span> Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Alesaadi">Alireza Alesaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20genetic%20algorithm" title=" adaptive genetic algorithm"> adaptive genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20network" title=" electrical network"> electrical network</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20engineering" title=" communication engineering"> communication engineering</a> </p> <a href="https://publications.waset.org/abstracts/6512/reliability-improvement-of-power-system-networks-using-adaptive-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5784</span> Morphological and Molecular Characterization of Accessions of Black Fonio Millet (Digitaria Iburua Stapf) Grown in Selected Regions in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nwogiji%20Cletus%20Olando">Nwogiji Cletus Olando</a>, <a href="https://publications.waset.org/abstracts/search?q=Oselebe%20Happiness%20Ogba"> Oselebe Happiness Ogba</a>, <a href="https://publications.waset.org/abstracts/search?q=Enoch%20Achigan-Dako"> Enoch Achigan-Dako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digitaria iburua, commonly known as black fonio, is a cereal crop native to Africa and extensively cultivated by smallholder farmers in Northern Benin, Togo, and Nigeria. This crop holds immense nutritional and socio-cultural value. Unfortunately, limited knowledge about its genetic diversity exists due to a lack of scientific attention. As a result, its potential for improvement in food and agriculture remains largely untapped. To address this gap, a study was conducted using 41 accessions of D. iburua stored in the genebank of the Laboratory of Genetics, Biotechnology, and Seed Science at Abomey-Calavi University, Benin. The study employed both morphological and simple sequence repeat (SSR) markers to evaluate the genetic variability of the accessions. Agro-morphological assessments were carried out during the 2020 cropping season, utilizing an alpha lattice design with three replications. The collected data encompassed qualitative and quantitative traits. Additionally, molecular variability was assessed using eleven SSR markers. The results revealed significant phenotypic variability among the evaluated accessions, leading to their classification into three main clusters. Furthermore, the eleven SSR markers identified a total of 50 alleles, averaging 4.55 alleles per locus. The primers exhibited an average polymorphic information content value of 0.43, with the DE-ARC019 primer displaying the highest value (0.59). These findings suggest a substantial degree of genetic heterogeneity within the evaluated accessions, and the SSR markers employed in the study proved highly effective in detecting and characterizing this genetic variability. In conclusion, this study highlights the presence of significant genetic diversity in black fonio and provides valuable insights for future efforts aimed at its genetic improvement and conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title="genetic diversity">genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=digitaria%20iburua" title=" digitaria iburua"> digitaria iburua</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20improvement" title=" genetic improvement"> genetic improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20sequence%20repeat%20markers" title=" simple sequence repeat markers"> simple sequence repeat markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a> </p> <a href="https://publications.waset.org/abstracts/169069/morphological-and-molecular-characterization-of-accessions-of-black-fonio-millet-digitaria-iburua-stapf-grown-in-selected-regions-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5783</span> Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonveer%20Singh">Sonveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Agrawal"> Sanjay Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Avasthi"> D. V. Avasthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayant%20Shekhar"> Jayant Shekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20module" title=" PVT module"> PVT module</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/16503/application-of-genetic-algorithm-with-multiobjective-function-to-improve-the-efficiency-of-photovoltaic-thermal-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5782</span> Genetic Testing and Research in South Africa: The Sharing of Data Across Borders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amy%20Gooden">Amy Gooden</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshandren%20Naidoo"> Meshandren Naidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic research is not confined to a particular jurisdiction. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-border" title="cross-border">cross-border</a>, <a href="https://publications.waset.org/abstracts/search?q=data" title=" data"> data</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20testing" title=" genetic testing"> genetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=sharing" title=" sharing"> sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/153426/genetic-testing-and-research-in-south-africa-the-sharing-of-data-across-borders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5781</span> A Review Paper on Data Mining and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikander%20Singh%20Cheema">Sikander Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20Kaur"> Jasmeen Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=KDD" title=" KDD"> KDD</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20mining" title=" descriptive mining"> descriptive mining</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20mining" title=" predictive mining"> predictive mining</a> </p> <a href="https://publications.waset.org/abstracts/43637/a-review-paper-on-data-mining-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5780</span> Evaluation of Yield and Yield Components of Malaysian Palm Oil Board-Senegal Oil Palm Germplasm Using Multivariate Tools </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khin%20Aye%20Myint">Khin Aye Myint</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rafii%20Yusop"> Mohd Rafii Yusop</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Yusoff%20Abd%20Samad"> Mohd Yusoff Abd Samad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shairul%20Izan%20Ramlee"> Shairul Izan Ramlee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Din%20Amiruddin"> Mohd Din Amiruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulkifli%20Yaakub"> Zulkifli Yaakub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The narrow base of genetic is the main obstacle of breeding and genetic improvement in oil palm industry. In order to broaden the genetic bases, the Malaysian Palm Oil Board has been extensively collected wild germplasm from its original area of 11 African countries which are Nigeria, Senegal, Gambia, Guinea, Sierra Leone, Ghana, Cameroon, Zaire, Angola, Madagascar, and Tanzania. The germplasm collections were established and maintained as a field gene bank in Malaysian Palm Oil Board (MPOB) Research Station in Kluang, Johor, Malaysia to conserve a wide range of oil palm genetic resources for genetic improvement of Malaysian oil palm industry. Therefore, assessing the performance and genetic diversity of the wild materials is very important for understanding the genetic structure of natural oil palm population and to explore genetic resources. Principal component analysis (PCA) and Cluster analysis are very efficient multivariate tools in the evaluation of genetic variation of germplasm and have been applied in many crops. In this study, eight populations of MPOB-Senegal oil palm germplasm were studied to explore the genetic variation pattern using PCA and cluster analysis. A total of 20 yield and yield component traits were used to analyze PCA and Ward’s clustering using SAS 9.4 version software. The first four principal components which have eigenvalue >1 accounted for 93% of total variation with the value of 44%, 19%, 18% and 12% respectively for each principal component. PC1 showed highest positive correlation with fresh fruit bunch (0.315), bunch number (0.321), oil yield (0.317), kernel yield (0.326), total economic product (0.324), and total oil (0.324) while PC 2 has the largest positive association with oil to wet mesocarp (0.397) and oil to fruit (0.458). The oil palm population were grouped into four distinct clusters based on 20 evaluated traits, this imply that high genetic variation existed in among the germplasm. Cluster 1 contains two populations which are SEN 12 and SEN 10, while cluster 2 has only one population of SEN 3. Cluster 3 consists of three populations which are SEN 4, SEN 6, and SEN 7 while SEN 2 and SEN 5 were grouped in cluster 4. Cluster 4 showed the highest mean value of fresh fruit bunch, bunch number, oil yield, kernel yield, total economic product, and total oil and Cluster 1 was characterized by high oil to wet mesocarp, and oil to fruit. The desired traits that have the largest positive correlation on extracted PCs could be utilized for the improvement of oil palm breeding program. The populations from different clusters with the highest cluster means could be used for hybridization. The information from this study can be utilized for effective conservation and selection of the MPOB-Senegal oil palm germplasm for the future breeding program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title="cluster analysis">cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variability" title=" genetic variability"> genetic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=germplasm" title=" germplasm"> germplasm</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a> </p> <a href="https://publications.waset.org/abstracts/98332/evaluation-of-yield-and-yield-components-of-malaysian-palm-oil-board-senegal-oil-palm-germplasm-using-multivariate-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5779</span> Variability Parameters for Growth and Yield Characters in Fenugreek, Trigonella spp. Genotypes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20Singh">Anita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Naula"> Richa Naula</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Raghav"> Manoj Raghav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India is a leading producer and consumer of fenugreek for its culinary uses and medicinal application. In India, most of the people are of vegetarian class. In such a situation, a leafy vegetable, such as fenugreek is of chief concern due to its high nutritional property, medicinal values and industrial uses. One of the most important factors restricting their large scale production and development of superior varieties is that very scanty knowledge about their genetic diversity, inter and intraspecific variability and genetic relationship among the species. Improvement of the crop depends upon the magnitude of genetic variability for economic characters. Therefore, the present research work was carried out to analyse the variability parameters for growth and yield character in twenty-eight fenugreek genotypes along with two standard checks Pant Ragini and Pusa Early Bunching. The experiment was laid out in Randomized Block Design with three replication during rabi season 2015-2016 at Pantnagar Centre for Plant Genetic Resources, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand. The analysis of variance revealed highly significant differences among all the genotypes for all traits. High genotypic and phenotypic coefficient variation were observed for characters, namely the number of primary branches per plant, number of leaves at 30, 45 and 60 DAS, green leaf yield per plant, green leaf yield q/ha . The genetic advance recorded highest in green leaf yield q/ha (33.93) followed by green leaf yield per plant (21.20g). Highest percent of heritability were shown by 1000 seed weight (99.12%) followed by the number of primary branches per plant (97.18%). Green leaf yield q/ha showed high heritability and high genetic advance. These superior genotypes can be further used in crop improvement programs of fenugreek. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20advance" title="genetic advance">genetic advance</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypic%20coefficient%20variation" title=" genotypic coefficient variation"> genotypic coefficient variation</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotypic%20coefficient%20variation" title=" phenotypic coefficient variation "> phenotypic coefficient variation </a> </p> <a href="https://publications.waset.org/abstracts/68953/variability-parameters-for-growth-and-yield-characters-in-fenugreek-trigonella-spp-genotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5778</span> Hardware for Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Ahmadi">Fariborz Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Tati"> Reza Tati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardware" title="hardware">hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title=" computer science"> computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a> </p> <a href="https://publications.waset.org/abstracts/5598/hardware-for-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5777</span> Computational Analyses of Persian Walnut Genetic Data: Notes on Genetic Diversity and Cultivar Phylogeny</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Sheidaei">Masoud Sheidaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Melica%20Tabasi"> Melica Tabasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Koohdar"> Fahimeh Koohdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20Sheidaei"> Mona Sheidaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Juglans regia L. is an economically important species of edible nuts. Iran is known as a center of origin of genetically rich walnut germplasm and expected to be found a large diversity within Iranian walnut populations. A detailed population genetic of local populations is useful for developing an optimal strategy for in situ conservation and can assist the breeders in crop improvement programs. Different phylogenetic studies have been carried out in this genus, but none has been concerned with genetic changes associated with geographical divergence and the identification of adaptive SNPs. Therefore, we carried out the present study to identify discriminating ITS nucleotides among Juglans species and also reveal association between ITS SNPs and geographical variables. We used different computations approaches like DAPC, CCA, and RDA analyses for the above-mentioned tasks. We also performed population genetics analyses for population effective size changes associated with the species expansion. The results obtained suggest that latitudinal distribution has a more profound effect on the species genetic changes. Similarly, multiple analytical approaches utilized for the identification of both discriminating DNA nucleotides/ SNPs almost produced congruent results. The SNPs with different phylogenetic importance were also identified by using a parsimony approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Persian%20walnut" title="Persian walnut">Persian walnut</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20SNPs" title=" adaptive SNPs"> adaptive SNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analyses" title=" data analyses"> data analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a> </p> <a href="https://publications.waset.org/abstracts/148098/computational-analyses-of-persian-walnut-genetic-data-notes-on-genetic-diversity-and-cultivar-phylogeny" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5776</span> Enhancement of Genetic Diversity through Cross Breeding of Two Catfish (Heteropneustes fossilis and Clarias batrachus) in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Miah">M. F. Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chakrabarty"> A. Chakrabarty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two popular and highly valued fish, Stinging catfish (Heteropneustes fossilis) and Asian catfish (Clarias batrachus) are considered for observing genetic enhancement. Cross breeding was performed considering wild and farmed fish through inducing agent. Five RAPD markers were used to assess genetic diversity among parents and offspring of these two catfish for evaluating genetic enhancement in F1 generation. Considering different genetic data such as banding pattern of DNA, polymorphic loci, polymorphic information content (PIC), inter individual pair wise similarity, Nei genetic similarity, genetic distance, phylogenetic relationships, allele frequency, genotype frequency, intra locus gene diversity and average gene diversity of parents and offspring of these two fish were analyzed and finally in both cases higher genetic diversity was found in F1 generation than the parents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heteropneustes%20fossilis" title="Heteropneustes fossilis">Heteropneustes fossilis</a>, <a href="https://publications.waset.org/abstracts/search?q=Clarias%20batrachus" title=" Clarias batrachus"> Clarias batrachus</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20breeding" title=" cross breeding"> cross breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20enhancement" title=" genetic enhancement"> genetic enhancement</a> </p> <a href="https://publications.waset.org/abstracts/82616/enhancement-of-genetic-diversity-through-cross-breeding-of-two-catfish-heteropneustes-fossilis-and-clarias-batrachus-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5775</span> Genetic and Non-Genetic Evaluation of Milk Yield and Litter Size of Awassi Sheep in Drylands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Al-Najjar">Khaled Al-Najjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Q.%20Al-Momani"> Ahmad Q. Al-Momani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elnahas"> Ahmed Elnahas</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Elsaid"> Reda Elsaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was carried out using records of Awassi sheep bred in drylands at Al-Fjaj Station, Jordan. That aimed to study non-genetic factors affecting milk yield (MK), litter size at birth (LZB); estimate heritability, repeatability, and genetic and phenotypic correlation using SAS and MTDFREML programs. The results were as follows, the average MK and LZB were 92.84 (kg) and 1.16, respectively. MK was highly significantly affected by each parity, age of ewe, year of lambing, and lactation period, while only the year of lambing had a significant effect on LZB. The heritability and repeatability were 0.07 and 0.10 for MK, while it was 0.05 and 0.25 for LZB. The genetic and phenotypic correlations were 0.17 and 0.02 between MK and LZB, respectively. The research concluded that the herd is genetically homozygous and therefore needs to increase genetic variance by introducing LZB-improved rams and selecting females from dams who achieved at least four parties to increase returns in drylands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awassi%20sheep" title="Awassi sheep">Awassi sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20parameters" title=" genetic parameters"> genetic parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20size" title=" litter size"> litter size</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20yield" title=" milk yield"> milk yield</a> </p> <a href="https://publications.waset.org/abstracts/149418/genetic-and-non-genetic-evaluation-of-milk-yield-and-litter-size-of-awassi-sheep-in-drylands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5774</span> Improvement of the Melon (Cucumis melo L.) through Genetic Gain and Discriminant Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Naroui%20Rad">M. R. Naroui Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Fanaei"> H. Fanaei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghalandarzehi"> A. Ghalandarzehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To find out the yield of melon, the traits are vital. This research was performed with the objective to assess the impact of nine different morphological traits on the production of 20 melon landraces in the sistan weather region. For all the traits genetic variation was noted. Minimum genetical variance (9.66) along with high genetic interaction with the environment led to low heritability (0.24) of the yield. The broad sense heritability of the traits that were included into the differentiating model was more than it was in the production. In this study, the five selected traits, number of fruit, fruit weight, fruit width, flesh diameter and plant yield can differentiate the genotypes with high or low production. This demonstrated the significance of these 5 traits in plant breeding programs. Discriminant function of these 5 traits, particularly, the weight of the fruit, in case of the current outputs was employed as an all-inclusive parameter for pointing out landraces with the highest yield. 75% of variation in yield can be explained with this index, and the weight of fruit also has substantial relation with the total production (r=0.72**). This factor can be highly beneficial in case of future breeding program selections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melon" title="melon">melon</a>, <a href="https://publications.waset.org/abstracts/search?q=discriminant%20analysis" title=" discriminant analysis"> discriminant analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20components" title=" genetic components"> genetic components</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a> </p> <a href="https://publications.waset.org/abstracts/48563/improvement-of-the-melon-cucumis-melo-l-through-genetic-gain-and-discriminant-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5773</span> The Legal Regulation of Direct-to-Consumer Genetic Testing In South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amy%20Gooden">Amy Gooden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite its prevalence, direct-to-consumer genetic testing (DTC-GT) remains under-investigated in South Africa (SA), and the issue of regulation is yet to be examined. Therefore, this research maps the current legal landscape relating to DTC-GT in SA through a legal analysis of the extant law relevant to the industry and the issues associated therewith – with the intention of determining if and how DTC-GT is legally governed. This research analyses: whether consumers are legally permitted to collect their saliva; whether DTC-GT are medical devices; licensing, registering, and advertising; importing and exporting; and genetic research conducted by companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct-to-consumer%20genetic%20testing" title="direct-to-consumer genetic testing">direct-to-consumer genetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20testing" title=" genetic testing"> genetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/153430/the-legal-regulation-of-direct-to-consumer-genetic-testing-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5772</span> Genetic Variation of Shvicezebuvides Cattle in Tajikistan Based on Microsatellite Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norezzine%20Abdelaziz">Norezzine Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebouh%20Nazih%20Yacer"> Rebouh Nazih Yacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Kezimana%20Parfait"> Kezimana Parfait</a>, <a href="https://publications.waset.org/abstracts/search?q=Parpura%20D.%20I."> Parpura D. I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gadzhikurbanov%20A."> Gadzhikurbanov A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasios%20Dranidis"> Anastasios Dranidis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The genetic variation of Shvicezebuvides cattle from three different farms in the Tajikistan Republic was studied using 10 microsatellite markers (SSR). The trials were laid out using a multi- locus analysis system for the analysis of cattle microsatellite locus. An estimated genetic variability of the examined livestock is given in the article. The results of our SSR analysis as well as the numbers and frequencies of common alleles in studied samples, we established a high genetic similarity of studied samples. These results can also be furthermore useful in the decision making for preservation and rational genetic resources usage of the Tajik Shvicezebuvides cattle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20characteristic" title="genetic characteristic">genetic characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=frequencies%20of%20the%20occurrence%20alleles" title=" frequencies of the occurrence alleles"> frequencies of the occurrence alleles</a>, <a href="https://publications.waset.org/abstracts/search?q=microsatellite%20markers" title=" microsatellite markers"> microsatellite markers</a>, <a href="https://publications.waset.org/abstracts/search?q=Swiss%20cattle" title=" Swiss cattle"> Swiss cattle</a> </p> <a href="https://publications.waset.org/abstracts/83760/genetic-variation-of-shvicezebuvides-cattle-in-tajikistan-based-on-microsatellite-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5771</span> Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferinar%20Moaidi">Ferinar Moaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Moaidi"> Mahdi Moaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrid" title=" microgrid"> microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20modelling" title=" load modelling"> load modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20reduction" title=" loss reduction"> loss reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20improvement" title=" voltage improvement"> voltage improvement</a> </p> <a href="https://publications.waset.org/abstracts/102530/optimal-placement-and-sizing-of-distributed-generation-in-microgrid-for-power-loss-reduction-and-voltage-profile-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5770</span> Security System for Safe Transmission of Medical Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jamal%20Al-Mansor">Mohammed Jamal Al-Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Beng%20Gan"> Kok Beng Gan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops an optimized embedding of payload in medical image by using genetic optimization. The goal is to preserve region of interest from being distorted because of the watermark. By using this developed system there is no need of manual defining of region of interest through experts as the system will apply the genetic optimization to select the parts of image that can carry the watermark with guaranteeing less distortion. The experimental results assure that genetic based optimization is useful for performing steganography with less mean square error percentage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AES" title="AES">AES</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=watermarking" title=" watermarking"> watermarking</a> </p> <a href="https://publications.waset.org/abstracts/52270/security-system-for-safe-transmission-of-medical-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5769</span> Genetic Characterization of Barley Genotypes via Inter-Simple Sequence Repeat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Yorganc%C4%B1lar">Mustafa Yorgancılar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Atalay"> Emine Atalay</a>, <a href="https://publications.waset.org/abstracts/search?q=Necdet%20Akg%C3%BCn"> Necdet Akgün</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Topal"> Ali Topal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, polymerase chain reaction based Inter-simple sequence repeat (ISSR) from DNA fingerprinting techniques were used to investigate the genetic relationships among barley crossbreed genotypes in Turkey. It is important that selection based on the genetic base in breeding programs via ISSR, in terms of breeding time. 14 ISSR primers generated a total of 97 bands, of which 81 (83.35%) were polymorphic. The highest total resolution power (RP) value was obtained from the F2 (0.53) and M16 (0.51) primers. According to the ISSR result, the genetic similarity index changed between 0.64–095; Lane 3 with Line 6 genotypes were the closest, while Line 36 were the most distant ones. The ISSR markers were found to be promising for assessing genetic diversity in barley crossbreed genotypes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=crossbreed" title=" crossbreed"> crossbreed</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20similarity" title=" genetic similarity"> genetic similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=ISSR" title=" ISSR"> ISSR</a> </p> <a href="https://publications.waset.org/abstracts/63629/genetic-characterization-of-barley-genotypes-via-inter-simple-sequence-repeat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5768</span> The Role of Genetic Markers in Prostate Cancer Diagnosis and Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ali">Farman Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Mahmood"> Asif Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of genetic markers in prostate cancer management represents a significant advance in personalized medicine, offering the potential for more precise diagnosis and tailored treatment strategies. This paper explores the pivotal role of genetic markers in the diagnosis and treatment of prostate cancer, emphasizing their contribution to the identification of individual risk profiles, tumor aggressiveness, and response to therapy. By integrating current research findings, we discuss the application of genetic markers in developing targeted therapies and the implications for patient outcomes. Despite the promising advancements, challenges such as accessibility, cost, and the need for further validation in diverse populations remain. The paper concludes with an outlook on future directions, underscoring the importance of genetic markers in revolutionizing prostate cancer care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title="prostate cancer">prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20markers" title=" genetic markers"> genetic markers</a>, <a href="https://publications.waset.org/abstracts/search?q=personalized%20medicine" title=" personalized medicine"> personalized medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=BRCA1%20and%20BRCA2" title=" BRCA1 and BRCA2"> BRCA1 and BRCA2</a> </p> <a href="https://publications.waset.org/abstracts/184866/the-role-of-genetic-markers-in-prostate-cancer-diagnosis-and-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5767</span> Cross-border Data Transfers to and from South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amy%20Gooden">Amy Gooden</a>, <a href="https://publications.waset.org/abstracts/search?q=Meshandren%20Naidoo"> Meshandren Naidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-border" title="cross-border">cross-border</a>, <a href="https://publications.waset.org/abstracts/search?q=data" title=" data"> data</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20testing" title=" genetic testing"> genetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=law" title=" law"> law</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=research" title=" research"> research</a>, <a href="https://publications.waset.org/abstracts/search?q=sharing" title=" sharing"> sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Africa" title=" South Africa"> South Africa</a> </p> <a href="https://publications.waset.org/abstracts/153435/cross-border-data-transfers-to-and-from-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5766</span> Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hailekiros%20Tadesse%20Tekle">Hailekiros Tadesse Tekle</a>, <a href="https://publications.waset.org/abstracts/search?q=Yemane%20Tsehaye"> Yemane Tsehaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Fetien%20Abay"> Fetien Abay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley" title="barley">barley</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20advance" title=" genetic advance"> genetic advance</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=usefulness" title=" usefulness"> usefulness</a>, <a href="https://publications.waset.org/abstracts/search?q=variability" title=" variability"> variability</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/167264/genetic-trait-analysis-of-ril-barley-genotypes-to-sort-out-the-top-ranked-elites-for-advanced-yield-breeding-across-multi-environments-of-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5765</span> Factors Determining Intention to Pursue Genetic Testing for People in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Chun%20Chien">Ju-Chun Chien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ottawa Charter for Health Promotion proposed that the role of health services should shift the focus from cure to prevention. Nowadays, besides having physical examinations, people could also conduct genetic tests to provide important information for diagnosing, treating, and/or preventing illnesses. However, because of the incompletion of the Chinese Genetic Database, people in Taiwan were still unfamiliar with genetic testing. The purposes of the present study were to: (1) Figure out people’s attitudes towards genetic testing. (2) Examine factors that influence people’s intention to pursue genetic testing by means of the Health Belief Model (HBM). A pilot study was conducted on 249 Taiwanese in 2017 to test the feasibility of the self-developed instrument. The reliability and construct validity of scores on the self-developed questionnaire revealed that this HBM-based questionnaire with 40 items was a well-developed instrument. A total of 542 participants were recruited and the valid participants were 535 (99%) between the ages of 20 and 86. Descriptive statistics, one-way ANOVA, two-way contingency table analysis, Pearson’s correlation, and stepwise multiple regression analysis were used in this study. The main results were that only 32 participants (6%) had already undergone genetic testing; moreover, their attitude towards genetic testing was more positive than those who did not have the experience. Compared with people who never underwent genetic tests, those who had gone for genetic testing had higher self-efficacy, greater intention to pursue genetic testing, had academic majors in health-related fields, had chronic and genetic diseases, possessed Catastrophic Illness Cards, and all of them had heard about genetic testing. The variables that best predicted people’s intention to pursue genetic testing were cues to action, self-efficacy, and perceived benefits (the three variables all correlated with one another positively at high magnitudes). To sum up, the HBM could be effective in designing and identifying the needs and priorities of the target population to pursue genetic testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20testing" title="genetic testing">genetic testing</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20of%20GT" title=" knowledge of GT"> knowledge of GT</a>, <a href="https://publications.waset.org/abstracts/search?q=people%20in%20Taiwan" title=" people in Taiwan"> people in Taiwan</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20health%20belief%20model" title=" the health belief model"> the health belief model</a> </p> <a href="https://publications.waset.org/abstracts/91788/factors-determining-intention-to-pursue-genetic-testing-for-people-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5764</span> Genetic Improvement Potential for Wood Production in Melaleuca cajuputi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Nguyen%20Thi%20Hai">Hong Nguyen Thi Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Konda"> Ryota Konda</a>, <a href="https://publications.waset.org/abstracts/search?q=Dat%20Kieu%20Tuan"> Dat Kieu Tuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cao%20Tran%20Thanh"> Cao Tran Thanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khang%20Phung%20Van"> Khang Phung Van</a>, <a href="https://publications.waset.org/abstracts/search?q=Hau%20Tran%20Tin"> Hau Tran Tin</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Wu"> Harry Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melaleuca cajuputi is a moderately fast-growing species and considered as a multi-purpose tree as it provides fuelwood, piles and frame poles in construction, leaf essential oil and honey. It occurs in Australia, Papua New Guinea, and South-East Asia. M. cajuputi plantation can be harvested on 6-7 year rotations for wood products. Its timber can also be used for pulp and paper, fiber and particle board, producing quality charcoal and potentially sawn timber. However, most reported M. cajuputi breeding programs have been focused on oil production rather than wood production. In this study, breeding program of M. cajuputi aimed to improve wood production was examined by estimating genetic parameters for growth (tree height, diameter at breast height (DBH), and volume), stem form, stiffness (modulus of elasticity (MOE)), bark thickness and bark ratio in a half-sib family progeny trial including 80 families in the Mekong Delta of Vietnam. MOE is one of the key wood properties of interest to the wood industry. Non-destructive wood stiffness was measured indirectly by acoustic velocity using FAKOPP Microsecond Timer and especially unaffected by bark mass. Narrow-sense heritability for the seven traits ranged from 0.13 to 0.27 at age 7 years. MOE and stem form had positive genetic correlations with growth while the negative correlation between bark ratio and growth was also favorable. Breeding for simultaneous improvement of multiple traits, faster growth with higher MOE and reduction of bark ratio should be possible in M. cajuputi. Index selection based on volume and MOE showed genetic gains of 31 % in volume, 6 % in MOE and 13 % in stem form. In addition, heritability and age-age genetic correlations for growth traits increased with time and optimal early selection age for growth of M. cajuputi based on DBH alone was 4 years. Selected thinning resulted in an increase of heritability due to considerable reduction of phenotypic variation but little effect on genetic variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20velocity" title="acoustic velocity">acoustic velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=age-age%20correlation" title=" age-age correlation"> age-age correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=bark%20thickness" title=" bark thickness"> bark thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=heritability" title=" heritability"> heritability</a>, <a href="https://publications.waset.org/abstracts/search?q=Melaleuca%20cajuputi" title=" Melaleuca cajuputi"> Melaleuca cajuputi</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=thinning%20effect" title=" thinning effect"> thinning effect</a> </p> <a href="https://publications.waset.org/abstracts/101583/genetic-improvement-potential-for-wood-production-in-melaleuca-cajuputi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5763</span> An Improved Many Worlds Quantum Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Dan">Li Dan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Junsuo"> Zhao Junsuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Wenjun"> Zhang Wenjun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the shortcomings of the Quantum Genetic Algorithm such as the multimodal function optimization problems easily falling into the local optimum, and vulnerable to premature convergence due to no closely relationship between individuals, the paper presents an Improved Many Worlds Quantum Genetic Algorithm (IMWQGA). The paper using the concept of Many Worlds; using the derivative way of parallel worlds’ parallel evolution; putting forward the thought which updating the population according to the main body; adopting the transition methods such as parallel transition, backtracking, travel forth. In addition, the algorithm in the paper also proposes the quantum training operator and the combinatorial optimization operator as new operators of quantum genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20genetic%20algorithm" title="quantum genetic algorithm">quantum genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=many%20worlds" title=" many worlds"> many worlds</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20training%20operator" title=" quantum training operator"> quantum training operator</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization%20operator" title=" combinatorial optimization operator"> combinatorial optimization operator</a> </p> <a href="https://publications.waset.org/abstracts/16842/an-improved-many-worlds-quantum-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">743</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5762</span> Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maletsema%20Alina%20Mofokeng">Maletsema Alina Mofokeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemera%20Shargie"> Nemera Shargie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessions" title="accessions">accessions</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20quality" title=" nutritional quality"> nutritional quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sorghum" title=" sorghum"> sorghum</a> </p> <a href="https://publications.waset.org/abstracts/59422/estimation-of-genetic-diversity-in-sorghum-accessions-using-agro-mophological-and-nutritional-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5761</span> Genetic Diversity Based Population Study of Freshwater Mud Eel (Monopterus cuchia) in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Miah">M. F. Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20A.%20Zinnah"> K. M. A. Zinnah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Raihan"> M. J. Raihan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ali"> H. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Naser"> M. N. Naser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As genetic diversity is most important for existing, breeding and production of any fish; this study was undertaken for investigating genetic diversity of freshwater mud eel, <em>Monopterus cuchia</em> at population level where three ecological populations such as flooded area of Sylhet (P1), open water of Moulvibazar (P2) and open water of Sunamganj (P3) districts of Bangladesh were considered. Four arbitrary RAPD primers (OPB-12, C0-4, B-03 and OPB-08) were screened and RAPD banding patterns were analyzed among the populations considering 15 individuals of each population. In total 174, 138 and 149 bands were detected in the populations of P1, P2 and P3 respectively; however, each primer revealed less number of bands in each population. 100% polymorphic loci were recorded in P2 and P3 whereas only one monomorphic locus was observed in P1, recorded 97.5% polymorphism. Different genetic parameters such as inter-individual pairwise similarity, genetic distance, Nei genetic similarity, linkage distances, cluster analysis and allelic information, etc. were considered for measuring genetic diversity. The average inter-individual pairwise similarity was recorded 2.98, 1.47 and 1.35 in P1, P2 and P3 respectively. Considering genetic distance analysis, the highest distance 1 was recorded in P2 and P3 and the lowest genetic distance 0.444 was found in P2. The average Nei genetic similarity was observed 0.19, 0.16 and 0.13 in P1, P2 and P3, respectively; however, the average linkage distance was recorded 24.92, 17.14 and 15.28 in P1, P3 and P2 respectively. Based on linkage distance, genetic clusters were generated in three populations where 6 clades and 7 clusters were found in P1, 3 clades and 5 clusters were observed in P2 and 4 clades and 7 clusters were detected in P3. In addition, allelic information was observed where the frequency of p and q alleles were observed 0.093 and 0.907 in P1, 0.076 and 0.924 in P2, 0.074 and 0.926 in P3 respectively. The average gene diversity was observed highest in P2 (0.132) followed by P3 (0.131) and P1 (0.121) respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title="genetic diversity">genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Monopterus%20cuchia" title=" Monopterus cuchia"> Monopterus cuchia</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=RAPD" title=" RAPD"> RAPD</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/45221/genetic-diversity-based-population-study-of-freshwater-mud-eel-monopterus-cuchia-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=192">192</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=193">193</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20improvement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>