CINXE.COM

Frontiers | The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip

<!doctype html> <html data-n-head-ssr lang="en" data-n-head="%7B%22lang%22:%7B%22ssr%22:%22en%22%7D%7D"> <head > <link data-n-head="ssr" rel="icon" type="image/png" sizes="16x16" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_16-tenantFavicon-Frontiers.png"> <link data-n-head="ssr" rel="icon" type="image/png" sizes="32x32" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_32-tenantFavicon-Frontiers.png"> <link data-n-head="ssr" rel="apple-touch-icon" type="image/png" sizes="180x180" href="https://brand.frontiersin.org/m/ed3f9ce840a03d7/favicon_180-tenantFavicon-Frontiers.png"> <title>Frontiers | The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip</title><meta data-n-head="ssr" charset="utf-8"><meta data-n-head="ssr" name="viewport" content="width=device-width, initial-scale=1"><meta data-n-head="ssr" data-hid="charset" charset="utf-8"><meta data-n-head="ssr" data-hid="mobile-web-app-capable" name="mobile-web-app-capable" content="yes"><meta data-n-head="ssr" data-hid="apple-mobile-web-app-title" name="apple-mobile-web-app-title" content="Frontiers | Articles"><meta data-n-head="ssr" data-hid="theme-color" name="theme-color" content="#0C4DED"><meta data-n-head="ssr" data-hid="description" property="description" name="description" content="The single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Desp..."><meta data-n-head="ssr" data-hid="og:title" property="og:title" name="title" content="Frontiers | The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip"><meta data-n-head="ssr" data-hid="og:description" property="og:description" name="description" content="The single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Desp..."><meta data-n-head="ssr" data-hid="keywords" name="keywords" content="intestine,stem cell,plasticity,differentiation,single cell,Organoid,Regeneration,Cancer"><meta data-n-head="ssr" data-hid="og:site_name" property="og:site_name" name="site_name" content="Frontiers"><meta data-n-head="ssr" data-hid="og:image" property="og:image" name="image" content="https://images-provider.frontiersin.org/api/ipx/w=1200&amp;f=png/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg"><meta data-n-head="ssr" data-hid="og:type" property="og:type" name="type" content="article"><meta data-n-head="ssr" data-hid="og:url" property="og:url" name="url" content="https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full"><meta data-n-head="ssr" data-hid="twitter:card" name="twitter:card" content="summary_large_image"><meta data-n-head="ssr" data-hid="citation_volume" name="citation_volume" content="9"><meta data-n-head="ssr" data-hid="citation_journal_title" name="citation_journal_title" content="Frontiers in Cell and Developmental Biology"><meta data-n-head="ssr" data-hid="citation_publisher" name="citation_publisher" content="Frontiers"><meta data-n-head="ssr" data-hid="citation_journal_abbrev" name="citation_journal_abbrev" content="Front. Cell Dev. Biol."><meta data-n-head="ssr" data-hid="citation_issn" name="citation_issn" content="2296-634X"><meta data-n-head="ssr" data-hid="citation_doi" name="citation_doi" content="10.3389/fcell.2021.661931"><meta data-n-head="ssr" data-hid="citation_firstpage" name="citation_firstpage" content="661931"><meta data-n-head="ssr" data-hid="citation_language" name="citation_language" content="English"><meta data-n-head="ssr" data-hid="citation_title" name="citation_title" content="The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip"><meta data-n-head="ssr" data-hid="citation_keywords" name="citation_keywords" content="intestine; stem cell; plasticity; differentiation; single cell; Organoid; Regeneration; Cancer"><meta data-n-head="ssr" data-hid="citation_abstract" name="citation_abstract" content="&lt;p&gt;The single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Despite its seemingly simple architecture, the intestinal lining consists of highly distinct cell populations that are continuously renewed by the same stem cell population. The need to maintain balanced diversity of cell types in an unceasingly regenerating tissue demands intricate mechanisms of spatial or temporal cell fate control. Recent advances in single-cell sequencing, spatio-temporal profiling and organoid technology have shed new light on the intricate micro-structure of the intestinal epithelium and on the mechanisms that maintain it. This led to the discovery of unexpected plasticity, zonation along the crypt-villus axis and new mechanism of self-organization. However, not only the epithelium, but also the underlying mesenchyme is distinctly structured. Several new studies have explored the intestinal stroma with single cell resolution and unveiled important interactions with the epithelium that are crucial for intestinal function and regeneration. In this review, we will discuss these recent findings and highlight the technologies that lead to their discovery. We will examine strengths and limitations of each approach and consider the wider impact of these results on our understanding of the intestine in health and disease.&lt;/p&gt;"><meta data-n-head="ssr" data-hid="citation_pdf_url" name="citation_pdf_url" content="https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/pdf"><meta data-n-head="ssr" data-hid="citation_online_date" name="citation_online_date" content="2021/04/21"><meta data-n-head="ssr" data-hid="citation_publication_date" name="citation_publication_date" content="2021/05/20"><meta data-n-head="ssr" data-hid="citation_author_0" name="citation_author" content="Bonis, Vangelis"><meta data-n-head="ssr" data-hid="citation_author_institution_0" name="citation_author_institution" content="Institute of Molecular Health Sciences, Switzerland"><meta data-n-head="ssr" data-hid="citation_author_1" name="citation_author" content="Rossell, Carla"><meta data-n-head="ssr" data-hid="citation_author_institution_1" name="citation_author_institution" content="Institute of Molecular Health Sciences, Switzerland"><meta data-n-head="ssr" data-hid="citation_author_2" name="citation_author" content="Gehart, Helmuth"><meta data-n-head="ssr" data-hid="citation_author_institution_2" name="citation_author_institution" content="Institute of Molecular Health Sciences, Switzerland"><meta data-n-head="ssr" data-hid="dc.identifier" name="dc.identifier" content="doi:10.3389/fcell.2021.661931"><link data-n-head="ssr" rel="manifest" href="/article-pages/_nuxt/manifest.c499fc0a.json" data-hid="manifest"><link data-n-head="ssr" rel="canonical" href="https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full"><script data-n-head="ssr" data-hid="newrelic-browser-script" type="text/javascript">window.NREUM||(NREUM={});NREUM.info = {"agent":"","beacon":"bam.nr-data.net","errorBeacon":"bam.nr-data.net","licenseKey":"598a124f17","applicationID":"588603994","agentToken":null,"applicationTime":1.93481,"transactionName":"MQcDMkECCkNSW0YMWghNIgldDQFTRxd1IGFJTQ==","queueTime":0,"ttGuid":"f40e8acef37791c8"}; (window.NREUM||(NREUM={})).init={privacy:{cookies_enabled:true},ajax:{deny_list:["bam.nr-data.net"]},distributed_tracing:{enabled:true}};(window.NREUM||(NREUM={})).loader_config={agentID:"594400880",accountID:"230385",trustKey:"230385",xpid:"VgUHUl5WGwYIXFdSBAgOUg==",licenseKey:"598a124f17",applicationID:"588603994"};;/*! For license information please see nr-loader-spa-1.281.0.min.js.LICENSE.txt */ (()=>{var e,t,r={8122:(e,t,r)=>{"use strict";r.d(t,{a:()=>i});var n=r(944);function i(e,t){try{if(!e||"object"!=typeof e)return(0,n.R)(3);if(!t||"object"!=typeof t)return(0,n.R)(4);const r=Object.create(Object.getPrototypeOf(t),Object.getOwnPropertyDescriptors(t)),o=0===Object.keys(r).length?e:r;for(let a in o)if(void 0!==e[a])try{if(null===e[a]){r[a]=null;continue}Array.isArray(e[a])&&Array.isArray(t[a])?r[a]=Array.from(new Set([...e[a],...t[a]])):"object"==typeof e[a]&&"object"==typeof t[a]?r[a]=i(e[a],t[a]):r[a]=e[a]}catch(e){(0,n.R)(1,e)}return r}catch(e){(0,n.R)(2,e)}}},2555:(e,t,r)=>{"use strict";r.d(t,{Vp:()=>c,fn:()=>s,x1:()=>u});var n=r(384),i=r(8122);const o={beacon:n.NT.beacon,errorBeacon:n.NT.errorBeacon,licenseKey:void 0,applicationID:void 0,sa:void 0,queueTime:void 0,applicationTime:void 0,ttGuid:void 0,user:void 0,account:void 0,product:void 0,extra:void 0,jsAttributes:{},userAttributes:void 0,atts:void 0,transactionName:void 0,tNamePlain:void 0},a={};function s(e){try{const t=c(e);return!!t.licenseKey&&!!t.errorBeacon&&!!t.applicationID}catch(e){return!1}}function c(e){if(!e)throw new Error("All info objects require an agent identifier!");if(!a[e])throw new Error("Info for ".concat(e," was never set"));return a[e]}function u(e,t){if(!e)throw new Error("All info objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.info=a[e])}},9417:(e,t,r)=>{"use strict";r.d(t,{D0:()=>p,gD:()=>m,xN:()=>g});var n=r(3333),i=r(993);const o=e=>{if(!e||"string"!=typeof e)return!1;try{document.createDocumentFragment().querySelector(e)}catch{return!1}return!0};var a=r(2614),s=r(944),c=r(384),u=r(8122);const d="[data-nr-mask]",l=()=>{const e={feature_flags:[],experimental:{marks:!1,measures:!1,resources:!1},mask_selector:"*",block_selector:"[data-nr-block]",mask_input_options:{color:!1,date:!1,"datetime-local":!1,email:!1,month:!1,number:!1,range:!1,search:!1,tel:!1,text:!1,time:!1,url:!1,week:!1,textarea:!1,select:!1,password:!0}};return{ajax:{deny_list:void 0,block_internal:!0,enabled:!0,autoStart:!0},distributed_tracing:{enabled:void 0,exclude_newrelic_header:void 0,cors_use_newrelic_header:void 0,cors_use_tracecontext_headers:void 0,allowed_origins:void 0},get feature_flags(){return e.feature_flags},set feature_flags(t){e.feature_flags=t},generic_events:{enabled:!0,autoStart:!0},harvest:{interval:30},jserrors:{enabled:!0,autoStart:!0},logging:{enabled:!0,autoStart:!0,level:i.p_.INFO},metrics:{enabled:!0,autoStart:!0},obfuscate:void 0,page_action:{enabled:!0},page_view_event:{enabled:!0,autoStart:!0},page_view_timing:{enabled:!0,autoStart:!0},performance:{get capture_marks(){return e.feature_flags.includes(n.$v.MARKS)||e.experimental.marks},set capture_marks(t){e.experimental.marks=t},get capture_measures(){return e.feature_flags.includes(n.$v.MEASURES)||e.experimental.measures},set capture_measures(t){e.experimental.measures=t},capture_detail:!0,resources:{get enabled(){return e.feature_flags.includes(n.$v.RESOURCES)||e.experimental.resources},set enabled(t){e.experimental.resources=t},asset_types:[],first_party_domains:[],ignore_newrelic:!0}},privacy:{cookies_enabled:!0},proxy:{assets:void 0,beacon:void 0},session:{expiresMs:a.wk,inactiveMs:a.BB},session_replay:{autoStart:!0,enabled:!1,preload:!1,sampling_rate:10,error_sampling_rate:100,collect_fonts:!1,inline_images:!1,fix_stylesheets:!0,mask_all_inputs:!0,get mask_text_selector(){return e.mask_selector},set mask_text_selector(t){o(t)?e.mask_selector="".concat(t,",").concat(d):""===t||null===t?e.mask_selector=d:(0,s.R)(5,t)},get block_class(){return"nr-block"},get ignore_class(){return"nr-ignore"},get mask_text_class(){return"nr-mask"},get block_selector(){return e.block_selector},set block_selector(t){o(t)?e.block_selector+=",".concat(t):""!==t&&(0,s.R)(6,t)},get mask_input_options(){return e.mask_input_options},set mask_input_options(t){t&&"object"==typeof t?e.mask_input_options={...t,password:!0}:(0,s.R)(7,t)}},session_trace:{enabled:!0,autoStart:!0},soft_navigations:{enabled:!0,autoStart:!0},spa:{enabled:!0,autoStart:!0},ssl:void 0,user_actions:{enabled:!0,elementAttributes:["id","className","tagName","type"]}}},f={},h="All configuration objects require an agent identifier!";function p(e){if(!e)throw new Error(h);if(!f[e])throw new Error("Configuration for ".concat(e," was never set"));return f[e]}function g(e,t){if(!e)throw new Error(h);f[e]=(0,u.a)(t,l());const r=(0,c.nY)(e);r&&(r.init=f[e])}function m(e,t){if(!e)throw new Error(h);var r=p(e);if(r){for(var n=t.split("."),i=0;i<n.length-1;i++)if("object"!=typeof(r=r[n[i]]))return;r=r[n[n.length-1]]}return r}},5603:(e,t,r)=>{"use strict";r.d(t,{a:()=>c,o:()=>s});var n=r(384),i=r(8122);const o={accountID:void 0,trustKey:void 0,agentID:void 0,licenseKey:void 0,applicationID:void 0,xpid:void 0},a={};function s(e){if(!e)throw new Error("All loader-config objects require an agent identifier!");if(!a[e])throw new Error("LoaderConfig for ".concat(e," was never set"));return a[e]}function c(e,t){if(!e)throw new Error("All loader-config objects require an agent identifier!");a[e]=(0,i.a)(t,o);const r=(0,n.nY)(e);r&&(r.loader_config=a[e])}},3371:(e,t,r)=>{"use strict";r.d(t,{V:()=>f,f:()=>l});var n=r(8122),i=r(384),o=r(6154),a=r(9324);let s=0;const c={buildEnv:a.F3,distMethod:a.Xs,version:a.xv,originTime:o.WN},u={customTransaction:void 0,disabled:!1,isolatedBacklog:!1,loaderType:void 0,maxBytes:3e4,onerror:void 0,ptid:void 0,releaseIds:{},appMetadata:{},session:void 0,denyList:void 0,timeKeeper:void 0,obfuscator:void 0,harvester:void 0},d={};function l(e){if(!e)throw new Error("All runtime objects require an agent identifier!");if(!d[e])throw new Error("Runtime for ".concat(e," was never set"));return d[e]}function f(e,t){if(!e)throw new Error("All runtime objects require an agent identifier!");d[e]={...(0,n.a)(t,u),...c},Object.hasOwnProperty.call(d[e],"harvestCount")||Object.defineProperty(d[e],"harvestCount",{get:()=>++s});const r=(0,i.nY)(e);r&&(r.runtime=d[e])}},9324:(e,t,r)=>{"use strict";r.d(t,{F3:()=>i,Xs:()=>o,Yq:()=>a,xv:()=>n});const n="1.281.0",i="PROD",o="CDN",a="^2.0.0-alpha.17"},6154:(e,t,r)=>{"use strict";r.d(t,{A4:()=>s,OF:()=>d,RI:()=>i,WN:()=>h,bv:()=>o,gm:()=>a,lR:()=>f,m:()=>u,mw:()=>c,sb:()=>l});var n=r(1863);const i="undefined"!=typeof window&&!!window.document,o="undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self.navigator instanceof WorkerNavigator||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis.navigator instanceof WorkerNavigator),a=i?window:"undefined"!=typeof WorkerGlobalScope&&("undefined"!=typeof self&&self instanceof WorkerGlobalScope&&self||"undefined"!=typeof globalThis&&globalThis instanceof WorkerGlobalScope&&globalThis),s="complete"===a?.document?.readyState,c=Boolean("hidden"===a?.document?.visibilityState),u=""+a?.location,d=/iPad|iPhone|iPod/.test(a.navigator?.userAgent),l=d&&"undefined"==typeof SharedWorker,f=(()=>{const e=a.navigator?.userAgent?.match(/Firefox[/\s](\d+\.\d+)/);return Array.isArray(e)&&e.length>=2?+e[1]:0})(),h=Date.now()-(0,n.t)()},7295:(e,t,r)=>{"use strict";r.d(t,{Xv:()=>a,gX:()=>i,iW:()=>o});var n=[];function i(e){if(!e||o(e))return!1;if(0===n.length)return!0;for(var t=0;t<n.length;t++){var r=n[t];if("*"===r.hostname)return!1;if(s(r.hostname,e.hostname)&&c(r.pathname,e.pathname))return!1}return!0}function o(e){return void 0===e.hostname}function a(e){if(n=[],e&&e.length)for(var t=0;t<e.length;t++){let r=e[t];if(!r)continue;0===r.indexOf("http://")?r=r.substring(7):0===r.indexOf("https://")&&(r=r.substring(8));const i=r.indexOf("/");let o,a;i>0?(o=r.substring(0,i),a=r.substring(i)):(o=r,a="");let[s]=o.split(":");n.push({hostname:s,pathname:a})}}function s(e,t){return!(e.length>t.length)&&t.indexOf(e)===t.length-e.length}function c(e,t){return 0===e.indexOf("/")&&(e=e.substring(1)),0===t.indexOf("/")&&(t=t.substring(1)),""===e||e===t}},1687:(e,t,r)=>{"use strict";r.d(t,{Ak:()=>c,Ze:()=>l,x3:()=>u});var n=r(7836),i=r(3606),o=r(860),a=r(2646);const s={};function c(e,t){const r={staged:!1,priority:o.P3[t]||0};d(e),s[e].get(t)||s[e].set(t,r)}function u(e,t){e&&s[e]&&(s[e].get(t)&&s[e].delete(t),h(e,t,!1),s[e].size&&f(e))}function d(e){if(!e)throw new Error("agentIdentifier required");s[e]||(s[e]=new Map)}function l(e="",t="feature",r=!1){if(d(e),!e||!s[e].get(t)||r)return h(e,t);s[e].get(t).staged=!0,f(e)}function f(e){const t=Array.from(s[e]);t.every((([e,t])=>t.staged))&&(t.sort(((e,t)=>e[1].priority-t[1].priority)),t.forEach((([t])=>{s[e].delete(t),h(e,t)})))}function h(e,t,r=!0){const o=e?n.ee.get(e):n.ee,s=i.i.handlers;if(!o.aborted&&o.backlog&&s){if(r){const e=o.backlog[t],r=s[t];if(r){for(let t=0;e&&t<e.length;++t)p(e[t],r);Object.entries(r).forEach((([e,t])=>{Object.values(t||{}).forEach((t=>{t[0]?.on&&t[0]?.context()instanceof a.y&&t[0].on(e,t[1])}))}))}}o.isolatedBacklog||delete s[t],o.backlog[t]=null,o.emit("drain-"+t,[])}}function p(e,t){var r=e[1];Object.values(t[r]||{}).forEach((t=>{var r=e[0];if(t[0]===r){var n=t[1],i=e[3],o=e[2];n.apply(i,o)}}))}},7836:(e,t,r)=>{"use strict";r.d(t,{P:()=>c,ee:()=>u});var n=r(384),i=r(8990),o=r(3371),a=r(2646),s=r(5607);const c="nr@context:".concat(s.W),u=function e(t,r){var n={},s={},d={},l=!1;try{l=16===r.length&&(0,o.f)(r).isolatedBacklog}catch(e){}var f={on:p,addEventListener:p,removeEventListener:function(e,t){var r=n[e];if(!r)return;for(var i=0;i<r.length;i++)r[i]===t&&r.splice(i,1)},emit:function(e,r,n,i,o){!1!==o&&(o=!0);if(u.aborted&&!i)return;t&&o&&t.emit(e,r,n);for(var a=h(n),c=g(e),d=c.length,l=0;l<d;l++)c[l].apply(a,r);var p=v()[s[e]];p&&p.push([f,e,r,a]);return a},get:m,listeners:g,context:h,buffer:function(e,t){const r=v();if(t=t||"feature",f.aborted)return;Object.entries(e||{}).forEach((([e,n])=>{s[n]=t,t in r||(r[t]=[])}))},abort:function(){f._aborted=!0,Object.keys(f.backlog).forEach((e=>{delete f.backlog[e]}))},isBuffering:function(e){return!!v()[s[e]]},debugId:r,backlog:l?{}:t&&"object"==typeof t.backlog?t.backlog:{},isolatedBacklog:l};return Object.defineProperty(f,"aborted",{get:()=>{let e=f._aborted||!1;return e||(t&&(e=t.aborted),e)}}),f;function h(e){return e&&e instanceof a.y?e:e?(0,i.I)(e,c,(()=>new a.y(c))):new a.y(c)}function p(e,t){n[e]=g(e).concat(t)}function g(e){return n[e]||[]}function m(t){return d[t]=d[t]||e(f,t)}function v(){return f.backlog}}(void 0,"globalEE"),d=(0,n.Zm)();d.ee||(d.ee=u)},2646:(e,t,r)=>{"use strict";r.d(t,{y:()=>n});class n{constructor(e){this.contextId=e}}},9908:(e,t,r)=>{"use strict";r.d(t,{d:()=>n,p:()=>i});var n=r(7836).ee.get("handle");function i(e,t,r,i,o){o?(o.buffer([e],i),o.emit(e,t,r)):(n.buffer([e],i),n.emit(e,t,r))}},3606:(e,t,r)=>{"use strict";r.d(t,{i:()=>o});var n=r(9908);o.on=a;var i=o.handlers={};function o(e,t,r,o){a(o||n.d,i,e,t,r)}function a(e,t,r,i,o){o||(o="feature"),e||(e=n.d);var a=t[o]=t[o]||{};(a[r]=a[r]||[]).push([e,i])}},3878:(e,t,r)=>{"use strict";function n(e,t){return{capture:e,passive:!1,signal:t}}function i(e,t,r=!1,i){window.addEventListener(e,t,n(r,i))}function o(e,t,r=!1,i){document.addEventListener(e,t,n(r,i))}r.d(t,{DD:()=>o,jT:()=>n,sp:()=>i})},5607:(e,t,r)=>{"use strict";r.d(t,{W:()=>n});const n=(0,r(9566).bz)()},9566:(e,t,r)=>{"use strict";r.d(t,{LA:()=>s,ZF:()=>c,bz:()=>a,el:()=>u});var n=r(6154);const i="xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx";function o(e,t){return e?15&e[t]:16*Math.random()|0}function a(){const e=n.gm?.crypto||n.gm?.msCrypto;let t,r=0;return e&&e.getRandomValues&&(t=e.getRandomValues(new Uint8Array(30))),i.split("").map((e=>"x"===e?o(t,r++).toString(16):"y"===e?(3&o()|8).toString(16):e)).join("")}function s(e){const t=n.gm?.crypto||n.gm?.msCrypto;let r,i=0;t&&t.getRandomValues&&(r=t.getRandomValues(new Uint8Array(e)));const a=[];for(var s=0;s<e;s++)a.push(o(r,i++).toString(16));return a.join("")}function c(){return s(16)}function u(){return s(32)}},2614:(e,t,r)=>{"use strict";r.d(t,{BB:()=>a,H3:()=>n,g:()=>u,iL:()=>c,tS:()=>s,uh:()=>i,wk:()=>o});const n="NRBA",i="SESSION",o=144e5,a=18e5,s={STARTED:"session-started",PAUSE:"session-pause",RESET:"session-reset",RESUME:"session-resume",UPDATE:"session-update"},c={SAME_TAB:"same-tab",CROSS_TAB:"cross-tab"},u={OFF:0,FULL:1,ERROR:2}},1863:(e,t,r)=>{"use strict";function n(){return Math.floor(performance.now())}r.d(t,{t:()=>n})},7485:(e,t,r)=>{"use strict";r.d(t,{D:()=>i});var n=r(6154);function i(e){if(0===(e||"").indexOf("data:"))return{protocol:"data"};try{const t=new URL(e,location.href),r={port:t.port,hostname:t.hostname,pathname:t.pathname,search:t.search,protocol:t.protocol.slice(0,t.protocol.indexOf(":")),sameOrigin:t.protocol===n.gm?.location?.protocol&&t.host===n.gm?.location?.host};return r.port&&""!==r.port||("http:"===t.protocol&&(r.port="80"),"https:"===t.protocol&&(r.port="443")),r.pathname&&""!==r.pathname?r.pathname.startsWith("/")||(r.pathname="/".concat(r.pathname)):r.pathname="/",r}catch(e){return{}}}},944:(e,t,r)=>{"use strict";function n(e,t){"function"==typeof console.debug&&console.debug("New Relic Warning: https://github.com/newrelic/newrelic-browser-agent/blob/main/docs/warning-codes.md#".concat(e),t)}r.d(t,{R:()=>n})},5284:(e,t,r)=>{"use strict";r.d(t,{t:()=>c,B:()=>s});var n=r(7836),i=r(6154);const o="newrelic";const a=new Set,s={};function c(e,t){const r=n.ee.get(t);s[t]??={},e&&"object"==typeof e&&(a.has(t)||(r.emit("rumresp",[e]),s[t]=e,a.add(t),function(e={}){try{i.gm.dispatchEvent(new CustomEvent(o,{detail:e}))}catch(e){}}({loaded:!0})))}},8990:(e,t,r)=>{"use strict";r.d(t,{I:()=>i});var n=Object.prototype.hasOwnProperty;function i(e,t,r){if(n.call(e,t))return e[t];var i=r();if(Object.defineProperty&&Object.keys)try{return Object.defineProperty(e,t,{value:i,writable:!0,enumerable:!1}),i}catch(e){}return e[t]=i,i}},6389:(e,t,r)=>{"use strict";function n(e,t=500,r={}){const n=r?.leading||!1;let i;return(...r)=>{n&&void 0===i&&(e.apply(this,r),i=setTimeout((()=>{i=clearTimeout(i)}),t)),n||(clearTimeout(i),i=setTimeout((()=>{e.apply(this,r)}),t))}}function i(e){let t=!1;return(...r)=>{t||(t=!0,e.apply(this,r))}}r.d(t,{J:()=>i,s:()=>n})},3304:(e,t,r)=>{"use strict";r.d(t,{A:()=>o});var n=r(7836);const i=()=>{const e=new WeakSet;return(t,r)=>{if("object"==typeof r&&null!==r){if(e.has(r))return;e.add(r)}return r}};function o(e){try{return JSON.stringify(e,i())??""}catch(e){try{n.ee.emit("internal-error",[e])}catch(e){}return""}}},5289:(e,t,r)=>{"use strict";r.d(t,{GG:()=>o,sB:()=>a});var n=r(3878);function i(){return"undefined"==typeof document||"complete"===document.readyState}function o(e,t){if(i())return e();(0,n.sp)("load",e,t)}function a(e){if(i())return e();(0,n.DD)("DOMContentLoaded",e)}},384:(e,t,r)=>{"use strict";r.d(t,{NT:()=>o,US:()=>d,Zm:()=>a,bQ:()=>c,dV:()=>s,nY:()=>u,pV:()=>l});var n=r(6154),i=r(1863);const o={beacon:"bam.nr-data.net",errorBeacon:"bam.nr-data.net"};function a(){return n.gm.NREUM||(n.gm.NREUM={}),void 0===n.gm.newrelic&&(n.gm.newrelic=n.gm.NREUM),n.gm.NREUM}function s(){let e=a();return e.o||(e.o={ST:n.gm.setTimeout,SI:n.gm.setImmediate,CT:n.gm.clearTimeout,XHR:n.gm.XMLHttpRequest,REQ:n.gm.Request,EV:n.gm.Event,PR:n.gm.Promise,MO:n.gm.MutationObserver,FETCH:n.gm.fetch,WS:n.gm.WebSocket}),e}function c(e,t){let r=a();r.initializedAgents??={},t.initializedAt={ms:(0,i.t)(),date:new Date},r.initializedAgents[e]=t}function u(e){let t=a();return t.initializedAgents?.[e]}function d(e,t){a()[e]=t}function l(){return function(){let e=a();const t=e.info||{};e.info={beacon:o.beacon,errorBeacon:o.errorBeacon,...t}}(),function(){let e=a();const t=e.init||{};e.init={...t}}(),s(),function(){let e=a();const t=e.loader_config||{};e.loader_config={...t}}(),a()}},2843:(e,t,r)=>{"use strict";r.d(t,{u:()=>i});var n=r(3878);function i(e,t=!1,r,i){(0,n.DD)("visibilitychange",(function(){if(t)return void("hidden"===document.visibilityState&&e());e(document.visibilityState)}),r,i)}},8139:(e,t,r)=>{"use strict";r.d(t,{u:()=>f});var n=r(7836),i=r(3434),o=r(8990),a=r(6154);const s={},c=a.gm.XMLHttpRequest,u="addEventListener",d="removeEventListener",l="nr@wrapped:".concat(n.P);function f(e){var t=function(e){return(e||n.ee).get("events")}(e);if(s[t.debugId]++)return t;s[t.debugId]=1;var r=(0,i.YM)(t,!0);function f(e){r.inPlace(e,[u,d],"-",p)}function p(e,t){return e[1]}return"getPrototypeOf"in Object&&(a.RI&&h(document,f),c&&h(c.prototype,f),h(a.gm,f)),t.on(u+"-start",(function(e,t){var n=e[1];if(null!==n&&("function"==typeof n||"object"==typeof n)){var i=(0,o.I)(n,l,(function(){var e={object:function(){if("function"!=typeof n.handleEvent)return;return n.handleEvent.apply(n,arguments)},function:n}[typeof n];return e?r(e,"fn-",null,e.name||"anonymous"):n}));this.wrapped=e[1]=i}})),t.on(d+"-start",(function(e){e[1]=this.wrapped||e[1]})),t}function h(e,t,...r){let n=e;for(;"object"==typeof n&&!Object.prototype.hasOwnProperty.call(n,u);)n=Object.getPrototypeOf(n);n&&t(n,...r)}},3434:(e,t,r)=>{"use strict";r.d(t,{Jt:()=>o,YM:()=>c});var n=r(7836),i=r(5607);const o="nr@original:".concat(i.W);var a=Object.prototype.hasOwnProperty,s=!1;function c(e,t){return e||(e=n.ee),r.inPlace=function(e,t,n,i,o){n||(n="");const a="-"===n.charAt(0);for(let s=0;s<t.length;s++){const c=t[s],u=e[c];d(u)||(e[c]=r(u,a?c+n:n,i,c,o))}},r.flag=o,r;function r(t,r,n,s,c){return d(t)?t:(r||(r=""),nrWrapper[o]=t,function(e,t,r){if(Object.defineProperty&&Object.keys)try{return Object.keys(e).forEach((function(r){Object.defineProperty(t,r,{get:function(){return e[r]},set:function(t){return e[r]=t,t}})})),t}catch(e){u([e],r)}for(var n in e)a.call(e,n)&&(t[n]=e[n])}(t,nrWrapper,e),nrWrapper);function nrWrapper(){var o,a,d,l;try{a=this,o=[...arguments],d="function"==typeof n?n(o,a):n||{}}catch(t){u([t,"",[o,a,s],d],e)}i(r+"start",[o,a,s],d,c);try{return l=t.apply(a,o)}catch(e){throw i(r+"err",[o,a,e],d,c),e}finally{i(r+"end",[o,a,l],d,c)}}}function i(r,n,i,o){if(!s||t){var a=s;s=!0;try{e.emit(r,n,i,t,o)}catch(t){u([t,r,n,i],e)}s=a}}}function u(e,t){t||(t=n.ee);try{t.emit("internal-error",e)}catch(e){}}function d(e){return!(e&&"function"==typeof e&&e.apply&&!e[o])}},9300:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.ajax},3333:(e,t,r)=>{"use strict";r.d(t,{$v:()=>u,TZ:()=>n,Zp:()=>i,kd:()=>c,mq:()=>s,nf:()=>a,qN:()=>o});const n=r(860).K7.genericEvents,i=["auxclick","click","copy","keydown","paste","scrollend"],o=["focus","blur"],a=4,s=1e3,c=["PageAction","UserAction","BrowserPerformance"],u={MARKS:"experimental.marks",MEASURES:"experimental.measures",RESOURCES:"experimental.resources"}},6774:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.jserrors},993:(e,t,r)=>{"use strict";r.d(t,{ET:()=>o,TZ:()=>a,p_:()=>i});var n=r(860);const i={ERROR:"ERROR",WARN:"WARN",INFO:"INFO",DEBUG:"DEBUG",TRACE:"TRACE"},o="log",a=n.K7.logging},3785:(e,t,r)=>{"use strict";r.d(t,{R:()=>c,b:()=>u});var n=r(9908),i=r(1863),o=r(860),a=r(3969),s=r(993);function c(e,t,r={},c=s.p_.INFO){(0,n.p)(a.xV,["API/logging/".concat(c.toLowerCase(),"/called")],void 0,o.K7.metrics,e),(0,n.p)(s.ET,[(0,i.t)(),t,r,c],void 0,o.K7.logging,e)}function u(e){return"string"==typeof e&&Object.values(s.p_).some((t=>t===e.toUpperCase().trim()))}},3969:(e,t,r)=>{"use strict";r.d(t,{TZ:()=>n,XG:()=>s,rs:()=>i,xV:()=>a,z_:()=>o});const n=r(860).K7.metrics,i="sm",o="cm",a="storeSupportabilityMetrics",s="storeEventMetrics"},6630:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewEvent},782:(e,t,r)=>{"use strict";r.d(t,{T:()=>n});const n=r(860).K7.pageViewTiming},6344:(e,t,r)=>{"use strict";r.d(t,{BB:()=>d,G4:()=>o,Qb:()=>l,TZ:()=>i,Ug:()=>a,_s:()=>s,bc:()=>u,yP:()=>c});var n=r(2614);const i=r(860).K7.sessionReplay,o={RECORD:"recordReplay",PAUSE:"pauseReplay",REPLAY_RUNNING:"replayRunning",ERROR_DURING_REPLAY:"errorDuringReplay"},a=.12,s={DomContentLoaded:0,Load:1,FullSnapshot:2,IncrementalSnapshot:3,Meta:4,Custom:5},c={[n.g.ERROR]:15e3,[n.g.FULL]:3e5,[n.g.OFF]:0},u={RESET:{message:"Session was reset",sm:"Reset"},IMPORT:{message:"Recorder failed to import",sm:"Import"},TOO_MANY:{message:"429: Too Many Requests",sm:"Too-Many"},TOO_BIG:{message:"Payload was too large",sm:"Too-Big"},CROSS_TAB:{message:"Session Entity was set to OFF on another tab",sm:"Cross-Tab"},ENTITLEMENTS:{message:"Session Replay is not allowed and will not be started",sm:"Entitlement"}},d=5e3,l={API:"api"}},5270:(e,t,r)=>{"use strict";r.d(t,{Aw:()=>c,CT:()=>u,SR:()=>s});var n=r(384),i=r(9417),o=r(7767),a=r(6154);function s(e){return!!(0,n.dV)().o.MO&&(0,o.V)(e)&&!0===(0,i.gD)(e,"session_trace.enabled")}function c(e){return!0===(0,i.gD)(e,"session_replay.preload")&&s(e)}function u(e,t){const r=t.correctAbsoluteTimestamp(e);return{originalTimestamp:e,correctedTimestamp:r,timestampDiff:e-r,originTime:a.WN,correctedOriginTime:t.correctedOriginTime,originTimeDiff:Math.floor(a.WN-t.correctedOriginTime)}}},3738:(e,t,r)=>{"use strict";r.d(t,{He:()=>i,Kp:()=>s,Lc:()=>u,Rz:()=>d,TZ:()=>n,bD:()=>o,d3:()=>a,jx:()=>l,uP:()=>c});const n=r(860).K7.sessionTrace,i="bstResource",o="resource",a="-start",s="-end",c="fn"+a,u="fn"+s,d="pushState",l=1e3},3962:(e,t,r)=>{"use strict";r.d(t,{AM:()=>o,O2:()=>c,Qu:()=>u,TZ:()=>s,ih:()=>d,pP:()=>a,tC:()=>i});var n=r(860);const i=["click","keydown","submit","popstate"],o="api",a="initialPageLoad",s=n.K7.softNav,c={INITIAL_PAGE_LOAD:"",ROUTE_CHANGE:1,UNSPECIFIED:2},u={INTERACTION:1,AJAX:2,CUSTOM_END:3,CUSTOM_TRACER:4},d={IP:"in progress",FIN:"finished",CAN:"cancelled"}},7378:(e,t,r)=>{"use strict";r.d(t,{$p:()=>x,BR:()=>b,Kp:()=>R,L3:()=>y,Lc:()=>c,NC:()=>o,SG:()=>d,TZ:()=>i,U6:()=>p,UT:()=>m,d3:()=>w,dT:()=>f,e5:()=>T,gx:()=>v,l9:()=>l,oW:()=>h,op:()=>g,rw:()=>u,tH:()=>A,uP:()=>s,wW:()=>E,xq:()=>a});var n=r(384);const i=r(860).K7.spa,o=["click","submit","keypress","keydown","keyup","change"],a=999,s="fn-start",c="fn-end",u="cb-start",d="api-ixn-",l="remaining",f="interaction",h="spaNode",p="jsonpNode",g="fetch-start",m="fetch-done",v="fetch-body-",b="jsonp-end",y=(0,n.dV)().o.ST,w="-start",R="-end",x="-body",E="cb"+R,T="jsTime",A="fetch"},4234:(e,t,r)=>{"use strict";r.d(t,{W:()=>o});var n=r(7836),i=r(1687);class o{constructor(e,t){this.agentIdentifier=e,this.ee=n.ee.get(e),this.featureName=t,this.blocked=!1}deregisterDrain(){(0,i.x3)(this.agentIdentifier,this.featureName)}}},7767:(e,t,r)=>{"use strict";r.d(t,{V:()=>o});var n=r(9417),i=r(6154);const o=e=>i.RI&&!0===(0,n.gD)(e,"privacy.cookies_enabled")},425:(e,t,r)=>{"use strict";r.d(t,{j:()=>j});var n=r(860),i=r(2555),o=r(3371),a=r(9908),s=r(7836),c=r(1687),u=r(5289),d=r(6154),l=r(944),f=r(3969),h=r(384),p=r(6344);const g=["setErrorHandler","finished","addToTrace","addRelease","recordCustomEvent","addPageAction","setCurrentRouteName","setPageViewName","setCustomAttribute","interaction","noticeError","setUserId","setApplicationVersion","start",p.G4.RECORD,p.G4.PAUSE,"log","wrapLogger"],m=["setErrorHandler","finished","addToTrace","addRelease"];var v=r(1863),b=r(2614),y=r(993),w=r(3785),R=r(2646),x=r(3434);const E=new Map;function T(e,t,r,n){if("object"!=typeof t||!t||"string"!=typeof r||!r||"function"!=typeof t[r])return(0,l.R)(29);const i=function(e){return(e||s.ee).get("logger")}(e),o=(0,x.YM)(i),a=new R.y(s.P);a.level=n.level,a.customAttributes=n.customAttributes;const c=t[r]?.[x.Jt]||t[r];return E.set(c,a),o.inPlace(t,[r],"wrap-logger-",(()=>E.get(c))),i}function A(){const e=(0,h.pV)();g.forEach((t=>{e[t]=(...r)=>function(t,...r){let n=[];return Object.values(e.initializedAgents).forEach((e=>{e&&e.api?e.exposed&&e.api[t]&&n.push(e.api[t](...r)):(0,l.R)(38,t)})),n.length>1?n:n[0]}(t,...r)}))}const S={};var N=r(9417),_=r(5603),O=r(5284);const I=e=>{const t=e.startsWith("http");e+="/",r.p=t?e:"https://"+e};let P=!1;function j(e,t={},g,R){let{init:x,info:E,loader_config:j,runtime:C={},exposed:k=!0}=t;C.loaderType=g;const L=(0,h.pV)();E||(x=L.init,E=L.info,j=L.loader_config),(0,N.xN)(e.agentIdentifier,x||{}),(0,_.a)(e.agentIdentifier,j||{}),E.jsAttributes??={},d.bv&&(E.jsAttributes.isWorker=!0),(0,i.x1)(e.agentIdentifier,E);const H=(0,N.D0)(e.agentIdentifier),M=[E.beacon,E.errorBeacon];P||(H.proxy.assets&&(I(H.proxy.assets),M.push(H.proxy.assets)),H.proxy.beacon&&M.push(H.proxy.beacon),A(),(0,h.US)("activatedFeatures",O.B),e.runSoftNavOverSpa&&=!0===H.soft_navigations.enabled&&H.feature_flags.includes("soft_nav")),C.denyList=[...H.ajax.deny_list||[],...H.ajax.block_internal?M:[]],C.ptid=e.agentIdentifier,(0,o.V)(e.agentIdentifier,C),e.ee=s.ee.get(e.agentIdentifier),void 0===e.api&&(e.api=function(e,t,h=!1){t||(0,c.Ak)(e,"api");const g={};var R=s.ee.get(e),x=R.get("tracer");S[e]=b.g.OFF,R.on(p.G4.REPLAY_RUNNING,(t=>{S[e]=t}));var E="api-",A=E+"ixn-";function N(t,r,n,o){const a=(0,i.Vp)(e);return null===r?delete a.jsAttributes[t]:(0,i.x1)(e,{...a,jsAttributes:{...a.jsAttributes,[t]:r}}),I(E,n,!0,o||null===r?"session":void 0)(t,r)}function _(){}g.log=function(e,{customAttributes:t={},level:r=y.p_.INFO}={}){(0,a.p)(f.xV,["API/log/called"],void 0,n.K7.metrics,R),(0,w.R)(R,e,t,r)},g.wrapLogger=(e,t,{customAttributes:r={},level:i=y.p_.INFO}={})=>{(0,a.p)(f.xV,["API/wrapLogger/called"],void 0,n.K7.metrics,R),T(R,e,t,{customAttributes:r,level:i})},m.forEach((e=>{g[e]=I(E,e,!0,"api")})),g.addPageAction=I(E,"addPageAction",!0,n.K7.genericEvents),g.recordCustomEvent=I(E,"recordCustomEvent",!0,n.K7.genericEvents),g.setPageViewName=function(t,r){if("string"==typeof t)return"/"!==t.charAt(0)&&(t="/"+t),(0,o.f)(e).customTransaction=(r||"http://custom.transaction")+t,I(E,"setPageViewName",!0)()},g.setCustomAttribute=function(e,t,r=!1){if("string"==typeof e){if(["string","number","boolean"].includes(typeof t)||null===t)return N(e,t,"setCustomAttribute",r);(0,l.R)(40,typeof t)}else(0,l.R)(39,typeof e)},g.setUserId=function(e){if("string"==typeof e||null===e)return N("enduser.id",e,"setUserId",!0);(0,l.R)(41,typeof e)},g.setApplicationVersion=function(e){if("string"==typeof e||null===e)return N("application.version",e,"setApplicationVersion",!1);(0,l.R)(42,typeof e)},g.start=()=>{try{(0,a.p)(f.xV,["API/start/called"],void 0,n.K7.metrics,R),R.emit("manual-start-all")}catch(e){(0,l.R)(23,e)}},g[p.G4.RECORD]=function(){(0,a.p)(f.xV,["API/recordReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.RECORD,[],void 0,n.K7.sessionReplay,R)},g[p.G4.PAUSE]=function(){(0,a.p)(f.xV,["API/pauseReplay/called"],void 0,n.K7.metrics,R),(0,a.p)(p.G4.PAUSE,[],void 0,n.K7.sessionReplay,R)},g.interaction=function(e){return(new _).get("object"==typeof e?e:{})};const O=_.prototype={createTracer:function(e,t){var r={},i=this,o="function"==typeof t;return(0,a.p)(f.xV,["API/createTracer/called"],void 0,n.K7.metrics,R),h||(0,a.p)(A+"tracer",[(0,v.t)(),e,r],i,n.K7.spa,R),function(){if(x.emit((o?"":"no-")+"fn-start",[(0,v.t)(),i,o],r),o)try{return t.apply(this,arguments)}catch(e){const t="string"==typeof e?new Error(e):e;throw x.emit("fn-err",[arguments,this,t],r),t}finally{x.emit("fn-end",[(0,v.t)()],r)}}}};function I(e,t,r,i){return function(){return(0,a.p)(f.xV,["API/"+t+"/called"],void 0,n.K7.metrics,R),i&&(0,a.p)(e+t,[r?(0,v.t)():performance.now(),...arguments],r?null:this,i,R),r?void 0:this}}function P(){r.e(478).then(r.bind(r,8778)).then((({setAPI:t})=>{t(e),(0,c.Ze)(e,"api")})).catch((e=>{(0,l.R)(27,e),R.abort()}))}return["actionText","setName","setAttribute","save","ignore","onEnd","getContext","end","get"].forEach((e=>{O[e]=I(A,e,void 0,h?n.K7.softNav:n.K7.spa)})),g.setCurrentRouteName=h?I(A,"routeName",void 0,n.K7.softNav):I(E,"routeName",!0,n.K7.spa),g.noticeError=function(t,r){"string"==typeof t&&(t=new Error(t)),(0,a.p)(f.xV,["API/noticeError/called"],void 0,n.K7.metrics,R),(0,a.p)("err",[t,(0,v.t)(),!1,r,!!S[e]],void 0,n.K7.jserrors,R)},d.RI?(0,u.GG)((()=>P()),!0):P(),g}(e.agentIdentifier,R,e.runSoftNavOverSpa)),void 0===e.exposed&&(e.exposed=k),P=!0}},8374:(e,t,r)=>{r.nc=(()=>{try{return document?.currentScript?.nonce}catch(e){}return""})()},860:(e,t,r)=>{"use strict";r.d(t,{$J:()=>u,K7:()=>s,P3:()=>c,XX:()=>i,qY:()=>n,v4:()=>a});const n="events",i="jserrors",o="browser/blobs",a="rum",s={ajax:"ajax",genericEvents:"generic_events",jserrors:i,logging:"logging",metrics:"metrics",pageAction:"page_action",pageViewEvent:"page_view_event",pageViewTiming:"page_view_timing",sessionReplay:"session_replay",sessionTrace:"session_trace",softNav:"soft_navigations",spa:"spa"},c={[s.pageViewEvent]:1,[s.pageViewTiming]:2,[s.metrics]:3,[s.jserrors]:4,[s.spa]:5,[s.ajax]:6,[s.sessionTrace]:7,[s.softNav]:8,[s.sessionReplay]:9,[s.logging]:10,[s.genericEvents]:11},u={[s.pageViewEvent]:a,[s.pageViewTiming]:n,[s.ajax]:n,[s.spa]:n,[s.softNav]:n,[s.metrics]:i,[s.jserrors]:i,[s.sessionTrace]:o,[s.sessionReplay]:o,[s.logging]:"browser/logs",[s.genericEvents]:"ins"}}},n={};function i(e){var t=n[e];if(void 0!==t)return t.exports;var o=n[e]={exports:{}};return r[e](o,o.exports,i),o.exports}i.m=r,i.d=(e,t)=>{for(var r in t)i.o(t,r)&&!i.o(e,r)&&Object.defineProperty(e,r,{enumerable:!0,get:t[r]})},i.f={},i.e=e=>Promise.all(Object.keys(i.f).reduce(((t,r)=>(i.f[r](e,t),t)),[])),i.u=e=>({212:"nr-spa-compressor",249:"nr-spa-recorder",478:"nr-spa"}[e]+"-1.281.0.min.js"),i.o=(e,t)=>Object.prototype.hasOwnProperty.call(e,t),e={},t="NRBA-1.281.0.PROD:",i.l=(r,n,o,a)=>{if(e[r])e[r].push(n);else{var s,c;if(void 0!==o)for(var u=document.getElementsByTagName("script"),d=0;d<u.length;d++){var l=u[d];if(l.getAttribute("src")==r||l.getAttribute("data-webpack")==t+o){s=l;break}}if(!s){c=!0;var f={478:"sha512-jmvAlmjCn64ans8tLueqHRlBI/iWekylsDWb94A77CG0ukSriVDvgD3dThx+XjUSBBBMYhFn8B1a18fViyBPEQ==",249:"sha512-ICY/ZrcytM/86t5KFy+9OAWVYmNNJy10EBtxoSUGjQWuZx53p/eLo+L8HfrGjvHuRHRnutqLTGSnvNttffJkaA==",212:"sha512-pQSn+X/RfBOvx/49HvlghaiXMLhhDQXTi13n1N2XMpDquWJgs9U0pbqE3RbAnYC9nsdaTu/RVGvneEPv1fpCxA=="};(s=document.createElement("script")).charset="utf-8",s.timeout=120,i.nc&&s.setAttribute("nonce",i.nc),s.setAttribute("data-webpack",t+o),s.src=r,0!==s.src.indexOf(window.location.origin+"/")&&(s.crossOrigin="anonymous"),f[a]&&(s.integrity=f[a])}e[r]=[n];var h=(t,n)=>{s.onerror=s.onload=null,clearTimeout(p);var i=e[r];if(delete e[r],s.parentNode&&s.parentNode.removeChild(s),i&&i.forEach((e=>e(n))),t)return t(n)},p=setTimeout(h.bind(null,void 0,{type:"timeout",target:s}),12e4);s.onerror=h.bind(null,s.onerror),s.onload=h.bind(null,s.onload),c&&document.head.appendChild(s)}},i.r=e=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},i.p="https://js-agent.newrelic.com/",(()=>{var e={38:0,788:0};i.f.j=(t,r)=>{var n=i.o(e,t)?e[t]:void 0;if(0!==n)if(n)r.push(n[2]);else{var o=new Promise(((r,i)=>n=e[t]=[r,i]));r.push(n[2]=o);var a=i.p+i.u(t),s=new Error;i.l(a,(r=>{if(i.o(e,t)&&(0!==(n=e[t])&&(e[t]=void 0),n)){var o=r&&("load"===r.type?"missing":r.type),a=r&&r.target&&r.target.src;s.message="Loading chunk "+t+" failed.\n("+o+": "+a+")",s.name="ChunkLoadError",s.type=o,s.request=a,n[1](s)}}),"chunk-"+t,t)}};var t=(t,r)=>{var n,o,[a,s,c]=r,u=0;if(a.some((t=>0!==e[t]))){for(n in s)i.o(s,n)&&(i.m[n]=s[n]);if(c)c(i)}for(t&&t(r);u<a.length;u++)o=a[u],i.o(e,o)&&e[o]&&e[o][0](),e[o]=0},r=self["webpackChunk:NRBA-1.281.0.PROD"]=self["webpackChunk:NRBA-1.281.0.PROD"]||[];r.forEach(t.bind(null,0)),r.push=t.bind(null,r.push.bind(r))})(),(()=>{"use strict";i(8374);var e=i(944),t=i(6344),r=i(9566);class n{agentIdentifier;constructor(){this.agentIdentifier=(0,r.LA)(16)}#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}addPageAction(e,t){return this.#e("addPageAction",e,t)}recordCustomEvent(e,t){return this.#e("recordCustomEvent",e,t)}setPageViewName(e,t){return this.#e("setPageViewName",e,t)}setCustomAttribute(e,t,r){return this.#e("setCustomAttribute",e,t,r)}noticeError(e,t){return this.#e("noticeError",e,t)}setUserId(e){return this.#e("setUserId",e)}setApplicationVersion(e){return this.#e("setApplicationVersion",e)}setErrorHandler(e){return this.#e("setErrorHandler",e)}addRelease(e,t){return this.#e("addRelease",e,t)}log(e,t){return this.#e("log",e,t)}}class o extends n{#e(t,...r){if("function"==typeof this.api?.[t])return this.api[t](...r);(0,e.R)(35,t)}start(){return this.#e("start")}finished(e){return this.#e("finished",e)}recordReplay(){return this.#e(t.G4.RECORD)}pauseReplay(){return this.#e(t.G4.PAUSE)}addToTrace(e){return this.#e("addToTrace",e)}setCurrentRouteName(e){return this.#e("setCurrentRouteName",e)}interaction(){return this.#e("interaction")}wrapLogger(e,t,r){return this.#e("wrapLogger",e,t,r)}}var a=i(860),s=i(9417);const c=Object.values(a.K7);function u(e){const t={};return c.forEach((r=>{t[r]=function(e,t){return!0===(0,s.gD)(t,"".concat(e,".enabled"))}(r,e)})),t}var d=i(425);var l=i(1687),f=i(4234),h=i(5289),p=i(6154),g=i(5270),m=i(7767),v=i(6389);class b extends f.W{constructor(e,t,r=!0){super(e.agentIdentifier,t),this.auto=r,this.abortHandler=void 0,this.featAggregate=void 0,this.onAggregateImported=void 0,!1===e.init[this.featureName].autoStart&&(this.auto=!1),this.auto?(0,l.Ak)(e.agentIdentifier,t):this.ee.on("manual-start-all",(0,v.J)((()=>{(0,l.Ak)(e.agentIdentifier,this.featureName),this.auto=!0,this.importAggregator(e)})))}importAggregator(t,r={}){if(this.featAggregate||!this.auto)return;let n;this.onAggregateImported=new Promise((e=>{n=e}));const o=async()=>{let o;try{if((0,m.V)(this.agentIdentifier)){const{setupAgentSession:e}=await i.e(478).then(i.bind(i,6526));o=e(t)}}catch(t){(0,e.R)(20,t),this.ee.emit("internal-error",[t]),this.featureName===a.K7.sessionReplay&&this.abortHandler?.()}try{if(!this.#t(this.featureName,o))return(0,l.Ze)(this.agentIdentifier,this.featureName),void n(!1);const{lazyFeatureLoader:e}=await i.e(478).then(i.bind(i,6103)),{Aggregate:a}=await e(this.featureName,"aggregate");this.featAggregate=new a(t,r),t.runtime.harvester.initializedAggregates.push(this.featAggregate),n(!0)}catch(t){(0,e.R)(34,t),this.abortHandler?.(),(0,l.Ze)(this.agentIdentifier,this.featureName,!0),n(!1),this.ee&&this.ee.abort()}};p.RI?(0,h.GG)((()=>o()),!0):o()}#t(e,t){switch(e){case a.K7.sessionReplay:return(0,g.SR)(this.agentIdentifier)&&!!t;case a.K7.sessionTrace:return!!t;default:return!0}}}var y=i(6630);class w extends b{static featureName=y.T;constructor(e,t=!0){super(e,y.T,t),this.importAggregator(e)}}var R=i(384);var x=i(9908),E=i(2843),T=i(3878),A=i(782),S=i(1863);class N extends b{static featureName=A.T;constructor(e,t=!0){super(e,A.T,t),p.RI&&((0,E.u)((()=>(0,x.p)("docHidden",[(0,S.t)()],void 0,A.T,this.ee)),!0),(0,T.sp)("pagehide",(()=>(0,x.p)("winPagehide",[(0,S.t)()],void 0,A.T,this.ee))),this.importAggregator(e))}}var _=i(3969);class O extends b{static featureName=_.TZ;constructor(e,t=!0){super(e,_.TZ,t),this.importAggregator(e)}}var I=i(6774),P=i(3304);class j{constructor(e,t,r,n,i){this.name="UncaughtError",this.message="string"==typeof e?e:(0,P.A)(e),this.sourceURL=t,this.line=r,this.column=n,this.__newrelic=i}}function C(e){return H(e)?e:new j(void 0!==e?.message?e.message:e,e?.filename||e?.sourceURL,e?.lineno||e?.line,e?.colno||e?.col,e?.__newrelic)}function k(e){const t="Unhandled Promise Rejection";if(!e?.reason)return;if(H(e.reason))try{return e.reason.message=t+": "+e.reason.message,C(e.reason)}catch(t){return C(e.reason)}const r=C(e.reason);return r.message=t+": "+r?.message,r}function L(e){if(e.error instanceof SyntaxError&&!/:\d+$/.test(e.error.stack?.trim())){const t=new j(e.message,e.filename,e.lineno,e.colno,e.error.__newrelic);return t.name=SyntaxError.name,t}return H(e.error)?e.error:C(e)}function H(e){return e instanceof Error&&!!e.stack}class M extends b{static featureName=I.T;#r=!1;constructor(e,r=!0){super(e,I.T,r);try{this.removeOnAbort=new AbortController}catch(e){}this.ee.on("internal-error",((e,t)=>{this.abortHandler&&(0,x.p)("ierr",[C(e),(0,S.t)(),!0,{},this.#r,t],void 0,this.featureName,this.ee)})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.#r=e})),p.gm.addEventListener("unhandledrejection",(e=>{this.abortHandler&&(0,x.p)("err",[k(e),(0,S.t)(),!1,{unhandledPromiseRejection:1},this.#r],void 0,this.featureName,this.ee)}),(0,T.jT)(!1,this.removeOnAbort?.signal)),p.gm.addEventListener("error",(e=>{this.abortHandler&&(0,x.p)("err",[L(e),(0,S.t)(),!1,{},this.#r],void 0,this.featureName,this.ee)}),(0,T.jT)(!1,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var D=i(8990);let K=1;const U="nr@id";function V(e){const t=typeof e;return!e||"object"!==t&&"function"!==t?-1:e===p.gm?0:(0,D.I)(e,U,(function(){return K++}))}function G(e){if("string"==typeof e&&e.length)return e.length;if("object"==typeof e){if("undefined"!=typeof ArrayBuffer&&e instanceof ArrayBuffer&&e.byteLength)return e.byteLength;if("undefined"!=typeof Blob&&e instanceof Blob&&e.size)return e.size;if(!("undefined"!=typeof FormData&&e instanceof FormData))try{return(0,P.A)(e).length}catch(e){return}}}var F=i(8139),B=i(7836),W=i(3434);const z={},q=["open","send"];function Z(t){var r=t||B.ee;const n=function(e){return(e||B.ee).get("xhr")}(r);if(void 0===p.gm.XMLHttpRequest)return n;if(z[n.debugId]++)return n;z[n.debugId]=1,(0,F.u)(r);var i=(0,W.YM)(n),o=p.gm.XMLHttpRequest,a=p.gm.MutationObserver,s=p.gm.Promise,c=p.gm.setInterval,u="readystatechange",d=["onload","onerror","onabort","onloadstart","onloadend","onprogress","ontimeout"],l=[],f=p.gm.XMLHttpRequest=function(t){const r=new o(t),a=n.context(r);try{n.emit("new-xhr",[r],a),r.addEventListener(u,(s=a,function(){var e=this;e.readyState>3&&!s.resolved&&(s.resolved=!0,n.emit("xhr-resolved",[],e)),i.inPlace(e,d,"fn-",y)}),(0,T.jT)(!1))}catch(t){(0,e.R)(15,t);try{n.emit("internal-error",[t])}catch(e){}}var s;return r};function h(e,t){i.inPlace(t,["onreadystatechange"],"fn-",y)}if(function(e,t){for(var r in e)t[r]=e[r]}(o,f),f.prototype=o.prototype,i.inPlace(f.prototype,q,"-xhr-",y),n.on("send-xhr-start",(function(e,t){h(e,t),function(e){l.push(e),a&&(g?g.then(b):c?c(b):(m=-m,v.data=m))}(t)})),n.on("open-xhr-start",h),a){var g=s&&s.resolve();if(!c&&!s){var m=1,v=document.createTextNode(m);new a(b).observe(v,{characterData:!0})}}else r.on("fn-end",(function(e){e[0]&&e[0].type===u||b()}));function b(){for(var e=0;e<l.length;e++)h(0,l[e]);l.length&&(l=[])}function y(e,t){return t}return n}var Y="fetch-",X=Y+"body-",J=["arrayBuffer","blob","json","text","formData"],Q=p.gm.Request,ee=p.gm.Response,te="prototype";const re={};function ne(e){const t=function(e){return(e||B.ee).get("fetch")}(e);if(!(Q&&ee&&p.gm.fetch))return t;if(re[t.debugId]++)return t;function r(e,r,n){var i=e[r];"function"==typeof i&&(e[r]=function(){var e,r=[...arguments],o={};t.emit(n+"before-start",[r],o),o[B.P]&&o[B.P].dt&&(e=o[B.P].dt);var a=i.apply(this,r);return t.emit(n+"start",[r,e],a),a.then((function(e){return t.emit(n+"end",[null,e],a),e}),(function(e){throw t.emit(n+"end",[e],a),e}))})}return re[t.debugId]=1,J.forEach((e=>{r(Q[te],e,X),r(ee[te],e,X)})),r(p.gm,"fetch",Y),t.on(Y+"end",(function(e,r){var n=this;if(r){var i=r.headers.get("content-length");null!==i&&(n.rxSize=i),t.emit(Y+"done",[null,r],n)}else t.emit(Y+"done",[e],n)})),t}var ie=i(7485),oe=i(5603);class ae{constructor(e){this.agentIdentifier=e}generateTracePayload(e){if(!this.shouldGenerateTrace(e))return null;var t=(0,oe.o)(this.agentIdentifier);if(!t)return null;var n=(t.accountID||"").toString()||null,i=(t.agentID||"").toString()||null,o=(t.trustKey||"").toString()||null;if(!n||!i)return null;var a=(0,r.ZF)(),s=(0,r.el)(),c=Date.now(),u={spanId:a,traceId:s,timestamp:c};return(e.sameOrigin||this.isAllowedOrigin(e)&&this.useTraceContextHeadersForCors())&&(u.traceContextParentHeader=this.generateTraceContextParentHeader(a,s),u.traceContextStateHeader=this.generateTraceContextStateHeader(a,c,n,i,o)),(e.sameOrigin&&!this.excludeNewrelicHeader()||!e.sameOrigin&&this.isAllowedOrigin(e)&&this.useNewrelicHeaderForCors())&&(u.newrelicHeader=this.generateTraceHeader(a,s,c,n,i,o)),u}generateTraceContextParentHeader(e,t){return"00-"+t+"-"+e+"-01"}generateTraceContextStateHeader(e,t,r,n,i){return i+"@nr=0-1-"+r+"-"+n+"-"+e+"----"+t}generateTraceHeader(e,t,r,n,i,o){if(!("function"==typeof p.gm?.btoa))return null;var a={v:[0,1],d:{ty:"Browser",ac:n,ap:i,id:e,tr:t,ti:r}};return o&&n!==o&&(a.d.tk=o),btoa((0,P.A)(a))}shouldGenerateTrace(e){return this.isDtEnabled()&&this.isAllowedOrigin(e)}isAllowedOrigin(e){var t=!1,r={};if((0,s.gD)(this.agentIdentifier,"distributed_tracing")&&(r=(0,s.D0)(this.agentIdentifier).distributed_tracing),e.sameOrigin)t=!0;else if(r.allowed_origins instanceof Array)for(var n=0;n<r.allowed_origins.length;n++){var i=(0,ie.D)(r.allowed_origins[n]);if(e.hostname===i.hostname&&e.protocol===i.protocol&&e.port===i.port){t=!0;break}}return t}isDtEnabled(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.enabled}excludeNewrelicHeader(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.exclude_newrelic_header}useNewrelicHeaderForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!1!==e.cors_use_newrelic_header}useTraceContextHeadersForCors(){var e=(0,s.gD)(this.agentIdentifier,"distributed_tracing");return!!e&&!!e.cors_use_tracecontext_headers}}var se=i(9300),ce=i(7295),ue=["load","error","abort","timeout"],de=ue.length,le=(0,R.dV)().o.REQ,fe=(0,R.dV)().o.XHR;class he extends b{static featureName=se.T;constructor(e,t=!0){super(e,se.T,t),this.dt=new ae(e.agentIdentifier),this.handler=(e,t,r,n)=>(0,x.p)(e,t,r,n,this.ee);try{const e={xmlhttprequest:"xhr",fetch:"fetch",beacon:"beacon"};p.gm?.performance?.getEntriesByType("resource").forEach((t=>{if(t.initiatorType in e&&0!==t.responseStatus){const r={status:t.responseStatus},n={rxSize:t.transferSize,duration:Math.floor(t.duration),cbTime:0};pe(r,t.name),this.handler("xhr",[r,n,t.startTime,t.responseEnd,e[t.initiatorType]],void 0,a.K7.ajax)}}))}catch(e){}ne(this.ee),Z(this.ee),function(e,t,r,n){function i(e){var t=this;t.totalCbs=0,t.called=0,t.cbTime=0,t.end=R,t.ended=!1,t.xhrGuids={},t.lastSize=null,t.loadCaptureCalled=!1,t.params=this.params||{},t.metrics=this.metrics||{},e.addEventListener("load",(function(r){E(t,e)}),(0,T.jT)(!1)),p.lR||e.addEventListener("progress",(function(e){t.lastSize=e.loaded}),(0,T.jT)(!1))}function o(e){this.params={method:e[0]},pe(this,e[1]),this.metrics={}}function s(t,r){e.loader_config.xpid&&this.sameOrigin&&r.setRequestHeader("X-NewRelic-ID",e.loader_config.xpid);var i=n.generateTracePayload(this.parsedOrigin);if(i){var o=!1;i.newrelicHeader&&(r.setRequestHeader("newrelic",i.newrelicHeader),o=!0),i.traceContextParentHeader&&(r.setRequestHeader("traceparent",i.traceContextParentHeader),i.traceContextStateHeader&&r.setRequestHeader("tracestate",i.traceContextStateHeader),o=!0),o&&(this.dt=i)}}function c(e,r){var n=this.metrics,i=e[0],o=this;if(n&&i){var a=G(i);a&&(n.txSize=a)}this.startTime=(0,S.t)(),this.body=i,this.listener=function(e){try{"abort"!==e.type||o.loadCaptureCalled||(o.params.aborted=!0),("load"!==e.type||o.called===o.totalCbs&&(o.onloadCalled||"function"!=typeof r.onload)&&"function"==typeof o.end)&&o.end(r)}catch(e){try{t.emit("internal-error",[e])}catch(e){}}};for(var s=0;s<de;s++)r.addEventListener(ue[s],this.listener,(0,T.jT)(!1))}function u(e,t,r){this.cbTime+=e,t?this.onloadCalled=!0:this.called+=1,this.called!==this.totalCbs||!this.onloadCalled&&"function"==typeof r.onload||"function"!=typeof this.end||this.end(r)}function d(e,t){var r=""+V(e)+!!t;this.xhrGuids&&!this.xhrGuids[r]&&(this.xhrGuids[r]=!0,this.totalCbs+=1)}function l(e,t){var r=""+V(e)+!!t;this.xhrGuids&&this.xhrGuids[r]&&(delete this.xhrGuids[r],this.totalCbs-=1)}function f(){this.endTime=(0,S.t)()}function h(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-added",[e[1],e[2]],r)}function g(e,r){r instanceof fe&&"load"===e[0]&&t.emit("xhr-load-removed",[e[1],e[2]],r)}function m(e,t,r){t instanceof fe&&("onload"===r&&(this.onload=!0),("load"===(e[0]&&e[0].type)||this.onload)&&(this.xhrCbStart=(0,S.t)()))}function v(e,r){this.xhrCbStart&&t.emit("xhr-cb-time",[(0,S.t)()-this.xhrCbStart,this.onload,r],r)}function b(e){var t,r=e[1]||{};if("string"==typeof e[0]?0===(t=e[0]).length&&p.RI&&(t=""+p.gm.location.href):e[0]&&e[0].url?t=e[0].url:p.gm?.URL&&e[0]&&e[0]instanceof URL?t=e[0].href:"function"==typeof e[0].toString&&(t=e[0].toString()),"string"==typeof t&&0!==t.length){t&&(this.parsedOrigin=(0,ie.D)(t),this.sameOrigin=this.parsedOrigin.sameOrigin);var i=n.generateTracePayload(this.parsedOrigin);if(i&&(i.newrelicHeader||i.traceContextParentHeader))if(e[0]&&e[0].headers)s(e[0].headers,i)&&(this.dt=i);else{var o={};for(var a in r)o[a]=r[a];o.headers=new Headers(r.headers||{}),s(o.headers,i)&&(this.dt=i),e.length>1?e[1]=o:e.push(o)}}function s(e,t){var r=!1;return t.newrelicHeader&&(e.set("newrelic",t.newrelicHeader),r=!0),t.traceContextParentHeader&&(e.set("traceparent",t.traceContextParentHeader),t.traceContextStateHeader&&e.set("tracestate",t.traceContextStateHeader),r=!0),r}}function y(e,t){this.params={},this.metrics={},this.startTime=(0,S.t)(),this.dt=t,e.length>=1&&(this.target=e[0]),e.length>=2&&(this.opts=e[1]);var r,n=this.opts||{},i=this.target;"string"==typeof i?r=i:"object"==typeof i&&i instanceof le?r=i.url:p.gm?.URL&&"object"==typeof i&&i instanceof URL&&(r=i.href),pe(this,r);var o=(""+(i&&i instanceof le&&i.method||n.method||"GET")).toUpperCase();this.params.method=o,this.body=n.body,this.txSize=G(n.body)||0}function w(e,t){if(this.endTime=(0,S.t)(),this.params||(this.params={}),(0,ce.iW)(this.params))return;let n;this.params.status=t?t.status:0,"string"==typeof this.rxSize&&this.rxSize.length>0&&(n=+this.rxSize);const i={txSize:this.txSize,rxSize:n,duration:(0,S.t)()-this.startTime};r("xhr",[this.params,i,this.startTime,this.endTime,"fetch"],this,a.K7.ajax)}function R(e){const t=this.params,n=this.metrics;if(!this.ended){this.ended=!0;for(let t=0;t<de;t++)e.removeEventListener(ue[t],this.listener,!1);t.aborted||(0,ce.iW)(t)||(n.duration=(0,S.t)()-this.startTime,this.loadCaptureCalled||4!==e.readyState?null==t.status&&(t.status=0):E(this,e),n.cbTime=this.cbTime,r("xhr",[t,n,this.startTime,this.endTime,"xhr"],this,a.K7.ajax))}}function E(e,r){e.params.status=r.status;var n=function(e,t){var r=e.responseType;return"json"===r&&null!==t?t:"arraybuffer"===r||"blob"===r||"json"===r?G(e.response):"text"===r||""===r||void 0===r?G(e.responseText):void 0}(r,e.lastSize);if(n&&(e.metrics.rxSize=n),e.sameOrigin){var i=r.getResponseHeader("X-NewRelic-App-Data");i&&((0,x.p)(_.rs,["Ajax/CrossApplicationTracing/Header/Seen"],void 0,a.K7.metrics,t),e.params.cat=i.split(", ").pop())}e.loadCaptureCalled=!0}t.on("new-xhr",i),t.on("open-xhr-start",o),t.on("open-xhr-end",s),t.on("send-xhr-start",c),t.on("xhr-cb-time",u),t.on("xhr-load-added",d),t.on("xhr-load-removed",l),t.on("xhr-resolved",f),t.on("addEventListener-end",h),t.on("removeEventListener-end",g),t.on("fn-end",v),t.on("fetch-before-start",b),t.on("fetch-start",y),t.on("fn-start",m),t.on("fetch-done",w)}(e,this.ee,this.handler,this.dt),this.importAggregator(e)}}function pe(e,t){var r=(0,ie.D)(t),n=e.params||e;n.hostname=r.hostname,n.port=r.port,n.protocol=r.protocol,n.host=r.hostname+":"+r.port,n.pathname=r.pathname,e.parsedOrigin=r,e.sameOrigin=r.sameOrigin}const ge={},me=["pushState","replaceState"];function ve(e){const t=function(e){return(e||B.ee).get("history")}(e);return!p.RI||ge[t.debugId]++||(ge[t.debugId]=1,(0,W.YM)(t).inPlace(window.history,me,"-")),t}var be=i(3738);const{He:ye,bD:we,d3:Re,Kp:xe,TZ:Ee,Lc:Te,uP:Ae,Rz:Se}=be;class Ne extends b{static featureName=Ee;constructor(e,t=!0){super(e,Ee,t);if(!(0,m.V)(this.agentIdentifier))return void this.deregisterDrain();const r=this.ee;let n;ve(r),this.eventsEE=(0,F.u)(r),this.eventsEE.on(Ae,(function(e,t){this.bstStart=(0,S.t)()})),this.eventsEE.on(Te,(function(e,t){(0,x.p)("bst",[e[0],t,this.bstStart,(0,S.t)()],void 0,a.K7.sessionTrace,r)})),r.on(Se+Re,(function(e){this.time=(0,S.t)(),this.startPath=location.pathname+location.hash})),r.on(Se+xe,(function(e){(0,x.p)("bstHist",[location.pathname+location.hash,this.startPath,this.time],void 0,a.K7.sessionTrace,r)}));try{n=new PerformanceObserver((e=>{const t=e.getEntries();(0,x.p)(ye,[t],void 0,a.K7.sessionTrace,r)})),n.observe({type:we,buffered:!0})}catch(e){}this.importAggregator(e,{resourceObserver:n})}}var _e=i(2614);class Oe extends b{static featureName=t.TZ;#i;#o;constructor(e,r=!0){let n;super(e,t.TZ,r),this.replayRunning=!1,this.#o=e;try{n=JSON.parse(localStorage.getItem("".concat(_e.H3,"_").concat(_e.uh)))}catch(e){}(0,g.SR)(e.agentIdentifier)&&this.ee.on(t.G4.RECORD,(()=>this.#a())),this.#s(n)?(this.#i=n?.sessionReplayMode,this.#c()):this.importAggregator(e),this.ee.on("err",(e=>{this.replayRunning&&(this.errorNoticed=!0,(0,x.p)(t.G4.ERROR_DURING_REPLAY,[e],void 0,this.featureName,this.ee))})),this.ee.on(t.G4.REPLAY_RUNNING,(e=>{this.replayRunning=e}))}#s(e){return e&&(e.sessionReplayMode===_e.g.FULL||e.sessionReplayMode===_e.g.ERROR)||(0,g.Aw)(this.agentIdentifier)}#u=!1;async#c(e){if(!this.#u){this.#u=!0;try{const{Recorder:t}=await Promise.all([i.e(478),i.e(249)]).then(i.bind(i,8589));this.recorder??=new t({mode:this.#i,agentIdentifier:this.agentIdentifier,trigger:e,ee:this.ee,agentRef:this.#o}),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording}catch(e){}this.importAggregator(this.#o,{recorder:this.recorder,errorNoticed:this.errorNoticed})}}#a(){this.featAggregate?this.featAggregate.mode!==_e.g.FULL&&this.featAggregate.initializeRecording(_e.g.FULL,!0):(this.#i=_e.g.FULL,this.#c(t.Qb.API),this.recorder&&this.recorder.parent.mode!==_e.g.FULL&&(this.recorder.parent.mode=_e.g.FULL,this.recorder.stopRecording(),this.recorder.startRecording(),this.abortHandler=this.recorder.stopRecording))}}var Ie=i(3962);class Pe extends b{static featureName=Ie.TZ;constructor(e,t=!0){if(super(e,Ie.TZ,t),!p.RI||!(0,R.dV)().o.MO)return;const r=ve(this.ee);Ie.tC.forEach((e=>{(0,T.sp)(e,(e=>{a(e)}),!0)}));const n=()=>(0,x.p)("newURL",[(0,S.t)(),""+window.location],void 0,this.featureName,this.ee);r.on("pushState-end",n),r.on("replaceState-end",n);try{this.removeOnAbort=new AbortController}catch(e){}(0,T.sp)("popstate",(e=>(0,x.p)("newURL",[e.timeStamp,""+window.location],void 0,this.featureName,this.ee)),!0,this.removeOnAbort?.signal);let i=!1;const o=new((0,R.dV)().o.MO)(((e,t)=>{i||(i=!0,requestAnimationFrame((()=>{(0,x.p)("newDom",[(0,S.t)()],void 0,this.featureName,this.ee),i=!1})))})),a=(0,v.s)((e=>{(0,x.p)("newUIEvent",[e],void 0,this.featureName,this.ee),o.observe(document.body,{attributes:!0,childList:!0,subtree:!0,characterData:!0})}),100,{leading:!0});this.abortHandler=function(){this.removeOnAbort?.abort(),o.disconnect(),this.abortHandler=void 0},this.importAggregator(e,{domObserver:o})}}var je=i(7378);const Ce={},ke=["appendChild","insertBefore","replaceChild"];function Le(e){const t=function(e){return(e||B.ee).get("jsonp")}(e);if(!p.RI||Ce[t.debugId])return t;Ce[t.debugId]=!0;var r=(0,W.YM)(t),n=/[?&](?:callback|cb)=([^&#]+)/,i=/(.*)\.([^.]+)/,o=/^(\w+)(\.|$)(.*)$/;function a(e,t){if(!e)return t;const r=e.match(o),n=r[1];return a(r[3],t[n])}return r.inPlace(Node.prototype,ke,"dom-"),t.on("dom-start",(function(e){!function(e){if(!e||"string"!=typeof e.nodeName||"script"!==e.nodeName.toLowerCase())return;if("function"!=typeof e.addEventListener)return;var o=(s=e.src,c=s.match(n),c?c[1]:null);var s,c;if(!o)return;var u=function(e){var t=e.match(i);if(t&&t.length>=3)return{key:t[2],parent:a(t[1],window)};return{key:e,parent:window}}(o);if("function"!=typeof u.parent[u.key])return;var d={};function l(){t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,T.jT)(!1)),e.removeEventListener("error",f,(0,T.jT)(!1))}function f(){t.emit("jsonp-error",[],d),t.emit("jsonp-end",[],d),e.removeEventListener("load",l,(0,T.jT)(!1)),e.removeEventListener("error",f,(0,T.jT)(!1))}r.inPlace(u.parent,[u.key],"cb-",d),e.addEventListener("load",l,(0,T.jT)(!1)),e.addEventListener("error",f,(0,T.jT)(!1)),t.emit("new-jsonp",[e.src],d)}(e[0])})),t}const He={};function Me(e){const t=function(e){return(e||B.ee).get("promise")}(e);if(He[t.debugId])return t;He[t.debugId]=!0;var r=t.context,n=(0,W.YM)(t),i=p.gm.Promise;return i&&function(){function e(r){var o=t.context(),a=n(r,"executor-",o,null,!1);const s=Reflect.construct(i,[a],e);return t.context(s).getCtx=function(){return o},s}p.gm.Promise=e,Object.defineProperty(e,"name",{value:"Promise"}),e.toString=function(){return i.toString()},Object.setPrototypeOf(e,i),["all","race"].forEach((function(r){const n=i[r];e[r]=function(e){let i=!1;[...e||[]].forEach((e=>{this.resolve(e).then(a("all"===r),a(!1))}));const o=n.apply(this,arguments);return o;function a(e){return function(){t.emit("propagate",[null,!i],o,!1,!1),i=i||!e}}}})),["resolve","reject"].forEach((function(r){const n=i[r];e[r]=function(e){const r=n.apply(this,arguments);return e!==r&&t.emit("propagate",[e,!0],r,!1,!1),r}})),e.prototype=i.prototype;const o=i.prototype.then;i.prototype.then=function(...e){var i=this,a=r(i);a.promise=i,e[0]=n(e[0],"cb-",a,null,!1),e[1]=n(e[1],"cb-",a,null,!1);const s=o.apply(this,e);return a.nextPromise=s,t.emit("propagate",[i,!0],s,!1,!1),s},i.prototype.then[W.Jt]=o,t.on("executor-start",(function(e){e[0]=n(e[0],"resolve-",this,null,!1),e[1]=n(e[1],"resolve-",this,null,!1)})),t.on("executor-err",(function(e,t,r){e[1](r)})),t.on("cb-end",(function(e,r,n){t.emit("propagate",[n,!0],this.nextPromise,!1,!1)})),t.on("propagate",(function(e,r,n){this.getCtx&&!r||(this.getCtx=function(){if(e instanceof Promise)var r=t.context(e);return r&&r.getCtx?r.getCtx():this})}))}(),t}const De={},Ke="setTimeout",Ue="setInterval",Ve="clearTimeout",Ge="-start",Fe=[Ke,"setImmediate",Ue,Ve,"clearImmediate"];function Be(e){const t=function(e){return(e||B.ee).get("timer")}(e);if(De[t.debugId]++)return t;De[t.debugId]=1;var r=(0,W.YM)(t);return r.inPlace(p.gm,Fe.slice(0,2),Ke+"-"),r.inPlace(p.gm,Fe.slice(2,3),Ue+"-"),r.inPlace(p.gm,Fe.slice(3),Ve+"-"),t.on(Ue+Ge,(function(e,t,n){e[0]=r(e[0],"fn-",null,n)})),t.on(Ke+Ge,(function(e,t,n){this.method=n,this.timerDuration=isNaN(e[1])?0:+e[1],e[0]=r(e[0],"fn-",this,n)})),t}const We={};function ze(e){const t=function(e){return(e||B.ee).get("mutation")}(e);if(!p.RI||We[t.debugId])return t;We[t.debugId]=!0;var r=(0,W.YM)(t),n=p.gm.MutationObserver;return n&&(window.MutationObserver=function(e){return this instanceof n?new n(r(e,"fn-")):n.apply(this,arguments)},MutationObserver.prototype=n.prototype),t}const{TZ:qe,d3:Ze,Kp:Ye,$p:Xe,wW:$e,e5:Je,tH:Qe,uP:et,rw:tt,Lc:rt}=je;class nt extends b{static featureName=qe;constructor(e,t=!0){if(super(e,qe,t),!p.RI)return;try{this.removeOnAbort=new AbortController}catch(e){}let r,n=0;const i=this.ee.get("tracer"),o=Le(this.ee),a=Me(this.ee),s=Be(this.ee),c=Z(this.ee),u=this.ee.get("events"),d=ne(this.ee),l=ve(this.ee),f=ze(this.ee);function h(e,t){l.emit("newURL",[""+window.location,t])}function g(){n++,r=window.location.hash,this[et]=(0,S.t)()}function m(){n--,window.location.hash!==r&&h(0,!0);var e=(0,S.t)();this[Je]=~~this[Je]+e-this[et],this[rt]=e}function v(e,t){e.on(t,(function(){this[t]=(0,S.t)()}))}this.ee.on(et,g),a.on(tt,g),o.on(tt,g),this.ee.on(rt,m),a.on($e,m),o.on($e,m),this.ee.on("fn-err",((...t)=>{t[2]?.__newrelic?.[e.agentIdentifier]||(0,x.p)("function-err",[...t],void 0,this.featureName,this.ee)})),this.ee.buffer([et,rt,"xhr-resolved"],this.featureName),u.buffer([et],this.featureName),s.buffer(["setTimeout"+Ye,"clearTimeout"+Ze,et],this.featureName),c.buffer([et,"new-xhr","send-xhr"+Ze],this.featureName),d.buffer([Qe+Ze,Qe+"-done",Qe+Xe+Ze,Qe+Xe+Ye],this.featureName),l.buffer(["newURL"],this.featureName),f.buffer([et],this.featureName),a.buffer(["propagate",tt,$e,"executor-err","resolve"+Ze],this.featureName),i.buffer([et,"no-"+et],this.featureName),o.buffer(["new-jsonp","cb-start","jsonp-error","jsonp-end"],this.featureName),v(d,Qe+Ze),v(d,Qe+"-done"),v(o,"new-jsonp"),v(o,"jsonp-end"),v(o,"cb-start"),l.on("pushState-end",h),l.on("replaceState-end",h),window.addEventListener("hashchange",h,(0,T.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("load",h,(0,T.jT)(!0,this.removeOnAbort?.signal)),window.addEventListener("popstate",(function(){h(0,n>1)}),(0,T.jT)(!0,this.removeOnAbort?.signal)),this.abortHandler=this.#n,this.importAggregator(e)}#n(){this.removeOnAbort?.abort(),this.abortHandler=void 0}}var it=i(3333);class ot extends b{static featureName=it.TZ;constructor(e,t=!0){super(e,it.TZ,t);const r=[e.init.page_action.enabled,e.init.performance.capture_marks,e.init.performance.capture_measures,e.init.user_actions.enabled,e.init.performance.resources.enabled];if(p.RI&&(e.init.user_actions.enabled&&(it.Zp.forEach((e=>(0,T.sp)(e,(e=>(0,x.p)("ua",[e],void 0,this.featureName,this.ee)),!0))),it.qN.forEach((e=>{const t=(0,v.s)((e=>{(0,x.p)("ua",[e],void 0,this.featureName,this.ee)}),500,{leading:!0});(0,T.sp)(e,t)}))),e.init.performance.resources.enabled&&p.gm.PerformanceObserver?.supportedEntryTypes.includes("resource"))){new PerformanceObserver((e=>{e.getEntries().forEach((e=>{(0,x.p)("browserPerformance.resource",[e],void 0,this.featureName,this.ee)}))})).observe({type:"resource",buffered:!0})}r.some((e=>e))?this.importAggregator(e):this.deregisterDrain()}}var at=i(993),st=i(3785);class ct extends b{static featureName=at.TZ;constructor(e,t=!0){super(e,at.TZ,t);const r=this.ee;this.ee.on("wrap-logger-end",(function([e]){const{level:t,customAttributes:n}=this;(0,st.R)(r,e,n,t)})),this.importAggregator(e)}}new class extends o{constructor(t){super(),p.gm?(this.features={},(0,R.bQ)(this.agentIdentifier,this),this.desiredFeatures=new Set(t.features||[]),this.desiredFeatures.add(w),this.runSoftNavOverSpa=[...this.desiredFeatures].some((e=>e.featureName===a.K7.softNav)),(0,d.j)(this,t,t.loaderType||"agent"),this.run()):(0,e.R)(21)}get config(){return{info:this.info,init:this.init,loader_config:this.loader_config,runtime:this.runtime}}run(){try{const t=u(this.agentIdentifier),r=[...this.desiredFeatures];r.sort(((e,t)=>a.P3[e.featureName]-a.P3[t.featureName])),r.forEach((r=>{if(!t[r.featureName]&&r.featureName!==a.K7.pageViewEvent)return;if(this.runSoftNavOverSpa&&r.featureName===a.K7.spa)return;if(!this.runSoftNavOverSpa&&r.featureName===a.K7.softNav)return;const n=function(e){switch(e){case a.K7.ajax:return[a.K7.jserrors];case a.K7.sessionTrace:return[a.K7.ajax,a.K7.pageViewEvent];case a.K7.sessionReplay:return[a.K7.sessionTrace];case a.K7.pageViewTiming:return[a.K7.pageViewEvent];default:return[]}}(r.featureName).filter((e=>!(e in this.features)));n.length>0&&(0,e.R)(36,{targetFeature:r.featureName,missingDependencies:n}),this.features[r.featureName]=new r(this)}))}catch(t){(0,e.R)(22,t);for(const e in this.features)this.features[e].abortHandler?.();const r=(0,R.Zm)();delete r.initializedAgents[this.agentIdentifier]?.api,delete r.initializedAgents[this.agentIdentifier]?.features,delete this.sharedAggregator;return r.ee.get(this.agentIdentifier).abort(),!1}}}({features:[he,w,N,Ne,Oe,O,M,ot,ct,Pe,nt],loaderType:"spa"})})()})();</script><link rel="preload" href="/article-pages/_nuxt/75f1046.js" as="script"><link rel="preload" href="/article-pages/_nuxt/2abb6c5.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/66101cf.css" as="style"><link rel="preload" href="/article-pages/_nuxt/701e3a3.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/dac93f2.css" as="style"><link rel="preload" href="/article-pages/_nuxt/c9b2266.js" as="script"><link rel="preload" href="/article-pages/_nuxt/a5e7651.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/e5cdfa1.css" as="style"><link rel="preload" href="/article-pages/_nuxt/f548f7f.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/868b092.css" as="style"><link rel="preload" href="/article-pages/_nuxt/e3c5a8f.js" as="script"><link rel="preload" href="/article-pages/_nuxt/css/0ae7120.css" as="style"><link rel="preload" href="/article-pages/_nuxt/d89174d.js" as="script"><link rel="preload" href="/article-pages/_nuxt/ed7fc59.js" as="script"><link rel="stylesheet" href="/article-pages/_nuxt/css/66101cf.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/dac93f2.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/e5cdfa1.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/868b092.css"><link rel="stylesheet" href="/article-pages/_nuxt/css/0ae7120.css"> <meta property="fb:admins" content="1841006843"> </head> <body > <button class="BypassBlock__firstEl"></button> <a href="#main-content" class="BypassBlock__wrapper"> <span class="BypassBlock__button">Skip to main content</span> </a> <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://tag-manager.frontiersin.org/ns.html?id=GTM-M322FV2&gtm_auth=owVbWxfaJr21yQv1fe1cAQ&gtm_preview=env-1&gtm_cookies_win=x" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div data-server-rendered="true" id="__nuxt"><div id="__layout"><div theme="cyan" class="ArticleLayout"><nav class="Ibar"><div class="Ibar__main"><div class="Ibar__wrapper"><button aria-label="Open Menu" data-event="iBar-btn-openMenu" class="Ibar__burger"></button> <div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div> <a aria-label="Frontiers in Cell and Developmental Biology" href="//www.frontiersin.org/journals/cell-and-developmental-biology" data-event="iBar-a-journalHome" class="Ibar__journalName"><div logoClass="Ibar__logo--mixed" class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Cell and Developmental Biology</span></div></div></a> <div parent-data-event="iBar" class="Ibar__dropdown Ibar__dropdown--aboutUs"><button class="Ibar__dropdown__trigger"><!----> About us </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About us </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Who we are</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/mission" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Mission and values</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/history" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">History</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/leadership" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Leadership</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/awards" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Awards</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Impact and progress</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/impact" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">Frontiers' impact</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://progressreport.frontiersin.org/?utm_source=fweb&amp;utm_medium=frep&amp;utm_campaign=pr20" target="_blank" data-event="iBar-aboutUs_1-a_impactAndProgress">Progress Report 2022</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/progress-reports" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">All progress reports</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Publishing model</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">How we publish</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Open access</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Fee policy</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/peer-review" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Peer review</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research integrity</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-topics" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research Topics</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Services</li> <li class="Ibar__dropdown__about__block__item"><a href="https://publishingpartnerships.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_3-a_services">Societies</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/open-access-agreements/consortia" target="_self" data-event="iBar-aboutUs_3-a_services">National consortia</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access-agreements" target="_self" data-event="iBar-aboutUs_3-a_services">Institutional partnerships</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/collaborators" target="_self" data-event="iBar-aboutUs_3-a_services">Collaborators</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">More from Frontiers</li> <li class="Ibar__dropdown__about__block__item"><a href="https://forum.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Forum</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Planet Prize</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://pressoffice.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Press office</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.orgabout/sustainability" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Sustainability</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://careers.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Career opportunities</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Contact us</a></li></ul></div></div></div> <a href="https://www.frontiersin.org/journals" data-event="iBar-a-allJournals" class="Ibar__link">All journals</a><a href="https://www.frontiersin.org/articles" data-event="iBar-a-allArticles" class="Ibar__link">All articles</a> <a href="https://www.frontiersin.org/submission/submit?domainid=1&amp;fieldid=10&amp;specialtyid=0&amp;entitytype=2&amp;entityid=403" data-event="iBar-a-submit" class="Ibar__button Ibar__submit">Submit your research</a> <div class="Ibar__spacer"></div> <a href="/search" aria-label="Search" data-event="iBar-a-search" class="Ibar__icon Ibar__icon--search"><span>Search</span></a> <!----> <!----> <!----> <div class="Ibar__userArea"></div></div></div> <div class="Ibar__menu Ibar__menu--journal"><div class="Ibar__menu__header"><div class="Ibar__logo"><div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div></div> <button aria-label="Close Menu" data-event="iBarMenu-btn-closeMenu" class="Ibar__close"></button></div> <div class="Ibar__menu__wrapper"><div class="Ibar__menu__journal"><a href="//www.frontiersin.org/journals/cell-and-developmental-biology" data-event="iBarMenu-a-journalHome"><div class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Cell and Developmental Biology</span></div></div></a> <div parent-data-event="iBarMenu" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cancer-cell-biology" data-event="iBarJournal-sections-a_id_2245">Cancer Cell Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-adhesion-and-migration" data-event="iBarJournal-sections-a_id_1065">Cell Adhesion and Migration</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-death-and-survival" data-event="iBarJournal-sections-a_id_680">Cell Death and Survival</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-growth-and-division" data-event="iBarJournal-sections-a_id_1021">Cell Growth and Division</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cellular-biochemistry" data-event="iBarJournal-sections-a_id_716">Cellular Biochemistry</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/developmental-epigenetics" data-event="iBarJournal-sections-a_id_1385">Developmental Epigenetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/embryonic-development" data-event="iBarJournal-sections-a_id_2220">Embryonic Development</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/epigenomics-and-epigenetics" data-event="iBarJournal-sections-a_id_455">Epigenomics and Epigenetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/evolutionary-developmental-biology" data-event="iBarJournal-sections-a_id_566">Evolutionary Developmental Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/membrane-traffic-and-organelle-dynamics" data-event="iBarJournal-sections-a_id_675">Membrane Traffic and Organelle Dynamics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/molecular-and-cellular-pathology" data-event="iBarJournal-sections-a_id_691">Molecular and Cellular Pathology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/molecular-and-cellular-reproduction" data-event="iBarJournal-sections-a_id_1914">Molecular and Cellular Reproduction</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/morphogenesis-and-patterning" data-event="iBarJournal-sections-a_id_1913">Morphogenesis and Patterning</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/signaling" data-event="iBarJournal-sections-a_id_1098">Signaling</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/stem-cell-research" data-event="iBarJournal-sections-a_id_685">Stem Cell Research</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/cell-and-developmental-biology/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/cell-and-developmental-biology/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/cell-and-developmental-biology/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarMenu" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission &amp; scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div></div> <div parent-data-event="iBarMenu" class="Ibar__dropdown Ibar__dropdown--aboutUs"><button class="Ibar__dropdown__trigger"><!----> About us </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About us </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Who we are</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/mission" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Mission and values</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/history" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">History</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/leadership" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Leadership</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/awards" target="_self" data-event="iBar-aboutUs_0-a_whoWeAre">Awards</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Impact and progress</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/impact" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">Frontiers' impact</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://progressreport.frontiersin.org/?utm_source=fweb&amp;utm_medium=frep&amp;utm_campaign=pr20" target="_blank" data-event="iBar-aboutUs_1-a_impactAndProgress">Progress Report 2022</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/progress-reports" target="_self" data-event="iBar-aboutUs_1-a_impactAndProgress">All progress reports</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Publishing model</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">How we publish</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Open access</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Fee policy</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/peer-review" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Peer review</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research integrity</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/research-topics" target="_self" data-event="iBar-aboutUs_2-a_publishingModel">Research Topics</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Services</li> <li class="Ibar__dropdown__about__block__item"><a href="https://publishingpartnerships.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_3-a_services">Societies</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/open-access-agreements/consortia" target="_self" data-event="iBar-aboutUs_3-a_services">National consortia</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/open-access-agreements" target="_self" data-event="iBar-aboutUs_3-a_services">Institutional partnerships</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/collaborators" target="_self" data-event="iBar-aboutUs_3-a_services">Collaborators</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">More from Frontiers</li> <li class="Ibar__dropdown__about__block__item"><a href="https://forum.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Forum</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Frontiers Planet Prize</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://pressoffice.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Press office</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.orgabout/sustainability" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Sustainability</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://careers.frontiersin.org/" target="_blank" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Career opportunities</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="iBar-aboutUs_4-a_moreFromFrontiers">Contact us</a></li></ul></div></div></div> <a href="https://www.frontiersin.org/journals" data-event="iBar-a-allJournals" class="Ibar__link">All journals</a><a href="https://www.frontiersin.org/articles" data-event="iBar-a-allArticles" class="Ibar__link">All articles</a> <!----> <!----> <!----> <a href="https://www.frontiersin.org/submission/submit?domainid=1&amp;fieldid=10&amp;specialtyid=0&amp;entitytype=2&amp;entityid=403" data-event="iBarMenu-a-submit" class="Ibar__button Ibar__submit">Submit your research</a></div></div> <div class="Ibar__journal"><div class="Ibar__wrapper Ibar__wrapper--journal"><a aria-label="Frontiers in Cell and Developmental Biology" href="//www.frontiersin.org/journals/cell-and-developmental-biology" data-event="iBarJournal-a-journalHome" class="Ibar__journalName"><div class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Cell and Developmental Biology</span></div></div></a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cancer-cell-biology" data-event="iBarJournal-sections-a_id_2245">Cancer Cell Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-adhesion-and-migration" data-event="iBarJournal-sections-a_id_1065">Cell Adhesion and Migration</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-death-and-survival" data-event="iBarJournal-sections-a_id_680">Cell Death and Survival</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-growth-and-division" data-event="iBarJournal-sections-a_id_1021">Cell Growth and Division</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cellular-biochemistry" data-event="iBarJournal-sections-a_id_716">Cellular Biochemistry</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/developmental-epigenetics" data-event="iBarJournal-sections-a_id_1385">Developmental Epigenetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/embryonic-development" data-event="iBarJournal-sections-a_id_2220">Embryonic Development</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/epigenomics-and-epigenetics" data-event="iBarJournal-sections-a_id_455">Epigenomics and Epigenetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/evolutionary-developmental-biology" data-event="iBarJournal-sections-a_id_566">Evolutionary Developmental Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/membrane-traffic-and-organelle-dynamics" data-event="iBarJournal-sections-a_id_675">Membrane Traffic and Organelle Dynamics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/molecular-and-cellular-pathology" data-event="iBarJournal-sections-a_id_691">Molecular and Cellular Pathology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/molecular-and-cellular-reproduction" data-event="iBarJournal-sections-a_id_1914">Molecular and Cellular Reproduction</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/morphogenesis-and-patterning" data-event="iBarJournal-sections-a_id_1913">Morphogenesis and Patterning</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/signaling" data-event="iBarJournal-sections-a_id_1098">Signaling</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/stem-cell-research" data-event="iBarJournal-sections-a_id_685">Stem Cell Research</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/cell-and-developmental-biology/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/cell-and-developmental-biology/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/cell-and-developmental-biology/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission &amp; scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div> <div class="Ibar__spacer"></div></div></div> <div class="Ibar__journal Ibar__journal--mix"><div class="Ibar__wrapper Ibar__wrapper--journal"><div class="Ibar__logo"><a href="//www.frontiersin.org/" aria-label="Frontiershome" data-event="iBar-a-home" class="Ibar__logo__link"><svg viewBox="0 0 2811 590" fill="none" xmlns="http://www.w3.org/2000/svg" class="Ibar__logo__svg"><path d="M633.872 234.191h-42.674v-57.246h42.674c0-19.776 2.082-35.389 5.204-48.92 4.164-13.53 9.368-23.939 17.695-31.225 8.326-8.326 18.735-13.53 32.266-16.653 13.531-3.123 29.143-5.204 47.878-5.204h21.858c7.286 0 14.572 1.04 21.857 1.04v62.451c-8.326-1.041-16.653-2.082-23.939-2.082-10.408 0-17.694 1.041-23.939 4.164-6.245 3.122-9.368 10.408-9.368 22.898v13.531h53.083v57.246h-53.083v213.372h-89.512V234.191zM794.161 176.945h86.39v47.879h1.041c6.245-17.694 16.653-30.185 31.225-39.552 14.572-9.368 31.225-13.531 49.96-13.531h10.409c3.122 0 7.286 1.041 10.408 2.082v81.185c-6.245-2.082-11.449-3.122-16.653-4.163-5.204-1.041-11.449-1.041-16.654-1.041-11.449 0-20.816 2.082-29.143 5.204-8.327 3.123-15.613 8.327-20.817 14.572-5.204 6.245-10.408 12.49-12.49 20.817-3.123 8.326-4.163 15.612-4.163 23.939v133.228h-88.472V176.945h-1.041zM989.84 312.254c0-19.776 3.122-39.552 10.41-56.205 7.28-17.695 16.65-32.266 29.14-45.797 12.49-13.531 27.06-22.899 44.76-30.185 17.69-7.285 36.43-11.449 57.24-11.449 20.82 0 39.56 4.164 57.25 11.449 17.69 7.286 32.27 17.695 45.8 30.185 12.49 12.49 22.9 28.102 29.14 45.797 7.29 17.694 10.41 36.429 10.41 56.205 0 20.817-3.12 39.552-10.41 57.246-7.29 17.695-16.65 32.266-29.14 44.756-12.49 12.49-28.11 22.899-45.8 30.185-17.69 7.286-36.43 11.449-57.25 11.449-20.81 0-40.59-4.163-57.24-11.449-17.7-7.286-32.27-17.695-44.76-30.185-12.49-12.49-21.86-28.102-29.14-44.756-7.288-17.694-10.41-36.429-10.41-57.246zm88.47 0c0 8.327 1.04 17.694 3.12 26.021 2.09 9.368 5.21 16.653 9.37 23.939 4.16 7.286 9.37 13.531 16.65 17.695 7.29 4.163 15.62 7.285 26.03 7.285 10.4 0 18.73-2.081 26.02-7.285 7.28-4.164 12.49-10.409 16.65-17.695 4.16-7.286 7.29-15.612 9.37-23.939 2.08-9.368 3.12-17.694 3.12-26.021 0-8.327-1.04-17.694-3.12-26.021-2.08-9.368-5.21-16.653-9.37-23.939-4.16-7.286-9.37-13.531-16.65-17.695-7.29-5.204-15.62-7.285-26.02-7.285-10.41 0-18.74 2.081-26.03 7.285-7.28 5.205-12.49 10.409-16.65 17.695-4.16 7.286-7.28 15.612-9.37 23.939-2.08 9.368-3.12 17.694-3.12 26.021zM1306.25 176.945h86.39v37.47h1.04c4.17-7.286 9.37-13.531 15.62-18.735 6.24-5.204 13.53-10.408 20.81-14.572 7.29-4.163 15.62-7.286 23.94-9.367 8.33-2.082 16.66-3.123 24.98-3.123 22.9 0 40.6 4.164 53.09 11.449 13.53 7.286 22.89 16.654 29.14 27.062 6.24 10.409 10.41 21.858 12.49 34.348 2.08 12.49 2.08 22.898 2.08 33.307v172.779h-88.47V316.417v-27.061c0-9.368-1.04-16.654-4.16-23.94-3.13-7.286-7.29-12.49-13.53-16.653-6.25-4.164-15.62-6.245-27.07-6.245-8.32 0-15.61 2.081-21.85 5.204-6.25 3.122-11.45 7.286-14.58 13.531-4.16 5.204-6.24 11.449-8.32 18.735s-3.12 14.572-3.12 21.858v145.717h-88.48V176.945zM1780.88 234.19h-55.17v122.819c0 10.408 3.12 17.694 8.33 20.817 6.24 3.122 13.53 5.204 22.9 5.204 4.16 0 7.28 0 11.45-1.041h11.45v65.573c-8.33 0-15.62 1.041-23.94 2.082-8.33 1.04-16.66 1.041-23.94 1.041-18.74 0-34.35-2.082-46.84-5.205-12.49-3.122-21.86-8.326-29.14-15.612-7.29-7.286-12.49-16.654-14.58-29.144-3.12-12.49-4.16-27.062-4.16-45.797V234.19h-44.76v-57.246h44.76V94.717h88.47v82.227h55.17v57.246zM1902.66 143.639h-88.48V75.984h88.48v67.655zm-89.52 33.307h88.48v270.618h-88.48V176.946zM2024.43 334.111c1.04 18.735 6.25 33.307 16.66 44.756 10.4 11.449 24.98 16.653 43.71 16.653 10.41 0 20.82-2.081 30.19-7.286 9.36-5.204 16.65-12.49 20.81-22.898h83.27c-4.16 15.613-10.41 29.144-19.78 40.593-9.36 11.449-19.77 20.817-31.22 28.102-12.49 7.286-24.98 12.491-39.55 16.654-14.57 3.122-29.15 5.204-43.72 5.204-21.86 0-41.63-3.122-60.37-9.367-18.73-6.246-34.34-15.613-46.83-28.103-12.49-12.49-22.9-27.062-30.19-45.797-7.28-17.694-10.41-38.511-10.41-60.369 0-20.817 4.17-39.552 11.45-57.246 7.29-17.694 17.7-32.266 31.23-44.756 13.53-12.49 29.14-21.858 46.83-29.144 17.7-7.286 36.43-10.408 56.21-10.408 23.94 0 45.8 4.163 63.49 12.49 17.7 8.327 33.31 19.776 44.76 35.389 11.45 15.612 20.81 32.266 26.02 52.042 5.2 19.776 8.33 41.633 7.28 64.532h-199.84v-1.041zm110.33-49.961c-1.04-15.612-6.24-28.102-15.61-39.551-9.37-10.409-21.86-16.654-37.47-16.654s-28.1 5.204-38.51 15.613c-10.41 10.408-16.66 23.939-18.74 40.592h110.33zM2254.46 176.945h86.39v47.879h1.04c6.25-17.694 16.65-30.185 31.23-39.552 14.57-9.368 31.22-13.531 49.96-13.531h10.4c3.13 0 7.29 1.041 10.41 2.082v81.185c-6.24-2.082-11.45-3.122-16.65-4.163-5.21-1.041-11.45-1.041-16.65-1.041-11.45 0-20.82 2.082-29.15 5.204-8.32 3.123-15.61 8.327-20.81 14.572-6.25 6.245-10.41 12.49-12.49 20.817-3.13 8.326-4.17 15.612-4.17 23.939v133.228h-88.47V176.945h-1.04zM2534.45 359.091c0 7.286 1.04 12.49 4.16 17.694 3.12 5.204 6.24 9.368 10.41 12.49 4.16 3.123 9.36 5.204 14.57 7.286 6.24 2.082 11.45 2.082 17.69 2.082 4.17 0 8.33 0 13.53-2.082 5.21-1.041 9.37-3.123 13.53-5.204 4.17-2.082 7.29-5.204 10.41-9.368 3.13-4.163 4.17-8.327 4.17-13.531 0-5.204-2.09-9.367-5.21-12.49-3.12-3.122-7.28-6.245-11.45-8.327-4.16-2.081-9.36-4.163-14.57-5.204-5.2-1.041-9.37-2.081-13.53-3.122-13.53-3.123-28.1-6.245-42.67-9.368-14.58-3.122-28.11-7.286-40.6-12.49-12.49-6.245-22.9-13.531-30.18-23.939-8.33-10.409-11.45-23.94-11.45-42.675 0-16.653 4.16-30.184 11.45-40.592 8.33-10.409 17.69-18.736 30.18-24.981 12.49-6.245 26.02-10.408 40.6-13.53 14.57-3.123 28.1-4.164 41.63-4.164 14.57 0 29.14 1.041 43.71 4.164 14.58 2.081 27.07 7.285 39.56 13.53 12.49 6.245 21.85 15.613 29.14 27.062 7.29 11.45 11.45 26.021 12.49 43.716h-82.23c0-10.409-4.16-18.736-11.45-23.94-7.28-4.163-16.65-7.286-28.1-7.286-4.16 0-8.32 0-12.49 1.041-4.16 1.041-8.32 1.041-12.49 2.082-4.16 1.041-7.28 3.122-9.37 6.245-2.08 3.122-4.16 6.245-4.16 11.449 0 6.245 3.12 11.449 10.41 15.613 6.24 4.163 14.57 7.286 24.98 10.408 10.41 2.082 20.82 5.204 32.27 7.286 11.44 2.082 22.89 4.163 33.3 6.245 13.53 3.123 24.98 7.286 33.31 13.531 9.37 6.245 15.61 12.49 20.82 19.776 5.2 7.286 9.36 14.572 11.45 21.858 2.08 7.285 3.12 13.53 3.12 19.776 0 17.694-4.17 33.306-11.45 45.796-8.33 12.491-17.7 21.858-30.19 30.185-12.49 7.286-26.02 12.49-41.63 16.653-15.61 3.123-31.22 5.204-45.8 5.204-15.61 0-32.26-1.04-47.87-4.163-15.62-3.122-29.15-8.327-41.64-15.612a83.855 83.855 0 01-30.18-30.185c-8.33-12.49-12.49-28.102-12.49-46.838h84.31v-2.081z" fill="#FFFFFF" class="Ibar__logo__text"></path> <path d="M0 481.911V281.028l187.351-58.287v200.882L0 481.911z" fill="#8BC53F"></path> <path d="M187.351 423.623V222.741l126.983 87.431v200.882l-126.983-87.431z" fill="#EBD417"></path> <path d="M126.982 569.341L0 481.911l187.351-58.287 126.983 87.43-187.352 58.287z" fill="#034EA1"></path> <path d="M183.188 212.331l51.001-116.574 65.573 155.085-51.001 116.574-65.573-155.085z" fill="#712E74"></path> <path d="M248.761 367.415l51.001-116.574 171.739-28.102-49.96 115.533-172.78 29.143z" fill="#009FD1"></path> <path d="M299.762 250.842L234.189 95.757l171.739-28.103 65.573 155.085-171.739 28.103z" fill="#F6921E"></path> <path d="M187.352 222.741L59.328 198.802 44.757 71.819 172.78 95.76l14.572 126.982z" fill="#DA2128"></path> <path d="M172.78 95.758L44.757 71.818l70.777-70.776 128.023 23.94-70.777 70.776z" fill="#25BCBD"></path> <path d="M258.129 153.005l-70.777 69.736-14.571-126.982 70.777-70.778 14.571 128.024z" fill="#00844A"></path></svg></a></div> <a aria-label="Frontiers in Cell and Developmental Biology" href="//www.frontiersin.org/journals/cell-and-developmental-biology" data-event="iBarJournal-a-journalHome" class="Ibar__journalName"><div logoClass="Ibar__logo--mixed" class="Ibar__journalName__container"><div class="Ibar__journal__maskLogo" style="display:none;"><img src="" class="Ibar__journal__logo"></div> <div class="Ibar__journalName"><span>Frontiers in</span> <span> Cell and Developmental Biology</span></div></div></a> <div class="Ibar__spacer"></div> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> Sections </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> Sections </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <ul class="Ibar__dropdown__sections"><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cancer-cell-biology" data-event="iBarJournal-sections-a_id_2245">Cancer Cell Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-adhesion-and-migration" data-event="iBarJournal-sections-a_id_1065">Cell Adhesion and Migration</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-death-and-survival" data-event="iBarJournal-sections-a_id_680">Cell Death and Survival</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cell-growth-and-division" data-event="iBarJournal-sections-a_id_1021">Cell Growth and Division</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/cellular-biochemistry" data-event="iBarJournal-sections-a_id_716">Cellular Biochemistry</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/developmental-epigenetics" data-event="iBarJournal-sections-a_id_1385">Developmental Epigenetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/embryonic-development" data-event="iBarJournal-sections-a_id_2220">Embryonic Development</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/epigenomics-and-epigenetics" data-event="iBarJournal-sections-a_id_455">Epigenomics and Epigenetics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/evolutionary-developmental-biology" data-event="iBarJournal-sections-a_id_566">Evolutionary Developmental Biology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/membrane-traffic-and-organelle-dynamics" data-event="iBarJournal-sections-a_id_675">Membrane Traffic and Organelle Dynamics</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/molecular-and-cellular-pathology" data-event="iBarJournal-sections-a_id_691">Molecular and Cellular Pathology</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/molecular-and-cellular-reproduction" data-event="iBarJournal-sections-a_id_1914">Molecular and Cellular Reproduction</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/morphogenesis-and-patterning" data-event="iBarJournal-sections-a_id_1913">Morphogenesis and Patterning</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/signaling" data-event="iBarJournal-sections-a_id_1098">Signaling</a></li><li class="Ibar__dropdown__sections__item"><a href="/journals/cell-and-developmental-biology/sections/stem-cell-research" data-event="iBarJournal-sections-a_id_685">Stem Cell Research</a></li></ul></div></div> <a href="//www.frontiersin.org/journals/cell-and-developmental-biology/articles" data-event="iBar-a-articles" class="Ibar__link">Articles</a><a href="//www.frontiersin.org/journals/cell-and-developmental-biology/research-topics" data-event="iBar-a-researchTopics" class="Ibar__link">Research Topics</a><a href="//www.frontiersin.org/journals/cell-and-developmental-biology/editors" data-event="iBar-a-editorialBoard" class="Ibar__link">Editorial board</a> <div parent-data-event="iBarJournal" class="Ibar__dropdown"><button class="Ibar__dropdown__trigger"><!----> About journal </button> <div class="Ibar__dropdown__menu"><div class="Ibar__dropdown__menu__header"><button aria-label="Close Dropdown" class="Ibar__dropdown__menu__header__title"> About journal </button> <button aria-label="Close Dropdown" class="Ibar__close"></button></div> <div class="Ibar__dropdown__about"><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">Scope</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-editors" target="_self" data-event="iBar-aboutJournal_0-a_scope">Field chief editors</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-scope" target="_self" data-event="iBar-aboutJournal_0-a_scope">Mission &amp; scope</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-facts" target="_self" data-event="iBar-aboutJournal_0-a_scope">Facts</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-submission" target="_self" data-event="iBar-aboutJournal_0-a_scope">Journal sections</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-open" target="_self" data-event="iBar-aboutJournal_0-a_scope">Open access statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#copyright-statement" target="_self" data-event="iBar-aboutJournal_0-a_scope">Copyright statement</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/about#about-quality" target="_self" data-event="iBar-aboutJournal_0-a_scope">Quality</a></li></ul><ul class="Ibar__dropdown__about__block"><li class="Ibar__dropdown__about__block__title">For authors</li> <li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/why-submit" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Why submit?</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/article-types" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Article types</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/author-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Author guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/editor-guidelines" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Editor guidelines</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/publishing-fees" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Publishing fees</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/submission-checklist" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Submission checklist</a></li><li class="Ibar__dropdown__about__block__item"><a href="https://www.frontiersin.org/journals/cell-and-developmental-biology/for-authors/contact-editorial-office" target="_self" data-event="iBar-aboutJournal_1-a_forAuthors">Contact editorial office</a></li></ul></div></div></div> <div class="Ibar__spacer"></div> <a href="https://www.frontiersin.org/submission/submit?domainid=1&amp;fieldid=10&amp;specialtyid=0&amp;entitytype=2&amp;entityid=403" data-event="iBarJournal-a-submit" class="Ibar__button Ibar__submit"><span>Submit</span> <span> your research</span></a> <a href="/search" aria-label="Search" data-event="iBar-a-search" class="Ibar__icon Ibar__icon--search"><span>Search</span></a> <!----> <!----> <!----> <div class="Ibar__userArea"></div></div></div></nav> <div class="ArticlePage"><div><div class="Layout Layout--withAside Layout--withIbarMix ArticleDetails"><!----> <main class="Layout__main"><!----> <div class="ArticleDetails__main"><div class="ArticleLayoutHeader"><div class="ArticleLayoutHeader__info"><p class="ArticleLayoutHeader__info__title"> REVIEW article </p> <p class="ArticleLayoutHeader__info__journalDate"><span>Front. Cell Dev. Biol.</span> <span>, 20 May 2021</span></p> <p class="ArticleLayoutHeader__info__journalDate"> Sec. Stem Cell Research </p> <p class="ArticleLayoutHeader__info__doiVolume"><span> Volume 9 - 2021 | </span> <a href="https://doi.org/10.3389/fcell.2021.661931" class="ArticleLayoutHeader__info__doi"> https://doi.org/10.3389/fcell.2021.661931 </a></p> <!----></div> <!----> <p class="ArticleLayoutHeader__isPartOfRT"><span class="ArticleLayoutHeader__isPartOfRT__label">This article is part of the Research Topic</span> <span class="ArticleLayoutHeader__isPartOfRT__title">Mechanisms of Cellular Differentiation, Organ Development, and Novel Model Systems</span> <span class="Link__wrapper"><a aria-label="View all 25 articles" href="https://www.frontiersin.org/research-topics/14660/mechanisms-of-cellular-differentiation-organ-development-and-novel-model-systems/articles" target="_self" data-event="customLink-link-a_viewAll25Articles" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View all 25 articles</span></a></span></p></div> <div class="ArticleDetails__main__content"><div class="ArticleDetails__main__content__main ArticleDetails__main__content__main--fullArticle"><div class="JournalAbstract"><div class="JournalAbstract__titleWrapper"><h1>The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip</h1> <!----></div> <!----></div> <div class="JournalFullText"><div class="JournalAbstract"> <a id="h1" name="h1"></a> <div class="authors"><span class="author-wrapper notranslate"> <a href="https://loop.frontiersin.org/people/1218360" class="user-id-1218360"><img class="pr5" src="https://loop.frontiersin.org/images/profile/1218360/74" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';" alt="\r\nVangelis Bonis&#x;">Vangelis Bonis</a><sup>&#x2020;</sup></span><span class="author-wrapper notranslate"><a href="https://loop.frontiersin.org/people/1246986" class="user-id-1246986"><img class="pr5" src="https://loop.frontiersin.org/images/profile/1246986/74" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';" alt="Carla Rossell&#x;">Carla Rossell</a><sup>&#x2020;</sup></span><span class="author-wrapper notranslate"><a href="https://loop.frontiersin.org/people/1051420" class="user-id-1051420"><img class="pr5" src="https://loop.frontiersin.org/images/profile/1051420/74" onerror="this.onerror=null;this.src='https://loop.frontiersin.org/cdn/images/profile/default_32.jpg';" alt="Helmuth Gehart*">Helmuth Gehart</a><sup>*</sup></span></div> <ul class="notes"> <li class="pl0">Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland</li> </ul> <p class="mb0">The single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Despite its seemingly simple architecture, the intestinal lining consists of highly distinct cell populations that are continuously renewed by the same stem cell population. The need to maintain balanced diversity of cell types in an unceasingly regenerating tissue demands intricate mechanisms of spatial or temporal cell fate control. Recent advances in single-cell sequencing, spatio-temporal profiling and organoid technology have shed new light on the intricate micro-structure of the intestinal epithelium and on the mechanisms that maintain it. This led to the discovery of unexpected plasticity, zonation along the crypt-villus axis and new mechanism of self-organization. However, not only the epithelium, but also the underlying mesenchyme is distinctly structured. Several new studies have explored the intestinal stroma with single cell resolution and unveiled important interactions with the epithelium that are crucial for intestinal function and regeneration. In this review, we will discuss these recent findings and highlight the technologies that lead to their discovery. We will examine strengths and limitations of each approach and consider the wider impact of these results on our understanding of the intestine in health and disease.</p> <div class="clear"></div> </div> <div class="JournalFullText"> <a id="h2" name="h2"></a><h2>Introduction</h2> <p class="mb0">As a single-layered columnar epithelium, the cell lining that covers the digestive tract appears deceptively simple. However, the epithelium and the underlying mesenchyme is exquisitely structured. This is necessary to protect stem cells from the harsh environment inside the intestinal lumen, to optimize nutrient uptake and to maintain a seamless barrier that protects against mechanical stress, low pH and pathogen invasion. These diverse requirements led to the evolution of crypt and villus domains, which support regeneration and nutrient uptake respectively. Within each domain, we find even more refined zonation with certain cell types and functions appearing only in specific positions along this crypt-villus axis. The existence of refined spatial organization is unexpected, when we consider the other defining characteristic of the epithelium: continuous proliferation. The epithelium turns over every 2&#x2013;4 days in mice and every 2&#x2013;5 days in humans (<a href="#B22">Darwich et al., 2014</a>). The same continuously dividing stem cell population at the bottom of intestinal crypts generates all intestinal epithelial cells. Their offspring moves from the crypt up the villus to be eventually shed into the lumen at the villus tip. Therefore, the intestinal epithelial cell sheet is in continuous motion and moves up to half a millimeter per day. Despite this movement, the general spatial organization in the epithelium remains static. This is only possible since positional cues repeatedly induce and suppress cell fates in individual cells along their journey toward the villus tip. As a result, cells of the intestinal epithelium have to remain plastic and highly responsive to environmental cues that instruct their fate and function throughout their lifetime. In this review, we will explore this intricate link between spatial organization and plasticity in health and disease. We will highlight recent findings and discuss the advantages and disadvantages of the new methods and technologies that uncovered the full extent of structured diversity in the intestine.</p> <h3>Form Follows Function</h3> <p class="mb0">Evolution integrated the conflicting needs for maximized absorption and barrier function by creating crypts and villi (see <a href="#F1">Figure 1A</a>). Villi are capillary-rich protrusions into the intestinal lumen of 1.6 mm (proximal) to 0.5 mm (distal) length. They increase the epithelial surface by a factor of 30 in the small intestine, but are completely absent in the colon. A continuous, postmitotic single layer of intestinal epithelial cells (mostly enterocytes) covers villi and increases the absorptive surface another 600 times due to the presence of microvilli on each cell (<a href="#B52">Kiela and Ghishan, 2016</a>). Crypts are facing away from the intestinal lumen and sit in invaginations of the intestinal mucosa. They form pockets of approximately 44 &#x03BC;m in diameter and connect to the intestinal lumen only <i>via</i> a small opening (around 3 &#x03BC;m), due to dense packing of cells (<a href="#B62">Maj et al., 2003</a>). The microenvironment within the crypt is further isolated from the digestive process by a continuous outflow of mucus and anti-microbial products. The purpose of this mechanism is to flush potential contaminants out of the crypt and protect the regenerative compartment below. This regenerative zone sits lower in the crypt and consists of a progenitor zone in the crypt middle and a stem cell zone at the very bottom (see <a href="#F1">Figure 1A</a>). Here, at the crypt bottom stem cells divide unceasingly to fuel the continuous replacement of cells lost at villus tips.</p> <div class="DottedLine"></div> <div class="Imageheaders">FIGURE 1</div> <div class="FigureDesc"> <a href="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg" name="figure1" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g001.jpg" alt="www.frontiersin.org" id="F1" loading="lazy"> </picture> </a> <p><strong>Figure 1.</strong> Structure of the intestine. <b>(A)</b> The intestine is organized in crypt-villus units. At the bottom of the crypt, in the stem cell zone crypt-base columnar cells (CBCs) act as stem cells of the tissue and are intercalated between Paneth cells. Paneth cells are the primary niche of CBCs and provide them with Notch ligands, EGF, and WNTs to support their continuous proliferation. At the same time Paneth cells also produce anti-microbial products to protect CBCs. In the Transit Amplifying zone (TA zone) the highly proliferative absorptive and slow dividing secretory progenitors differentiate to their respective lineage. The ratio between absorptive and secretory progenitors is controlled <i>via</i> lateral inhibition. Epithelial cells moving from the crypt bottom toward the villus encounter several opposing signaling gradients, among them WNT and BMP. WNT signals, which are necessary for the stemness of CBCs, are higher at the crypt bottom and gradually decrease toward the villus, while increasing BMP levels induce differentiation and gradual fate changes as cells rise up toward the villus tips. These signaling gradients are shaped by mesenchymal populations, such as fibroblasts or telocytes. Distinct populations with differing secretory profiles constitute the mesenchymal stem cell niche adjacent to crypts or induce continuous fate changes along the villus. Gray solid arrows indicate cells with Notch activity. <b>(B)</b> Cell fate determination in the intestinal epithelium. Once CBCs leave the stem cell zone, they start to differentiate either toward the absorptive or the secretory fate depending on Notch signals. Secretory progenitor cells can give rise to Paneth cells, goblet cells, Tuft cells and enteroendocrine cells, while absorptive progenitors can give rise to microfold cells and enterocytes. However, fate changes are not unidirectional and can be reverted upon appropriate environmental stimuli, such as tissue damage. Likewise, certain intestinal epithelial populations (e.g., enterocytes, EE cells, and goblet cells) dynamically acquire and lose different functions and thus cell identities in the course of their lives due to the instructive capacity of changing environments that they traverse as they move along crypt and villus. Black solid arrows indicate cell fate decisions during the differentiation process and gray dotted arrows indicate documented plasticity events by distinct cell populations.</p> </div> <div class="clear"></div> <div class="DottedLine"></div> <a id="h3" name="h3"></a><h2>Simple Yet Diverse &#x2013; the Intestinal Epithelium</h2> <p class="mb0">Starting from the crypt bottom toward villus tips we encounter different epithelial cell types in distinct positions. In the following, we will highlight which cells form the intestinal epithelium and how their characteristics and function vary along the crypt villus axis (see <a href="#F1">Figure 1B</a>).</p> <h3>Crypt-Base-Columnar Cells</h3> <p class="mb15">Crypt-base-columnar cells (CBCs) are continuously dividing intestinal stem cells that generate all other epithelial cell types. They reside exclusively at the bottom of crypts wedged between Paneth cells. CBCs divide every 21&#x2013;24 h in mice and produce two equipotent daughter cells (<a href="#B27">Dudhwala et al., 2020</a>). Each crypt contains around 15 intestinal stem cells (mouse) although stem cell numbers vary with age. In humans, stem cell numbers are high from birth throughout teenage years, but drop threefold in adults (<a href="#B27">Dudhwala et al., 2020</a>). In rodents and humans CBCs are identifiable by their expression of LGR5, a receptor for R-spondins (RSPO) (<a href="#B6">Barker et al., 2007</a>). When LGRs bind RSPOs they prolong and potentiate the action of local WNT signals, which is essential for stem cell maintenance (<a href="#B44">Hao et al., 2012</a>; <a href="#B56">Koo et al., 2012</a>).</p> <p class="mb0">In a process termed &#x201C;neutral competition&#x201D; all stem cells vie for niche space between Paneth cells (<a href="#B61">Lopez-Garcia et al., 2010</a>; <a href="#B102">Snippert et al., 2010</a>). Paneth cells, as primary niche cells, provide essential Notch ligands, EGF and (in the mouse) WNT signals. Since Notch signaling can only be induced <i>via</i> direct cell&#x2013;cell contact, membrane contact to a Notch ligand presenting cell in a high-WNT environment is the limiting resource in the stem cell zone. Stem cells that fail to establish niche interactions move up in the crypt to the progenitor zone, where they further differentiate. The continuous competition in the niche is a quality control mechanism that ensures that a healthy stem cell population occupies each crypt. Should a cell suffer DNA damage, a toxic insult or a mutation that reduces its replicative fitness, it will soon be outcompeted by healthy, faster cycling stem cells in the niche and thus expelled from the stem cell zone. Neutral drift dynamics were identified by tracing CBC clones using Confetti &#x2013; a multicolor labeling strategy. This Cre-loxP based system stochastically recombines a construct containing four inversely arranged fluorescent proteins. Individual clones could then be identified by the expression of a random combination of these fluorescent proteins (<a href="#B60">Livet et al., 2007</a>). <a href="#B102">Snippert et al. (2010)</a> used Confetti to follow the fates of clonally labeled LGR5+ cells and demonstrated crypts drifting to monoclonality (become single colored) after an average of 8 weeks. This means that intestinal stem cells appear static in terms of size and positon on a population level but undergo continuous drifts and shifts in clonal composition.</p> <h3>Paneth Cells</h3> <p class="mb0">Paneth cells, the primary niche cell for intestinal stem cells, are wedge-shaped secretory cells at the crypt bottom. They contain secretory granules that are filled with antimicrobial products (lysozyme, &#x03B1;- defensins, and phospholipase A2). Low-level release of these products is constitutive, which confers antimicrobial properties to the intestinal mucosa. However, Paneth cells can also drastically increase their secretion in response to IFN-&#x03B3;, which leads to complete degranulation and extrusion of the cell into the lumen (<a href="#B30">Farin et al., 2014</a>). The antimicrobial arsenal of Paneth cells gives it broad protective properties against bacteria and even enveloped viruses. Paneth cells do not move with the stream of differentiating cells toward villus tips. Instead, they remain firmly at crypt bottoms due to their expression of Ephrin type-B receptors, which repulses them from the differentiating cell zone, which produces Ephrin-B (<a href="#B10">Batlle et al., 2002</a>). Paneth cells interact with CBCs on multiple levels. Paneth cell derived EGF and WNT contributes to niche establishment, but is dispensable due to production of the same signaling factors by the surrounding mesenchyme. In fact, WNT production in Paneth cells is limited to the mouse small intestine, since neither the equivalent niche cells in the colon (deep crypt secretory cells) nor human Paneth cells produce the ligand (<a href="#B94">Sasaki et al., 2016</a>). Notch signals, on the other hand, are (under homeostatic conditions) only provided by Paneth cells at the crypt bottom and are together with availability of WNT stimulation the &#x201C;limiting factor&#x201D; that determines stem cell niche size. Despite the fact that Paneth cells provide key signaling molecules to CBCs, their depletion does not result in immediate stem cell loss. CBCs differentiate in absence of Notch signals in high WNT environments directly to Paneth cells (<a href="#B125">Yin et al., 2014</a>), which causes immediate replenishment of the Paneth cell pool and reestablishment of the niche. Even if diphtheria toxin-mediated Paneth cell ablation is prolonged, alternative niche cells (early enteroendocrine and goblet cells) express DLL1 and can maintain the LGR5<sup>+</sup> cell pool (<a href="#B116">Van Es et al., 2019</a>). Earlier studies had indicated that epithelial niche cells might be dispensable altogether, based on intact CBC populations despite complete loss of secretory cells (including Paneth cells) in ATOH<sup>&#x2013;/&#x2013;</sup> animals (<a href="#B53">Kim et al., 2012</a>). However, loss of ATOH in CBCs artificially simulates continuous NOTCH stimulation (as Notch signaling suppresses ATOH expression), which makes a Notch-ligand expressing niche cell indeed unnecessary. Therefore, these experiments prove redundancy of Paneth cell derived EGF and WNT, but do not conflict with the essential nature of epithelial-niche-derived Notch signals. In fact, the influence of Paneth cells may go beyond direct signaling. A comparison of metabolic activity in CBCs and Paneth cells revealed that the former relied mainly on oxidative phosphorylation, while the latter depended on glycolysis. Lactate, the product of Paneth cell glycolysis, could serve as respiratory substrate for CBCs and contribute to the control of stem cell differentiation <i>via</i> ROS induced p38 activation (<a href="#B90">Rodr&#x00ED;guez-Colman et al., 2017</a>).</p> <h3>Transit Amplifying Cells</h3> <p class="mb0">Transit amplifying (TA) cells reside in the zone directly above the stem cell zone and are common progenitors of the absorptive lineage. TAs replicate up to six times with an even shorter cell cycle (&#x223C;12 h) than CBC cells before they enter a postmitotic state and differentiate further (<a href="#B84">Potten, 1998</a>). TAs require active Notch signaling in a low-WNT environment to commit to their absorptive fate. Notch ligands are provided by progenitors of the secretory lineage (see below), which induce absorptive fate in all surrounding progenitors in a process termed lateral inhibition. Lateral inhibition maintains a stable ratio between the lineages and ensures that the majority of progenitors will assume absorptive fate and become enterocytes.</p> <h3>Secretory Progenitors</h3> <p class="mb0">Similar to TAs, secretory progenitors are direct offspring of CBC cells. They are the common progenitor of the secretory lineage and give rise to Paneth cells, goblet cells, enteroendocrine cells, and Tuft cells. In contrast to TAs, they show a very low proliferative index (<a href="#B9">Basak et al., 2014</a>). Low mitotic activity is due to lack of Notch signaling in secretory progenitors. HES1, the direct target of Notch activation, is absent and cannot repress the cycle inhibitors <i>p27KIP1</i> and <i>p57KIP2</i>, which would be essential to maintain a proliferative state (<a href="#B88">Riccio et al., 2008</a>). Instead, secretory progenitors express ATOH1 (likewise, due to lack of <i>HES1</i> repression), which induces expression of Notch-Ligands (DLL1 and DLL4) and thus stimulates Notch signaling (and absorptive fate) in all surrounding cells. ATOH1 is crucial for maintenance of secretory identity, since even specified secretory cells trans-differentiated to absorptive cells when <i>ATOH1</i> was depleted (<a href="#B29">Durand et al., 2012</a>; <a href="#B54">Kim et al., 2014</a>). The existence of a single multi-potent secretory progenitor population has recently been challenged by the observation that Paneth cells and enteroendocrine cells, but not goblet cells arise from a progenitor population with high non-canonical WNT signaling (<a href="#B18">B&#x00F6;ttcher et al., 2021</a>). Future studies will have to address, whether distinct secretory progenitor populations exist or whether a plastic continuum of secretory progenitors differentiates to individual cell types based on environmental signal inputs.</p> <h3>Goblet Cells</h3> <p class="mb0">Goblet cells secrete mucus that lubricates the intestinal lumen and forms a protective layer on the epithelium. Beyond their secretory function, goblet cells can also deliver luminal antigens to dendritic cells to induce tolerance (<a href="#B65">McDole et al., 2012</a>). Goblet cells are the most numerous among the secretory cells and appear to constitute the default differentiation path for secretory progenitors in absence of other stimuli. In fact, combined inhibition of Notch and WNT signaling is sufficient to completely convert CBC cells to goblet cells (<a href="#B125">Yin et al., 2014</a>). Recent reports have shed light on the surprising diversity of individual goblet cells. Specialized goblet cells at the crypt opening, so-called sentinel goblet cells, continuously sample the environment by endocytosis. Upon detection of bacterial products (LPS, flagellin, and P3CSK4) these cells release mucus and stimulate other goblet cells lower in the crypt to do the same (<a href="#B15">Birchenough et al., 2016</a>). Another study identified five distinct goblet-cell types in the human colon in distinct spatial arrangement. Interestingly, the ratios between these goblet-cell populations shifted significantly in patients with ulcerative colitis, indicating a direct link between disease state and goblet-cell fate (<a href="#B78">Parikh et al., 2019</a>).</p> <h3>Enteroendocrine Cells</h3> <p class="mb0">Enteroendocrine (EE) cells are hormone-producing cells that coordinate intestinal functions with the wider organism. Depending on the enteroendocrine cell type and thus the secreted hormonal product, they regulate intestinal motility, satiety, insulin secretion, immune responses, or release of digestive enzymes [for a detailed review, please see <a href="#B13">Beumer et al. (2020)</a>]. The number of individual EE-cell types is a matter of active debate. Originally, their primary hormonal product classified EE cells. However, improved immunostaining and single-cell techniques revealed multi-hormonal cells and regional differences that do not conform to this definition (<a href="#B42">Habib et al., 2012</a>; <a href="#B41">Haber et al., 2017</a>). Recently, real-time-resolved fate mapping identified these multi-hormonal cells as transition stages of trans-differentiation events that occurred during the normal lifecycle of certain EE lineages (<a href="#B37">Gehart et al., 2019</a>). The authors used Neurog3Chrono, a highly sensitive genetic pulse-chase timer, in conjunction with single-cell sequencing to generate a comprehensive map of enteroendocrine fate with real-time resolution. This map identified key regulators of enteroendocrine differentiation and revealed direct transitions between mature enteroendocrine populations with discrete hormonal profiles as part of normal homeostasis. This enteroendocrine plasticity is closely linked to the movement of EE cells through the changing signaling environment from crypt to villus. BMP signaling, which increases in strength with distance from the crypt bottom, suppressed production of hormones such as GLP1 or TAC1 and promoted expression of villus-enriched hormones such as Secretin or NTS (<a href="#B12">Beumer et al., 2018</a>). The net result is hormonal zonation, where the same EE cells express and secrete different hormones as they move up the crypt villus axis. However, movement of EE cells appears to be at least partially uncoupled from that of enterocytes. EE cells resided in crypts much longer than absorptive cells. Most EE cells started leaving the crypt at around 60 h after onset of differentiation (<a href="#B37">Gehart et al., 2019</a>), but individual EE cells remained in the crypt longer than 5 days (<a href="#B1">Aiken et al., 1994</a>). Next to their primary function, differentiating EE cells could also serve as reserve niche cells for CBCs upon Paneth cell depletion, due to their expression of Notch ligands (<a href="#B116">Van Es et al., 2019</a>).</p> <h3>Tuft Cells</h3> <p class="mb0">With a prevalence around 0.4% of all intestinal epithelial cells, Tuft cells are even rarer than EE cells. Similar to EE cells they are chemosensory cells, but do not produce hormones. Instead, they are closely related to taste receptor cells and express necessary components of taste perception, such as alpha-gustducin and TRPM5. They use their chemosensory ability to initiate type II immune responses in the intestinal epithelium upon detection of parasites, such as helminths or certain protozoa (<a href="#B38">Gerbe et al., 2016</a>; <a href="#B45">Howitt et al., 2016</a>; <a href="#B118">Von Moltke et al., 2016</a>). When a Tuft cell detects parasitic infection (<i>via</i> yet unknown ligands) it secretes IL-25 to stimulate IL-13 release in group 2 innate lymphoid cells. This sets off a cascade that imposes strong differentiation bias on intestinal epithelial progenitors and changes epithelial composition to facilitate expulsion of the parasite (for details see &#x201C;Inflammation-related plasticity&#x201D; below).</p> <h3>M Cells</h3> <p class="mb0">Microfold (M) cells are not evenly distributed along the intestine, but locally concentrated above Peyer&#x2019;s patches. Peyer&#x2019;s patches are lymphoid follicles that contain B-, T-, and mononuclear cells and perform immune surveillance. These secondary lymphoid organs are separated from the intestinal lumen by follicle-associated intestinal epithelium (FAE), which differs in cell composition from surrounding intestinal epithelium. FAE is rich in M-cells but lacks goblet cells almost completely. As a result, the mucus layer above the follicle is thinner and allows for better contact with the intestinal lumen. M-cells sample the lumen continuously and transport antigens to the immune cells underneath them. Like all intestinal epithelial cells, M-cells derive from CBC cells. However, they acquire their fate much later than other epithelial cells due to plasticity within the absorptive lineage. All intestinal epithelial cells express the receptor RANK, but RANKL (the ligand) is specifically presented on Peyer&#x2019;s patches. When absorptive cells encounter RANKL they acquire M-cell fate. Whether only absorptive progenitors or even fully mature enterocytes can switch lineage is not yet clear. However, it is likely that the capacity to trans-differentiate to M-cells is still maintained in mature enterocytes, since exposure to pathogens increased M-cell numbers within few hours (<a href="#B107">Tahoun et al., 2012</a>). Experiments <i>in vitro</i> and <i>in vivo</i> have shown that RANKL is both necessary and sufficient to promote M-cell fate (<a href="#B55">Knoop et al., 2009</a>; <a href="#B23">de Lau et al., 2012</a>; <a href="#B50">Kanaya et al., 2012</a>). However, M-cell differentiation could be blocked by nociceptor sensory neurons <i>via</i> release of CGRP. Although the exact mechanism of the M-cell reduction upon neuronal activation is not clear yet, its purpose is to limit the number of M-cells as entry points upon Salmonella Typhimurium infection (<a href="#B57">Lai et al., 2020</a>).</p> <h3>Enterocytes</h3> <p class="mb15">Enterocytes are the most common cells of the intestinal epithelium. Their primary role is the controlled transport of nutrients, water and ions from the intestinal lumen into the body. Until recently, enterocytes along the crypt villus axis were considered homogeneous. However, single-cell studies discovered several types of enterocytes with distinct functions at specific positions along the crypt-villus axis. With the help of laser capture microdissection (LCM) <a href="#B68">Moor et al. (2018)</a> created a large panel of landmark genes that was subsequently used to align an intestinal epithelial single cell dataset along the villus. Thus, the team uncovered spatial zonation of absorptive cells and concluded that each enterocyte moved up the crypt-villus axis and trans-differentiated into several enterocyte types in the course of its limited lifetime of 3&#x2013;4 days. At the bottom of the villus, enterocytes express an anti-microbial program and specialize in amino-acid transport. Mid-villus enterocytes are the main transporters for carbohydrates and upper-villus enterocytes are responsible for lipid uptake. The signals that underlie the formation of these functional gradients are not clearly identified yet, but similar to EE cells a direct link to BMP signaling is likely. First insights come from identification of specific villus-tip telocytes that provide BMP and non-canonical WNT signals to tip-enterocytes. Ablation of these telocytes resulted in loss of some, but not all, tip-enterocyte markers in the tip-epithelium (<a href="#B43">Halpern et al., 2020</a>).</p> <p class="mb0">In summary, most intestinal epithelial cell types show distinct spatial patterns of occurrence and function along the crypt-villus axis (see <a href="#F2">Figure 2</a>). Similar observations have been made in other organs, such as the liver, where hepatocyte functions change significantly from the central vein region to the portal triad zone. However, whereas the liver is almost static in cellular composition during normal homeostasis, the intestine shows fast, directional-flow turnover. This necessitates a high degree of plasticity, where individual cells contribute to different zones and thus purposes in the course of their lifetime. To ensure robust zonation, the instructions to undergo these fate changes have to be provided either by the epithelium itself (e.g., lateral inhibition) or by a well-structured stromal environment. The full extent of intestinal micro-structure and plasticity-induced zonation has yet to be comprehensively revealed. Interestingly, recent years have seen the development of a number of new technologies that would be well suited to study these spatio-temporal relations in the intestine.</p> <div class="DottedLine"></div> <div class="Imageheaders">FIGURE 2</div> <div class="FigureDesc"> <a href="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g002.jpg" name="figure2" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g002.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g002.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g002.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g002.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g002.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g002.jpg" alt="www.frontiersin.org" id="F2" loading="lazy"> </picture> </a> <p><strong>Figure 2.</strong> <b>(A)</b> Topology of epithelial and mesenchymal cell populations across the crypt-villus axis. Distinct populations of epithelial and mesenchymal cells can be encountered at specific positions along the crypt villus axis. CBCs located at the crypt bottom, proliferate and can give rise to all epithelial cell types of the intestine. Secretory populations exist at various positions across the crypt-villus axis, including Paneth cells (crypt bottom) that protect and nurture CBCs, Tuft (villus) and goblet (crypt + villus) cells that coordinate inflammatory responses, as well as hormone-producing enteroendocrine cells (crypt + villus). Absorptive progenitors give rise to enterocytes and M cells. Enterocytes located at different parts of the villus are linked to distinct functions such as amino-acid (aa) and carbohydrate transport and lipid uptake. M cells are mainly located above Peyer&#x2019;s patches and their main role is to transport antigens to the antigen-presenting cells underneath them for further processing. Stromal cells provide structural support to the tissue and provide epithelial cells with signaling molecules, regulating important processes such as proliferation and differentiation. Several fibroblast populations located at the crypt bottom in close proximity to the stem cell zone have been linked to production of WNTs and RSPO, which are essential for stem cell maintenance. Telocytes have varying secretory profiles depending on their position along the crypt-villus axis. A subset of telocytes found under the crypt produce canonical WNT ligands and RSPO3. However, telocytes locally concentrated at the villus base and tips and are linked to production of BMP ligands that promote differentiation of epithelial cells. <b>(B)</b> Effects of stromal cell-derived signals on intestinal epithelial cells. Stromal cells produce various signaling molecules affecting the behavior of intestinal epithelial cells. Telocytes and fibroblasts located near the stem cell zone secrete WNT ligands and RSPO to maintain stemness of CBCs, while WNT antagonists and BMP inhibitors, produced by myocytes and crypt-associated telocytes establish the limits that distinguish the stem cell zone from the rest of the crypt. Upon damage, fibroblast-derived PGE<sub>2</sub> drives the regeneration of stem cells <i>via</i> the YAP signaling axis. BMPs produced mainly by telocytes found in the villus induce differentiation and zonation of enterocytes, enteroendocrine cells and potentially other cell types as they migrate from the villus base toward the tip. Likewise, inflammatory signals derived from immune cells drive stem cell expansion and proliferation, instruct cell fate decisions and introduce strong differentiation biases toward secretory cell lineages so that tissue&#x2019;s homeostasis is re-established after damage of the intestinal epithelium.</p> </div> <div class="clear"></div> <div class="DottedLine"></div> <h3>Looking Beyond the Field &#x2013; Upcoming Technologies to Investigate Spatial Relations in the Intestine</h3> <p class="mb15">The anatomy of the gastrointestinal tract and the composition of its different regions have traditionally been studied with techniques that provided limited information of its actual micro-structure or dynamics. Recently developed spatio-temporal techniques have overcome these limitations by increasing the available spatial and temporal resolution. However, they are yet to be applied to the study of the gastro-intestinal tract. In the following paragraph we look beyond the field of intestinal biology and identify techniques and applications that could be useful to deepen our understanding of the gut.</p> <p class="mb0">Newly developed spatial and temporal reporter systems have the ability to highlight cell interaction and to follow cell fate in time. So far, only the Neurog3Chrono system found application in the intestine (see enteroendocrine cells). Recently, a promising tool for niche identification has been developed in the field of cancer biology. The sLP-mCherry niche labeling system was used to label environments during breast cancer metastasis in the lung (<a href="#B76">Ombrato et al., 2019</a>). The authors engineered cells to release a cell-penetrating mCherry fluorescent protein that labeled nearby cells <i>in vivo</i>. A similar strategy could be employed for studying intestinal stem cell niches or the specific environments that induce fate transitions along the crypt-villus axis. The Victora group took a different approach to discern direct cell interactions: they fused bacterial sortase A to a receptor on the surface of one cell population of interest and five N-terminal glycines to the corresponding ligand on the surface of another cell population of interest. When these two populations encountered each other in presence of a fluorescent or biotin marked substrate the fluorescent (or biotin) mark was transferred in an enzymatic reaction to the ligand-presenting cell. This method called LIPSTIC has been used to study the dynamic interactions of T-cells and dendritic cells, but could also be utilized to resolve specific cell interactions (e.g., alternative stem cell niche cells) in the intestinal epithelium <i>in vivo</i> (see <a href="#F3">Figure 3</a>; <a href="#B79">Pasqual et al., 2018</a>).</p> <div class="DottedLine"></div> <div class="Imageheaders">FIGURE 3</div> <div class="FigureDesc"> <a href="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g003.jpg" name="figure3" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g003.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g003.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g003.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g003.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g003.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g003.jpg" alt="www.frontiersin.org" id="F3" loading="lazy"> </picture> </a> <p><strong>Figure 3.</strong> Comparison of the main methods to study spatio-temporal relationships.</p> </div> <div class="clear"></div> <div class="DottedLine"></div> <p class="mb15 w100pc float_left mt15">Parallel to reporter systems, modified scRNA-seq techniques with inherent spatial resolution have gained traction. Spatial transcriptomics is an RNA-seq based approach that analyses transcriptomes at thousands of individual spots across a histologic tissue section (<a href="#B104">St&#x00E5;hl et al., 2016</a>). Due to its unbiased nature, this approach has the potential to become a powerful tool to study tissue microstructure. Currently the method is still held back by limited spatial resolution (around three cells) and strongly reduced sensitivity in comparison to standard single cell RNA sequencing. In the gastrointestinal field spatial transcriptomic has recently been applied in combination with scRNA-seq to explore the early development of the human intestine (<a href="#B31">Fawkner-Corbett et al., 2021</a>), but similar studies in adult tissue that characterize intestinal microstructure and its changes in various disease states are still missing.</p> <p class="mb0">Overall, there is a wide variety of upcoming methods to interrogate the temporal and spatial dimensions of the gastrointestinal tract. Nevertheless, generation of a comprehensive picture of the dynamic changes in intestinal function during health and disease will remain a challenge. Future improvements to the scalability of multimodal methods (techniques that simultaneously measure multiple parameters in a single cell) or methods that aim at integrating data from different tools will be crucial to paint a comprehensive picture of position, fate and function. Particularly mesenchymal structure is an important part of the equation. Due to its role in instructing stem cell maintenance and differentiation, the mesenchyme is an equally structured component of the intestine that has yet to receive more attention.</p> <a id="h4" name="h4"></a><h2>More Than Stroma &#x2013; the Intestinal Mesenchyme</h2> <p class="mb15">The intestinal stroma consists of several cell types, namely fibroblasts, myofibroblasts, pericytes, telocytes, endothelial cells, neural cells, and immune cells. Altogether, they provide structural support to the tissue and produce signals that are essential for stem cell maintenance, self-renewal and tissue zonation (see <a href="#F1">Figure 1</a>). Mesenchymal cells produce diverse signaling molecules depending to their position across the crypt-villus axis. Stromal cells near the crypt bottom, where CBCs reside, mainly produce WNT ligands, RSPOs, and BMP inhibitors which block differentiation and support maintenance of stemness. Mesenchymal cells that are located above the crypt produce a rising BMP gradient toward the villus that induces maturation of CBC daughter cells and accounts for zonation of EE cells and most likely enterocytes (see <a href="#F2">Figure 2</a>).</p> <p class="mb15">Mesenchymal cell populations in close proximity to the crypt have been investigated extensively for their potential role in constituting the niche of CBCs. A subset of PDGFRa<sup>+</sup>; CD34<sup>+</sup> fibroblasts located near the crypt base produce canonical WNT2B, RSPO1, RSPO2, and RSPO3 (<a href="#B63">McCarthy et al., 2020</a>). This population serves also as the main source of the BMP antagonist GREM1. As a result, these cells enhance WNT but inhibit BMP signals in the crypt. Thus, they provide two essential components for stem cell maintenance (see <a href="#F2">Figure 2</a>). The niche function is further corroborated by the ability of the same cell population to support the formation and passaging of organoids in co-culture experiments in the absence of RSPO (a crucial WNT signaling potentiator) or NOGGIN (an otherwise necessary BMP inhibitor) (<a href="#B63">McCarthy et al., 2020</a>). In addition, a rare (potentially overlapping), PDGFRa<sup>+</sup> and CD34<sup>+</sup> population of fibroblasts located around the crypts, in close proximity to the stem cell zone has been recently linked to production of Prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) (see <a href="#F2">Figure 2</a>). Fibroblast-derived PGE<sub>2</sub> binds to its receptor expressed in intestinal stem cells and induces the activation of a YAP transcriptional program, which drives the expansion of stem cells. In co-culture experiments, this population induced increased stem cell identity in organoids (<a href="#B93">Roulis et al., 2020</a>). Other mesenchymal cells positive for PDGFRa and CD34 lie above the crypt, but do not produce BMP inhibitors, which underscores the exquisite microstructure in the mesenchyme that enables epithelial zonation. Independently, pericryptal myofibroblasts marked by PDGFRa expression produce WNT ligands and RSPO3. In fact, presence of these cells in co-culture makes addition of RSPO to small intestinal organoids obsolete. When <i>Rspo3</i> is specifically ablated from these myofibroblasts in co-culture, organoid growth is significantly reduced (<a href="#B40">Greicius et al., 2018</a>). It is apparent that many stromal populations can support organoid formation, however, whether the populations described are identical or partially overlapping remains to be further elucidated. In the colon, a sub-epithelial mesenchymal population expressing GLI1 provides WNT signals for CBCs. When <i>Wntless</i>, which encodes a protein required for the secretion of WNT ligands, is genetically ablated in these stromal cells, LGR5<sup>+</sup> CBCs are lost and the integrity of the colonic epithelium is impaired. GLI1-expressing cells are also present in the small intestine, with a major role as a reserve source of WNT, when it is not sufficiently provided to stem cells by epithelial cells (<a href="#B25">Degirmenci et al., 2018</a>). The importance of mesenchymal WNT is likely more pronounced in humans than mice, since mouse Paneth cells do produce sufficient WNT to maintain stem cells, while their human equivalents do not. This is evidenced in organoid culture, where addition of WNT to the medium was only necessary for human small intestinal organoids.</p> <p class="mb15">Another mesenchymal cell type of sub-epithelial cells, termed &#x201C;telocytes,&#x201D; has recently received increased attention due to its complex role in epithelial patterning. Telocytes are large cells with extended processes called &#x201C;telopodes,&#x201D; embedded in the basal lamina between the capillary plexus and the intestinal epithelium and are characterized by the expression of FOXL1 (<a href="#B101">Shoshkes-Carmel et al., 2018</a>). Although telocytes can be found along the whole crypt-villus axis, their density is higher in the villus base and tips (see <a href="#F2">Figure 2</a>). Bulk sequencing detected production of canonical WNT2B, non-canonical WNT4, WNT5A, WNT5B, RSPO3, and several BMP ligands such as BMP2, BMP3, BMP4, BMP5, and BMP7 in these cells. However, expression of both BMPs and WNT ligands in the same population was paradoxical, since one pathway promoted differentiation, whereas the other induced stemness. Subsequent spatial analysis of telocytes <i>via</i> single-molecule Fluorescence <i>in situ</i> Hybridization (smFISH) identified several distinct telocyte populations with strikingly different expression profiles. Telocytes located near crypts produced canonical WNT2B and RSPO3, while non-canonical WNT5A and BMP5 were enriched in telocytes found in the crypt-villus junctions. More importantly, blocking WNT secretion from telocytes by genetic inactivation of <i>Porcn</i>, resulted in reduced proliferation of CBCs in both small and large intestine and reduced WNT signaling. This indicated that telocytes are a critical source of WNTs for epithelial cell proliferation (<a href="#B101">Shoshkes-Carmel et al., 2018</a>; <a href="#B63">McCarthy et al., 2020</a>). Moreover, an LGR5<sup>+</sup> subpopulation of telocytes located at villus tips has been recently described (see <a href="#F2">Figure 2</a>). These LGR5<sup>+</sup> telocytes produced BMPs and WNT5a, which suggested that non-canonical WNT signaling may play a role in establishing tip identity. Genetic ablation of these tip-telocytes led to loss of most tip-specific enterocyte markers. These markers only returned after 3 weeks, when also LGR5<sup>+</sup> telocytes had reappeared. This identified the LGR5<sup>+</sup> telocyte population as major regulator of the late enterocyte transcriptional program (<a href="#B43">Halpern et al., 2020</a>).</p> <p class="mb15">However, the intestinal epithelium is not shaped by fibroblast and telocyte-derived products alone. Intestinal endothelial cells have been recently linked to production of RSPO3 to maintain intestinal homeostasis (see <a href="#F2">Figure 2B</a>; <a href="#B75">Ogasawara et al., 2018</a>). On the other hand, myocytes produce WNT antagonists, namely DKK3 and SFRP1 that may limit WNT signaling activation above the stem cell zone and thus induce differentiation of stem cell progeny (<a href="#B63">McCarthy et al., 2020</a>). Moreover, distinct immune cells are linked to secretion of inflammatory cytokines that drive CBC proliferation and differentiation to secretory cells in order to maintain tissue integrity and homeostasis (see <a href="#F2">Figure 2B</a> and &#x201C;inflammation-related plasticity below&#x201D;).</p> <p class="mb0">A major limitation of our current knowledge of mesenchymal populations and their spatial organization is the poor comparability of results. Without a more comprehensive approach it is difficult to ascertain, whether individual studies describe the same or differing cell populations. Additionally complexity comes from regionalization along the gastro-intestinal tract. It is very likely that the well-described regional differences from proximal to distal small intestinal epithelium are equally reflected in different mesenchymal populations. A coordinated effort with standardized methods, such as unbiased, spatially resolved single cell sequencing, will be needed to unlock the full complexity of the stromal structure that informs intestinal identity. Beyond identification and mapping of mesenchymal populations, functional assays are crucial to determine effects of epithelial-mesenchymal interactions. Thankfully, faithful <i>in vitro</i> tissue modeling has become more accessible in the last decade due to the development of organoid technology.</p> <a id="h5" name="h5"></a><h2><i>In vivo</i> Systems To Assess Niche Function and Epithelium-Mesenchyme Interactions</h2> <p class="mb0"><i>In vivo</i> studies of epithelial-mesenchymal interactions are inherently difficult, due to low accessibility and high complexity of native tissues in a living organism. This is why <i>in vitro</i> techniques, such as organoid technology see increased use in mechanistic exploration of basic tissue function. &#x201C;Mini guts&#x201D; give researchers the opportunity to simulate intestinal function, regeneration and disease in a dish as organoids recapitulate the cell type-composition, general structure and self-renewal process of their tissue of origin. They can be obtained either from pluripotent stem cells (either embryonic or induced), or multipotent adult stem cells (LGR5+ CBC cells). Either has distinct advantages, when exploring epithelial-mesenchymal interactions. Organoids derived from Pluripotent Stem Cells (PSC) recapitulate fetal development of the intestine and are excellent tools to study this process <i>ex vivo</i>. In addition, the guided differentiation of PSCs fosters co-development of epithelial and mesenchymal tissue, which provides important insights into co-dependencies of both layers. For example, PSC-derived human intestinal organoids have been used to study how mechanical forces that are necessary for intestinal development induce transcriptional changes that are crucial of correct maturation of epithelium and mesenchyme (<a href="#B83">Poling et al., 2018</a>). However, the differentiation procedure from PSCs to intestinal tissue is complex. It usually takes an average of 2&#x2013;3 months for the organoids to develop fully and, unless transplanted under the kidney capsule, they maintain fetal characteristics (<a href="#B64">McCracken et al., 2011</a>) [for an in depth look at PSC derived endodermal organoids please refer to <a href="#B51">Kechele and Wells (2019)</a>]. In contrast, adult stem cell derived organoids model adult tissue repair and solely consist of epithelium. This lack of mesenchymal structures reduces the system complexity, but also enables the investigation of deliberate, artificial environmental changes thanks to the defined nature of organoid media. This makes adult intestinal organoids a powerful system to investigate individual signaling molecules that can be simply added or withdrawn from the defined medium. Likewise, adult &#x201C;mini-guts&#x201D; can be employed to study epithelial-mesenchymal interactions in well-defined co-culture assays. Multiple studies that identified mesenchymal niche cell populations have used adult intestinal organoid co-culture to demonstrate niche-function of mesenchymal populations (<a href="#B106">Stzepourginski et al., 2017</a>). A similar approach in the stomach used gastric organoid co-culture and single cell-sequencing to identify a particular LGR5+ fibroblast population as main source of RSPO3 in the tissue (<a href="#B21">Chen et al., 2019</a>). Recently, the complexity of co-culture systems has been expanded even further, as both immune cells and bacteria have been added to mini-intestines, which greatly expands the possibilities for future uses of the system (<a href="#F4">Figure 4</a>; <a href="#B73">Noel et al., 2017</a>; <a href="#B5">Bar-Ephraim et al., 2020</a>; <a href="#B82">Pleguezuelos-Manzano et al., 2020</a>).</p> <div class="DottedLine"></div> <div class="Imageheaders">FIGURE 4</div> <div class="FigureDesc"> <a href="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g004.jpg" name="figure4" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g004.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g004.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g004.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g004.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g004.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g004.jpg" alt="www.frontiersin.org" id="F4" loading="lazy"> </picture> </a> <p><strong>Figure 4.</strong> Comparison of different organoid systems to assess fate determination and plasticity in homeostasis and disease.</p> </div> <div class="clear"></div> <div class="DottedLine"></div> <p class="mb15 w100pc float_left mt15">Beyond studying environmental interactions, organoids also find applications in exploring the inherent self-organization of tissues. <a href="#B99">Serra et al. (2019)</a> used adult intestinal organoids to describe how single cells generate multicellular asymmetric structures and discovered a critical role of YAP-1 in the process. Furthermore, adult organoids were employed to describe how the metabolic activity of LGR5+ CBCs and Paneth cells play a role in supporting optimal stem cell function in the intestine (<a href="#B90">Rodr&#x00ED;guez-Colman et al., 2017</a>). In general, the ease of establishment (3&#x2013;7 days), accessibility and expandability (split rates of 1:3 to 1:4 each week) make adult epithelial organoids excellent tools to study the effects of specific manipulations of an otherwise fully defined system. Yet, the simplicity of the system is also its limitation. Even current co-culture systems only add a single cell type at a time, which prevents cross-talk between mesenchymal or immune populations. Future efforts will have to develop more advanced co-culture systems that bridge the gap between impenetrable complexity <i>in vivo</i> and over-simplified interactions <i>in vitro</i>.</p> <a id="h6" name="h6"></a><h2>Cellular and Tissue Plasticity in the Intestinal Epithelium</h2> <p class="mb15">At its core, plasticity describes the ability of individual cells or whole tissues to change their function dynamically in response to extrinsic factors. On a tissue level, extrinsic factors like diet, inflammatory signals or tissue damage change the cellular composition of the intestinal epithelium. These factors either directly affect differentiation decisions on stem cell level or induce cellular plasticity in mature populations. Both de-differentiation and trans-differentiation fall under the umbrella term of cellular plasticity. The former describes a process during which mature cells return to a progenitor/stem cell state, whereas the latter implies direct conversion from one mature cell type to another (<a href="#B113">Tetteh et al., 2015</a>). In any tissue, the factors promoting and limiting plasticity need to be well balanced to confer adaptability and robustness at the same time. If this balance tips toward stability, the tissue may be unable to regenerate after injury, if it tips toward plasticity, cancer may ensue.</p> <p class="mb0">The intestinal epithelium is a highly plastic epithelium that can rapidly respond to metabolic, inflammatory or regenerative challenges. The adaptability of the intestine serves on the one hand to balance function with energy expenditure and on the other hand to ensure epithelial integrity. It comes in the form of trans-differentiation, as intestinal cell populations change their function in response to environmental stimuli and their position along the crypt-villus axis, but also in the form of de-differentiation, when regenerative capacities are exhausted. The intestine is lined by 30 m<sup>2</sup> of single-layered epithelium that shields the rest of the organism from 10<sup>13</sup> bacteria in its lumen. Due to its thinness, the barrier is ideal for nutrient uptake, but lacks the strength to withstand mechanical abrasion and environmental insults repeatedly. This is why continuous self-renewal, though energy expensive, is necessary to maintain epithelial integrity. Self-renewal depends on the presence of continuously dividing, healthy stem cell populations that provide a steady flow of replacement cells. However, unceasing cell division makes stem cells also susceptible to DNA damage, radiation and cytotoxic substances. Consequently, a variety of mechanisms (seclusion in crypts, neutral competition, and spatial niche limitations) is in place to protect stem cells and prevent malignant transformation. Likewise, an extensive backup system, in the form of intestinal plasticity, enables the intestine to re-establish homeostasis rapidly after catastrophic stem cell loss. Thus, both trans- and de-differentiation are integral components of normal intestinal function.</p> <h3>Metabolic Plasticity</h3> <p class="mb0">The intestinal epithelium has a fast cell turnover that requires significant energy expenditure to maintain. Consequently, such energy-expensive process has to be well balanced with actual caloric intake, particularly if an organism undergoes prolonged periods of fasting. During starvation, the snake&#x2019;s intestine undergoes atrophy, a condition associated with reduced intestinal mass, as intestinal surface area and epithelial cell numbers are significantly reduced. Upon re-feeding, rapid and extensive remodeling occurs when the intestinal turnover is restarted (<a href="#B98">Secor et al., 1994</a>). Analogous mechanisms have also been described in mammals: long-term fasting caused atrophy in the rat intestine leading to a reduction in villi length, which was reversed upon re-feeding (<a href="#B28">Dunel-Erb et al., 2001</a>). This shortening of villi was also reflected in changes in the regenerative compartment. Food withdrawal caused an increase in the number of Paneth cells and thus CBCs (due to increased niche space). Furthermore, it induced a decrease in TA cells, concomitant with overall reduced proliferation. Interestingly, calorie restriction was associated with reduction of mTORC1 signaling in Paneth cells (see <a href="#F5">Figure 5A</a>). Whether the detected loss of mTORC1 signaling in Paneth cells was directly responsible for the increase in their numbers, remains to be clarified. However, this mechanism was strongly suggested by the fact that forced activation of mTORC1 in Paneth cells prevented niche and stem cell expansion upon starvation. This identified the niche as main detector of metabolic status and regulator of stem cell numbers upon limited nutrient availability (<a href="#B124">Yilmaz et al., 2012</a>). Whereas the reduction in proliferation conserves energy, the increase in CBC numbers may poise the tissue for immediate regeneration, once nutrients are available. Additional regenerative capacity upon re-feeding rests in reserve stem cell populations (often referred to as +4 cells). Nutrient deprivation induced PTEN inhibition in reserve stem cells (mostly progenitors of the secretory lineage) and an increase in their number (<a href="#B89">Richmond et al., 2015</a>). Surprisingly, mice on high-fat diet also showed elevated numbers of CBCs. In contrast to fasting, however, the number of Paneth cells was decreased. This finding was counter-intuitive, since stem cells depend on Notch signals that are only provided in direct membrane contact with Paneth cells during homeostasis. However, this contradiction was explained by the fact that high fat diet induced expression of Notch ligands in CBCs, which allowed them to act as their own primary niche cells and uncoupled them from Paneth cells (see <a href="#F5">Figure 5B</a>). Interestingly, this created a direct link between high caloric intake and carcinogenesis, since niche independence is the first important step that ensures survival of malignant cells. The nutritional status exerted its effect on stem cells <i>via</i> PPAR&#x03B4; signaling (<a href="#B14">Beyaz et al., 2016</a>). Consistent with this assumption, pharmacological activation of PPAR&#x03B4; mimicked the high-fat response and granted non-ISC populations the capacity to form tumors upon APC loss (<a href="#B14">Beyaz et al., 2016</a>). Recently, another link between cell fate determination and metabolism has been described. Loss of <i>Lkb1</i> in LGR5<sup>+</sup> cells induced a differentiation bias toward the secretory lineage and thus boosted the number of secretory cells (<a href="#B36">Gao et al., 2020</a>). During homeostasis LKB1 inhibits PDK4, which would otherwise block pyruvate dehydrogenase. Pyruvate dehydrogenase is a key enzyme in oxidative phosphorylation on which CBCs rely metabolically. When <i>Lkb1</i> was ablated oxidative phosphorylation was decreased, which resulted in upregulation of <i>Atoh1</i> mRNA levels, which in turn promoted an increase in the number of secretory cells (<a href="#B36">Gao et al., 2020</a>). Likewise, loss of the pyruvate carrier <i>Mpc1</i> in LGR5<sup>+</sup> cells resulted in increased proliferation and expansion of the stem cell compartment (<a href="#B95">Schell et al., 2017</a>). This expansion was likely caused by increased fatty acid metabolism, which translated to stabilization of &#x03B2;-catenin and increased WNT signaling (<a href="#B14">Beyaz et al., 2016</a>). Although these genetic loss-of-function models induced artificial metabolic changes, they clearly show that the metabolic state of CBCs can dynamically control proliferation as well as cell fate decisions. Future studies will have to address to which extent, circadian metabolic fluctuations and diet composition directly affect stem cell function.</p> <div class="DottedLine"></div> <div class="Imageheaders">FIGURE 5</div> <div class="FigureDesc"> <a href="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g005.jpg" name="figure5" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g005.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g005.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g005.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g005.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g005.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g005.jpg" alt="www.frontiersin.org" id="F5" loading="lazy"> </picture> </a> <p><strong>Figure 5.</strong> Plasticity of the intestinal epithelium upon different challenges. <b>(A)</b> Calorie restriction. Long-term fasting induces morphological changes in the intestine associated with reduced villus-length. It also affects the stem cell zone, by inducing an increase in the populations of CBCs and Paneth cells and decrease in TA cells. <b>(B)</b> Nutrient overabundance. High-fat diet affects the stem cell compartment, as it induces an increase in the number of CBCs and decrease in Paneth cells. This was linked to the acquisition of Notch independence by CBCs as they produce their own Notch ligands to stimulate Notch signaling. <b>(C)</b> Damage-induced plasticity. Severe damage of the epithelium can lead to profound inflammation that in turn activates group 3 innate lymphoid cells (ILC3), which produce IL-25 to support CBC proliferation. Alternatively, ILC3s can also promote tissue regeneration by CBCs <i>via</i> an IL-25 independent mechanism, which involves the activation of YAP signaling in epithelial cells. This effect is most likely mediated by a stromal population that reacts to ILC3 activation with release of IL-11. If CBCs have been damaged or eliminated in the course of the insult, differentiated epithelial cells can fall back into the niche and de-differentiate to restart tissue replenishment. <b>(D)</b> Infection-related plasticity. Upon infection, Tuft and goblet cells are activated to produce anti-microbial products. Also, Tuft cells secrete IL-25 that activates ILC2s which in turn secrete Il-13. IL-13 acts on epithelial cells and strongly favors differentiation to Tuft and goblet cells, which results in Tuft and goblet cell hyperplasia.</p> </div> <div class="clear"></div> <div class="DottedLine"></div> <h3>Inflammation-Related Plasticity</h3> <p class="mb15">Similarly to nutrition, inflammation-mediated signals play a significant role in regulating intestinal cell plasticity and have strong impact on CBC behavior. Inflammatory responses can be initiated by tissue damage or infection. In both cases, specialized immune cells are activated and secrete factors that support re-establishment of tissue homeostasis. Group 3 innate lymphoid cells (ILC3) are present in the intestine in close proximity to crypts. ILC3s react to tissue injury and secrete IL-22, which has been implicated in epithelial regeneration of the intestine. IL-22 activated the JAK-STAT signaling pathway in CBCs, which supported stem cell survival and proliferation in response to damage (<a href="#B59">Lindemans et al., 2015</a>). Additional, IL-22 independent mechanisms have been identified that support crypt cell proliferation during intestinal tissue regeneration <i>via</i> the Hippo pathway (<a href="#B92">Romera-Hern&#x00E1;ndez et al., 2020</a>). ILC3s activated YAP signaling in LGR5<sup>+</sup> CBCs to support the regeneration process of the tissue. YAP signaling plays key roles in the regenerating intestine, as loss of the pathway results in a defective regeneration process (<a href="#B8">Barry et al., 2013</a>; <a href="#B39">Gregorieff et al., 2015</a>). ILC3s were necessary for the activation of YAP signaling, since no YAP response occurred in crypts of mice lacking ILC3s after Methotrexate (MTX)-induced intestinal damage. Mechanistically, YAP activation can be induced <i>via</i> the IL-6 family receptor GP130. The GP130 receptor can dimerize with IL-6 or IL-11 receptors (IL-6R and IL-11R) to form functional receptor dimers that respond to their respective ligands (<a href="#B109">Taniguchi et al., 2015</a>). Although LGR5<sup>+</sup> cells express GP130 and IL-11RA1, ILC3s do not directly produce IL-11. Instead, IL-11 is known to be produced by other stromal cells. This implies the involvement of another stromal population as an intermediate between epithelial cells and ILC3 activation (see <a href="#F5">Figure 5C</a>; <a href="#B92">Romera-Hern&#x00E1;ndez et al., 2020</a>).</p> <p class="mb15">Upon infection with parasites, such as helminths, the intestinal epithelium presents with granulomatous infiltrates containing different immune cells, including natural killer cells (NK cells), neutrophils and innate lymphoid cells. However, not only immune cells but also mucus-producing goblet cells and chemo-sensory Tuft cells are heavily involved in the intestinal response to parasitic infection. In addition to producing anti-microbial molecules, Tuft cells respond to helminth infections by producing IL-25, which in turn activates tissue-resident group 2 innate lymphoid cells (ILC2). ILC2 cells produce IL-13 that binds to its receptor IL-4R&#x03B1; expressed in LGR5<sup>+</sup> stem cells and DLL1<sup>+</sup> secretory progenitors. IL-13 signaling in these cells induces strong lineage bias in the differentiation process that favors production of Tuft and goblet cells. This leads to a profound goblet and Tuft cell hyperplasia, which is crucial to facilitate the successful expulsion of the nematode from the intestine (see <a href="#F5">Figure 5D</a>; <a href="#B38">Gerbe et al., 2016</a>; <a href="#B118">Von Moltke et al., 2016</a>). Interestingly, helminth infection had a strong impact on the transcriptional profile of stem cells beyond the aforementioned lineage bias. Crypts in direct proximity to granulomatous infiltrates lost stem cell marker expression such as LGR5 and OLFM4, despite continuing proliferation. CBCs in these crypts displayed an IFN&#x03B3; signaling signature, which was associated with expression of <i>Sca-1</i> and fetal markers such as <i>Gja1</i> and <i>Spp1</i>. Culturing these SCA-1<sup>+</sup> epithelial cells as organoids, led to the formation of spheroids that lacked markers of differentiated epithelial cells (<a href="#B74">Nusse et al., 2018</a>). Furthermore, these spheroids were insensitive to RSPO withdrawal from medium, which had also been demonstrated in cultures of mouse fetal intestinal epithelium (<a href="#B70">Mustata et al., 2013</a>). This indicates that CBCs can return to a partially fetal state under influence of a changed microenvironment during parasitic infection. To which extent this fetal reversion benefits re-establishment of tissue integrity and function is not yet fully established (<a href="#B74">Nusse et al., 2018</a>).</p> <p class="mb0">Another study has recently shed light on the crosstalk between LGR5<sup>+</sup> cells and T-helper cells (T<sub><i>h</i></sub> cell) (<a href="#B16">Biton et al., 2018</a>). Two subpopulations of LGR5<sup>+</sup> cells were identified <i>via</i> scRNA-seq analysis, that express MHC class II proteins (MHC II) and can activate T cells as antigen-presenting cells. The authors showed in organoid culture experiments that multiple inflammatory signals affect ISC proliferation and differentiation in contrasting ways. More specifically, co-culture of intestinal organoids with T regulatory cells (T<sub><i>regs</i></sub>) or IL-10, their secretory product, induced the expansion of CBCs. In contrast, co-culture with T<sub><i>h</i></sub>1 or supplementation with exogenous IFN-&#x03B3; resulted in the differentiation of CBCs to Paneth cells. Conversely, T<sub><i>h</i></sub>2 co-cultures or addition of IL-13 promoted the differentiation of CBCs to Tuft cells. Moreover, deletion of MHCII in LGR5<sup>+</sup> cells prevented remodeling of the tissue upon infection with pathogenic <i>H</i>eligmosomoides <i>polygyrus</i> and induced an increase in LGR5<sup>+</sup> cell numbers, which disrupted the mucosal immune response (<a href="#B16">Biton et al., 2018</a>). Overall, these data suggest that CBCs play a role in regulating the tissue&#x2019;s adaptive immunity by responding to pro-inflammatory and anti-inflammatory signals with Paneth or Tuft cell differentiation respectively. This highlights the crosstalk of immune cells with stem cells as a mechanism to re-establish and maintain tissue homeostasis upon different inflammatory conditions.</p> <h3>Cellular Plasticity During Regeneration of the Intestine</h3> <p class="mb15">Despite the &#x201C;proliferative vulnerability&#x201D; of its stem cells, the intestinal epithelium possesses a remarkable ability to recover from severe stress such as irradiation, or chemotherapy. In fact, the resistance of the intestinal epithelium surpasses that of tissues with quiescent stem cells such as the bone marrow (<a href="#B121">Withers and Elkind, 2009</a>). Even when stem cells are completely lost in the course of the insult, CBCs re-appear and are the main contributors to regeneration after injury. This is possible, since differentiated cells re-acquire CBC cell status when in contact with an empty niche space. This process relies equally on the instructive capacity of a dynamic stem cell niche and plasticity in the epithelium (see <a href="#F5">Figure 5C</a>).</p> <p class="mb15">Due to the role of LGR5<sup>+</sup> CBCs as stem cells during intestinal homeostasis and their importance in regeneration, several studies have tested their necessity for intestinal regeneration by depleting them <i>via</i> irradiation or Diphtheria toxin (DT)-mediated ablation (<a href="#B114">Tian et al., 2011</a>; <a href="#B115">van Es et al., 2012</a>). Interestingly, in all cases LGR5<sup>+</sup> cells re-appeared within 2&#x2013;3 days after complete removal. However, when their resurgence was blocked due to continuous DT-mediated ablation, the regeneration process failed (<a href="#B67">Metcalfe et al., 2014</a>; <a href="#B108">Tan et al., 2021</a>). This implies that the LGR5<sup>+</sup> cell pool is essential for intestinal regeneration, but can be replenished by an alternative cell source. This replenishment could come either from a dedicated reserve stem cell population or from de-differentiation of more mature populations (see <a href="#F1">Figure 1B</a>). This question has recently been addressed in an elegant study that investigated intestinal recovery from irradiation with short-term lineage tracing. By limiting the timeframe of lineage labeling, the authors ensured that only recently generated cells would inherit a fluorescent mark and potential long-lived, quiescent reserve stem cell populations would not. Subsequent ablation of CBCs revealed that all re-appearing stem cells carried the fluorescent label. This clearly indicated that LGR5<sup>+</sup> cells were replenished from their recent progeny undergoing de-differentiation, rather than a reserve stem cell population. Interestingly, both absorptive and secretory lineage cells could contribute to the recovery of the CBCs (<a href="#B69">Murata et al., 2020</a>). The lack of evidence for a dedicated reserve stem cell population has shifted the research focus more and more toward plasticity. Indeed, the replenishment of LGR5<sup>+</sup> cells has been attributed to various alternative sources, ranging from secretory progenitors and enterocyte progenitors, to more differentiated cell types such as EECs. One of the first studies describing that lineage-committed cells could revert to stem cells, when LGR5<sup>+</sup> cells were depleted, identified DLL1<sup>+</sup> secretory progenitors as source of new CBC cells (<a href="#B115">van Es et al., 2012</a>). Due to their low proliferation index, secretory progenitors are likely to withstand insults that mainly affect dividing cells such as CBCs and TA cells. This low division rate also explains why former approaches to identify quiescent stem cells primarily identified cells with secretory characteristics. For example, genetic labeling of long-lived intestinal cells with low turnover with an elegant split-Cre-system revealed a reserve stem cell population that gave rise to the secretory lineage under homeostasis but could revert to CBC cells upon damage (<a href="#B19">Buczacki et al., 2013</a>). It is more than likely that both Dll1-lineage tracing and label retention experiments revealed the same cell population of secretory progenitors. Thus, the concept of plasticity reconciles reports of a quiescent +4 stem cell populations with the CBC stem cell model. However, plasticity is not limited to secretory progenitors. Multiple studies attributed the ability to acquire stem-cell like features to Paneth cells when CBCs were lost (<a href="#B126">Yu et al., 2018</a>; <a href="#B47">Jones et al., 2019</a>). Genetic labeling of Paneth cells and subsequent irradiation-induced stem cell depletion revealed lineage tracing of Paneth cells, suggesting that they are able to de-differentiate. This was further supported by their ability to form organoids and by analysis of their transcriptional status, which revealed stem cell-like expression profiles (<a href="#B126">Yu et al., 2018</a>; <a href="#B47">Jones et al., 2019</a>).</p> <p class="mb15">Likewise, Tuft cells marked by DCLK1 expression can contribute to recovery of intestinal injury. Upon loss of APC, Tuft cells can also initiate the formation of adenocarcinomas in a DSS-colitis model (<a href="#B120">Westphalen et al., 2014</a>). Additional de-differentiation capability has been attributed to EECs. <i>Bmi1</i> and <i>Prox1</i> based tracing of the early EEC lineage by <a href="#B122">Yan et al. (2017)</a> showed extensive conversion to stem cell fate upon tissue damage. The ability of lineage-committed cell populations to de-differentiate is not limited to secretory cells, as it extends even to the upper crypt, where enterocyte progenitors are located. TA cells, which generate mature enterocytes, are marked by the expression of alkaline phosphatase (ALPI) and were also capable of de-differentiation upon targeted ablation of LGR5<sup>+</sup> stem cells (<a href="#B112">Tetteh et al., 2016</a>).</p> <p class="mb0">Although de-differentiation of multiple committed cell types in the intestine has been demonstrated, the exact mechanism and order of events during the de-differentiation process is unclear. Profiling of the epigenetic status of LGR5<sup>+</sup> cells and their progeny, revealed that there were no significant differences between them at the level of DNA methylation and histones (<a href="#B54">Kim et al., 2014</a>; <a href="#B46">Jadhav et al., 2017</a>). This lack of epigenetic changes during differentiation certainly facilitates the observed plasticity in the intestinal epithelium. However, we still lack mechanistic insight into the de-differentiation process and the instructive role of specific niche components. ASCL2 has been recently identified as requirement for successful recovery of the intestine after lethal damage to CBCs. In fact, ASCL2 expression was found to be specifically induced in intestinal epithelial cells, before they fell back into the stem cell zone and acquired LGR5 expression. Single-cell RNA-seq revealed that ASCL2<sup>+</sup> cells lacked expression of <i>Clusterin</i>, a marker of the recently described population of revival stem cells that were activated when the intestine was damaged by irradiation (<a href="#B3">Ayyaz et al., 2019</a>), but expressed markers of EE and goblet cells. This suggested that these cells represented a transition state between mature cell and stem cell. Molecular analysis revealed IL-11RA as a direct target of ASCL2 and its upregulation in ASCL2<sup>+</sup> regenerating crypt cells. Indeed, supplementation of IL-11 in organoid cultures of sorted ASCL2<sup>+</sup> cells enhanced their spheroid formation ability, which suggests that ASCL2<sup>+</sup> cells depended on the IL-11 signaling axis for proliferation in order to facilitate the regeneration of the damaged intestine (<a href="#B69">Murata et al., 2020</a>). Further studies will have to investigate the full extent of signals and pathways that induce these de-differentiation events. To this end, further characterization of the stem cell microenvironment during a de-differentiation stimulus would be of particular importance, to define essential regulators of the process and delineate how controlled plasticity could be utilized for regenerative medicine. Likewise, new lineage-tracing technologies will be necessary to study the quantitative contributions to de-differentiation of each cell type and to establish where the limits of plasticity lie. Interestingly, several new approaches have been recently developed that greatly increase the capabilities of classic lineage tracing experiments.</p> <h3>Looking Beyond the Field &#x2013; Upcoming Methods for Studying Lineage, Differentiation, and Plasticity</h3> <p class="mb15">Plasticity, differentiation, and particularly de-differentiation events have been predominantly studied <i>in vivo</i> with classic Cre-lox based lineage tracing. In these experiments a fluorophore or lacZ is activated in a population of interest and the same label is inherited by all offspring. Although several improvement to the system have been made [e.g., Brainbow/Confetti system to distinguish up to 100 individual clones (<a href="#B60">Livet et al., 2007</a>; <a href="#B20">Cai et al., 2013</a>)] the general experimental setup and readouts (primarily imaging) have remained the same. Recently, the increased accessibility of sequencing technology and genome editing have created powerful alternatives to the classic lineage tracing experiment. In the following paragraph we look beyond the field of gastrointestinal biology and identify upcoming technologies that could deepen our understanding of lineage and plasticity in the gut.</p> <p class="mb0">DNA or RNA barcoding strategies can easily overcome the limited number of labels that can be distinguished in fluorescence-based clonal identification. Whereas the first techniques to adopt barcoding still relied on Cre recombinases [e.g., Polylox and PolyloxExpress (<a href="#B80">Pei et al., 2017</a>; <a href="#B81">Pei et al., 2020</a>)] the field is predominantly switching to Cas9-based barcoding. The main reason for the switch lies in the difference of modification kinetics, with the Cre recombinase acting too fast to allow for progressively evolving labels that can later be used to reconstruct the order of events. CRISPR-Cas9 techniques, on the other hand, can utilize differing affinities of individual sites to tune modification speed and thus prolong the timeframe of lineage recording. Directed to a specific genomic locus by a guide RNA Cas9 nuclease generates a double strand break (DSB), which can lead to small insertions or deletions (indels). The continuous increase in indels across 10 or 100 s of potential targeting sites can then be used to establish the clonal history of each cell after the genomic regions containing the barcodes have been sequenced (<a href="#B66">McKenna et al., 2016</a>; <a href="#B2">Alemany et al., 2018</a>; <a href="#B48">Kalhor et al., 2018</a>; <a href="#B103">Spanjaard et al., 2018</a>). However, since a gRNA will no longer bind its target site once it is mutated, the number of scars that can be induced and thus the timeframe of recording and the complexity of the clonal information is inherently limited. To overcome this limitation, Church and colleagues developed mSCRIBE. By engineering a guide RNA that targeted its own spacer sequence, it was possible to perform multiple rounds of scarring over a longer period (<a href="#B49">Kalhor et al., 2017</a>). Furthermore, alternative strategies have been developed to combine CRISPR-Cas9 scarring with additional readouts. On the one hand, MEMOIR used multiple transgenes that could be visualized with seqFISH (a high-throughput smFISH technique), adding a spatial dimension to the technique (<a href="#B34">Frieda et al., 2017</a>). On the other hand, several techniques integrated a CRISPR-Cas9 strategy with RNA-seq. This brings the great advantage that cell state and clonal history can be established in a single step (<a href="#B2">Alemany et al., 2018</a>; <a href="#B85">Raj et al., 2018</a>). However, all CRISPR-Cas9 based lineage tracing techniques share the same limitation. The generation of the barcoding indels causes DSBs, which are toxic to many cells and could bias the result of an experiment toward more resistant cell populations (see <a href="#F6">Figure 6</a>; <a href="#B7">Baron and van Oudenaarden, 2019</a>; <a href="#B119">Wagner and Klein, 2020</a>). Despite this limitation, barcoded lineage tracing could find wide application in intestinal biology. Clonal dynamics during neutral competition could be explored in thousands of clones in parallel. Combination with single cell sequencing could detect the existence of lineage bias in particular stem cell clones and the molecular mechanisms behind it. Finally, de-differentiation could be studied to quantify the individual contributions of each cell type in the process. However, particularly the last application needs an additional step in technology, since cell state and not only barcodes will need to be written into DNA at the beginning of the tracing. Interestingly, CRISPR has great potential not only as a gene editing tool, but also as a molecular recorder. Recently, Platt and his team made use of the system&#x2019;s capacity to acquire RNA and integrate it into a CRISPR array in a sequential manner. This approach makes it possible to sample a cell&#x2019;s RNA pool upon activation and store the information genetically (<a href="#B110">Tanna et al., 2020</a>). Current applications of the method are still limited to bacteria and the obtained information is very sparse, but this promising technology could pave (upon further development) the way to internal recording of the transcriptional states of mammalian cells (<a href="#B97">Schmidt et al., 2018</a>).</p> <div class="DottedLine"></div> <div class="Imageheaders">FIGURE 6</div> <div class="FigureDesc"> <a href="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g006.jpg" name="figure6" target="_blank"> <picture> <source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=480&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g006.jpg" media="(max-width: 563px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=370&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g006.jpg" media="(max-width: 1024px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=290&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g006.jpg" media="(max-width: 1441px)"><source type="image/webp" srcset="https://images-provider.frontiersin.org/api/ipx/w=410&f=webp/https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g006.jpg" media=""><source type="image/jpg" srcset="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g006.jpg" media=""> <img src="https://www.frontiersin.org/files/Articles/661931/fcell-09-661931-HTML/image_m/fcell-09-661931-g006.jpg" alt="www.frontiersin.org" id="F6" loading="lazy"> </picture> </a> <p><strong>Figure 6.</strong> Comparison of the main technologies available to perform lineage tracing.</p> </div> <div class="clear"></div> <div class="DottedLine"></div> <p class="mb15 w100pc float_left mt15">All so far mentioned tools necessitate genetic modification of the traced organism. Therefore, they are suitable to study model systems but not humans. In order to study lineage tracing without genetic interventions, the continuous accumulation of somatic mutations in each cell can be utilized. Either single nucleotide variants (SNPs) or microsatellite mutations, which are mostly functionally neutral, can be followed (<a href="#B11">Behjati et al., 2014</a>). For example, microsatellites have previously been used to recapitulate the clonal evolution during the development of colonic crypts (<a href="#B87">Reizel et al., 2011</a>). However, both SNPs and microsatellites are rare and scattered across the genome. Therefore, genome-wide sequencing approaches are necessary, which are expensive and still difficult to apply on single cell level (see <a href="#F6">Figure 6</a>). Overall, in the gastro-intestinal system these methods may prove useful to validate the vast body of knowledge on clonal dynamics and plasticity that has been primarily generated in the mouse. Although several studies followed fixation and expansion of individual mutations in human colon (<a href="#B72">Nicholson et al., 2018</a>; <a href="#B4">Baker et al., 2019</a>), a comprehensive study of these dynamics in human subjects is still missing. Changes in clonal dynamics are particularly important in the field of intestinal cancer, where mutated cells first outcompete healthy stem cells in their own crypt before expanding laterally by crypt-fission, long before additional mutations will cause an overt malignancy. Next generation lineage-tracing approaches have the ability to follow the expansion of thousands of mutated subclones in parallel. This will enable researchers to determine the true extent of clonal variance in the intestinal epithelium and to study the nature of the competitive advantage of individual clonal populations that will eventually cause cancer.</p> <h3>Plasticity and Cancer: Two Sides of the Same Coin</h3> <p class="mb15">In a healthy crypt cells compete for limited niche signals that are required for maintenance of stemness. The size of the niche controls the number of stem cells and the point of differentiation onset. It does so, <i>via</i> gradients of signaling molecules that either promote stemness (e.g., WNT and EGF) or differentiation (e.g., BMP). For cancer to occur, epithelial cells need to develop independence from niche-derived proliferative signals and resistance to differentiation stimuli. Vogelstein and colleagues have proposed a model describing the adenoma-carcinoma sequence, as well as defining the genetic alterations that contribute to colorectal cancer progression. As one of the first steps, constitutive activation of WNT signaling (e.g., by loss of APC), is thought to be necessary for tumor initiation. Progression depends on activating mutations in EGFR pathway components, such as KRAS, and inactivating mutations in p53 and the TGF-&#x03B2;/BMP signaling pathway component SMAD4 (<a href="#B32">Fearon and Vogelstein, 1990</a>; <a href="#B71">Muzny et al., 2012</a>). It is thus apparent that colorectal cancer depends on the abnormal activation of signaling pathways that control stem cell identity and maintenance. In fact, stepwise genome editing in colon organoids demonstrated that three mutations in the main signaling pathways of the intestinal niche (WNT, EGF, and BMP signaling) together with loss of p53 were sufficient to transform a healthy epithelial cell to an invasive cancer cell (<a href="#B26">Drost et al., 2015</a>). Whereas healthy stem cells are limited by the spatial restrictions of the niche, cells that acquire the aforementioned mutations achieve niche-independence. In contrast to other cancers, colon cancer has a relatively narrow set of common mutations. In part, this may be due to continuous competition for niche space. Since mutations are acquired sequentially, a mutated sub-clone needs to constantly outcompete healthy stem cells in the course of its repeated mutagenesis. This means, that only mutations that provide an increased proliferative fitness [such as KRAS (<a href="#B71">Muzny et al., 2012</a>)] are permissive. Any mutation that reduces proliferative fitness, e.g., by prolonging the metaphase or reducing productive cell division will be quickly lost from the crypt. Once an epithelial cell has acquired niche independence, its offspring can outgrow normal tissue limits and form a tumor. However, even in a tumor, cells differ in proliferative capacity and differentiation status (<a href="#B24">de S. e Melo et al., 2017</a>; <a href="#B58">Lenos et al., 2018</a>). From these differences arose the concept of Cancer Stem Cells (CSCs). Indeed, lineage tracing studies revealed that LGR5<sup>+</sup> cells were capable of tumor initiation and gave rise to all tumor cells (<a href="#B96">Schepers et al., 2012</a>). However, genetic ablation of LGR5<sup>+</sup> cells in mouse intestinal tumor organoids (tumoroids) by the administration of DT restricted primary tumor growth but did not result in tumor regression. Moreover, once DT was withdrawn, LGR5<sup>+</sup> cells reappeared immediately. Similarly, LGR5<sup>+</sup> cell depletion in human intestinal tumoroids, by insertion of an inducible Caspase-9 construct into the Lgr5 locus caused regression. However, when the chemical agent that induced caspase activation was no longer administered, LGR5<sup>+</sup> cells re-appeared. The authors elucidated that differentiated tumor cells characterized by expression of KRT20, could revert to LGR5<sup>+</sup> cells, to fuel tumor growth (<a href="#B100">Shimokawa et al., 2017</a>). This suggested, that similarly to the normal tissue, tumor growth was driven by cells in a stem cell state. However, the same plasticity that enabled healthy tissue to recover from catastrophic stem cell loss, also enabled more differentiated tumor cells to re-acquire stem cell characteristics (<a href="#B24">de S. e Melo et al., 2017</a>). Recent studies have shed more light onto components of the normal tissue stem cell niche that enable plasticity (<a href="#B69">Murata et al., 2020</a>). The mechanisms that enable plasticity in a tumor are far less understood. <a href="#B58">Lenos et al. (2018)</a> have shown that the CSC phenotype was adopted by cells located at the tumor edge, near cancer associated fibroblasts (CAFs). Although CSC markers were expressed throughout the tumor, only CSCs at the tumor edges displayed clonogenicity. However, re-transplantation of CSCs obtained from the center of xenografted tumors indicated that these cells could also effectively drive tumor growth, suggesting that functionality of CSCs was regulated by microenvironmentally derived signals and that tumor cell position was of particular importance for clonal expansion. CAFs produce Osteopontin (OPN), which enhanced <i>in vivo</i> proliferation of CSCs located in the outer part of the tumor, where OPN concentrations were higher. Overexpression of OPN in tumor cells that were transplanted, accelerated tumor growth compared to respective controls and was sufficient to drive clonogenic growth of tumors independently of CAFs (<a href="#B58">Lenos et al., 2018</a>). Besides tumor growth, CAF-derived signals have also been implicated in cancer initiation. A fibroblast subpopulation located near the crypts, in close proximity to the stem cell zone, produces PGE<sub>2</sub>. PGE<sub>2</sub> binds to its receptor PTGER4, expressed in stem cells of the crypt, which leads to de-phosphorylation of YAP and activation of YAP target genes (<a href="#B93">Roulis et al., 2020</a>). Active YAP signaling drives the expansion of a stem cell population characterized by the expression of SCA-1 also termed reserve stem cells (<a href="#B93">Roulis et al., 2020</a>). This signaling network was shown to be involved in tumor formation, as genetic ablation of <i>Ptgs2</i>, which catalyzes the conversion of Arachidonic Acid to Prostaglandins, in fibroblasts or genetic ablation of <i>Ptger4</i> in intestinal epithelial cells led to the formation of significantly fewer tumors in a mouse model of colorectal cancer. Interestingly, the growth of already established tumors was not affected, as tumor volumes did not differ from the respective controls, which suggested that this fibroblast-derived tumorigenic signal was necessary for tumor initiation but not for tumor growth (<a href="#B93">Roulis et al., 2020</a>). These studies provided evidence that the microenvironment has a crucial role in regulating stem cell states during normal homeostasis and carcinogenesis. Tumor initiation does not rely solely on cell-intrinsic properties (e.g., mutations), but also requires a finely orchestrated environment. Interactions within this tumor microenvironment remain poorly elucidated. This creates a need for elegant tools that enable their comprehensive characterization on single cell level. Understanding the plasticity promoting mechanisms at the interface between tumor and normal tissue may open new therapeutic avenues to prevent cancer progression.</p> <p class="mb0">In this context, organoids are a promising <i>in vitro</i> system that enables researchers to study and compare normal tissue regeneration and cancer development. Several studies have shown that cancer organoids (or tumoroids) share the same clonal heterogeneity, the same resistances and the same vulnerabilities as their tumor of origin (<a href="#B117">Vlachogiannis et al., 2018</a>; <a href="#B17">Boretto et al., 2019</a>; <a href="#B123">Yao et al., 2020</a>). Additionally, organoids can model the same plasticity that is observed in tumors. <a href="#B24">de S. e Melo et al. (2017)</a> used mouse intestinal cancer-derived organoids as a model to demonstrate how tumor cells compensate for the loss of CSCs by de-differentiation of non-CSC populations. In addition, <a href="#B35">Fumagalli et al. (2020)</a> used LGR5-reporter cancer organoids to prove that the majority of metastases are formed by LGR5- (non-CSC) tumor cells that acquire LGR5+ (CSC) identity upon engraftment at the metastatic site. The switch from non-CSC to CSC state was indeed necessary for efficient metastatic outgrowth. Beyond the mechanistic exploration of cancer biology, organoid tumor models can also be used in the context of personalized cancer medicine. In fact, several studies have shown that the organoid response <i>in vitro</i> is predictive for the patient response (<a href="#B117">Vlachogiannis et al., 2018</a>; <a href="#B17">Boretto et al., 2019</a>; <a href="#B123">Yao et al., 2020</a>). Thanks to the expandability of tumoroid cultures, even a small biopsy generates sufficient tumoroid tissue for functional assays like drug screening. Alternatively, the ability to grow individual tumor subclones can be utilized to study tumor heterogeneity on a functional level. When <a href="#B91">Roerink et al. (2018)</a> established around 60 clonal tumoroid lines from three colon carcinomas they found functional differences in drug responses that would not have been predictable, based on epigenetic, genomic, and transcriptomic data alone. This study emphasized the need for functional experiments to tailor treatment to individual patients. However, the application of organoids for personalized cancer medicine still faces significant challenges. Although, tumoroids can be expanded in culture, the time from biopsy to assay remains in a range of 2&#x2013;3 months due to the required amount of tissue (see <a href="#F4">Figure 4</a>). Therefore, significant technological improvements will be necessary to make tumoroid based personalized medicine compatible with the necessary swiftness of therapeutic decisions. In the future, <i>in vitro</i> drug screening assay may also need to account for plasticity in tumor cells, since drug susceptibilities inherently change when cells transition from CSC to non-CSC states. An increased understanding of the environments that induce these changes in cell identity and how to model them <i>in vitro</i> could therefore further improve our ability to correctly predict disease outcome in intestinal cancer.</p> <a id="h7" name="h7"></a><h2>Discussion</h2> <p class="mb15">The growing number of techniques to study cellular relations in space and time have already transformed our understanding of tissue function in health and disease. Combined lineage-tracing, single-cell and organoid experiments have revealed surprising plasticity in the intestine. During health and disease, intestinal epithelial cells undergo de- and trans-differentiation that is integral to tissue function. The process creates zonation, allows for metabolic adaptation and spatially separates intestinal processes. Likewise, it gives the intestine surprising resistance against toxic, inflammatory, or irradiation insults. Cellular plasticity and particularly de-differentiation is not limited to the intestine. A growing number of reports finds de-differentiation events in a wide range of epithelial tissues (<a href="#B33">Freedman et al., 2013</a>; <a href="#B77">Pan et al., 2013</a>; <a href="#B105">Stange et al., 2013</a>; <a href="#B111">Tata et al., 2013</a>; <a href="#B86">Raven et al., 2017</a>). This suggest that cellular plasticity plays a much larger role in adult mammalian organisms than currently appreciated. Technological improvements in single-cell methodology and upcoming lineage tracing methods will be crucial for gaging the true extent of functional and regenerative flexibility in mature tissues.</p> <p class="mb15">Plasticity complicates traditional models of stemness, maturity, and cell types. Already now, the classic, hierarchical differentiation tree of discrete, binary decisions seems incompatible with biological reality. Instead, a dynamic model emerges, where cells re-evaluate their identity continuously as a function of extrinsic pushes toward and intrinsic resistance against fate change. Resistance to fate change is a product of past environmental inputs that resulted in long-lasting cellular changes (e.g., epigenetic modification). With increasing epigenetic distance between two cell states the transition resistance grows, but can still be overcome by a strong enough trans-differentiation or de-differentiation signal. In the intestine the extent of epigenetic changes in the course of differentiation is surprisingly small, which certainly contributes to the high levels of intestinal plasticity (<a href="#B54">Kim et al., 2014</a>; <a href="#B46">Jadhav et al., 2017</a>). This low fate-change resistance is coupled with highly instructive signaling zones along the crypt-villus axis. One of the most potent ones, the stem cell niche, can overcome the de-differentiation resistance of differentiated progenitors (<a href="#B115">van Es et al., 2012</a>; <a href="#B112">Tetteh et al., 2016</a>) and most likely even mature cells (<a href="#B120">Westphalen et al., 2014</a>; <a href="#B122">Yan et al., 2017</a>; <a href="#B126">Yu et al., 2018</a>; <a href="#B47">Jones et al., 2019</a>). Continuous, overlapping signaling gradients that stretch along the crypt-villus axis give each height increment a unique signaling environment. These environments instruct changes in the cells that move through them, which generates the diversity of the intestinal epithelium. Cell identity is thus not discrete but a wide spectrum of states with differing function. Enterocytes, enteroendocrine cells, goblet cells and most likely other cell types traverse through these identity spectra in the course of their lives. This allows the intestinal epithelium to retain static functional zonation despite the continuous movement of the epithelial cell sheet.</p> <p class="mb0">Although plasticity in the intestine has been convincingly demonstrated several important questions remain to be answered: Which epithelial and mesenchymal signals and cell populations shape the diversity along the crypt-villus axis? Which environmental signals induce and limit de-differentiation of mature cells? Do de-differentiated cells retain features of their former state and does this memory cause lineage bias? How can plasticity be utilized to enhance tissue regeneration? And how can plasticity in cancer be prevented to limit therapy escape? Spatially and temporally resolved reporter systems, spatial transcriptomics and advanced Cas9-based lineage tracing tools will be crucial in answering these questions. However, the vast amount of data that these tools can produce have to be validated and translated into mechanistic understanding. This is why, the transition from descriptive to functional exploration of niche environments is equally important. In this regard, organoids are a very powerful tool that is ideally suited to complement single-cell-resolved <i>in vivo</i> experiments. Their capacity to replicate the microarchitecture, functionality, and cellular diversity makes them ideal to study tissue self-organization and microenvironments. Mapping the dynamic changes in these microenvironments will enable us to understand the general and tissue specific principles of regeneration and tumor progression. Thus, we may be able to replenish the regenerative capacity of stem cells or prevent malignant cells from escaping the limits of homeostasis, not by directly targeting them, but by reshaping their environments.</p> <a id="h8" name="h8"></a><h2>Author Contributions</h2> <p class="mb0">VB, CR, and HG researched and wrote the manuscript. HG reviewed and edited the manuscript before submission. All authors contributed to the article and approved the submitted version.</p> <a id="fun1" name="fun1"></a><h2>Funding</h2> <p class="mb0">This project had received funding from the European Research Council (ERC) under the European Union&#x2019;s Horizon 2020 research and innovation program grant agreement No. 949781.</p> <a id="conf1" name="conf1"></a><h2>Conflict of Interest</h2> <p class="mb0">The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p> <a id="refer1" name="refer1"></a><h2>References</h2> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B1" id="B1"></a>Aiken, K. D., Kisslinger, J. A., and Roth, K. A. (1994). Immunohistochemical studies indicate multiple enteroendocrine cell differentiation pathways in the mouse proximal small intestine. <i>Dev. Dynam.</i> 201, 63&#x2013;70. doi: 10.1002/aja.1002010107</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/7803848" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1002/aja.1002010107" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Immunohistochemical+studies+indicate+multiple+enteroendocrine+cell+differentiation+pathways+in+the+mouse+proximal+small+intestine%2E&#x0026;journal=Dev%2E+Dynam%2E&#x0026;author=Aiken+K.+D.&#x0026;author=Kisslinger+J.+A.&#x0026;author=Roth+K.+A.&#x0026;publication_year=1994&#x0026;volume=201&#x0026;pages=63&#x2013;70" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B2" id="B2"></a>Alemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J., and van Oudenaarden, A. (2018). Whole-organism clone tracing using single-cell sequencing. <i>Nature</i> 556, 108&#x2013;112. doi: 10.1038/nature25969</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29590089" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature25969" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Whole-organism+clone+tracing+using+single-cell+sequencing%2E&#x0026;journal=Nature&#x0026;author=Alemany+A.&#x0026;author=Florescu+M.&#x0026;author=Baron+C.+S.&#x0026;author=Peterson-Maduro+J.&#x0026;author=van+Oudenaarden+A.&#x0026;publication_year=2018&#x0026;volume=556&#x0026;pages=108&#x2013;112" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B3" id="B3"></a>Ayyaz, A., Kumar, S., Sangiorgi, B., Ghoshal, B., Gosio, J., Ouladan, S., et al. (2019). Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. <i>Nature</i> 569, 121&#x2013;125. doi: 10.1038/s41586-019-1154-y</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31019301" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-019-1154-y" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Single-cell+transcriptomes+of+the+regenerating+intestine+reveal+a+revival+stem+cell%2E&#x0026;journal=Nature&#x0026;author=Ayyaz+A.&#x0026;author=Kumar+S.&#x0026;author=Sangiorgi+B.&#x0026;author=Ghoshal+B.&#x0026;author=Gosio+J.&#x0026;author=Ouladan+S.&#x0026;publication_year=2019&#x0026;volume=569&#x0026;pages=121&#x2013;125" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B4" id="B4"></a>Baker, A.-M., Gabbutt, C., Williams, M. J., Cereser, B., Jawad, N., Rodriguez-Justo, M., et al. (2019). Crypt fusion as a homeostatic mechanism in the human colon. <i>Gut</i> 68:1986. doi: 10.1136/gutjnl-2018-317540</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30872394" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1136/gutjnl-2018-317540" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Crypt+fusion+as+a+homeostatic+mechanism+in+the+human+colon%2E&#x0026;journal=Gut&#x0026;author=Baker+A.-M.&#x0026;author=Gabbutt+C.&#x0026;author=Williams+M.+J.&#x0026;author=Cereser+B.&#x0026;author=Jawad+N.&#x0026;author=Rodriguez-Justo+M.&#x0026;publication_year=2019&#x0026;volume=68&#x0026;issue=1986" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B5" id="B5"></a>Bar-Ephraim, Y. E., Kretzschmar, K., and Clevers, H. (2020). Organoids in immunological research. <i>Nat. Rev. Immunol.</i> 20, 279&#x2013;293. doi: 10.1038/s41577-019-0248-y</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31853049" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41577-019-0248-y" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Organoids+in+immunological+research%2E&#x0026;journal=Nat%2E+Rev%2E+Immunol%2E&#x0026;author=Bar-Ephraim+Y.+E.&#x0026;author=Kretzschmar+K.&#x0026;author=Clevers+H.&#x0026;publication_year=2020&#x0026;volume=20&#x0026;pages=279&#x2013;293" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B6" id="B6"></a>Barker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. <i>Nature</i> 449, 1003&#x2013;1007. doi: 10.1038/nature06196</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/17934449" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature06196" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Identification+of+stem+cells+in+small+intestine+and+colon+by+marker+gene+Lgr5%2E&#x0026;journal=Nature&#x0026;author=Barker+N.&#x0026;author=van+Es+J.+H.&#x0026;author=Kuipers+J.&#x0026;author=Kujala+P.&#x0026;author=van+den+Born+M.&#x0026;author=Cozijnsen+M.&#x0026;publication_year=2007&#x0026;volume=449&#x0026;pages=1003&#x2013;1007" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B7" id="B7"></a>Baron, C. S., and van Oudenaarden, A. (2019). Unravelling cellular relationships during development and regeneration using genetic lineage tracing. <i>Nat. Rev. Mol. Cell Biol.</i> 20, 753&#x2013;765. doi: 10.1038/s41580-019-0186-3</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31690888" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41580-019-0186-3" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Unravelling+cellular+relationships+during+development+and+regeneration+using+genetic+lineage+tracing%2E&#x0026;journal=Nat%2E+Rev%2E+Mol%2E+Cell+Biol%2E&#x0026;author=Baron+C.+S.&#x0026;author=van+Oudenaarden+A.&#x0026;publication_year=2019&#x0026;volume=20&#x0026;pages=753&#x2013;765" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B8" id="B8"></a>Barry, E. R., Morikawa, T., Butler, B. L., Shrestha, K., de la Rosa, R., Yan, K. S., et al. (2013). Restriction of intestinal stem cell expansion and the regenerative response by YAP. <i>Nature</i> 493, 106&#x2013;110. doi: 10.1038/nature11693</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23178811" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature11693" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Restriction+of+intestinal+stem+cell+expansion+and+the+regenerative+response+by+YAP%2E&#x0026;journal=Nature&#x0026;author=Barry+E.+R.&#x0026;author=Morikawa+T.&#x0026;author=Butler+B.+L.&#x0026;author=Shrestha+K.&#x0026;author=de+la+Rosa+R.&#x0026;author=Yan+K.+S.&#x0026;publication_year=2013&#x0026;volume=493&#x0026;pages=106&#x2013;110" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B9" id="B9"></a>Basak, O., Born, M., Korving, J., Beumer, J., Elst, S., Es, J. H., et al. (2014). Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. <i>EMBO J.</i> 33, 2057&#x2013;2068. doi: 10.15252/embj.201488017</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25092767" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.15252/embj.201488017" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Mapping+early+fate+determination+in+Lgr5%2B+crypt+stem+cells+using+a+novel+Ki67-RFP+allele%2E&#x0026;journal=EMBO+J%2E&#x0026;author=Basak+O.&#x0026;author=Born+M.&#x0026;author=Korving+J.&#x0026;author=Beumer+J.&#x0026;author=Elst+S.&#x0026;author=Es+J.+H.&#x0026;publication_year=2014&#x0026;volume=33&#x0026;pages=2057&#x2013;2068" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B10" id="B10"></a>Batlle, E., Henderson, J. T., Beghtel, H., van den Born, M. M. W., Sancho, E., Huls, G., et al. (2002). &#x03B2;-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB. <i>Cell</i> 111, 251&#x2013;263. doi: 10.1016/s0092-8674(02)01015-2</p> <p class="ReferencesCopy2"><a href="https://doi.org/10.1016/s0092-8674(02)01015-2" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=&#x03B2;-Catenin+and+TCF+mediate+cell+positioning+in+the+intestinal+epithelium+by+controlling+the+expression+of+EphB%2FEphrinB%2E&#x0026;journal=Cell&#x0026;author=Batlle+E.&#x0026;author=Henderson+J.+T.&#x0026;author=Beghtel+H.&#x0026;author=van+den+Born+M.+M.+W.&#x0026;author=Sancho+E.&#x0026;author=Huls+G.&#x0026;publication_year=2002&#x0026;volume=111&#x0026;pages=251&#x2013;263" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B11" id="B11"></a>Behjati, S., Huch, M., van Boxtel, R., Karthaus, W., Wedge, D. C., Tamuri, A. U., et al. (2014). Genome sequencing of normal cells reveals developmental lineages and mutational processes. <i>Nature</i> 513, 422&#x2013;425. doi: 10.1038/nature13448</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25043003" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature13448" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Genome+sequencing+of+normal+cells+reveals+developmental+lineages+and+mutational+processes%2E&#x0026;journal=Nature&#x0026;author=Behjati+S.&#x0026;author=Huch+M.&#x0026;author=van+Boxtel+R.&#x0026;author=Karthaus+W.&#x0026;author=Wedge+D.+C.&#x0026;author=Tamuri+A.+U.&#x0026;publication_year=2014&#x0026;volume=513&#x0026;pages=422&#x2013;425" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B12" id="B12"></a>Beumer, J., Artegiani, B., Post, Y., Reimann, F., Gribble, F., Nguyen, T. N., et al. (2018). Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. <i>Nat. Cell Biol.</i> 20, 909&#x2013;916. doi: 10.1038/s41556-018-0143-y</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30038251" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41556-018-0143-y" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Enteroendocrine+cells+switch+hormone+expression+along+the+crypt-to-villus+BMP+signalling+gradient%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Beumer+J.&#x0026;author=Artegiani+B.&#x0026;author=Post+Y.&#x0026;author=Reimann+F.&#x0026;author=Gribble+F.&#x0026;author=Nguyen+T.+N.&#x0026;publication_year=2018&#x0026;volume=20&#x0026;pages=909&#x2013;916" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B13" id="B13"></a>Beumer, J., Gehart, H., and Clevers, H. (2020). Enteroendocrine dynamics &#x2013; new tools reveal hormonal plasticity in the gut. <i>Endocr. Rev.</i> 41:bnaa018.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Enteroendocrine+dynamics+&#x2013;+new+tools+reveal+hormonal+plasticity+in+the+gut%2E&#x0026;journal=Endocr%2E+Rev%2E&#x0026;author=Beumer+J.&#x0026;author=Gehart+H.&#x0026;author=Clevers+H.&#x0026;publication_year=2020&#x0026;volume=41&#x0026;issue=bnaa018" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B14" id="B14"></a>Beyaz, S., Mana, M. D., Roper, J., Kedrin, D., Saadatpour, A., Hong, S.-J., et al. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. <i>Nature</i> 531, 53&#x2013;58. doi: 10.1038/nature17173</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26935695" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature17173" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=High-fat+diet+enhances+stemness+and+tumorigenicity+of+intestinal+progenitors%2E&#x0026;journal=Nature&#x0026;author=Beyaz+S.&#x0026;author=Mana+M.+D.&#x0026;author=Roper+J.&#x0026;author=Kedrin+D.&#x0026;author=Saadatpour+A.&#x0026;author=Hong+S.-J.&#x0026;publication_year=2016&#x0026;volume=531&#x0026;pages=53&#x2013;58" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B15" id="B15"></a>Birchenough, G. M. H., Nystr&#x00F6;m, E. E. L., Johansson, M. E. V., and Hansson, G. C. (2016). A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. <i>Science</i> 352, 1535&#x2013;1542. doi: 10.1126/science.aaf7419</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27339979" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.aaf7419" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+sentinel+goblet+cell+guards+the+colonic+crypt+by+triggering+Nlrp6-dependent+Muc2+secretion%2E&#x0026;journal=Science&#x0026;author=Birchenough+G.+M.+H.&#x0026;author=Nystr&#x00F6;m+E.+E.+L.&#x0026;author=Johansson+M.+E.+V.&#x0026;author=Hansson+G.+C.&#x0026;publication_year=2016&#x0026;volume=352&#x0026;pages=1535&#x2013;1542" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B16" id="B16"></a>Biton, M., Haber, A. L., Rogel, N., Burgin, G., Beyaz, S., Schnell, A., et al. (2018). T helper cell cytokines modulate intestinal stem cell renewal and differentiation. <i>Cell</i> 175, 1307&#x2013;1320.e22.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=T+helper+cell+cytokines+modulate+intestinal+stem+cell+renewal+and+differentiation%2E&#x0026;journal=Cell&#x0026;author=Biton+M.&#x0026;author=Haber+A.+L.&#x0026;author=Rogel+N.&#x0026;author=Burgin+G.&#x0026;author=Beyaz+S.&#x0026;author=Schnell+A.&#x0026;publication_year=2018&#x0026;volume=175&#x0026;pages=1307&#x2013;1320.e22" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B17" id="B17"></a>Boretto, M., Maenhoudt, N., Luo, X., Hennes, A., Boeckx, B., Bui, B., et al. (2019). Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. <i>Nat. Cell Biol.</i> 21, 1041&#x2013;1051. doi: 10.1038/s41556-019-0360-z</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31371824" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41556-019-0360-z" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Patient-derived+organoids+from+endometrial+disease+capture+clinical+heterogeneity+and+are+amenable+to+drug+screening%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Boretto+M.&#x0026;author=Maenhoudt+N.&#x0026;author=Luo+X.&#x0026;author=Hennes+A.&#x0026;author=Boeckx+B.&#x0026;author=Bui+B.&#x0026;publication_year=2019&#x0026;volume=21&#x0026;pages=1041&#x2013;1051" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B18" id="B18"></a>B&#x00F6;ttcher, A., B&#x00FC;ttner, M., Tritschler, S., Sterr, M., Aliluev, A., Oppenl&#x00E4;nder, L., et al. (2021). Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. <i>Nat. Cell Biol.</i> 23, 23&#x2013;31. doi: 10.1038/s41556-020-00617-2</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33398177" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41556-020-00617-2" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Non-canonical+Wnt%2FPCP+signalling+regulates+intestinal+stem+cell+lineage+priming+towards+enteroendocrine+and+Paneth+cell+fates%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=B&#x00F6;ttcher+A.&#x0026;author=B&#x00FC;ttner+M.&#x0026;author=Tritschler+S.&#x0026;author=Sterr+M.&#x0026;author=Aliluev+A.&#x0026;author=Oppenl&#x00E4;nder+L.&#x0026;publication_year=2021&#x0026;volume=23&#x0026;pages=23&#x2013;31" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B19" id="B19"></a>Buczacki, S. J. A., Zecchini, H. I., Nicholson, A. M., Russell, R., Vermeulen, L., Kemp, R., et al. (2013). Intestinal label-retaining cells are secretory precursors expressing Lgr5. <i>Nature</i> 495, 65&#x2013;69. doi: 10.1038/nature11965</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23446353" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature11965" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intestinal+label-retaining+cells+are+secretory+precursors+expressing+Lgr5%2E&#x0026;journal=Nature&#x0026;author=Buczacki+S.+J.+A.&#x0026;author=Zecchini+H.+I.&#x0026;author=Nicholson+A.+M.&#x0026;author=Russell+R.&#x0026;author=Vermeulen+L.&#x0026;author=Kemp+R.&#x0026;publication_year=2013&#x0026;volume=495&#x0026;pages=65&#x2013;69" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B20" id="B20"></a>Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W., and Sanes, J. R. (2013). Improved tools for the Brainbow toolbox. <i>Nat. Methods</i> 10, 540&#x2013;547. doi: 10.1038/nmeth.2450</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23817127" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nmeth.2450" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Improved+tools+for+the+Brainbow+toolbox%2E&#x0026;journal=Nat%2E+Methods&#x0026;author=Cai+D.&#x0026;author=Cohen+K.+B.&#x0026;author=Luo+T.&#x0026;author=Lichtman+J.+W.&#x0026;author=Sanes+J.+R.&#x0026;publication_year=2013&#x0026;volume=10&#x0026;pages=540&#x2013;547" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B21" id="B21"></a>Chen, J., Lau, B. T., Andor, N., Grimes, S. M., Handy, C., Wood-Bouwens, C., et al. (2019). Single-cell transcriptome analysis identifies distinct cell types and niche signaling in a primary gastric organoid model. <i>Sci. Rep.</i> 9:4536.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Single-cell+transcriptome+analysis+identifies+distinct+cell+types+and+niche+signaling+in+a+primary+gastric+organoid+model%2E&#x0026;journal=Sci%2E+Rep%2E&#x0026;author=Chen+J.&#x0026;author=Lau+B.+T.&#x0026;author=Andor+N.&#x0026;author=Grimes+S.+M.&#x0026;author=Handy+C.&#x0026;author=Wood-Bouwens+C.&#x0026;publication_year=2019&#x0026;volume=9&#x0026;issue=4536" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B22" id="B22"></a>Darwich, A. S., Aslam, U., Ashcroft, D. M., and Rostami-Hodjegan, A. (2014). Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. <i>Drug Metab. Dispos.</i> 42, 2016&#x2013;2022. doi: 10.1124/dmd.114.058404</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25233858" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1124/dmd.114.058404" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Meta-analysis+of+the+turnover+of+intestinal+epithelia+in+preclinical+animal+species+and+humans%2E&#x0026;journal=Drug+Metab%2E+Dispos%2E&#x0026;author=Darwich+A.+S.&#x0026;author=Aslam+U.&#x0026;author=Ashcroft+D.+M.&#x0026;author=Rostami-Hodjegan+A.&#x0026;publication_year=2014&#x0026;volume=42&#x0026;pages=2016&#x2013;2022" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B23" id="B23"></a>de Lau, W., Kujala, P., Schneeberger, K., Middendorp, S., Li, V. S. W., Barker, N., et al. (2012). Peyer&#x2019;s patch M cells derived from Lgr5+ stem cells require SpiB and are induced by RankL in cultured &#x201C;Miniguts.&#x201D;. <i>Mol. Cell Biol.</i> 32, 3639&#x2013;3647. doi: 10.1128/mcb.00434-12</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22778137" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1128/mcb.00434-12" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Peyer&#x2019;s+patch+M+cells+derived+from+Lgr5%2B+stem+cells+require+SpiB+and+are+induced+by+RankL+in+cultured+&#x201C;Miniguts%2E&#x201D;%2E&#x0026;journal=Mol%2E+Cell+Biol%2E&#x0026;author=de+Lau+W.&#x0026;author=Kujala+P.&#x0026;author=Schneeberger+K.&#x0026;author=Middendorp+S.&#x0026;author=Li+V.+S.+W.&#x0026;author=Barker+N.&#x0026;publication_year=2012&#x0026;volume=32&#x0026;pages=3639&#x2013;3647" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B24" id="B24"></a>de S. e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., et al. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. <i>Nature</i> 543, 676&#x2013;680. doi: 10.1038/nature21713</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28358093" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature21713" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+distinct+role+for+Lgr5%2B+stem+cells+in+primary+and+metastatic+colon+cancer%2E&#x0026;journal=Nature&#x0026;author=de+S.+e+Melo+F.&#x0026;author=Kurtova+A.+V.&#x0026;author=Harnoss+J.+M.&#x0026;author=Kljavin+N.&#x0026;author=Hoeck+J.+D.&#x0026;author=Hung+J.&#x0026;publication_year=2017&#x0026;volume=543&#x0026;pages=676&#x2013;680" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B25" id="B25"></a>Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G., and Basler, K. (2018). GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. <i>Nature</i> 558, 449&#x2013;453. doi: 10.1038/s41586-018-0190-3</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29875413" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-018-0190-3" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=GLI1-expressing+mesenchymal+cells+form+the+essential+Wnt-secreting+niche+for+colon+stem+cells%2E&#x0026;journal=Nature&#x0026;author=Degirmenci+B.&#x0026;author=Valenta+T.&#x0026;author=Dimitrieva+S.&#x0026;author=Hausmann+G.&#x0026;author=Basler+K.&#x0026;publication_year=2018&#x0026;volume=558&#x0026;pages=449&#x2013;453" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B26" id="B26"></a>Drost, J., van Jaarsveld, R. H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., et al. (2015). Sequential cancer mutations in cultured human intestinal stem cells. <i>Nature</i> 521, 43&#x2013;47. doi: 10.1038/nature14415</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25924068" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature14415" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Sequential+cancer+mutations+in+cultured+human+intestinal+stem+cells%2E&#x0026;journal=Nature&#x0026;author=Drost+J.&#x0026;author=van+Jaarsveld+R.+H.&#x0026;author=Ponsioen+B.&#x0026;author=Zimberlin+C.&#x0026;author=van+Boxtel+R.&#x0026;author=Buijs+A.&#x0026;publication_year=2015&#x0026;volume=521&#x0026;pages=43&#x2013;47" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B27" id="B27"></a>Dudhwala, Z. M., Hammond, P. D., Howarth, G. S., and Cummins, A. G. (2020). Intestinal stem cells promote crypt fission during postnatal growth of the small intestine. <i>BMJ Open Gastroenterol.</i> 7:e000388. doi: 10.1136/bmjgast-2020-000388</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32586946" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1136/bmjgast-2020-000388" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intestinal+stem+cells+promote+crypt+fission+during+postnatal+growth+of+the+small+intestine%2E&#x0026;journal=BMJ+Open+Gastroenterol%2E&#x0026;author=Dudhwala+Z.+M.&#x0026;author=Hammond+P.+D.&#x0026;author=Howarth+G.+S.&#x0026;author=Cummins+A.+G.&#x0026;publication_year=2020&#x0026;volume=7&#x0026;issue=e000388" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B28" id="B28"></a>Dunel-Erb, S., Chevalier, C., Laurent, P., Bach, A., Decrock, F., and Maho, Y. L. (2001). Restoration of the jejunal mucosa in rats refed after prolonged fasting. <i>Comp. Biochem. Physiol. A Mol. Integr. Physiol.</i> 129, 933&#x2013;947. doi: 10.1016/s1095-6433(01)00360-9</p> <p class="ReferencesCopy2"><a href="https://doi.org/10.1016/s1095-6433(01)00360-9" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Restoration+of+the+jejunal+mucosa+in+rats+refed+after+prolonged+fasting%2E&#x0026;journal=Comp%2E+Biochem%2E+Physiol%2E+A+Mol%2E+Integr%2E+Physiol%2E&#x0026;author=Dunel-Erb+S.&#x0026;author=Chevalier+C.&#x0026;author=Laurent+P.&#x0026;author=Bach+A.&#x0026;author=Decrock+F.&#x0026;author=Maho+Y.+L.&#x0026;publication_year=2001&#x0026;volume=129&#x0026;pages=933&#x2013;947" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B29" id="B29"></a>Durand, A., Donahue, B., Peignon, G., Letourneur, F., Cagnard, N., Slomianny, C., et al. (2012). Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). <i>Proc. Natl. Acad. Sci. U.S.A.</i> 109, 8965&#x2013;8970. doi: 10.1073/pnas.1201652109</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22586121" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1073/pnas.1201652109" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Functional+intestinal+stem+cells+after+Paneth+cell+ablation+induced+by+the+loss+of+transcription+factor+Math1+%28Atoh1%29%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Durand+A.&#x0026;author=Donahue+B.&#x0026;author=Peignon+G.&#x0026;author=Letourneur+F.&#x0026;author=Cagnard+N.&#x0026;author=Slomianny+C.&#x0026;publication_year=2012&#x0026;volume=109&#x0026;pages=8965&#x2013;8970" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B30" id="B30"></a>Farin, H. F., Karthaus, W. R., Kujala, P., Rakhshandehroo, M., Schwank, G., Vries, R. G. J., et al. (2014). Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell&#x2013;derived IFN-&#x03B3;Paneth cell response to IFN-&#x03B3;. <i>J. Exp. Med.</i> 211, 1393&#x2013;1405. doi: 10.1084/jem.20130753</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24980747" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1084/jem.20130753" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Paneth+cell+extrusion+and+release+of+antimicrobial+products+is+directly+controlled+by+immune+cell&#x2013;derived+IFN-&#x03B3;Paneth+cell+response+to+IFN-&#x03B3;%2E&#x0026;journal=J%2E+Exp%2E+Med%2E&#x0026;author=Farin+H.+F.&#x0026;author=Karthaus+W.+R.&#x0026;author=Kujala+P.&#x0026;author=Rakhshandehroo+M.&#x0026;author=Schwank+G.&#x0026;author=Vries+R.+G.+J.&#x0026;publication_year=2014&#x0026;volume=211&#x0026;pages=1393&#x2013;1405" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B31" id="B31"></a>Fawkner-Corbett, D., Antanaviciute, A., Parikh, K., Jagielowicz, M., Ger&#x00F3;s, A. S., Gupta, T., et al. (2021). Spatiotemporal analysis of human intestinal development at single-cell resolution. <i>Cell</i> 184, 810&#x2013;826.e23.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Spatiotemporal+analysis+of+human+intestinal+development+at+single-cell+resolution%2E&#x0026;journal=Cell&#x0026;author=Fawkner-Corbett+D.&#x0026;author=Antanaviciute+A.&#x0026;author=Parikh+K.&#x0026;author=Jagielowicz+M.&#x0026;author=Ger&#x00F3;s+A.+S.&#x0026;author=Gupta+T.&#x0026;publication_year=2021&#x0026;volume=184&#x0026;pages=810&#x2013;826.e23" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B32" id="B32"></a>Fearon, E. R., and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. <i>Cell</i> 61, 759&#x2013;767. doi: 10.1016/0092-8674(90)90186-i</p> <p class="ReferencesCopy2"><a href="https://doi.org/10.1016/0092-8674(90)90186-i" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+genetic+model+for+colorectal+tumorigenesis%2E&#x0026;journal=Cell&#x0026;author=Fearon+E.+R.&#x0026;author=Vogelstein+B.&#x0026;publication_year=1990&#x0026;volume=61&#x0026;pages=759&#x2013;767" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B33" id="B33"></a>Freedman, B. D., Kempna, P. B., Carlone, D. L., Shah, M. S., Guagliardo, N. A., Barrett, P. Q., et al. (2013). Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. <i>Dev. Cell</i> 26, 666&#x2013;673. doi: 10.1016/j.devcel.2013.07.016</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24035414" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.devcel.2013.07.016" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Adrenocortical+zonation+results+from+lineage+conversion+of+differentiated+zona+glomerulosa+cells%2E&#x0026;journal=Dev%2E+Cell&#x0026;author=Freedman+B.+D.&#x0026;author=Kempna+P.+B.&#x0026;author=Carlone+D.+L.&#x0026;author=Shah+M.+S.&#x0026;author=Guagliardo+N.+A.&#x0026;author=Barrett+P.+Q.&#x0026;publication_year=2013&#x0026;volume=26&#x0026;pages=666&#x2013;673" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B34" id="B34"></a>Frieda, K. L., Linton, J. M., Hormoz, S., Choi, J., Chow, K.-H. K., Singer, Z. S., et al. (2017). Synthetic recording and in situ readout of lineage information in single cells. <i>Nature</i> 541, 107&#x2013;111. doi: 10.1038/nature20777</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27869821" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature20777" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Synthetic+recording+and+in+situ+readout+of+lineage+information+in+single+cells%2E&#x0026;journal=Nature&#x0026;author=Frieda+K.+L.&#x0026;author=Linton+J.+M.&#x0026;author=Hormoz+S.&#x0026;author=Choi+J.&#x0026;author=Chow+K.-H.+K.&#x0026;author=Singer+Z.+S.&#x0026;publication_year=2017&#x0026;volume=541&#x0026;pages=107&#x2013;111" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B35" id="B35"></a>Fumagalli, A., Oost, K. C., Kester, L., Morgner, J., Bornes, L., Bruens, L., et al. (2020). Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. <i>Cell Stem Cell</i> 26, 569&#x2013;578.e7.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Plasticity+of+Lgr5-negative+cancer+cells+drives+metastasis+in+colorectal+cancer%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Fumagalli+A.&#x0026;author=Oost+K.+C.&#x0026;author=Kester+L.&#x0026;author=Morgner+J.&#x0026;author=Bornes+L.&#x0026;author=Bruens+L.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=569&#x2013;578.e7" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B36" id="B36"></a>Gao, Y., Yan, Y., Tripathi, S., Pentinmikko, N., Amaral, A., P&#x00E4;ivinen, P., et al. (2020). LKB1 Represses ATOH1 via PDK4 and Energy Metabolism and Regulates Intestinal Stem Cell Fate. <i>Gastroenterology</i> 158, 1389.e&#x2013;1401.e.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=LKB1+Represses+ATOH1+via+PDK4+and+Energy+Metabolism+and+Regulates+Intestinal+Stem+Cell+Fate%2E&#x0026;journal=Gastroenterology&#x0026;author=Gao+Y.&#x0026;author=Yan+Y.&#x0026;author=Tripathi+S.&#x0026;author=Pentinmikko+N.&#x0026;author=Amaral+A.&#x0026;author=P&#x00E4;ivinen+P.&#x0026;publication_year=2020&#x0026;volume=158&#x0026;pages=1389.e&#x2013;1401.e" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B37" id="B37"></a>Gehart, H., van Es, J. H., Hamer, K., Beumer, J., Kretzschmar, K., Dekkers, J. F., et al. (2019). Identification of enteroendocrine regulators by real-time single-cell differentiation mapping. <i>Cell</i> 176, 1158&#x2013;1173.e16.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Identification+of+enteroendocrine+regulators+by+real-time+single-cell+differentiation+mapping%2E&#x0026;journal=Cell&#x0026;author=Gehart+H.&#x0026;author=van+Es+J.+H.&#x0026;author=Hamer+K.&#x0026;author=Beumer+J.&#x0026;author=Kretzschmar+K.&#x0026;author=Dekkers+J.+F.&#x0026;publication_year=2019&#x0026;volume=176&#x0026;pages=1158&#x2013;1173.e16" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B38" id="B38"></a>Gerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., et al. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. <i>Nature</i> 529, 226&#x2013;230. doi: 10.1038/nature16527</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26762460" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature16527" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intestinal+epithelial+tuft+cells+initiate+type+2+mucosal+immunity+to+helminth+parasites%2E&#x0026;journal=Nature&#x0026;author=Gerbe+F.&#x0026;author=Sidot+E.&#x0026;author=Smyth+D.+J.&#x0026;author=Ohmoto+M.&#x0026;author=Matsumoto+I.&#x0026;author=Dardalhon+V.&#x0026;publication_year=2016&#x0026;volume=529&#x0026;pages=226&#x2013;230" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B39" id="B39"></a>Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y., and Wrana, J. L. (2015). Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. <i>Nature</i> 526, 715&#x2013;718. doi: 10.1038/nature15382</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26503053" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature15382" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Yap-dependent+reprogramming+of+Lgr5%2B+stem+cells+drives+intestinal+regeneration+and+cancer%2E&#x0026;journal=Nature&#x0026;author=Gregorieff+A.&#x0026;author=Liu+Y.&#x0026;author=Inanlou+M.+R.&#x0026;author=Khomchuk+Y.&#x0026;author=Wrana+J.+L.&#x0026;publication_year=2015&#x0026;volume=526&#x0026;pages=715&#x2013;718" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B40" id="B40"></a>Greicius, G., Kabiri, Z., Sigmundsson, K., Liang, C., Bunte, R., Singh, M. K., et al. (2018). PDGFR&#x03B1;+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 115:201713510.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=PDGFR&#x03B1;%2B+pericryptal+stromal+cells+are+the+critical+source+of+Wnts+and+RSPO3+for+murine+intestinal+stem+cells+in+vivo%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Greicius+G.&#x0026;author=Kabiri+Z.&#x0026;author=Sigmundsson+K.&#x0026;author=Liang+C.&#x0026;author=Bunte+R.&#x0026;author=Singh+M.+K.&#x0026;publication_year=2018&#x0026;volume=115&#x0026;issue=201713510" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B41" id="B41"></a>Haber, A. L., Biton, M., Rogel, N., Herbst, R. H., Shekhar, K., Smillie, C., et al. (2017). A single-cell survey of the small intestinal epithelium. <i>Nature</i> 551, 333&#x2013;339.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+single-cell+survey+of+the+small+intestinal+epithelium%2E&#x0026;journal=Nature&#x0026;author=Haber+A.+L.&#x0026;author=Biton+M.&#x0026;author=Rogel+N.&#x0026;author=Herbst+R.+H.&#x0026;author=Shekhar+K.&#x0026;author=Smillie+C.&#x0026;publication_year=2017&#x0026;volume=551&#x0026;pages=333&#x2013;339" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B42" id="B42"></a>Habib, A. M., Richards, P., Cairns, L. S., Rogers, G. J., Bannon, C. A. M., Parker, H. E., et al. (2012). Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. <i>Endocrinology</i> 153, 3054&#x2013;3065. doi: 10.1210/en.2011-2170</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22685263" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1210/en.2011-2170" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Overlap+of+endocrine+hormone+expression+in+the+mouse+intestine+revealed+by+transcriptional+profiling+and+flow+cytometry%2E&#x0026;journal=Endocrinology&#x0026;author=Habib+A.+M.&#x0026;author=Richards+P.&#x0026;author=Cairns+L.+S.&#x0026;author=Rogers+G.+J.&#x0026;author=Bannon+C.+A.+M.&#x0026;author=Parker+H.+E.&#x0026;publication_year=2012&#x0026;volume=153&#x0026;pages=3054&#x2013;3065" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B43" id="B43"></a>Halpern, K. B., Massalha, H., Zwick, R. K., Moor, A. E., Castillo-Azofeifa, D., Rozenberg, M., et al. (2020). Lgr5+ telocytes are a signaling source at the intestinal villus tip. <i>Nat. Commun.</i> 11:1936.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Lgr5%2B+telocytes+are+a+signaling+source+at+the+intestinal+villus+tip%2E&#x0026;journal=Nat%2E+Commun%2E&#x0026;author=Halpern+K.+B.&#x0026;author=Massalha+H.&#x0026;author=Zwick+R.+K.&#x0026;author=Moor+A.+E.&#x0026;author=Castillo-Azofeifa+D.&#x0026;author=Rozenberg+M.&#x0026;publication_year=2020&#x0026;volume=11&#x0026;issue=1936" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B44" id="B44"></a>Hao, H.-X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., et al. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. <i>Nature</i> 485, 195&#x2013;200. doi: 10.1038/nature11019</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22575959" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature11019" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=ZNRF3+promotes+Wnt+receptor+turnover+in+an+R-spondin-sensitive+manner%2E&#x0026;journal=Nature&#x0026;author=Hao+H.-X.&#x0026;author=Xie+Y.&#x0026;author=Zhang+Y.&#x0026;author=Charlat+O.&#x0026;author=Oster+E.&#x0026;author=Avello+M.&#x0026;publication_year=2012&#x0026;volume=485&#x0026;pages=195&#x2013;200" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B45" id="B45"></a>Howitt, M. R., Lavoie, S., Michaud, M., Blum, A. M., Tran, S. V., Weinstock, J. V., et al. (2016). Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. <i>Science</i> 351, 1329&#x2013;1333. doi: 10.1126/science.aaf1648</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26847546" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.aaf1648" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Tuft+cells%2C+taste-chemosensory+cells%2C+orchestrate+parasite+type+2+immunity+in+the+gut%2E&#x0026;journal=Science&#x0026;author=Howitt+M.+R.&#x0026;author=Lavoie+S.&#x0026;author=Michaud+M.&#x0026;author=Blum+A.+M.&#x0026;author=Tran+S.+V.&#x0026;author=Weinstock+J.+V.&#x0026;publication_year=2016&#x0026;volume=351&#x0026;pages=1329&#x2013;1333" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B46" id="B46"></a>Jadhav, U., Saxena, M., O&#x2019;Neill, N. K., Saadatpour, A., Yuan, G.-C., Herbert, Z., et al. (2017). Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. <i>Cell Stem Cell</i> 21, 65&#x2013;77.e5.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Dynamic+reorganization+of+chromatin+accessibility+signatures+during+dedifferentiation+of+secretory+precursors+into+Lgr5%2B+intestinal+stem+cells%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Jadhav+U.&#x0026;author=Saxena+M.&#x0026;author=O&#x2019;Neill+N.+K.&#x0026;author=Saadatpour+A.&#x0026;author=Yuan+G.-C.&#x0026;author=Herbert+Z.&#x0026;publication_year=2017&#x0026;volume=21&#x0026;pages=65&#x2013;77.e5" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B47" id="B47"></a>Jones, J. C., Brindley, C. D., Elder, N. H., Myers, M. G., Rajala, M. W., Dekaney, C. M., et al. (2019). Cellular plasticity of Defa4 Cre -expressing paneth cells in response to notch activation and intestinal injury. <i>Cell Mol. Gastroenterol. Hepatol.</i> 7, 533&#x2013;554. doi: 10.1016/j.jcmgh.2018.11.004</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30827941" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.jcmgh.2018.11.004" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Cellular+plasticity+of+Defa4+Cre+-expressing+paneth+cells+in+response+to+notch+activation+and+intestinal+injury%2E&#x0026;journal=Cell+Mol%2E+Gastroenterol%2E+Hepatol%2E&#x0026;author=Jones+J.+C.&#x0026;author=Brindley+C.+D.&#x0026;author=Elder+N.+H.&#x0026;author=Myers+M.+G.&#x0026;author=Rajala+M.+W.&#x0026;author=Dekaney+C.+M.&#x0026;publication_year=2019&#x0026;volume=7&#x0026;pages=533&#x2013;554" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B48" id="B48"></a>Kalhor, R., Kalhor, K., Mejia, L., Leeper, K., Graveline, A., Mali, P., et al. (2018). Developmental barcoding of whole mouse via homing CRISPR. <i>Science</i> 361:eaat9804. doi: 10.1126/science.aat9804</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30093604" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.aat9804" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Developmental+barcoding+of+whole+mouse+via+homing+CRISPR%2E&#x0026;journal=Science&#x0026;author=Kalhor+R.&#x0026;author=Kalhor+K.&#x0026;author=Mejia+L.&#x0026;author=Leeper+K.&#x0026;author=Graveline+A.&#x0026;author=Mali+P.&#x0026;publication_year=2018&#x0026;volume=361&#x0026;issue=eaat9804" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B49" id="B49"></a>Kalhor, R., Mali, P., and Church, G. M. (2017). Rapidly evolving homing CRISPR barcodes. <i>Nat. Methods</i> 14, 195&#x2013;200. doi: 10.1038/nmeth.4108</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27918539" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nmeth.4108" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Rapidly+evolving+homing+CRISPR+barcodes%2E&#x0026;journal=Nat%2E+Methods&#x0026;author=Kalhor+R.&#x0026;author=Mali+P.&#x0026;author=Church+G.+M.&#x0026;publication_year=2017&#x0026;volume=14&#x0026;pages=195&#x2013;200" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B50" id="B50"></a>Kanaya, T., Hase, K., Takahashi, D., Fukuda, S., Hoshino, K., Sasaki, I., et al. (2012). The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. <i>Nat. Immunol.</i> 13, 729&#x2013;736. doi: 10.1038/ni.2352</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22706340" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/ni.2352" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=The+Ets+transcription+factor+Spi-B+is+essential+for+the+differentiation+of+intestinal+microfold+cells%2E&#x0026;journal=Nat%2E+Immunol%2E&#x0026;author=Kanaya+T.&#x0026;author=Hase+K.&#x0026;author=Takahashi+D.&#x0026;author=Fukuda+S.&#x0026;author=Hoshino+K.&#x0026;author=Sasaki+I.&#x0026;publication_year=2012&#x0026;volume=13&#x0026;pages=729&#x2013;736" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B51" id="B51"></a>Kechele, D. O., and Wells, J. M. (2019). Recent advances in deriving human endodermal tissues from pluripotent stem cells. <i>Curr. Opin. Cell Biol.</i> 61, 92&#x2013;100. doi: 10.1016/j.ceb.2019.07.009</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31425933" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.ceb.2019.07.009" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Recent+advances+in+deriving+human+endodermal+tissues+from+pluripotent+stem+cells%2E&#x0026;journal=Curr%2E+Opin%2E+Cell+Biol%2E&#x0026;author=Kechele+D.+O.&#x0026;author=Wells+J.+M.&#x0026;publication_year=2019&#x0026;volume=61&#x0026;pages=92&#x2013;100" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B52" id="B52"></a>Kiela, P. R., and Ghishan, F. K. (2016). Physiology of intestinal absorption and secretion. <i>Best Pract. Res. Clin. Gastroenterol.</i> 30, 145&#x2013;159.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Physiology+of+intestinal+absorption+and+secretion%2E&#x0026;journal=Best+Pract%2E+Res%2E+Clin%2E+Gastroenterol%2E&#x0026;author=Kiela+P.+R.&#x0026;author=Ghishan+F.+K.&#x0026;publication_year=2016&#x0026;volume=30&#x0026;pages=145&#x2013;159" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B53" id="B53"></a>Kim, T.-H., Escudero, S., and Shivdasani, R. A. (2012). Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 109, 3932&#x2013;3937. doi: 10.1073/pnas.1113890109</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22355124" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1073/pnas.1113890109" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intact+function+of+Lgr5+receptor-expressing+intestinal+stem+cells+in+the+absence+of+Paneth+cells%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Kim+T.-H.&#x0026;author=Escudero+S.&#x0026;author=Shivdasani+R.+A.&#x0026;publication_year=2012&#x0026;volume=109&#x0026;pages=3932&#x2013;3937" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B54" id="B54"></a>Kim, T.-H., Li, F., Ferreiro-Neira, I., Ho, L.-L., Luyten, A., Nalapareddy, K., et al. (2014). Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. <i>Nature</i> 506, 511&#x2013;515. doi: 10.1038/nature12903</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24413398" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature12903" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Broadly+permissive+intestinal+chromatin+underlies+lateral+inhibition+and+cell+plasticity%2E&#x0026;journal=Nature&#x0026;author=Kim+T.-H.&#x0026;author=Li+F.&#x0026;author=Ferreiro-Neira+I.&#x0026;author=Ho+L.-L.&#x0026;author=Luyten+A.&#x0026;author=Nalapareddy+K.&#x0026;publication_year=2014&#x0026;volume=506&#x0026;pages=511&#x2013;515" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B55" id="B55"></a>Knoop, K. A., Kumar, N., Butler, B. R., Sakthivel, S. K., Taylor, R. T., Nochi, T., et al. (2009). RANKL Is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. <i>J. Immunol.</i> 183, 5738&#x2013;5747. doi: 10.4049/jimmunol.0901563</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/19828638" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.4049/jimmunol.0901563" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=RANKL+Is+necessary+and+sufficient+to+initiate+development+of+antigen-sampling+M+cells+in+the+intestinal+epithelium%2E&#x0026;journal=J%2E+Immunol%2E&#x0026;author=Knoop+K.+A.&#x0026;author=Kumar+N.&#x0026;author=Butler+B.+R.&#x0026;author=Sakthivel+S.+K.&#x0026;author=Taylor+R.+T.&#x0026;author=Nochi+T.&#x0026;publication_year=2009&#x0026;volume=183&#x0026;pages=5738&#x2013;5747" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B56" id="B56"></a>Koo, B.-K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., van de Wetering, M., et al. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. <i>Nature</i> 488, 665&#x2013;669. doi: 10.1038/nature11308</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22895187" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature11308" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Tumour+suppressor+RNF43+is+a+stem-cell+E3+ligase+that+induces+endocytosis+of+Wnt+receptors%2E&#x0026;journal=Nature&#x0026;author=Koo+B.-K.&#x0026;author=Spit+M.&#x0026;author=Jordens+I.&#x0026;author=Low+T.+Y.&#x0026;author=Stange+D.+E.&#x0026;author=van+de+Wetering+M.&#x0026;publication_year=2012&#x0026;volume=488&#x0026;pages=665&#x2013;669" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B57" id="B57"></a>Lai, N. Y., Musser, M. A., Pinho-Ribeiro, F. A., Baral, P., Jacobson, A., Ma, P., et al. (2020). Gut-innervating nociceptor neurons regulate peyer&#x2019;s patch microfold cells and SFB levels to mediate <i>Salmonella</i> host defense. <i>Cell</i> 180, 33&#x2013;49.e22.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Gut-innervating+nociceptor+neurons+regulate+peyer&#x2019;s+patch+microfold+cells+and+SFB+levels+to+mediate+Salmonella+host+defense%2E&#x0026;journal=Cell&#x0026;author=Lai+N.+Y.&#x0026;author=Musser+M.+A.&#x0026;author=Pinho-Ribeiro+F.+A.&#x0026;author=Baral+P.&#x0026;author=Jacobson+A.&#x0026;author=Ma+P.&#x0026;publication_year=2020&#x0026;volume=180&#x0026;pages=33&#x2013;49.e22" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B58" id="B58"></a>Lenos, K. J., Miedema, D. M., Lodestijn, S. C., Nijman, L. E., van den Bosch, T., Ros, X. R., et al. (2018). Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. <i>Nat. Cell Biol.</i> 20, 1193&#x2013;1202. doi: 10.1038/s41556-018-0179-z</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30177776" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41556-018-0179-z" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Stem+cell+functionality+is+microenvironmentally+defined+during+tumour+expansion+and+therapy+response+in+colon+cancer%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Lenos+K.+J.&#x0026;author=Miedema+D.+M.&#x0026;author=Lodestijn+S.+C.&#x0026;author=Nijman+L.+E.&#x0026;author=van+den+Bosch+T.&#x0026;author=Ros+X.+R.&#x0026;publication_year=2018&#x0026;volume=20&#x0026;pages=1193&#x2013;1202" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B59" id="B59"></a>Lindemans, C. A., Calafiore, M., Mertelsmann, A. M., O&#x2019;Connor, M. H., Dudakov, J. A., Jenq, R. R., et al. (2015). Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. <i>Nature</i> 528, 560&#x2013;564.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Interleukin-22+promotes+intestinal-stem-cell-mediated+epithelial+regeneration%2E&#x0026;journal=Nature&#x0026;author=Lindemans+C.+A.&#x0026;author=Calafiore+M.&#x0026;author=Mertelsmann+A.+M.&#x0026;author=O&#x2019;Connor+M.+H.&#x0026;author=Dudakov+J.+A.&#x0026;author=Jenq+R.+R.&#x0026;publication_year=2015&#x0026;volume=528&#x0026;pages=560&#x2013;564" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B60" id="B60"></a>Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. <i>Nature</i> 450, 56&#x2013;62.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Transgenic+strategies+for+combinatorial+expression+of+fluorescent+proteins+in+the+nervous+system%2E&#x0026;journal=Nature&#x0026;author=Livet+J.&#x0026;author=Weissman+T.+A.&#x0026;author=Kang+H.&#x0026;author=Draft+R.+W.&#x0026;author=Lu+J.&#x0026;author=Bennis+R.+A.&#x0026;publication_year=2007&#x0026;volume=450&#x0026;pages=56&#x2013;62" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B61" id="B61"></a>Lopez-Garcia, C., Klein, A. M., Simons, B. D., and Winton, D. J. (2010). Intestinal stem cell replacement follows a pattern of neutral drift. <i>Science</i> 330, 822&#x2013;825. doi: 10.1126/science.1196236</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/20929733" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.1196236" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intestinal+stem+cell+replacement+follows+a+pattern+of+neutral+drift%2E&#x0026;journal=Science&#x0026;author=Lopez-Garcia+C.&#x0026;author=Klein+A.+M.&#x0026;author=Simons+B.+D.&#x0026;author=Winton+D.+J.&#x0026;publication_year=2010&#x0026;volume=330&#x0026;pages=822&#x2013;825" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B62" id="B62"></a>Maj, J. G., Paris, F., Haimovitz-Friedman, A., Venkatraman, E., Kolesnick, R., and Fuks, Z. (2003). Microvascular function regulates intestinal crypt response to radiation. <i>Cancer Res.</i> 63, 4338&#x2013;4341.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Microvascular+function+regulates+intestinal+crypt+response+to+radiation%2E&#x0026;journal=Cancer+Res%2E&#x0026;author=Maj+J.+G.&#x0026;author=Paris+F.&#x0026;author=Haimovitz-Friedman+A.&#x0026;author=Venkatraman+E.&#x0026;author=Kolesnick+R.&#x0026;author=Fuks+Z.&#x0026;publication_year=2003&#x0026;volume=63&#x0026;pages=4338&#x2013;4341" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B63" id="B63"></a>McCarthy, N., Manieri, E., Storm, E. E., Saadatpour, A., Luoma, A. M., Kapoor, V. N., et al. (2020). Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. <i>Cell Stem Cell</i> 26, 391&#x2013;402.e5.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Distinct+mesenchymal+cell+populations+generate+the+essential+intestinal+BMP+signaling+gradient%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=McCarthy+N.&#x0026;author=Manieri+E.&#x0026;author=Storm+E.+E.&#x0026;author=Saadatpour+A.&#x0026;author=Luoma+A.+M.&#x0026;author=Kapoor+V.+N.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=391&#x2013;402.e5" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B64" id="B64"></a>McCracken, K. W., Howell, J. C., Wells, J. M., and Spence, J. R. (2011). Generating human intestinal tissue from pluripotent stem cells in vitro. <i>Nat. Protoc.</i> 6, 1920&#x2013;1928. doi: 10.1038/nprot.2011.410</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22082986" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nprot.2011.410" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Generating+human+intestinal+tissue+from+pluripotent+stem+cells+in+vitro%2E&#x0026;journal=Nat%2E+Protoc%2E&#x0026;author=McCracken+K.+W.&#x0026;author=Howell+J.+C.&#x0026;author=Wells+J.+M.&#x0026;author=Spence+J.+R.&#x0026;publication_year=2011&#x0026;volume=6&#x0026;pages=1920&#x2013;1928" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B65" id="B65"></a>McDole, J. R., Wheeler, L. W., McDonald, K. G., Wang, B., Konjufca, V., Knoop, K. A., et al. (2012). Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. <i>Nature</i> 483, 345&#x2013;349. doi: 10.1038/nature10863</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22422267" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature10863" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Goblet+cells+deliver+luminal+antigen+to+CD103%2B+dendritic+cells+in+the+small+intestine%2E&#x0026;journal=Nature&#x0026;author=McDole+J.+R.&#x0026;author=Wheeler+L.+W.&#x0026;author=McDonald+K.+G.&#x0026;author=Wang+B.&#x0026;author=Konjufca+V.&#x0026;author=Knoop+K.+A.&#x0026;publication_year=2012&#x0026;volume=483&#x0026;pages=345&#x2013;349" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B66" id="B66"></a>McKenna, A., Findlay, G. M., Gagnon, J. A., Horwitz, M. S., Schier, A. F., and Shendure, J. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing. <i>Science</i> 353:aaf7907. doi: 10.1126/science.aaf7907</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27229144" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.aaf7907" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Whole-organism+lineage+tracing+by+combinatorial+and+cumulative+genome+editing%2E&#x0026;journal=Science&#x0026;author=McKenna+A.&#x0026;author=Findlay+G.+M.&#x0026;author=Gagnon+J.+A.&#x0026;author=Horwitz+M.+S.&#x0026;author=Schier+A.+F.&#x0026;author=Shendure+J.&#x0026;publication_year=2016&#x0026;volume=353&#x0026;issue=aaf7907" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B67" id="B67"></a>Metcalfe, C., Kljavin, N. M., Ybarra, R., and de Sauvage, F. J. (2014). Lgr5 + stem cells are indispensable for radiation-induced intestinal regeneration. <i>Cell Stem Cell</i> 14, 149&#x2013;159. doi: 10.1016/j.stem.2013.11.008</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24332836" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.stem.2013.11.008" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Lgr5+%2B+stem+cells+are+indispensable+for+radiation-induced+intestinal+regeneration%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Metcalfe+C.&#x0026;author=Kljavin+N.+M.&#x0026;author=Ybarra+R.&#x0026;author=de+Sauvage+F.+J.&#x0026;publication_year=2014&#x0026;volume=14&#x0026;pages=149&#x2013;159" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B68" id="B68"></a>Moor, A. E., Harnik, Y., Ben-Moshe, S., Massasa, E. E., Rozenberg, M., Eilam, R., et al. (2018). Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. <i>Cell</i> 175, 1156&#x2013;1167.e15.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Spatial+reconstruction+of+single+enterocytes+uncovers+broad+zonation+along+the+intestinal+villus+axis%2E&#x0026;journal=Cell&#x0026;author=Moor+A.+E.&#x0026;author=Harnik+Y.&#x0026;author=Ben-Moshe+S.&#x0026;author=Massasa+E.+E.&#x0026;author=Rozenberg+M.&#x0026;author=Eilam+R.&#x0026;publication_year=2018&#x0026;volume=175&#x0026;pages=1156&#x2013;1167.e15" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B69" id="B69"></a>Murata, K., Jadhav, U., Madha, S., van Es, J., Dean, J., Cavazza, A., et al. (2020). Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. <i>Cell Stem Cell</i> 26, 377&#x2013;390.e6.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Ascl2-dependent+cell+dedifferentiation+drives+regeneration+of+ablated+intestinal+stem+cells%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Murata+K.&#x0026;author=Jadhav+U.&#x0026;author=Madha+S.&#x0026;author=van+Es+J.&#x0026;author=Dean+J.&#x0026;author=Cavazza+A.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=377&#x2013;390.e6" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B70" id="B70"></a>Mustata, R. C., Vasile, G., Fernandez-Vallone, V., Strollo, S., Lefort, A., Libert, F., et al. (2013). Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. <i>Cell Rep.</i> 5, 421&#x2013;432. doi: 10.1016/j.celrep.2013.09.005</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24139799" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.celrep.2013.09.005" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Identification+of+Lgr5-independent+spheroid-generating+progenitors+of+the+mouse+fetal+intestinal+epithelium%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Mustata+R.+C.&#x0026;author=Vasile+G.&#x0026;author=Fernandez-Vallone+V.&#x0026;author=Strollo+S.&#x0026;author=Lefort+A.&#x0026;author=Libert+F.&#x0026;publication_year=2013&#x0026;volume=5&#x0026;pages=421&#x2013;432" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B71" id="B71"></a>Muzny, D. M., Bainbridge, M. N., Chang, K., Dinh, H. H., Drummond, J. A., Fowler, G., et al. (2012). Comprehensive molecular characterization of human colon and rectal cancer. <i>Nature</i> 487, 330&#x2013;337. doi: 10.1038/nature11252</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22810696" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature11252" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Comprehensive+molecular+characterization+of+human+colon+and+rectal+cancer%2E&#x0026;journal=Nature&#x0026;author=Muzny+D.+M.&#x0026;author=Bainbridge+M.+N.&#x0026;author=Chang+K.&#x0026;author=Dinh+H.+H.&#x0026;author=Drummond+J.+A.&#x0026;author=Fowler+G.&#x0026;publication_year=2012&#x0026;volume=487&#x0026;pages=330&#x2013;337" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B72" id="B72"></a>Nicholson, A. M., Olpe, C., Hoyle, A., Thorsen, A.-S., Rus, T., Colomb&#x00E9;, M., et al. (2018). Fixation and spread of somatic mutations in adult human colonic epithelium. <i>Cell Stem Cell</i> 22, 909&#x2013;918.e8.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Fixation+and+spread+of+somatic+mutations+in+adult+human+colonic+epithelium%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Nicholson+A.+M.&#x0026;author=Olpe+C.&#x0026;author=Hoyle+A.&#x0026;author=Thorsen+A.-S.&#x0026;author=Rus+T.&#x0026;author=Colomb&#x00E9;+M.&#x0026;publication_year=2018&#x0026;volume=22&#x0026;pages=909&#x2013;918.e8" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B73" id="B73"></a>Noel, G., Baetz, N. W., Staab, J. F., Donowitz, M., Kovbasnjuk, O., Pasetti, M. F., et al. (2017). A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. <i>Sci. Rep.</i> 7:45270.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+primary+human+macrophage-enteroid+co-culture+model+to+investigate+mucosal+gut+physiology+and+host-pathogen+interactions%2E&#x0026;journal=Sci%2E+Rep%2E&#x0026;author=Noel+G.&#x0026;author=Baetz+N.+W.&#x0026;author=Staab+J.+F.&#x0026;author=Donowitz+M.&#x0026;author=Kovbasnjuk+O.&#x0026;author=Pasetti+M.+F.&#x0026;publication_year=2017&#x0026;volume=7&#x0026;issue=45270" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B74" id="B74"></a>Nusse, Y. M., Savage, A. K., Marangoni, P., Rosendahl-Huber, A. K. M., Landman, T. A., de Sauvage, F. J., et al. (2018). Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. <i>Nature</i> 559, 109&#x2013;113. doi: 10.1038/s41586-018-0257-1</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29950724" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-018-0257-1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Parasitic+helminths+induce+fetal-like+reversion+in+the+intestinal+stem+cell+niche%2E&#x0026;journal=Nature&#x0026;author=Nusse+Y.+M.&#x0026;author=Savage+A.+K.&#x0026;author=Marangoni+P.&#x0026;author=Rosendahl-Huber+A.+K.+M.&#x0026;author=Landman+T.+A.&#x0026;author=de+Sauvage+F.+J.&#x0026;publication_year=2018&#x0026;volume=559&#x0026;pages=109&#x2013;113" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B75" id="B75"></a>Ogasawara, R., Hashimoto, D., Kimura, S., Hayase, E., Ara, T., Takahashi, S., et al. (2018). Intestinal lymphatic endothelial cells produce R-Spondin3. <i>Sci. Rep.</i> 8:10719.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intestinal+lymphatic+endothelial+cells+produce+R-Spondin3%2E&#x0026;journal=Sci%2E+Rep%2E&#x0026;author=Ogasawara+R.&#x0026;author=Hashimoto+D.&#x0026;author=Kimura+S.&#x0026;author=Hayase+E.&#x0026;author=Ara+T.&#x0026;author=Takahashi+S.&#x0026;publication_year=2018&#x0026;volume=8&#x0026;issue=10719" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B76" id="B76"></a>Ombrato, L., Nolan, E., Kurelac, I., Mavousian, A., Bridgeman, V. L., Heinze, I., et al. (2019). Metastatic-niche labelling reveals parenchymal cells with stem features. <i>Nature</i> 572, 603&#x2013;608. doi: 10.1038/s41586-019-1487-6</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31462798" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-019-1487-6" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Metastatic-niche+labelling+reveals+parenchymal+cells+with+stem+features%2E&#x0026;journal=Nature&#x0026;author=Ombrato+L.&#x0026;author=Nolan+E.&#x0026;author=Kurelac+I.&#x0026;author=Mavousian+A.&#x0026;author=Bridgeman+V.+L.&#x0026;author=Heinze+I.&#x0026;publication_year=2019&#x0026;volume=572&#x0026;pages=603&#x2013;608" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B77" id="B77"></a>Pan, F. C., Bankaitis, E. D., Boyer, D., Xu, X., de Casteele, M. V., Magnuson, M. A., et al. (2013). Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. <i>Development</i> 140, 751&#x2013;764. doi: 10.1242/dev.090159</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23325761" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1242/dev.090159" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Spatiotemporal+patterns+of+multipotentiality+in+Ptf1a-expressing+cells+during+pancreas+organogenesis+and+injury-induced+facultative+restoration%2E&#x0026;journal=Development&#x0026;author=Pan+F.+C.&#x0026;author=Bankaitis+E.+D.&#x0026;author=Boyer+D.&#x0026;author=Xu+X.&#x0026;author=de+Casteele+M.+V.&#x0026;author=Magnuson+M.+A.&#x0026;publication_year=2013&#x0026;volume=140&#x0026;pages=751&#x2013;764" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B78" id="B78"></a>Parikh, K., Antanaviciute, A., Fawkner-Corbett, D., Jagielowicz, M., Aulicino, A., Lagerholm, C., et al. (2019). Colonic epithelial cell diversity in health and inflammatory bowel disease. <i>Nature</i> 567, 49&#x2013;55.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Colonic+epithelial+cell+diversity+in+health+and+inflammatory+bowel+disease%2E&#x0026;journal=Nature&#x0026;author=Parikh+K.&#x0026;author=Antanaviciute+A.&#x0026;author=Fawkner-Corbett+D.&#x0026;author=Jagielowicz+M.&#x0026;author=Aulicino+A.&#x0026;author=Lagerholm+C.&#x0026;publication_year=2019&#x0026;volume=567&#x0026;pages=49&#x2013;55" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B79" id="B79"></a>Pasqual, G., Chudnovskiy, A., Tas, J. M. J., Agudelo, M., Schweitzer, L. D., Cui, A., et al. (2018). Monitoring T cell&#x2013;dendritic cell interactions in vivo by intercellular enzymatic labelling. <i>Nature</i> 553, 496&#x2013;500. doi: 10.1038/nature25442</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29342141" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature25442" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Monitoring+T+cell&#x2013;dendritic+cell+interactions+in+vivo+by+intercellular+enzymatic+labelling%2E&#x0026;journal=Nature&#x0026;author=Pasqual+G.&#x0026;author=Chudnovskiy+A.&#x0026;author=Tas+J.+M.+J.&#x0026;author=Agudelo+M.&#x0026;author=Schweitzer+L.+D.&#x0026;author=Cui+A.&#x0026;publication_year=2018&#x0026;volume=553&#x0026;pages=496&#x2013;500" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B80" id="B80"></a>Pei, W., Feyerabend, T. B., R&#x00F6;ssler, J., Wang, X., Postrach, D., Busch, K., et al. (2017). Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. <i>Nature</i> 548, 456&#x2013;460. doi: 10.1038/nature23653</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28813413" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature23653" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Polylox+barcoding+reveals+haematopoietic+stem+cell+fates+realized+in+vivo%2E&#x0026;journal=Nature&#x0026;author=Pei+W.&#x0026;author=Feyerabend+T.+B.&#x0026;author=R&#x00F6;ssler+J.&#x0026;author=Wang+X.&#x0026;author=Postrach+D.&#x0026;author=Busch+K.&#x0026;publication_year=2017&#x0026;volume=548&#x0026;pages=456&#x2013;460" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B81" id="B81"></a>Pei, W., Shang, F., Wang, X., Fanti, A.-K., Greco, A., Busch, K., et al. (2020). Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polyloxexpress barcoding. <i>Cell Stem Cell</i> 27, 383.e&#x2013;395.e8.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Resolving+fates+and+single-cell+transcriptomes+of+hematopoietic+stem+cell+clones+by+polyloxexpress+barcoding%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Pei+W.&#x0026;author=Shang+F.&#x0026;author=Wang+X.&#x0026;author=Fanti+A.-K.&#x0026;author=Greco+A.&#x0026;author=Busch+K.&#x0026;publication_year=2020&#x0026;volume=27&#x0026;pages=383.e&#x2013;395.e8" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B82" id="B82"></a>Pleguezuelos-Manzano, C., Puschhof, J., Huber, A. R., van Hoeck, A., Wood, H. M., Nomburg, J., et al. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+E. coli. <i>Nature</i> 580, 269&#x2013;273. doi: 10.1038/s41586-020-2080-8</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32106218" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-020-2080-8" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Mutational+signature+in+colorectal+cancer+caused+by+genotoxic+pks%2BE%2E+coli%2E&#x0026;journal=Nature&#x0026;author=Pleguezuelos-Manzano+C.&#x0026;author=Puschhof+J.&#x0026;author=Huber+A.+R.&#x0026;author=van+Hoeck+A.&#x0026;author=Wood+H.+M.&#x0026;author=Nomburg+J.&#x0026;publication_year=2020&#x0026;volume=580&#x0026;pages=269&#x2013;273" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B83" id="B83"></a>Poling, H. M., Wu, D., Brown, N., Baker, M., Hausfeld, T. A., Huynh, N., et al. (2018). Mechanically induced development and maturation of human intestinal organoids in vivo. <i>Nat. Biomed. Eng.</i> 2, 429&#x2013;442. doi: 10.1038/s41551-018-0243-9</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30151330" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41551-018-0243-9" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Mechanically+induced+development+and+maturation+of+human+intestinal+organoids+in+vivo%2E&#x0026;journal=Nat%2E+Biomed%2E+Eng%2E&#x0026;author=Poling+H.+M.&#x0026;author=Wu+D.&#x0026;author=Brown+N.&#x0026;author=Baker+M.&#x0026;author=Hausfeld+T.+A.&#x0026;author=Huynh+N.&#x0026;publication_year=2018&#x0026;volume=2&#x0026;pages=429&#x2013;442" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B84" id="B84"></a>Potten, C. S. (1998). Stem cells in gastrointestinal epithelium: numbers, characteristics and death. <i>Philos. Trans. R. Soc. Lond. B Biol. Sci.</i> 353, 821&#x2013;830. doi: 10.1098/rstb.1998.0246</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/9684279" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1098/rstb.1998.0246" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Stem+cells+in+gastrointestinal+epithelium%3A+numbers%2C+characteristics+and+death%2E&#x0026;journal=Philos%2E+Trans%2E+R%2E+Soc%2E+Lond%2E+B+Biol%2E+Sci%2E&#x0026;author=Potten+C.+S.&#x0026;publication_year=1998&#x0026;volume=353&#x0026;pages=821&#x2013;830" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B85" id="B85"></a>Raj, B., Gagnon, J. A., and Schier, A. F. (2018). Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR&#x2013;Cas9 barcodes by scGESTALT. <i>Nat. Protoc.</i> 13, 2685&#x2013;2713. doi: 10.1038/s41596-018-0058-x</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30353175" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41596-018-0058-x" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Large-scale+reconstruction+of+cell+lineages+using+single-cell+readout+of+transcriptomes+and+CRISPR&#x2013;Cas9+barcodes+by+scGESTALT%2E&#x0026;journal=Nat%2E+Protoc%2E&#x0026;author=Raj+B.&#x0026;author=Gagnon+J.+A.&#x0026;author=Schier+A.+F.&#x0026;publication_year=2018&#x0026;volume=13&#x0026;pages=2685&#x2013;2713" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B86" id="B86"></a>Raven, A., Lu, W.-Y., Man, T. Y., Ferreira-Gonzalez, S., O&#x2019;Duibhir, E., Dwyer, B. J., et al. (2017). Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. <i>Nature</i> 547, 350&#x2013;354. doi: 10.1038/nature23015</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28700576" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature23015" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Cholangiocytes+act+as+facultative+liver+stem+cells+during+impaired+hepatocyte+regeneration%2E&#x0026;journal=Nature&#x0026;author=Raven+A.&#x0026;author=Lu+W.-Y.&#x0026;author=Man+T.+Y.&#x0026;author=Ferreira-Gonzalez+S.&#x0026;author=O&#x2019;Duibhir+E.&#x0026;author=Dwyer+B.+J.&#x0026;publication_year=2017&#x0026;volume=547&#x0026;pages=350&#x2013;354" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B87" id="B87"></a>Reizel, Y., Chapal-Ilani, N., Adar, R., Itzkovitz, S., Elbaz, J., Maruvka, Y. E., et al. (2011). Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. <i>PLoS Genet.</i> 7:e1002192. doi: 10.1371/journal.pgen.1002192</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21829376" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1371/journal.pgen.1002192" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Colon+stem+cell+and+crypt+dynamics+exposed+by+cell+lineage+reconstruction%2E&#x0026;journal=PLoS+Genet%2E&#x0026;author=Reizel+Y.&#x0026;author=Chapal-Ilani+N.&#x0026;author=Adar+R.&#x0026;author=Itzkovitz+S.&#x0026;author=Elbaz+J.&#x0026;author=Maruvka+Y.+E.&#x0026;publication_year=2011&#x0026;volume=7&#x0026;issue=e1002192" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B88" id="B88"></a>Riccio, O., van Gijn, M. E., Bezdek, A. C., Pellegrinet, L., van Es, J. H., Zimber-Strobl, U., et al. (2008). Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. <i>EMBO Rep.</i> 9, 377&#x2013;383. doi: 10.1038/embor.2008.7</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/18274550" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/embor.2008.7" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Loss+of+intestinal+crypt+progenitor+cells+owing+to+inactivation+of+both+Notch1+and+Notch2+is+accompanied+by+derepression+of+CDK+inhibitors+p27Kip1+and+p57Kip2%2E&#x0026;journal=EMBO+Rep%2E&#x0026;author=Riccio+O.&#x0026;author=van+Gijn+M.+E.&#x0026;author=Bezdek+A.+C.&#x0026;author=Pellegrinet+L.&#x0026;author=van+Es+J.+H.&#x0026;author=Zimber-Strobl+U.&#x0026;publication_year=2008&#x0026;volume=9&#x0026;pages=377&#x2013;383" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B89" id="B89"></a>Richmond, C. A., Shah, M. S., Deary, L. T., Trotier, D. C., Thomas, H., Ambruzs, D. M., et al. (2015). Dormant intestinal stem cells are regulated by PTEN and nutritional status. <i>Cell Rep.</i> 13, 2403&#x2013;2411. doi: 10.1016/j.celrep.2015.11.035</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26686631" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.celrep.2015.11.035" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Dormant+intestinal+stem+cells+are+regulated+by+PTEN+and+nutritional+status%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Richmond+C.+A.&#x0026;author=Shah+M.+S.&#x0026;author=Deary+L.+T.&#x0026;author=Trotier+D.+C.&#x0026;author=Thomas+H.&#x0026;author=Ambruzs+D.+M.&#x0026;publication_year=2015&#x0026;volume=13&#x0026;pages=2403&#x2013;2411" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B90" id="B90"></a>Rodr&#x00ED;guez-Colman, M. J., Schewe, M., Meerlo, M., Stigter, E., Gerrits, J., Pras-Raves, M., et al. (2017). Interplay between metabolic identities in the intestinal crypt supports stem cell function. <i>Nature</i> 543, 424&#x2013;427. doi: 10.1038/nature21673</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28273069" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature21673" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Interplay+between+metabolic+identities+in+the+intestinal+crypt+supports+stem+cell+function%2E&#x0026;journal=Nature&#x0026;author=Rodr&#x00ED;guez-Colman+M.+J.&#x0026;author=Schewe+M.&#x0026;author=Meerlo+M.&#x0026;author=Stigter+E.&#x0026;author=Gerrits+J.&#x0026;author=Pras-Raves+M.&#x0026;publication_year=2017&#x0026;volume=543&#x0026;pages=424&#x2013;427" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B91" id="B91"></a>Roerink, S. F., Sasaki, N., Lee-Six, H., Young, M. D., Alexandrov, L. B., Behjati, S., et al. (2018). Intra-tumour diversification in colorectal cancer at the single-cell level. <i>Nature</i> 556, 457&#x2013;462. doi: 10.1038/s41586-018-0024-3</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29643510" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-018-0024-3" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intra-tumour+diversification+in+colorectal+cancer+at+the+single-cell+level%2E&#x0026;journal=Nature&#x0026;author=Roerink+S.+F.&#x0026;author=Sasaki+N.&#x0026;author=Lee-Six+H.&#x0026;author=Young+M.+D.&#x0026;author=Alexandrov+L.+B.&#x0026;author=Behjati+S.&#x0026;publication_year=2018&#x0026;volume=556&#x0026;pages=457&#x2013;462" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B92" id="B92"></a>Romera-Hern&#x00E1;ndez, M., Aparicio-Domingo, P., Papazian, N., Karrich, J. J., Cornelissen, F., Hoogenboezem, R. M., et al. (2020). Yap1-driven intestinal repair is controlled by group 3 innate lymphoid cells. <i>Cell Rep.</i> 30, 37&#x2013;45.e3.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Yap1-driven+intestinal+repair+is+controlled+by+group+3+innate+lymphoid+cells%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Romera-Hern&#x00E1;ndez+M.&#x0026;author=Aparicio-Domingo+P.&#x0026;author=Papazian+N.&#x0026;author=Karrich+J.+J.&#x0026;author=Cornelissen+F.&#x0026;author=Hoogenboezem+R.+M.&#x0026;publication_year=2020&#x0026;volume=30&#x0026;pages=37&#x2013;45.e3" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B93" id="B93"></a>Roulis, M., Kaklamanos, A., Schernthanner, M., Bielecki, P., Zhao, J., Kaffe, E., et al. (2020). Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. <i>Nature</i> 580, 524&#x2013;529. doi: 10.1038/s41586-020-2166-3</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32322056" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-020-2166-3" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Paracrine+orchestration+of+intestinal+tumorigenesis+by+a+mesenchymal+niche%2E&#x0026;journal=Nature&#x0026;author=Roulis+M.&#x0026;author=Kaklamanos+A.&#x0026;author=Schernthanner+M.&#x0026;author=Bielecki+P.&#x0026;author=Zhao+J.&#x0026;author=Kaffe+E.&#x0026;publication_year=2020&#x0026;volume=580&#x0026;pages=524&#x2013;529" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B94" id="B94"></a>Sasaki, N., Sachs, N., Wiebrands, K., Ellenbroek, S. I. J., Fumagalli, A., Lyubimova, A., et al. (2016). Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 113, E5399&#x2013;E5407.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Reg4%2B+deep+crypt+secretory+cells+function+as+epithelial+niche+for+Lgr5%2B+stem+cells+in+colon%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Sasaki+N.&#x0026;author=Sachs+N.&#x0026;author=Wiebrands+K.&#x0026;author=Ellenbroek+S.+I.+J.&#x0026;author=Fumagalli+A.&#x0026;author=Lyubimova+A.&#x0026;publication_year=2016&#x0026;volume=113&#x0026;pages=E5399&#x2013;E5407" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B95" id="B95"></a>Schell, J. C., Wisidagama, D. R., Bensard, C., Zhao, H., Wei, P., Tanner, J., et al. (2017). Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. <i>Nat. Cell Biol.</i> 19, 1027&#x2013;1036. doi: 10.1038/ncb3593</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28812582" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/ncb3593" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Control+of+intestinal+stem+cell+function+and+proliferation+by+mitochondrial+pyruvate+metabolism%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Schell+J.+C.&#x0026;author=Wisidagama+D.+R.&#x0026;author=Bensard+C.&#x0026;author=Zhao+H.&#x0026;author=Wei+P.&#x0026;author=Tanner+J.&#x0026;publication_year=2017&#x0026;volume=19&#x0026;pages=1027&#x2013;1036" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B96" id="B96"></a>Schepers, A. G., Snippert, H. J., Stange, D. E., van den Born, M., van Es, J. H., van de Wetering, M., et al. (2012). Lineage tracing reveals Lgr5<sup>+</sup> stem cell activity in mouse intestinal adenomas. <i>Science</i> 337, 730&#x2013;735. doi: 10.1126/science.1224676</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22855427" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.1224676" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Lineage+tracing+reveals+Lgr5%2B+stem+cell+activity+in+mouse+intestinal+adenomas%2E&#x0026;journal=Science&#x0026;author=Schepers+A.+G.&#x0026;author=Snippert+H.+J.&#x0026;author=Stange+D.+E.&#x0026;author=van+den+Born+M.&#x0026;author=van+Es+J.+H.&#x0026;author=van+de+Wetering+M.&#x0026;publication_year=2012&#x0026;volume=337&#x0026;pages=730&#x2013;735" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B97" id="B97"></a>Schmidt, F., Cherepkova, M. Y., and Platt, R. J. (2018). Transcriptional recording by CRISPR spacer acquisition from RNA. <i>Nature</i> 562, 380&#x2013;385. doi: 10.1038/s41586-018-0569-1</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/30283135" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-018-0569-1" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Transcriptional+recording+by+CRISPR+spacer+acquisition+from+RNA%2E&#x0026;journal=Nature&#x0026;author=Schmidt+F.&#x0026;author=Cherepkova+M.+Y.&#x0026;author=Platt+R.+J.&#x0026;publication_year=2018&#x0026;volume=562&#x0026;pages=380&#x2013;385" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B98" id="B98"></a>Secor, S. M., Stein, E. D., and Diamond, J. (1994). Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. <i>Am. J. Physiol.</i> 266, G695&#x2013;G705.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Rapid+upregulation+of+snake+intestine+in+response+to+feeding%3A+a+new+model+of+intestinal+adaptation%2E&#x0026;journal=Am%2E+J%2E+Physiol%2E&#x0026;author=Secor+S.+M.&#x0026;author=Stein+E.+D.&#x0026;author=Diamond+J.&#x0026;publication_year=1994&#x0026;volume=266&#x0026;pages=G695&#x2013;G705" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B99" id="B99"></a>Serra, D., Mayr, U., Boni, A., Lukonin, I., Rempfler, M., Meylan, L. C., et al. (2019). Self-organization and symmetry breaking in intestinal organoid development. <i>Nature</i> 569, 66&#x2013;72. doi: 10.1038/s41586-019-1146-y</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31019299" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-019-1146-y" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Self-organization+and+symmetry+breaking+in+intestinal+organoid+development%2E&#x0026;journal=Nature&#x0026;author=Serra+D.&#x0026;author=Mayr+U.&#x0026;author=Boni+A.&#x0026;author=Lukonin+I.&#x0026;author=Rempfler+M.&#x0026;author=Meylan+L.+C.&#x0026;publication_year=2019&#x0026;volume=569&#x0026;pages=66&#x2013;72" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B100" id="B100"></a>Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., et al. (2017). Visualization and targeting of LGR5+ human colon cancer stem cells. <i>Nature</i> 545, 187&#x2013;192. doi: 10.1038/nature22081</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/28355176" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature22081" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Visualization+and+targeting+of+LGR5%2B+human+colon+cancer+stem+cells%2E&#x0026;journal=Nature&#x0026;author=Shimokawa+M.&#x0026;author=Ohta+Y.&#x0026;author=Nishikori+S.&#x0026;author=Matano+M.&#x0026;author=Takano+A.&#x0026;author=Fujii+M.&#x0026;publication_year=2017&#x0026;volume=545&#x0026;pages=187&#x2013;192" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B101" id="B101"></a>Shoshkes-Carmel, M., Wang, Y. J., Wangensteen, K. J., T&#x00F3;th, B., Kondo, A., Massasa, E. E., et al. (2018). Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. <i>Nature</i> 557, 242&#x2013;246. doi: 10.1038/s41586-018-0084-4</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29720649" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41586-018-0084-4" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Subepithelial+telocytes+are+an+important+source+of+Wnts+that+supports+intestinal+crypts%2E&#x0026;journal=Nature&#x0026;author=Shoshkes-Carmel+M.&#x0026;author=Wang+Y.+J.&#x0026;author=Wangensteen+K.+J.&#x0026;author=T&#x00F3;th+B.&#x0026;author=Kondo+A.&#x0026;author=Massasa+E.+E.&#x0026;publication_year=2018&#x0026;volume=557&#x0026;pages=242&#x2013;246" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B102" id="B102"></a>Snippert, H. J., van der Flier, L. G., Sato, T., van Es, J. H., van den Born, M., Kroon-Veenboer, C., et al. (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing lgr5 stem cells. <i>Cell</i> 143, 134&#x2013;144. doi: 10.1016/j.cell.2010.09.016</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/20887898" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.cell.2010.09.016" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intestinal+crypt+homeostasis+results+from+neutral+competition+between+symmetrically+dividing+lgr5+stem+cells%2E&#x0026;journal=Cell&#x0026;author=Snippert+H.+J.&#x0026;author=van+der+Flier+L.+G.&#x0026;author=Sato+T.&#x0026;author=van+Es+J.+H.&#x0026;author=van+den+Born+M.&#x0026;author=Kroon-Veenboer+C.&#x0026;publication_year=2010&#x0026;volume=143&#x0026;pages=134&#x2013;144" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B103" id="B103"></a>Spanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N., et al. (2018). Simultaneous lineage tracing and cell-type identification using CRISPR&#x2013;Cas9-induced genetic scars. <i>Nat. Biotechnol.</i> 36, 469&#x2013;473. doi: 10.1038/nbt.4124</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/29644996" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nbt.4124" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Simultaneous+lineage+tracing+and+cell-type+identification+using+CRISPR&#x2013;Cas9-induced+genetic+scars%2E&#x0026;journal=Nat%2E+Biotechnol%2E&#x0026;author=Spanjaard+B.&#x0026;author=Hu+B.&#x0026;author=Mitic+N.&#x0026;author=Olivares-Chauvet+P.&#x0026;author=Janjuha+S.&#x0026;author=Ninov+N.&#x0026;publication_year=2018&#x0026;volume=36&#x0026;pages=469&#x2013;473" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B104" id="B104"></a>St&#x00E5;hl, P. L., Salm&#x00E9;n, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. <i>Science</i> 353, 78&#x2013;82. doi: 10.1126/science.aaf2403</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/27365449" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1126/science.aaf2403" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Visualization+and+analysis+of+gene+expression+in+tissue+sections+by+spatial+transcriptomics%2E&#x0026;journal=Science&#x0026;author=St&#x00E5;hl+P.+L.&#x0026;author=Salm&#x00E9;n+F.&#x0026;author=Vickovic+S.&#x0026;author=Lundmark+A.&#x0026;author=Navarro+J.+F.&#x0026;author=Magnusson+J.&#x0026;publication_year=2016&#x0026;volume=353&#x0026;pages=78&#x2013;82" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B105" id="B105"></a>Stange, D. E., Koo, B.-K., Huch, M., Sibbel, G., Basak, O., Lyubimova, A., et al. (2013). Differentiated troy + chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. <i>Cell</i> 155, 357&#x2013;368. doi: 10.1016/j.cell.2013.09.008</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24120136" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.cell.2013.09.008" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Differentiated+troy+%2B+chief+cells+act+as+reserve+stem+cells+to+generate+all+lineages+of+the+stomach+epithelium%2E&#x0026;journal=Cell&#x0026;author=Stange+D.+E.&#x0026;author=Koo+B.-K.&#x0026;author=Huch+M.&#x0026;author=Sibbel+G.&#x0026;author=Basak+O.&#x0026;author=Lyubimova+A.&#x0026;publication_year=2013&#x0026;volume=155&#x0026;pages=357&#x2013;368" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B106" id="B106"></a>Stzepourginski, I., Nigro, G., Jacob, J.-M., Dulauroy, S., Sansonetti, P. J., Eberl, G., et al. (2017). CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 114, E506&#x2013;E513.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=CD34%2B+mesenchymal+cells+are+a+major+component+of+the+intestinal+stem+cells+niche+at+homeostasis+and+after+injury%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Stzepourginski+I.&#x0026;author=Nigro+G.&#x0026;author=Jacob+J.-M.&#x0026;author=Dulauroy+S.&#x0026;author=Sansonetti+P.+J.&#x0026;author=Eberl+G.&#x0026;publication_year=2017&#x0026;volume=114&#x0026;pages=E506&#x2013;E513" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B107" id="B107"></a>Tahoun, A., Mahajan, S., Paxton, E., Malterer, G., Donaldson, D. S., Wang, D., et al. (2012). <i>Salmonella</i> transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. <i>Cell Host Microbe</i> 12, 645&#x2013;656. doi: 10.1016/j.chom.2012.10.009</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23159054" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.chom.2012.10.009" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Salmonella+transforms+follicle-associated+epithelial+cells+into+M+cells+to+promote+intestinal+invasion%2E&#x0026;journal=Cell+Host+Microbe&#x0026;author=Tahoun+A.&#x0026;author=Mahajan+S.&#x0026;author=Paxton+E.&#x0026;author=Malterer+G.&#x0026;author=Donaldson+D.+S.&#x0026;author=Wang+D.&#x0026;publication_year=2012&#x0026;volume=12&#x0026;pages=645&#x2013;656" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B108" id="B108"></a>Tan, S. H., Phuah, P., Tan, L. T., Yada, S., Goh, J., Tomaz, L. B., et al. (2021). A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis. <i>Cell Rep.</i> 34:108633. doi: 10.1016/j.celrep.2020.108633</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/33503423" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.celrep.2020.108633" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+constant+pool+of+Lgr5%2B+intestinal+stem+cells+is+required+for+intestinal+homeostasis%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Tan+S.+H.&#x0026;author=Phuah+P.&#x0026;author=Tan+L.+T.&#x0026;author=Yada+S.&#x0026;author=Goh+J.&#x0026;author=Tomaz+L.+B.&#x0026;publication_year=2021&#x0026;volume=34&#x0026;issue=108633" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B109" id="B109"></a>Taniguchi, K., Wu, L.-W., Grivennikov, S. I., de Jong, P. R., Lian, I., Yu, F.-X., et al. (2015). A gp130&#x2013;Src&#x2013;YAP module links inflammation to epithelial regeneration. <i>Nature</i> 519, 57&#x2013;62. doi: 10.1038/nature14228</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25731159" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature14228" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+gp130&#x2013;Src&#x2013;YAP+module+links+inflammation+to+epithelial+regeneration%2E&#x0026;journal=Nature&#x0026;author=Taniguchi+K.&#x0026;author=Wu+L.-W.&#x0026;author=Grivennikov+S.+I.&#x0026;author=de+Jong+P.+R.&#x0026;author=Lian+I.&#x0026;author=Yu+F.-X.&#x0026;publication_year=2015&#x0026;volume=519&#x0026;pages=57&#x2013;62" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B110" id="B110"></a>Tanna, T., Schmidt, F., Cherepkova, M. Y., Okoniewski, M., and Platt, R. J. (2020). Recording transcriptional histories using Record-seq. <i>Nat. Protoc.</i> 15, 513&#x2013;539. doi: 10.1038/s41596-019-0253-4</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31925399" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41596-019-0253-4" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Recording+transcriptional+histories+using+Record-seq%2E&#x0026;journal=Nat%2E+Protoc%2E&#x0026;author=Tanna+T.&#x0026;author=Schmidt+F.&#x0026;author=Cherepkova+M.+Y.&#x0026;author=Okoniewski+M.&#x0026;author=Platt+R.+J.&#x0026;publication_year=2020&#x0026;volume=15&#x0026;pages=513&#x2013;539" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B111" id="B111"></a>Tata, P. R., Mou, H., Pardo-Saganta, A., Zhao, R., Prabhu, M., Law, B. M., et al. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. <i>Nature</i> 503, 218&#x2013;223. doi: 10.1038/nature12777</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24196716" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature12777" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Dedifferentiation+of+committed+epithelial+cells+into+stem+cells+in+vivo%2E&#x0026;journal=Nature&#x0026;author=Tata+P.+R.&#x0026;author=Mou+H.&#x0026;author=Pardo-Saganta+A.&#x0026;author=Zhao+R.&#x0026;author=Prabhu+M.&#x0026;author=Law+B.+M.&#x0026;publication_year=2013&#x0026;volume=503&#x0026;pages=218&#x2013;223" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B112" id="B112"></a>Tetteh, P. W., Basak, O., Farin, H. F., Wiebrands, K., Kretzschmar, K., Begthel, H., et al. (2016). Replacement of Lost Lgr5-Positive stem cells through plasticity of their enterocyte-lineage daughters. <i>Cell Stem Cell</i> 18, 203&#x2013;213. doi: 10.1016/j.stem.2016.01.001</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26831517" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.stem.2016.01.001" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Replacement+of+Lost+Lgr5-Positive+stem+cells+through+plasticity+of+their+enterocyte-lineage+daughters%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Tetteh+P.+W.&#x0026;author=Basak+O.&#x0026;author=Farin+H.+F.&#x0026;author=Wiebrands+K.&#x0026;author=Kretzschmar+K.&#x0026;author=Begthel+H.&#x0026;publication_year=2016&#x0026;volume=18&#x0026;pages=203&#x2013;213" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B113" id="B113"></a>Tetteh, P. W., Farin, H. F., and Clevers, H. (2015). Plasticity within stem cell hierarchies in mammalian epithelia. <i>Trends Cell Biol.</i> 25, 100&#x2013;108. doi: 10.1016/j.tcb.2014.09.003</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/25308311" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1016/j.tcb.2014.09.003" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Plasticity+within+stem+cell+hierarchies+in+mammalian+epithelia%2E&#x0026;journal=Trends+Cell+Biol%2E&#x0026;author=Tetteh+P.+W.&#x0026;author=Farin+H.+F.&#x0026;author=Clevers+H.&#x0026;publication_year=2015&#x0026;volume=25&#x0026;pages=100&#x2013;108" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B114" id="B114"></a>Tian, H., Biehs, B., Warming, S., Leong, K. G., Rangell, L., Klein, O. D., et al. (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. <i>Nature</i> 478, 255&#x2013;259. doi: 10.1038/nature10408</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/21927002" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature10408" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=A+reserve+stem+cell+population+in+small+intestine+renders+Lgr5-positive+cells+dispensable%2E&#x0026;journal=Nature&#x0026;author=Tian+H.&#x0026;author=Biehs+B.&#x0026;author=Warming+S.&#x0026;author=Leong+K.+G.&#x0026;author=Rangell+L.&#x0026;author=Klein+O.+D.&#x0026;publication_year=2011&#x0026;volume=478&#x0026;pages=255&#x2013;259" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B115" id="B115"></a>van Es, J. H., Sato, T., van de Wetering, M., Lyubimova, A., Nee, A. N. Y., Gregorieff, A., et al. (2012). Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. <i>Nat. Cell Biol.</i> 14, 1099&#x2013;1104. doi: 10.1038/ncb2581</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/23000963" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/ncb2581" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Dll1%2B+secretory+progenitor+cells+revert+to+stem+cells+upon+crypt+damage%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=van+Es+J.+H.&#x0026;author=Sato+T.&#x0026;author=van+de+Wetering+M.&#x0026;author=Lyubimova+A.&#x0026;author=Nee+A.+N.+Y.&#x0026;author=Gregorieff+A.&#x0026;publication_year=2012&#x0026;volume=14&#x0026;pages=1099&#x2013;1104" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B116" id="B116"></a>Van Es, J. H., Wiebrands, K., L&#x00F3;pez-Iglesias, C., van de Wetering, M., Zeinstra, L., van den Born, M., et al. (2019). Enteroendocrine and tuft cells support Lgr5 stem cells on Paneth cell depletion. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 116, 26599&#x2013;26605. doi: 10.1073/pnas.1801888117</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/31843916" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1073/pnas.1801888117" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Enteroendocrine+and+tuft+cells+support+Lgr5+stem+cells+on+Paneth+cell+depletion%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Van+Es+J.+H.&#x0026;author=Wiebrands+K.&#x0026;author=L&#x00F3;pez-Iglesias+C.&#x0026;author=van+de+Wetering+M.&#x0026;author=Zeinstra+L.&#x0026;author=van+den+Born+M.&#x0026;publication_year=2019&#x0026;volume=116&#x0026;pages=26599&#x2013;26605" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B117" id="B117"></a>Vlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fern&#x00E1;ndez-Mateos, J., Khan, K., et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. <i>Science</i> 359, 920&#x2013;926.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Patient-derived+organoids+model+treatment+response+of+metastatic+gastrointestinal+cancers%2E&#x0026;journal=Science&#x0026;author=Vlachogiannis+G.&#x0026;author=Hedayat+S.&#x0026;author=Vatsiou+A.&#x0026;author=Jamin+Y.&#x0026;author=Fern&#x00E1;ndez-Mateos+J.&#x0026;author=Khan+K.&#x0026;publication_year=2018&#x0026;volume=359&#x0026;pages=920&#x2013;926" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B118" id="B118"></a>Von Moltke, J., Ji, M., Liang, H.-E., and Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2&#x2013;epithelial response circuit. <i>Nature</i> 529, 221&#x2013;225. doi: 10.1038/nature16161</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/26675736" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature16161" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Tuft-cell-derived+IL-25+regulates+an+intestinal+ILC2&#x2013;epithelial+response+circuit%2E&#x0026;journal=Nature&#x0026;author=Von+Moltke+J.&#x0026;author=Ji+M.&#x0026;author=Liang+H.-E.&#x0026;author=Locksley+R.+M.&#x0026;publication_year=2016&#x0026;volume=529&#x0026;pages=221&#x2013;225" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B119" id="B119"></a>Wagner, D. E., and Klein, A. M. (2020). Lineage tracing meets single-cell omics: opportunities and challenges. <i>Nat. Rev. Genet.</i> 21, 410&#x2013;427. doi: 10.1038/s41576-020-0223-2</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/32235876" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/s41576-020-0223-2" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Lineage+tracing+meets+single-cell+omics%3A+opportunities+and+challenges%2E&#x0026;journal=Nat%2E+Rev%2E+Genet%2E&#x0026;author=Wagner+D.+E.&#x0026;author=Klein+A.+M.&#x0026;publication_year=2020&#x0026;volume=21&#x0026;pages=410&#x2013;427" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B120" id="B120"></a>Westphalen, C. B., Asfaha, S., Hayakawa, Y., Takemoto, Y., Lukin, D. J., Nuber, A. H., et al. (2014). Long-lived intestinal tuft cells serve as colon cancer&#x2013;initiating cells. <i>J. Clin. Invest.</i> 124, 1283&#x2013;1295. doi: 10.1172/jci73434</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24487592" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1172/jci73434" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Long-lived+intestinal+tuft+cells+serve+as+colon+cancer&#x2013;initiating+cells%2E&#x0026;journal=J%2E+Clin%2E+Invest%2E&#x0026;author=Westphalen+C.+B.&#x0026;author=Asfaha+S.&#x0026;author=Hayakawa+Y.&#x0026;author=Takemoto+Y.&#x0026;author=Lukin+D.+J.&#x0026;author=Nuber+A.+H.&#x0026;publication_year=2014&#x0026;volume=124&#x0026;pages=1283&#x2013;1295" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B121" id="B121"></a>Withers, H. R., and Elkind, M. M. (2009). Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. <i>Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.</i> 17, 261&#x2013;267. doi: 10.1080/09553007014550291</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/4912514" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1080/09553007014550291" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Microcolony+survival+assay+for+cells+of+mouse+intestinal+mucosa+exposed+to+radiation%2E&#x0026;journal=Int%2E+J%2E+Radiat%2E+Biol%2E+Relat%2E+Stud%2E+Phys%2E+Chem%2E+Med%2E&#x0026;author=Withers+H.+R.&#x0026;author=Elkind+M.+M.&#x0026;publication_year=2009&#x0026;volume=17&#x0026;pages=261&#x2013;267" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B122" id="B122"></a>Yan, K. S., Gevaert, O., Zheng, G. X. Y., Anchang, B., Probert, C. S., Larkin, K. A., et al. (2017). Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. <i>Cell Stem Cell</i> 21, 78&#x2013;90.e6.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Intestinal+enteroendocrine+lineage+cells+possess+homeostatic+and+injury-inducible+stem+cell+activity%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Yan+K.+S.&#x0026;author=Gevaert+O.&#x0026;author=Zheng+G.+X.+Y.&#x0026;author=Anchang+B.&#x0026;author=Probert+C.+S.&#x0026;author=Larkin+K.+A.&#x0026;publication_year=2017&#x0026;volume=21&#x0026;pages=78&#x2013;90.e6" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B123" id="B123"></a>Yao, Y., Xu, X., Yang, L., Zhu, J., Wan, J., Shen, L., et al. (2020). Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. <i>Cell Stem Cell</i> 26, 17&#x2013;26.e6.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Patient-derived+organoids+predict+chemoradiation+responses+of+locally+advanced+rectal+cancer%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Yao+Y.&#x0026;author=Xu+X.&#x0026;author=Yang+L.&#x0026;author=Zhu+J.&#x0026;author=Wan+J.&#x0026;author=Shen+L.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=17&#x2013;26.e6" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B124" id="B124"></a>Yilmaz, &#x00D6;H., Katajisto, P., Lamming, D. W., G&#x00FC;ltekin, Y., Bauer-Rowe, K. E., Sengupta, S., et al. (2012). mTORC1 in the paneth cell niche couples intestinal stem-cell function to calorie intake. <i>Nature</i> 486, 490&#x2013;495. doi: 10.1038/nature11163</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/22722868" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nature11163" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=mTORC1+in+the+paneth+cell+niche+couples+intestinal+stem-cell+function+to+calorie+intake%2E&#x0026;journal=Nature&#x0026;author=Yilmaz+&#x00D6;H.&#x0026;author=Katajisto+P.&#x0026;author=Lamming+D.+W.&#x0026;author=G&#x00FC;ltekin+Y.&#x0026;author=Bauer-Rowe+K.+E.&#x0026;author=Sengupta+S.&#x0026;publication_year=2012&#x0026;volume=486&#x0026;pages=490&#x2013;495" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B125" id="B125"></a>Yin, X., Farin, H. F., van Es, J. H., Clevers, H., Langer, R., and Karp, J. M. (2014). Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. <i>Nat. Methods</i> 11, 106&#x2013;112. doi: 10.1038/nmeth.2737</p> <p class="ReferencesCopy2"><a href="https://pubmed.ncbi.nlm.nih.gov/24292484" target="_blank">PubMed Abstract</a> | <a href="https://doi.org/10.1038/nmeth.2737" target="_blank">CrossRef Full Text</a> | <a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Niche-independent+high-purity+cultures+of+Lgr5%2B+intestinal+stem+cells+and+their+progeny%2E&#x0026;journal=Nat%2E+Methods&#x0026;author=Yin+X.&#x0026;author=Farin+H.+F.&#x0026;author=van+Es+J.+H.&#x0026;author=Clevers+H.&#x0026;author=Langer+R.&#x0026;author=Karp+J.+M.&#x0026;publication_year=2014&#x0026;volume=11&#x0026;pages=106&#x2013;112" target="_blank">Google Scholar</a></p> </div> <div class="References" style="margin-bottom:0.5em;"> <p class="ReferencesCopy1"><a name="B126" id="B126"></a>Yu, S., Tong, K., Zhao, Y., Balasubramanian, I., Yap, G. S., Ferraris, R. P., et al. (2018). Paneth cell multipotency induced by notch activation following injury. <i>Cell Stem Cell</i> 23, 46&#x2013;59.e5.</p> <p class="ReferencesCopy2"><a href="http://scholar.google.com/scholar_lookup?&#x0026;title=Paneth+cell+multipotency+induced+by+notch+activation+following+injury%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Yu+S.&#x0026;author=Tong+K.&#x0026;author=Zhao+Y.&#x0026;author=Balasubramanian+I.&#x0026;author=Yap+G.+S.&#x0026;author=Ferraris+R.+P.&#x0026;publication_year=2018&#x0026;volume=23&#x0026;pages=46&#x2013;59.e5" target="_blank">Google Scholar</a></p> </div> </div> <div class="thinLineM20"></div> <div class="AbstractSummary"> <p><span>Keywords</span>: intestine, stem cell, plasticity, differentiation, single cell, organoid, regeneration, cancer</p> <p><span>Citation:</span> Bonis V, Rossell C and Gehart H (2021) The Intestinal Epithelium &#x2013; Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. <i>Front. Cell Dev. Biol.</i> 9:661931. doi: 10.3389/fcell.2021.661931</p> <p id="timestamps"> <span>Received:</span> 31 January 2021; <span>Accepted:</span> 21 April 2021;<br><span>Published:</span> 20 May 2021.</p> <div> <p>Edited by:</p> <a href="https://loop.frontiersin.org/people/994990/overview">Delilah Hendriks</a>, Hubrecht Institute (KNAW), Netherlands</div> <div> <p>Reviewed by:</p> <a href="https://loop.frontiersin.org/people/1224665/overview">Ramesh Shivdasani</a>, Dana&#x2013;Farber Cancer Institute, United States<br> <a href="https://loop.frontiersin.org/people/881358/overview">Vanesa Muncan</a>, University of Amsterdam, Netherlands</div> <p><span>Copyright</span> &#x00A9; 2021 Bonis, Rossell and Gehart. This is an open-access article distributed under the terms of the <a rel="license" href="http://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution License (CC BY)</a>. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</p> <p><span>*Correspondence:</span> Helmuth Gehart, <a id="encmail">aGVsbXV0aC5nZWhhcnRAYmlvbC5ldGh6LmNo</a></p> <p><sup>&#x2020;</sup>These authors share first authorship</p> <div class="clear"></div> </div></div></div> <p class="AbstractSummary__disclaimer"><span>Disclaimer: </span> All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. </p></div></div></main> <aside class="Layout__aside"><div class="ArticleDetails__wrapper"><div class="ArticleDetails__aside"><div class="ArticleDetails__aside__responsiveButtons"><div id="FloatingButtonsEl" class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--type ActionsDropDown__button--icon"><span class="ActionsDropDown__button__label">Download article</span></button> <div class="ActionsDropDown__menuWrapper"><!----> <ul class="ActionsDropDown__menu"><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/pdf" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-pdf" class="ActionsDropDown__option"> Download PDF </a></li><li><a href="http://www.readcube.com/articles/10.3389/fcell.2021.661931" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-readCube" class="ActionsDropDown__option"> ReadCube </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/epub" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-epub" class="ActionsDropDown__option"> EPUB </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/xml/nlm" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-nlmXml" class="ActionsDropDown__option"> XML (NLM) </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div> <div class="ArticleDetails__aside__responsiveButtons__items"><!----> <div class="ArticleDetailsShare__responsive"><button aria-label="Open share options" class="ArticleDetailsShare__trigger"></button> <div class="ArticleDetailsShare"><p class="ArticleDetailsShare__title">Share on</p> <ul class="ArticleDetailsShare__list"><li class="ArticleDetailsShare__item"><a href="https://www.twitter.com/share?url=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full" target="_blank" title="Share on X" aria-label="Share on X" class="ArticleDetailsShare__link ArticleDetailsShare__link--x"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.linkedin.com/share?url=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full" target="_blank" title="Share on Linkedin" aria-label="Share on Linkedin" class="ArticleDetailsShare__link ArticleDetailsShare__link--linkedin"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.facebook.com/sharer/sharer.php?u=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full" target="_blank" title="Share on Facebook" aria-label="Share on Facebook" class="ArticleDetailsShare__link ArticleDetailsShare__link--facebook"></a></li></ul></div></div> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--typeIconButton ActionsDropDown__button--iconQuote"><!----></button> <div class="ActionsDropDown__menuWrapper"><div class="ActionsDropDown__mobileTitle"> Export citation </div> <ul class="ActionsDropDown__menu"><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/endNote" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-endNote" class="ActionsDropDown__option"> EndNote </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/reference" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-referenceManager" class="ActionsDropDown__option"> Reference Manager </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/text" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-simpleTextFile" class="ActionsDropDown__option"> Simple Text file </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/bibTex" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-bibTex" class="ActionsDropDown__option"> BibTex </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div></div></div> <div class="TotalViews"><div class="TotalViews__data"><div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 20,6K </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Total views</div></div></div> <div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 3,7K </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Downloads</div></div></div> <div class="TotalViews__data__metrics"><div class="TotalViews__data__metrics__number"> 38 </div> <div class="TotalViews__data__metrics__text"><div class="TotalViews__data__metrics__label">Citations</div></div></div> <div class="ImpactMetricsInfoPopover"><button aria-label="Open impact metrics info" class="ImpactMetricsInfoPopover__button"></button> <div class="ImpactMetricsInfoPopover__tooltip"><button aria-label="Close impact metrics info" class="ImpactMetricsInfoPopover__tooltip__closeButton"></button> <div class="ImpactMetricsInfoPopover__tooltip__text"> Citation numbers are available from Dimensions </div></div></div></div> <div class="TotalViews__viewImpactLink"><span class="Link__wrapper"><a aria-label="View article impact" href="http://loop-impact.frontiersin.org/impact/article/661931#totalviews/views" target="_blank" data-event="customLink-link-a_viewArticleImpact" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View article impact</span></a></span></div> <div class="TotalViews__altmetric"><div data-badge-popover="bottom" data-badge-type="donut" data-doi="10.3389/fcell.2021.661931" data-condensed="true" data-link-target="new" class="altmetric-embed"></div> <span class="Link__wrapper"><a aria-label="View altmetric score" href="https://www.altmetric.com/details/doi/10.3389/fcell.2021.661931" target="_blank" data-event="customLink-link-a_viewAltmetricScore" class="Link Link--linkType Link--maincolor Link--medium Link--icon Link--chevronRight Link--right"><span>View altmetric score</span></a></span></div></div> <div class="ArticleDetailsShare"><p class="ArticleDetailsShare__title">Share on</p> <ul class="ArticleDetailsShare__list"><li class="ArticleDetailsShare__item"><a href="https://www.twitter.com/share?url=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full" target="_blank" title="Share on X" aria-label="Share on X" class="ArticleDetailsShare__link ArticleDetailsShare__link--x"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.linkedin.com/share?url=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full" target="_blank" title="Share on Linkedin" aria-label="Share on Linkedin" class="ArticleDetailsShare__link ArticleDetailsShare__link--linkedin"></a></li><li class="ArticleDetailsShare__item"><a href="https://www.facebook.com/sharer/sharer.php?u=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/full" target="_blank" title="Share on Facebook" aria-label="Share on Facebook" class="ArticleDetailsShare__link ArticleDetailsShare__link--facebook"></a></li></ul></div> <div class="ArticleDetailsEditors"><div class="ArticleDetailsEditors__editors"><div class="ArticleDetailsEditors__title">Edited by</div> <a href="https://loop.frontiersin.org/people/994990/overview" data-event="editorInfo-a-delilahHendriks" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/994990/32" alt="Delilah Hendriks" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name notranslate"> Delilah Hendriks </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation notranslate"> Princess Maxima Center for Pediatric Oncology, Netherlands </div></div></a></div></div> <div class="ArticleDetailsEditors"><div class="ArticleDetailsEditors__editors"><div class="ArticleDetailsEditors__title">Reviewed by</div> <a href="https://loop.frontiersin.org/people/881358/overview" data-event="editorInfo-a-vanesaMuncan" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/881358/32" alt="Vanesa Muncan" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name notranslate"> Vanesa Muncan </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation notranslate"> AMC Medical Research BV, University of Amsterdam, Netherlands </div></div></a><a href="https://loop.frontiersin.org/people/1224665/overview" data-event="editorInfo-a-rameshShivdasani" class="ArticleDetailsEditors__ediorInfo"><figure class="Avatar Avatar--size-32"><img src="https://loop.frontiersin.org/images/profile/1224665/32" alt="Ramesh Shivdasani" class="Avatar__img is-inside-mask"></figure> <div class="ArticleDetailsEditors__ediorInfo__info"><div class="ArticleDetailsEditors__ediorInfo__name notranslate"> Ramesh Shivdasani </div> <div class="ArticleDetailsEditors__ediorInfo__affiliation notranslate"> Dana–Farber Cancer Institute, United States </div></div></a></div></div> <div class="ArticleDetailsGlossary ArticleDetailsGlossary--open"><button class="ArticleDetailsGlossary__header"><div class="ArticleDetailsGlossary__header__title">Table of contents</div> <div class="ArticleDetailsGlossary__header__arrow"></div></button> <div class="ArticleDetailsGlossary__content"><ul class="flyoutJournal"> <li><a href="#h1">Abstract</a></li> <li><a href="#h2">Introduction</a></li> <li><a href="#h3">Simple Yet Diverse &#x2013; the Intestinal Epithelium</a></li> <li><a href="#h4">More Than Stroma &#x2013; the Intestinal Mesenchyme</a></li> <li><a href="#h5"><i>In vivo</i> Systems To Assess Niche Function and Epithelium-Mesenchyme Interactions</a></li> <li><a href="#h6">Cellular and Tissue Plasticity in the Intestinal Epithelium</a></li> <li><a href="#h7">Discussion</a></li> <li><a href="#h8">Author Contributions</a></li> <li><a href="#fun1">Funding</a></li> <li><a href="#conf1">Conflict of Interest</a></li> <li><a href="#refer1">References</a></li> </ul> </div></div> <!----> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--typeOutline ActionsDropDown__button--iconQuote"><span class="ActionsDropDown__button__label">Export citation</span></button> <div class="ActionsDropDown__menuWrapper"><!----> <ul class="ActionsDropDown__menu"><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/endNote" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-endNote" class="ActionsDropDown__option"> EndNote </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/reference" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-referenceManager" class="ActionsDropDown__option"> Reference Manager </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/text" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-simpleTextFile" class="ActionsDropDown__option"> Simple Text file </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/bibTex" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-bibTex" class="ActionsDropDown__option"> BibTex </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div> <div class="CheckForUpdates"><button data-target="crossmark" data-event="checkForUpdates-btn-openModal" class="CheckForUpdates__link"><img src="/article-pages/_nuxt/img/crossmark.5c8ec60.svg" alt="Crossmark icon" class="CheckForUpdates__link__img"> <div class="CheckForUpdates__link__text">Check for updates</div></button></div> <div class="Announcement"><p class="Announcement__title"> Research integrity at Frontiers </p> <article class="CardA"><div class="CardA__wrapper CardA__wrapper--vertical"><figure class="FrontiersImage CardA__img"><picture class="FrontiersImage"><source srcset="https://images-provider.frontiersin.org/api/ipx/w=440&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media="(max-width: 563px)"><source srcset="https://images-provider.frontiersin.org/api/ipx/s=320x400&amp;fit=outside&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media="(max-width: 1024px)"><source srcset="https://images-provider.frontiersin.org/api/ipx/s=268x280&amp;fit=outside&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media="(max-width: 1441px)"><source srcset="https://images-provider.frontiersin.org/api/ipx/s=366x408&amp;fit=outside&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media=""><source srcset="https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media=""> <img src="https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" alt="Man ultramarathon runner in the mountains he trains at sunset" loading="lazy" class="is-inside-mask"></picture> <!----></figure> <div class="CardA__info"><h2 class="CardA__title">94% of researchers rate our articles as excellent or good</h2> <p class="CardA__text">Learn more about the work of our research integrity team to safeguard the quality of each article we publish.</p> <br> <span class="Link__wrapper"><a aria-label="About our research integrity team" href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="customLink-link-a_findOutMore" class="Link Link--linkType Link--maincolor Link--small Link--icon Link--chevronRight Link--right"><span>Find out more </span></a></span></div></div></article></div> <!----> <!----></div> <!----> <div><div class="FloatingButtons"><!----> <div class="ActionsDropDown"><button aria-label="Open dropdown" data-event="actionsDropDown-button-toggle" class="ActionsDropDown__button ActionsDropDown__button--type ActionsDropDown__button--iconDownload"><span class="ActionsDropDown__button__label">Download article</span></button> <div class="ActionsDropDown__menuWrapper"><div class="ActionsDropDown__mobileTitle"> Download </div> <ul class="ActionsDropDown__menu"><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/pdf" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-pdf" class="ActionsDropDown__option"> Download PDF </a></li><li><a href="http://www.readcube.com/articles/10.3389/fcell.2021.661931" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-readCube" class="ActionsDropDown__option"> ReadCube </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/epub" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-epub" class="ActionsDropDown__option"> EPUB </a></li><li><a href="/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.661931/xml/nlm" target="_blank" rel="noopener noreferrer" data-event="actionsDropDown-a-nlmXml" class="ActionsDropDown__option"> XML (NLM) </a></li></ul> <button aria-label="Close modal" data-event="actionsDropDown-button-close" class="ActionsDropDown__mobileClose"></button></div></div></div> <!----></div></div></aside></div> <div class="Announcement Announcement--Responsive"><p class="Announcement__title"> Research integrity at Frontiers </p> <article class="CardA"><div class="CardA__wrapper CardA__wrapper--vertical"><figure class="FrontiersImage CardA__img"><picture class="FrontiersImage"><source srcset="https://images-provider.frontiersin.org/api/ipx/w=440&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media="(max-width: 563px)"><source srcset="https://images-provider.frontiersin.org/api/ipx/s=320x400&amp;fit=outside&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media="(max-width: 1024px)"><source srcset="https://images-provider.frontiersin.org/api/ipx/s=268x280&amp;fit=outside&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media="(max-width: 1441px)"><source srcset="https://images-provider.frontiersin.org/api/ipx/s=366x408&amp;fit=outside&amp;f=webp/https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media=""><source srcset="https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" media=""> <img src="https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png" alt="Man ultramarathon runner in the mountains he trains at sunset" loading="lazy" class="is-inside-mask"></picture> <!----></figure> <div class="CardA__info"><h2 class="CardA__title">94% of researchers rate our articles as excellent or good</h2> <p class="CardA__text">Learn more about the work of our research integrity team to safeguard the quality of each article we publish.</p> <br> <span class="Link__wrapper"><a aria-label="About our research integrity team" href="https://www.frontiersin.org/about/research-integrity" target="_self" data-event="customLink-link-a_findOutMore" class="Link Link--linkType Link--maincolor Link--small Link--icon Link--chevronRight Link--right"><span>Find out more </span></a></span></div></div></article></div> <div><!----></div></div></div> <!----> <footer class="Footer"><div class="Footer__wrapper"><div class="Footer__sections"><ul class="Accordion"><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Guidelines</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://www.frontiersin.org/guidelines/author-guidelines" target="_self" data-event="footer-block_0-a_authorGuidelines">Author guidelines</a></li><li><a href="https://www.frontiersin.org/guidelines/editor-guidelines" target="_self" data-event="footer-block_0-a_editorGuidelines">Editor guidelines</a></li><li><a href="https://www.frontiersin.org/guidelines/policies-and-publication-ethics" target="_self" data-event="footer-block_0-a_policiesAndPublicationE">Policies and publication ethics</a></li><li><a href="https://www.frontiersin.org/about/fee-policy" target="_self" data-event="footer-block_0-a_feePolicy">Fee policy</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Explore</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://www.frontiersin.org/articles" target="_self" data-event="footer-block_1-a_articles">Articles</a></li><li><a href="https://www.frontiersin.org/research-topics" target="_self" data-event="footer-block_1-a_researchTopics">Research Topics </a></li><li><a href="https://www.frontiersin.org/journals" target="_self" data-event="footer-block_1-a_journals">Journals</a></li><li><a href="https://www.frontiersin.org/about/how-we-publish" target="_self" data-event="footer-block_1-a_howWePublish">How we publish</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Outreach</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://forum.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersForum">Frontiers Forum </a></li><li><a href="https://policylabs.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersPolicyLabs">Frontiers Policy Labs </a></li><li><a href="https://kids.frontiersin.org/" target="_blank" data-event="footer-block_2-a_frontiersForYoungMinds">Frontiers for Young Minds</a></li><li><a href="https://www.frontiersplanetprize.org/" target="_blank" data-event="footer-block_2-a_frontiersPlanetPrize">Frontiers Planet Prize</a></li></ul></div></li><li class="Accordion__item"><button class="Accordion__headline"><!----> <div class="Accordion__title">Connect</div> <div class="Accordion__space"></div> <div class="Accordion__arrow"></div></button> <div class="Accordion__content Accordion__content--fadeOut" style="height:0px;"><ul><li><a href="https://helpcenter.frontiersin.org" target="_blank" data-event="footer-block_3-a_helpCenter">Help center</a></li><li><a href="https://loop.frontiersin.org/settings/email-preferences?a=publishers" target="_blank" data-event="footer-block_3-a_emailsAndAlerts">Emails and alerts </a></li><li><a href="https://www.frontiersin.org/about/contact" target="_self" data-event="footer-block_3-a_contactUs">Contact us </a></li><li><a href="https://www.frontiersin.org/submission/submit" target="_self" data-event="footer-block_3-a_submit">Submit</a></li><li><a href="https://careers.frontiersin.org/" target="_blank" data-event="footer-block_3-a_careerOpportunities">Career opportunities</a></li></ul></div></li></ul> <div class="Footer__socialLinks"><div class="Footer__socialLinks__title">Follow us</div> <span class="Link__wrapper"><a aria-label="Frontiers Facebook" href="https://www.facebook.com/Frontiersin" target="_blank" data-event="footer-facebook-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--facebook Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers Twitter" href="https://twitter.com/frontiersin" target="_blank" data-event="footer-twitter-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--twitter Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers LinkedIn" href="https://www.linkedin.com/company/frontiers" target="_blank" data-event="footer-linkedIn-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--linkedin Link--right"><span></span></a></span><span class="Link__wrapper"><a aria-label="Frontiers Instagram" href="https://www.instagram.com/frontiersin_" target="_blank" data-event="footer-instagram-a_" class="Link Link--linkType Link--grey Link--medium Link--icon Link--instagram Link--right"><span></span></a></span></div></div> <div class="Footer__copyright"><div><span>© 2025 Frontiers Media S.A. All rights reserved</span></div> <div><a href="https://www.frontiersin.org/legal/privacy-policy" target="_blank">Privacy policy</a> <span>|</span> <a href="https://www.frontiersin.org/legal/terms-and-conditions" target="_blank">Terms and conditions</a></div></div></div></footer> <div class="SnackbarWrapper"><ul class="SnackbarContainer"></ul></div></div></div></div><script>window.__NUXT__=(function(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,_,$,aa,ab,ac,ad,ae,af,ag,ah,ai,aj,ak,al,am,an,ao,ap,aq,ar,as,at,au,av,aw,ax,ay,az,aA,aB,aC,aD,aE,aF,aG,aH,aI,aJ,aK,aL,aM,aN,aO,aP,aQ,aR,aS,aT,aU,aV,aW,aX,aY,aZ,a_,a$,ba,bb,bc,bd,be,bf,bg,bh,bi,bj,bk,bl,bm,bn,bo,bp,bq,br,bs,bt,bu,bv,bw,bx,by,bz,bA,bB,bC,bD,bE,bF,bG,bH,bI,bJ,bK,bL,bM,bN,bO,bP,bQ,bR,bS,bT,bU,bV,bW,bX,bY,bZ,b_,b$,ca,cb,cc,cd,ce,cf,cg,ch,ci,cj,ck,cl,cm,cn,co,cp,cq,cr,cs,ct,cu,cv,cw,cx,cy,cz,cA,cB,cC,cD,cE,cF){ao.id=ap;ao.name=aq;ao.slug=ar;ao.specialtyId=1066;return {layout:"ArticleLayout",data:[{}],fetch:{},error:e,state:{currentJournal:{identifier:q,name:n,slug:r,banner:[{id:"0A59C792-A2E1-415E-85D099C64C84D821",src:V,name:"FCELL_Main Visual_Cyan_Website",tags:["medical","ovum","egg","bio","research","biotechnology","fertility","dip","embryo"],type:C,width:4000,height:2800,idHash:"5e173f6c9de75d21",archive:m,brandId:W,limited:m,fileSize:4767622,isPublic:c,original:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002F5e173f6c9de75d21\u002Foriginal\u002FFCELL_Main-Visual_Cyan_Website.jpeg",copyright:"Copyright (c) 2016 Andrii Vodolazhskyi\u002FShutterstock. No use without permission.",extension:["jpeg"],thumbnails:{mini:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002Fmini-31131127-62A1-428F-9791C66402EA9A89.jpg",thul:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002Fthul-A489C330-895B-4C21-8E418A47370C5002.jpg",webimage:V,Guidelines:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002F2B5B84D7-0911-4CC2-9A52483A64E7A115\u002FGuidelines-FCELL_Main Visual_Cyan_Website.png",WebsiteJpg_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002F2B5B84D7-0911-4CC2-9A52483A64E7A115\u002FWebsiteJpg_XL-FCELL_Main Visual_Cyan_Website.jpg",WebsiteWebP_L:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002F2B5B84D7-0911-4CC2-9A52483A64E7A115\u002FWebsiteWebP_L-FCELL_Main Visual_Cyan_Website.webp",WebsiteWebP_M:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002F2B5B84D7-0911-4CC2-9A52483A64E7A115\u002FWebsiteWebP_M-FCELL_Main Visual_Cyan_Website.webp",WebsiteWebP_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002F2B5B84D7-0911-4CC2-9A52483A64E7A115\u002FWebsiteWebP_XL-FCELL_Main Visual_Cyan_Website.webp"},dateCreated:X,description:"Two-cell embryo, Mitosis under microscope",orientation:D,userCreated:"Caroline Sutter",watermarked:m,dateModified:X,datePublished:"2022-06-27T09:27:09Z",ecsArchiveFiles:[],propertyOptions:["414FB2D4-2283-43FD-BE14E534ECA67928","6C18119B-14BD-4951-B437696F4357BD33","7C692885-DB25-4858-B1FB4FF47B241E9B","D88C0047-EC30-4506-A7DF28A4D765E1CF"],property_Channel:["frontiersin_org"],"property_Sub-Type":["Main_Visual"],property_Asset_Type:["Photography"],activeOriginalFocusPoint:{x:Y,y:1400},property_Office_Department:["Publishing"]}],description:"The world's most cited developmental biology journal, advancing our understanding of the fundamental processes of life. It explores a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics.",mission:"\u003Cp\u003EFrontiers in Cell and Developmental Biology is an interdisciplinary journal that focuses on the fundamental biological processes of life.\u003C\u002Fp\u003E\n\n\u003Cp\u003ELed by Field Chief Editor Prof Amanda Gay Fisher (University of Oxford, UK), this journal is indexed in PubMed Central (PMC), Scopus, Web of Science (SCIE), and the DOAJ, among others, and welcomes submissions on intracellular and extracellular dynamics.\u003C\u002Fp\u003E\n\n\u003Cp\u003EThe journal covers a wide spectrum of topics within cell and developmental biology including, but not limited to:\u003C\u002Fp\u003E\n\u003Cul\u003E\n \u003Cli\u003Ecancer cell biology\u003C\u002Fli\u003E\n \u003Cli\u003Ecell adhesion and migration\u003C\u002Fli\u003E\n \u003Cli\u003Ecell death and survival\u003C\u002Fli\u003E\n \u003Cli\u003Ecell growth and division\u003C\u002Fli\u003E\n \u003Cli\u003Ecellular biochemistry\u003C\u002Fli\u003E\n \u003Cli\u003Edevelopmental epigenetics\u003C\u002Fli\u003E\n \u003Cli\u003Eembryonic development\u003C\u002Fli\u003E\n \u003Cli\u003Eepigenomics and epigenetics\u003C\u002Fli\u003E\n \u003Cli\u003Eevolutionary developmental biology\u003C\u002Fli\u003E\n \u003Cli\u003Emembrane traffic and organelle dynamics\u003C\u002Fli\u003E\n \u003Cli\u003Emolecular and cellular pathology\u003C\u002Fli\u003E\n \u003Cli\u003Emolecular and cellular reproduction\u003C\u002Fli\u003E\n \u003Cli\u003Emorphogenesis and patterning\u003C\u002Fli\u003E\n \u003Cli\u003Enuclear organization and dynamics\u003C\u002Fli\u003E\n \u003Cli\u003Esignaling\u003C\u002Fli\u003E\n \u003Cli\u003Estem cell research.\u003C\u002Fli\u003E\n\u003C\u002Ful\u003E\n\n\u003Cp\u003EIn addition, Frontiers in Cell and Developmental Biology is interested in fundamental and translational research in molecular medicine and stem cell biology. The journal also welcomes submissions which support and advance the UN’s Sustainable Development Goals (SDGs), notably SDG 3: good health and well-being.\u003C\u002Fp\u003E\n\n\u003Cp\u003EManuscripts that focus solely on bioinformatics, computational analysis, or theoretical modeling without experimental validation are not suitable for publication in this journal. Additionally, studies that only report the therapeutic efficacy of certain compounds or treatments without providing insights into the underlying cellular and developmental biology mechanisms are not within the scope of this journal.\u003C\u002Fp\u003E\n\n\u003Cp\u003EFrontiers in Cell and Developmental Biology is committed to advancing developments in the field by allowing unrestricted access to articles and communicating scientific knowledge to researchers and the public alike, to enable the scientific breakthroughs of the future.\u003C\u002Fp\u003E\n\n\u003Cp\u003EEthics Statement:\u003C\u002Fp\u003E\n\n\u003Cp\u003EAll manuscripts submitted to Cell and Developmental Biology that have been conducted in human subjects must conform with current regulations and the Declaration of Helsinki. Ethics committee approval and informed patient consent are required for studies involving human subjects. Ethics committee approval is also needed for studies involving animals. Phase I - Phase IV clinical trials submitted for publication in Frontiers in Cell and Developmental Biology must have been registered with an appropriate public trials registry at the time or before the first patient enrolment. The information on the clinical trial registration (Unique Identifier and URL) must be included in the abstract. Authors are required to disclose all apparent or potential conflicts of interest according to the ICMJE guidelines and those of Frontiers. \u003C\u002Fp\u003E\n\n\u003Cp\u003EFrontiers follows the guidelines and best practice recommendations published by the Committee on Publication Ethics (COPE). Authors should refer to the author guidelines for full details.\u003C\u002Fp\u003E",palette:"cyan",impactFactor:"5.5",citeScore:"6.3",citations:"149000",showTagline:e,twitter:"@FrontCellDevBio",__typename:"Journal"},currentFrontiersJournal:{id:q,name:n,slug:r,printISSN:e,shortName:E,electronicISSN:F,abbreviation:Z,specialtyId:e,publicationDate:e,isOnline:g,isOpenForSubmissions:g,spaceId:c,field:{id:G,domainId:c,__typename:"journal_field"},__typename:a},articleHubSlug:h,articleHubPage:H,currentArticle:{id:661931,doi:_,title:$,acceptanceDate:new Date(1618991314000),receptionDate:new Date(1612105226000),publicationDate:new Date(1621468800000),isPublished:g,abstract:aa,researchTopic:{id:14660,title:"Mechanisms of Cellular Differentiation, Organ Development, and Novel Model Systems",articlesCount:25,isMagazinePage:l,slug:"mechanisms-of-cellular-differentiation-organ-development-and-novel-model-systems",isOpenForSubmission:l},articleType:{id:27,name:"Review"},stage:{id:I,name:h},keywords:["intestine","stem cell","plasticity","differentiation","single cell","Organoid","Regeneration","Cancer"],authors:[{id:ab,firstName:ac,lastName:"Bonis",givenNames:ac,isCorresponding:l,isProfilePublic:g,userId:ab,affiliations:[{organizationName:J,countryName:K,cityName:h,stateName:h,zipCode:h}]},{id:ad,firstName:ae,lastName:"Rossell",givenNames:ae,isCorresponding:l,isProfilePublic:g,userId:ad,affiliations:[{organizationName:J,countryName:K,cityName:h,stateName:h,zipCode:h}]},{id:af,firstName:ag,lastName:"Gehart",givenNames:ag,isCorresponding:l,isProfilePublic:g,userId:af,affiliations:[{organizationName:J,countryName:K,cityName:h,stateName:h,zipCode:h}]}],editors:[{id:ah,firstName:ai,lastName:"Hendriks",givenNames:ai,isCorresponding:l,isProfilePublic:g,userId:ah,affiliations:[{organizationName:"Princess Maxima Center for Pediatric Oncology",countryName:aj,cityName:h,stateName:h,zipCode:h}]}],reviewers:[{id:ak,firstName:al,lastName:"Muncan",givenNames:al,isCorresponding:l,isProfilePublic:g,userId:ak,affiliations:[{organizationName:"AMC Medical Research BV, University of Amsterdam",countryName:aj,cityName:h,stateName:h,zipCode:h}]},{id:am,firstName:an,lastName:"Shivdasani",givenNames:an,isCorresponding:l,isProfilePublic:g,userId:am,affiliations:[{organizationName:"Dana–Farber Cancer Institute",countryName:"United States",cityName:h,stateName:h,zipCode:h}]}],journal:{id:q,slug:r,name:n,shortName:E,electronicISSN:F,field:{id:G,domainId:c},specialtyId:e,journalSectionPaths:[{section:ao}]},section:ao,impactMetrics:{views:20628,downloads:3651,citations:38},volume:L,articleVolume:"Volume 9 - 2021",relatedArticles:[],isPublishedV2:l,contents:{titleHtml:"The Intestinal Epithelium &#x2013; Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip",fullTextHtml:"\u003Cdiv class=\"JournalAbstract\"\u003E\r\n\u003Ca id=\"h1\" name=\"h1\"\u003E\u003C\u002Fa\u003E\r\n\u003Cdiv class=\"authors\"\u003E\u003Cspan class=\"author-wrapper notranslate\"\u003E\r\n\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F1218360\" class=\"user-id-1218360\"\u003E\u003Cimg class=\"pr5\" src=\"https:\u002F\u002Floop.frontiersin.org\u002Fimages\u002Fprofile\u002F1218360\u002F74\" onerror=\"this.onerror=null;this.src='https:\u002F\u002Floop.frontiersin.org\u002Fcdn\u002Fimages\u002Fprofile\u002Fdefault_32.jpg';\" alt=\"\\r\\nVangelis Bonis&#x;\"\u003EVangelis Bonis\u003C\u002Fa\u003E\u003Csup\u003E&#x2020;\u003C\u002Fsup\u003E\u003C\u002Fspan\u003E\u003Cspan class=\"author-wrapper notranslate\"\u003E\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F1246986\" class=\"user-id-1246986\"\u003E\u003Cimg class=\"pr5\" src=\"https:\u002F\u002Floop.frontiersin.org\u002Fimages\u002Fprofile\u002F1246986\u002F74\" onerror=\"this.onerror=null;this.src='https:\u002F\u002Floop.frontiersin.org\u002Fcdn\u002Fimages\u002Fprofile\u002Fdefault_32.jpg';\" alt=\"Carla Rossell&#x;\"\u003ECarla Rossell\u003C\u002Fa\u003E\u003Csup\u003E&#x2020;\u003C\u002Fsup\u003E\u003C\u002Fspan\u003E\u003Cspan class=\"author-wrapper notranslate\"\u003E\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F1051420\" class=\"user-id-1051420\"\u003E\u003Cimg class=\"pr5\" src=\"https:\u002F\u002Floop.frontiersin.org\u002Fimages\u002Fprofile\u002F1051420\u002F74\" onerror=\"this.onerror=null;this.src='https:\u002F\u002Floop.frontiersin.org\u002Fcdn\u002Fimages\u002Fprofile\u002Fdefault_32.jpg';\" alt=\"Helmuth Gehart*\"\u003EHelmuth Gehart\u003C\u002Fa\u003E\u003Csup\u003E*\u003C\u002Fsup\u003E\u003C\u002Fspan\u003E\u003C\u002Fdiv\u003E\r\n\u003Cul class=\"notes\"\u003E\r\n\u003Cli class=\"pl0\"\u003EInstitute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland\u003C\u002Fli\u003E\r\n\u003C\u002Ful\u003E\r\n\u003Cp class=\"mb0\"\u003EThe single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Despite its seemingly simple architecture, the intestinal lining consists of highly distinct cell populations that are continuously renewed by the same stem cell population. The need to maintain balanced diversity of cell types in an unceasingly regenerating tissue demands intricate mechanisms of spatial or temporal cell fate control. Recent advances in single-cell sequencing, spatio-temporal profiling and organoid technology have shed new light on the intricate micro-structure of the intestinal epithelium and on the mechanisms that maintain it. This led to the discovery of unexpected plasticity, zonation along the crypt-villus axis and new mechanism of self-organization. However, not only the epithelium, but also the underlying mesenchyme is distinctly structured. Several new studies have explored the intestinal stroma with single cell resolution and unveiled important interactions with the epithelium that are crucial for intestinal function and regeneration. In this review, we will discuss these recent findings and highlight the technologies that lead to their discovery. We will examine strengths and limitations of each approach and consider the wider impact of these results on our understanding of the intestine in health and disease.\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"JournalFullText\"\u003E\r\n\u003Ca id=\"h2\" name=\"h2\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EIntroduction\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb0\"\u003EAs a single-layered columnar epithelium, the cell lining that covers the digestive tract appears deceptively simple. However, the epithelium and the underlying mesenchyme is exquisitely structured. This is necessary to protect stem cells from the harsh environment inside the intestinal lumen, to optimize nutrient uptake and to maintain a seamless barrier that protects against mechanical stress, low pH and pathogen invasion. These diverse requirements led to the evolution of crypt and villus domains, which support regeneration and nutrient uptake respectively. Within each domain, we find even more refined zonation with certain cell types and functions appearing only in specific positions along this crypt-villus axis. The existence of refined spatial organization is unexpected, when we consider the other defining characteristic of the epithelium: continuous proliferation. The epithelium turns over every 2&#x2013;4 days in mice and every 2&#x2013;5 days in humans (\u003Ca href=\"#B22\"\u003EDarwich et al., 2014\u003C\u002Fa\u003E). The same continuously dividing stem cell population at the bottom of intestinal crypts generates all intestinal epithelial cells. Their offspring moves from the crypt up the villus to be eventually shed into the lumen at the villus tip. Therefore, the intestinal epithelial cell sheet is in continuous motion and moves up to half a millimeter per day. Despite this movement, the general spatial organization in the epithelium remains static. This is only possible since positional cues repeatedly induce and suppress cell fates in individual cells along their journey toward the villus tip. As a result, cells of the intestinal epithelium have to remain plastic and highly responsive to environmental cues that instruct their fate and function throughout their lifetime. In this review, we will explore this intricate link between spatial organization and plasticity in health and disease. We will highlight recent findings and discuss the advantages and disadvantages of the new methods and technologies that uncovered the full extent of structured diversity in the intestine.\u003C\u002Fp\u003E\r\n\u003Ch3\u003EForm Follows Function\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003EEvolution integrated the conflicting needs for maximized absorption and barrier function by creating crypts and villi (see \u003Ca href=\"#F1\"\u003EFigure 1A\u003C\u002Fa\u003E). Villi are capillary-rich protrusions into the intestinal lumen of 1.6 mm (proximal) to 0.5 mm (distal) length. They increase the epithelial surface by a factor of 30 in the small intestine, but are completely absent in the colon. A continuous, postmitotic single layer of intestinal epithelial cells (mostly enterocytes) covers villi and increases the absorptive surface another 600 times due to the presence of microvilli on each cell (\u003Ca href=\"#B52\"\u003EKiela and Ghishan, 2016\u003C\u002Fa\u003E). Crypts are facing away from the intestinal lumen and sit in invaginations of the intestinal mucosa. They form pockets of approximately 44 &#x03BC;m in diameter and connect to the intestinal lumen only \u003Ci\u003Evia\u003C\u002Fi\u003E a small opening (around 3 &#x03BC;m), due to dense packing of cells (\u003Ca href=\"#B62\"\u003EMaj et al., 2003\u003C\u002Fa\u003E). The microenvironment within the crypt is further isolated from the digestive process by a continuous outflow of mucus and anti-microbial products. The purpose of this mechanism is to flush potential contaminants out of the crypt and protect the regenerative compartment below. This regenerative zone sits lower in the crypt and consists of a progenitor zone in the crypt middle and a stem cell zone at the very bottom (see \u003Ca href=\"#F1\"\u003EFigure 1A\u003C\u002Fa\u003E). Here, at the crypt bottom stem cells divide unceasingly to fuel the continuous replacement of cells lost at villus tips.\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 1\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"FigureDesc\"\u003E\r\n\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg\" name=\"figure1\" target=\"_blank\"\u003E\r\n\n \u003Cpicture\u003E\n \u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=480&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg\" media=\"(max-width: 563px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=370&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg\" media=\"(max-width: 1024px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=290&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg\" media=\"(max-width: 1441px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=410&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg\" media=\"\"\u003E\u003Csource type=\"image\u002Fjpg\" srcset=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg\" media=\"\"\u003E \u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg\" alt=\"www.frontiersin.org\" id=\"F1\" loading=\"lazy\"\u003E\n \u003C\u002Fpicture\u003E\n\u003C\u002Fa\u003E\r\n\u003Cp\u003E\u003Cstrong\u003EFigure 1.\u003C\u002Fstrong\u003E Structure of the intestine. \u003Cb\u003E(A)\u003C\u002Fb\u003E The intestine is organized in crypt-villus units. At the bottom of the crypt, in the stem cell zone crypt-base columnar cells (CBCs) act as stem cells of the tissue and are intercalated between Paneth cells. Paneth cells are the primary niche of CBCs and provide them with Notch ligands, EGF, and WNTs to support their continuous proliferation. At the same time Paneth cells also produce anti-microbial products to protect CBCs. In the Transit Amplifying zone (TA zone) the highly proliferative absorptive and slow dividing secretory progenitors differentiate to their respective lineage. The ratio between absorptive and secretory progenitors is controlled \u003Ci\u003Evia\u003C\u002Fi\u003E lateral inhibition. Epithelial cells moving from the crypt bottom toward the villus encounter several opposing signaling gradients, among them WNT and BMP. WNT signals, which are necessary for the stemness of CBCs, are higher at the crypt bottom and gradually decrease toward the villus, while increasing BMP levels induce differentiation and gradual fate changes as cells rise up toward the villus tips. These signaling gradients are shaped by mesenchymal populations, such as fibroblasts or telocytes. Distinct populations with differing secretory profiles constitute the mesenchymal stem cell niche adjacent to crypts or induce continuous fate changes along the villus. Gray solid arrows indicate cells with Notch activity. \u003Cb\u003E(B)\u003C\u002Fb\u003E Cell fate determination in the intestinal epithelium. Once CBCs leave the stem cell zone, they start to differentiate either toward the absorptive or the secretory fate depending on Notch signals. Secretory progenitor cells can give rise to Paneth cells, goblet cells, Tuft cells and enteroendocrine cells, while absorptive progenitors can give rise to microfold cells and enterocytes. However, fate changes are not unidirectional and can be reverted upon appropriate environmental stimuli, such as tissue damage. Likewise, certain intestinal epithelial populations (e.g., enterocytes, EE cells, and goblet cells) dynamically acquire and lose different functions and thus cell identities in the course of their lives due to the instructive capacity of changing environments that they traverse as they move along crypt and villus. Black solid arrows indicate cell fate decisions during the differentiation process and gray dotted arrows indicate documented plasticity events by distinct cell populations.\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Ca id=\"h3\" name=\"h3\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003ESimple Yet Diverse &#x2013; the Intestinal Epithelium\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb0\"\u003EStarting from the crypt bottom toward villus tips we encounter different epithelial cell types in distinct positions. In the following, we will highlight which cells form the intestinal epithelium and how their characteristics and function vary along the crypt villus axis (see \u003Ca href=\"#F1\"\u003EFigure 1B\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Ch3\u003ECrypt-Base-Columnar Cells\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb15\"\u003ECrypt-base-columnar cells (CBCs) are continuously dividing intestinal stem cells that generate all other epithelial cell types. They reside exclusively at the bottom of crypts wedged between Paneth cells. CBCs divide every 21&#x2013;24 h in mice and produce two equipotent daughter cells (\u003Ca href=\"#B27\"\u003EDudhwala et al., 2020\u003C\u002Fa\u003E). Each crypt contains around 15 intestinal stem cells (mouse) although stem cell numbers vary with age. In humans, stem cell numbers are high from birth throughout teenage years, but drop threefold in adults (\u003Ca href=\"#B27\"\u003EDudhwala et al., 2020\u003C\u002Fa\u003E). In rodents and humans CBCs are identifiable by their expression of LGR5, a receptor for R-spondins (RSPO) (\u003Ca href=\"#B6\"\u003EBarker et al., 2007\u003C\u002Fa\u003E). When LGRs bind RSPOs they prolong and potentiate the action of local WNT signals, which is essential for stem cell maintenance (\u003Ca href=\"#B44\"\u003EHao et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B56\"\u003EKoo et al., 2012\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EIn a process termed &#x201C;neutral competition&#x201D; all stem cells vie for niche space between Paneth cells (\u003Ca href=\"#B61\"\u003ELopez-Garcia et al., 2010\u003C\u002Fa\u003E; \u003Ca href=\"#B102\"\u003ESnippert et al., 2010\u003C\u002Fa\u003E). Paneth cells, as primary niche cells, provide essential Notch ligands, EGF and (in the mouse) WNT signals. Since Notch signaling can only be induced \u003Ci\u003Evia\u003C\u002Fi\u003E direct cell&#x2013;cell contact, membrane contact to a Notch ligand presenting cell in a high-WNT environment is the limiting resource in the stem cell zone. Stem cells that fail to establish niche interactions move up in the crypt to the progenitor zone, where they further differentiate. The continuous competition in the niche is a quality control mechanism that ensures that a healthy stem cell population occupies each crypt. Should a cell suffer DNA damage, a toxic insult or a mutation that reduces its replicative fitness, it will soon be outcompeted by healthy, faster cycling stem cells in the niche and thus expelled from the stem cell zone. Neutral drift dynamics were identified by tracing CBC clones using Confetti &#x2013; a multicolor labeling strategy. This Cre-loxP based system stochastically recombines a construct containing four inversely arranged fluorescent proteins. Individual clones could then be identified by the expression of a random combination of these fluorescent proteins (\u003Ca href=\"#B60\"\u003ELivet et al., 2007\u003C\u002Fa\u003E). \u003Ca href=\"#B102\"\u003ESnippert et al. (2010)\u003C\u002Fa\u003E used Confetti to follow the fates of clonally labeled LGR5+ cells and demonstrated crypts drifting to monoclonality (become single colored) after an average of 8 weeks. This means that intestinal stem cells appear static in terms of size and positon on a population level but undergo continuous drifts and shifts in clonal composition.\u003C\u002Fp\u003E\r\n\u003Ch3\u003EPaneth Cells\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003EPaneth cells, the primary niche cell for intestinal stem cells, are wedge-shaped secretory cells at the crypt bottom. They contain secretory granules that are filled with antimicrobial products (lysozyme, &#x03B1;- defensins, and phospholipase A2). Low-level release of these products is constitutive, which confers antimicrobial properties to the intestinal mucosa. However, Paneth cells can also drastically increase their secretion in response to IFN-&#x03B3;, which leads to complete degranulation and extrusion of the cell into the lumen (\u003Ca href=\"#B30\"\u003EFarin et al., 2014\u003C\u002Fa\u003E). The antimicrobial arsenal of Paneth cells gives it broad protective properties against bacteria and even enveloped viruses. Paneth cells do not move with the stream of differentiating cells toward villus tips. Instead, they remain firmly at crypt bottoms due to their expression of Ephrin type-B receptors, which repulses them from the differentiating cell zone, which produces Ephrin-B (\u003Ca href=\"#B10\"\u003EBatlle et al., 2002\u003C\u002Fa\u003E). Paneth cells interact with CBCs on multiple levels. Paneth cell derived EGF and WNT contributes to niche establishment, but is dispensable due to production of the same signaling factors by the surrounding mesenchyme. In fact, WNT production in Paneth cells is limited to the mouse small intestine, since neither the equivalent niche cells in the colon (deep crypt secretory cells) nor human Paneth cells produce the ligand (\u003Ca href=\"#B94\"\u003ESasaki et al., 2016\u003C\u002Fa\u003E). Notch signals, on the other hand, are (under homeostatic conditions) only provided by Paneth cells at the crypt bottom and are together with availability of WNT stimulation the &#x201C;limiting factor&#x201D; that determines stem cell niche size. Despite the fact that Paneth cells provide key signaling molecules to CBCs, their depletion does not result in immediate stem cell loss. CBCs differentiate in absence of Notch signals in high WNT environments directly to Paneth cells (\u003Ca href=\"#B125\"\u003EYin et al., 2014\u003C\u002Fa\u003E), which causes immediate replenishment of the Paneth cell pool and reestablishment of the niche. Even if diphtheria toxin-mediated Paneth cell ablation is prolonged, alternative niche cells (early enteroendocrine and goblet cells) express DLL1 and can maintain the LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cell pool (\u003Ca href=\"#B116\"\u003EVan Es et al., 2019\u003C\u002Fa\u003E). Earlier studies had indicated that epithelial niche cells might be dispensable altogether, based on intact CBC populations despite complete loss of secretory cells (including Paneth cells) in ATOH\u003Csup\u003E&#x2013;\u002F&#x2013;\u003C\u002Fsup\u003E animals (\u003Ca href=\"#B53\"\u003EKim et al., 2012\u003C\u002Fa\u003E). However, loss of ATOH in CBCs artificially simulates continuous NOTCH stimulation (as Notch signaling suppresses ATOH expression), which makes a Notch-ligand expressing niche cell indeed unnecessary. Therefore, these experiments prove redundancy of Paneth cell derived EGF and WNT, but do not conflict with the essential nature of epithelial-niche-derived Notch signals. In fact, the influence of Paneth cells may go beyond direct signaling. A comparison of metabolic activity in CBCs and Paneth cells revealed that the former relied mainly on oxidative phosphorylation, while the latter depended on glycolysis. Lactate, the product of Paneth cell glycolysis, could serve as respiratory substrate for CBCs and contribute to the control of stem cell differentiation \u003Ci\u003Evia\u003C\u002Fi\u003E ROS induced p38 activation (\u003Ca href=\"#B90\"\u003ERodr&#x00ED;guez-Colman et al., 2017\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Ch3\u003ETransit Amplifying Cells\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003ETransit amplifying (TA) cells reside in the zone directly above the stem cell zone and are common progenitors of the absorptive lineage. TAs replicate up to six times with an even shorter cell cycle (&#x223C;12 h) than CBC cells before they enter a postmitotic state and differentiate further (\u003Ca href=\"#B84\"\u003EPotten, 1998\u003C\u002Fa\u003E). TAs require active Notch signaling in a low-WNT environment to commit to their absorptive fate. Notch ligands are provided by progenitors of the secretory lineage (see below), which induce absorptive fate in all surrounding progenitors in a process termed lateral inhibition. Lateral inhibition maintains a stable ratio between the lineages and ensures that the majority of progenitors will assume absorptive fate and become enterocytes.\u003C\u002Fp\u003E\r\n\u003Ch3\u003ESecretory Progenitors\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003ESimilar to TAs, secretory progenitors are direct offspring of CBC cells. They are the common progenitor of the secretory lineage and give rise to Paneth cells, goblet cells, enteroendocrine cells, and Tuft cells. In contrast to TAs, they show a very low proliferative index (\u003Ca href=\"#B9\"\u003EBasak et al., 2014\u003C\u002Fa\u003E). Low mitotic activity is due to lack of Notch signaling in secretory progenitors. HES1, the direct target of Notch activation, is absent and cannot repress the cycle inhibitors \u003Ci\u003Ep27KIP1\u003C\u002Fi\u003E and \u003Ci\u003Ep57KIP2\u003C\u002Fi\u003E, which would be essential to maintain a proliferative state (\u003Ca href=\"#B88\"\u003ERiccio et al., 2008\u003C\u002Fa\u003E). Instead, secretory progenitors express ATOH1 (likewise, due to lack of \u003Ci\u003EHES1\u003C\u002Fi\u003E repression), which induces expression of Notch-Ligands (DLL1 and DLL4) and thus stimulates Notch signaling (and absorptive fate) in all surrounding cells. ATOH1 is crucial for maintenance of secretory identity, since even specified secretory cells trans-differentiated to absorptive cells when \u003Ci\u003EATOH1\u003C\u002Fi\u003E was depleted (\u003Ca href=\"#B29\"\u003EDurand et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B54\"\u003EKim et al., 2014\u003C\u002Fa\u003E). The existence of a single multi-potent secretory progenitor population has recently been challenged by the observation that Paneth cells and enteroendocrine cells, but not goblet cells arise from a progenitor population with high non-canonical WNT signaling (\u003Ca href=\"#B18\"\u003EB&#x00F6;ttcher et al., 2021\u003C\u002Fa\u003E). Future studies will have to address, whether distinct secretory progenitor populations exist or whether a plastic continuum of secretory progenitors differentiates to individual cell types based on environmental signal inputs.\u003C\u002Fp\u003E\r\n\u003Ch3\u003EGoblet Cells\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003EGoblet cells secrete mucus that lubricates the intestinal lumen and forms a protective layer on the epithelium. Beyond their secretory function, goblet cells can also deliver luminal antigens to dendritic cells to induce tolerance (\u003Ca href=\"#B65\"\u003EMcDole et al., 2012\u003C\u002Fa\u003E). Goblet cells are the most numerous among the secretory cells and appear to constitute the default differentiation path for secretory progenitors in absence of other stimuli. In fact, combined inhibition of Notch and WNT signaling is sufficient to completely convert CBC cells to goblet cells (\u003Ca href=\"#B125\"\u003EYin et al., 2014\u003C\u002Fa\u003E). Recent reports have shed light on the surprising diversity of individual goblet cells. Specialized goblet cells at the crypt opening, so-called sentinel goblet cells, continuously sample the environment by endocytosis. Upon detection of bacterial products (LPS, flagellin, and P3CSK4) these cells release mucus and stimulate other goblet cells lower in the crypt to do the same (\u003Ca href=\"#B15\"\u003EBirchenough et al., 2016\u003C\u002Fa\u003E). Another study identified five distinct goblet-cell types in the human colon in distinct spatial arrangement. Interestingly, the ratios between these goblet-cell populations shifted significantly in patients with ulcerative colitis, indicating a direct link between disease state and goblet-cell fate (\u003Ca href=\"#B78\"\u003EParikh et al., 2019\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Ch3\u003EEnteroendocrine Cells\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003EEnteroendocrine (EE) cells are hormone-producing cells that coordinate intestinal functions with the wider organism. Depending on the enteroendocrine cell type and thus the secreted hormonal product, they regulate intestinal motility, satiety, insulin secretion, immune responses, or release of digestive enzymes [for a detailed review, please see \u003Ca href=\"#B13\"\u003EBeumer et al. (2020)\u003C\u002Fa\u003E]. The number of individual EE-cell types is a matter of active debate. Originally, their primary hormonal product classified EE cells. However, improved immunostaining and single-cell techniques revealed multi-hormonal cells and regional differences that do not conform to this definition (\u003Ca href=\"#B42\"\u003EHabib et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B41\"\u003EHaber et al., 2017\u003C\u002Fa\u003E). Recently, real-time-resolved fate mapping identified these multi-hormonal cells as transition stages of trans-differentiation events that occurred during the normal lifecycle of certain EE lineages (\u003Ca href=\"#B37\"\u003EGehart et al., 2019\u003C\u002Fa\u003E). The authors used Neurog3Chrono, a highly sensitive genetic pulse-chase timer, in conjunction with single-cell sequencing to generate a comprehensive map of enteroendocrine fate with real-time resolution. This map identified key regulators of enteroendocrine differentiation and revealed direct transitions between mature enteroendocrine populations with discrete hormonal profiles as part of normal homeostasis. This enteroendocrine plasticity is closely linked to the movement of EE cells through the changing signaling environment from crypt to villus. BMP signaling, which increases in strength with distance from the crypt bottom, suppressed production of hormones such as GLP1 or TAC1 and promoted expression of villus-enriched hormones such as Secretin or NTS (\u003Ca href=\"#B12\"\u003EBeumer et al., 2018\u003C\u002Fa\u003E). The net result is hormonal zonation, where the same EE cells express and secrete different hormones as they move up the crypt villus axis. However, movement of EE cells appears to be at least partially uncoupled from that of enterocytes. EE cells resided in crypts much longer than absorptive cells. Most EE cells started leaving the crypt at around 60 h after onset of differentiation (\u003Ca href=\"#B37\"\u003EGehart et al., 2019\u003C\u002Fa\u003E), but individual EE cells remained in the crypt longer than 5 days (\u003Ca href=\"#B1\"\u003EAiken et al., 1994\u003C\u002Fa\u003E). Next to their primary function, differentiating EE cells could also serve as reserve niche cells for CBCs upon Paneth cell depletion, due to their expression of Notch ligands (\u003Ca href=\"#B116\"\u003EVan Es et al., 2019\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Ch3\u003ETuft Cells\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003EWith a prevalence around 0.4% of all intestinal epithelial cells, Tuft cells are even rarer than EE cells. Similar to EE cells they are chemosensory cells, but do not produce hormones. Instead, they are closely related to taste receptor cells and express necessary components of taste perception, such as alpha-gustducin and TRPM5. They use their chemosensory ability to initiate type II immune responses in the intestinal epithelium upon detection of parasites, such as helminths or certain protozoa (\u003Ca href=\"#B38\"\u003EGerbe et al., 2016\u003C\u002Fa\u003E; \u003Ca href=\"#B45\"\u003EHowitt et al., 2016\u003C\u002Fa\u003E; \u003Ca href=\"#B118\"\u003EVon Moltke et al., 2016\u003C\u002Fa\u003E). When a Tuft cell detects parasitic infection (\u003Ci\u003Evia\u003C\u002Fi\u003E yet unknown ligands) it secretes IL-25 to stimulate IL-13 release in group 2 innate lymphoid cells. This sets off a cascade that imposes strong differentiation bias on intestinal epithelial progenitors and changes epithelial composition to facilitate expulsion of the parasite (for details see &#x201C;Inflammation-related plasticity&#x201D; below).\u003C\u002Fp\u003E\r\n\u003Ch3\u003EM Cells\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003EMicrofold (M) cells are not evenly distributed along the intestine, but locally concentrated above Peyer&#x2019;s patches. Peyer&#x2019;s patches are lymphoid follicles that contain B-, T-, and mononuclear cells and perform immune surveillance. These secondary lymphoid organs are separated from the intestinal lumen by follicle-associated intestinal epithelium (FAE), which differs in cell composition from surrounding intestinal epithelium. FAE is rich in M-cells but lacks goblet cells almost completely. As a result, the mucus layer above the follicle is thinner and allows for better contact with the intestinal lumen. M-cells sample the lumen continuously and transport antigens to the immune cells underneath them. Like all intestinal epithelial cells, M-cells derive from CBC cells. However, they acquire their fate much later than other epithelial cells due to plasticity within the absorptive lineage. All intestinal epithelial cells express the receptor RANK, but RANKL (the ligand) is specifically presented on Peyer&#x2019;s patches. When absorptive cells encounter RANKL they acquire M-cell fate. Whether only absorptive progenitors or even fully mature enterocytes can switch lineage is not yet clear. However, it is likely that the capacity to trans-differentiate to M-cells is still maintained in mature enterocytes, since exposure to pathogens increased M-cell numbers within few hours (\u003Ca href=\"#B107\"\u003ETahoun et al., 2012\u003C\u002Fa\u003E). Experiments \u003Ci\u003Ein vitro\u003C\u002Fi\u003E and \u003Ci\u003Ein vivo\u003C\u002Fi\u003E have shown that RANKL is both necessary and sufficient to promote M-cell fate (\u003Ca href=\"#B55\"\u003EKnoop et al., 2009\u003C\u002Fa\u003E; \u003Ca href=\"#B23\"\u003Ede Lau et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B50\"\u003EKanaya et al., 2012\u003C\u002Fa\u003E). However, M-cell differentiation could be blocked by nociceptor sensory neurons \u003Ci\u003Evia\u003C\u002Fi\u003E release of CGRP. Although the exact mechanism of the M-cell reduction upon neuronal activation is not clear yet, its purpose is to limit the number of M-cells as entry points upon Salmonella Typhimurium infection (\u003Ca href=\"#B57\"\u003ELai et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Ch3\u003EEnterocytes\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb15\"\u003EEnterocytes are the most common cells of the intestinal epithelium. Their primary role is the controlled transport of nutrients, water and ions from the intestinal lumen into the body. Until recently, enterocytes along the crypt villus axis were considered homogeneous. However, single-cell studies discovered several types of enterocytes with distinct functions at specific positions along the crypt-villus axis. With the help of laser capture microdissection (LCM) \u003Ca href=\"#B68\"\u003EMoor et al. (2018)\u003C\u002Fa\u003E created a large panel of landmark genes that was subsequently used to align an intestinal epithelial single cell dataset along the villus. Thus, the team uncovered spatial zonation of absorptive cells and concluded that each enterocyte moved up the crypt-villus axis and trans-differentiated into several enterocyte types in the course of its limited lifetime of 3&#x2013;4 days. At the bottom of the villus, enterocytes express an anti-microbial program and specialize in amino-acid transport. Mid-villus enterocytes are the main transporters for carbohydrates and upper-villus enterocytes are responsible for lipid uptake. The signals that underlie the formation of these functional gradients are not clearly identified yet, but similar to EE cells a direct link to BMP signaling is likely. First insights come from identification of specific villus-tip telocytes that provide BMP and non-canonical WNT signals to tip-enterocytes. Ablation of these telocytes resulted in loss of some, but not all, tip-enterocyte markers in the tip-epithelium (\u003Ca href=\"#B43\"\u003EHalpern et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EIn summary, most intestinal epithelial cell types show distinct spatial patterns of occurrence and function along the crypt-villus axis (see \u003Ca href=\"#F2\"\u003EFigure 2\u003C\u002Fa\u003E). Similar observations have been made in other organs, such as the liver, where hepatocyte functions change significantly from the central vein region to the portal triad zone. However, whereas the liver is almost static in cellular composition during normal homeostasis, the intestine shows fast, directional-flow turnover. This necessitates a high degree of plasticity, where individual cells contribute to different zones and thus purposes in the course of their lifetime. To ensure robust zonation, the instructions to undergo these fate changes have to be provided either by the epithelium itself (e.g., lateral inhibition) or by a well-structured stromal environment. The full extent of intestinal micro-structure and plasticity-induced zonation has yet to be comprehensively revealed. Interestingly, recent years have seen the development of a number of new technologies that would be well suited to study these spatio-temporal relations in the intestine.\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 2\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"FigureDesc\"\u003E\r\n\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g002.jpg\" name=\"figure2\" target=\"_blank\"\u003E\r\n\n \u003Cpicture\u003E\n \u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=480&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g002.jpg\" media=\"(max-width: 563px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=370&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g002.jpg\" media=\"(max-width: 1024px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=290&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g002.jpg\" media=\"(max-width: 1441px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=410&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g002.jpg\" media=\"\"\u003E\u003Csource type=\"image\u002Fjpg\" srcset=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g002.jpg\" media=\"\"\u003E \u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g002.jpg\" alt=\"www.frontiersin.org\" id=\"F2\" loading=\"lazy\"\u003E\n \u003C\u002Fpicture\u003E\n\u003C\u002Fa\u003E\r\n\u003Cp\u003E\u003Cstrong\u003EFigure 2.\u003C\u002Fstrong\u003E \u003Cb\u003E(A)\u003C\u002Fb\u003E Topology of epithelial and mesenchymal cell populations across the crypt-villus axis. Distinct populations of epithelial and mesenchymal cells can be encountered at specific positions along the crypt villus axis. CBCs located at the crypt bottom, proliferate and can give rise to all epithelial cell types of the intestine. Secretory populations exist at various positions across the crypt-villus axis, including Paneth cells (crypt bottom) that protect and nurture CBCs, Tuft (villus) and goblet (crypt + villus) cells that coordinate inflammatory responses, as well as hormone-producing enteroendocrine cells (crypt + villus). Absorptive progenitors give rise to enterocytes and M cells. Enterocytes located at different parts of the villus are linked to distinct functions such as amino-acid (aa) and carbohydrate transport and lipid uptake. M cells are mainly located above Peyer&#x2019;s patches and their main role is to transport antigens to the antigen-presenting cells underneath them for further processing. Stromal cells provide structural support to the tissue and provide epithelial cells with signaling molecules, regulating important processes such as proliferation and differentiation. Several fibroblast populations located at the crypt bottom in close proximity to the stem cell zone have been linked to production of WNTs and RSPO, which are essential for stem cell maintenance. Telocytes have varying secretory profiles depending on their position along the crypt-villus axis. A subset of telocytes found under the crypt produce canonical WNT ligands and RSPO3. However, telocytes locally concentrated at the villus base and tips and are linked to production of BMP ligands that promote differentiation of epithelial cells. \u003Cb\u003E(B)\u003C\u002Fb\u003E Effects of stromal cell-derived signals on intestinal epithelial cells. Stromal cells produce various signaling molecules affecting the behavior of intestinal epithelial cells. Telocytes and fibroblasts located near the stem cell zone secrete WNT ligands and RSPO to maintain stemness of CBCs, while WNT antagonists and BMP inhibitors, produced by myocytes and crypt-associated telocytes establish the limits that distinguish the stem cell zone from the rest of the crypt. Upon damage, fibroblast-derived PGE\u003Csub\u003E2\u003C\u002Fsub\u003E drives the regeneration of stem cells \u003Ci\u003Evia\u003C\u002Fi\u003E the YAP signaling axis. BMPs produced mainly by telocytes found in the villus induce differentiation and zonation of enterocytes, enteroendocrine cells and potentially other cell types as they migrate from the villus base toward the tip. Likewise, inflammatory signals derived from immune cells drive stem cell expansion and proliferation, instruct cell fate decisions and introduce strong differentiation biases toward secretory cell lineages so that tissue&#x2019;s homeostasis is re-established after damage of the intestinal epithelium.\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Ch3\u003ELooking Beyond the Field &#x2013; Upcoming Technologies to Investigate Spatial Relations in the Intestine\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb15\"\u003EThe anatomy of the gastrointestinal tract and the composition of its different regions have traditionally been studied with techniques that provided limited information of its actual micro-structure or dynamics. Recently developed spatio-temporal techniques have overcome these limitations by increasing the available spatial and temporal resolution. However, they are yet to be applied to the study of the gastro-intestinal tract. In the following paragraph we look beyond the field of intestinal biology and identify techniques and applications that could be useful to deepen our understanding of the gut.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003ENewly developed spatial and temporal reporter systems have the ability to highlight cell interaction and to follow cell fate in time. So far, only the Neurog3Chrono system found application in the intestine (see enteroendocrine cells). Recently, a promising tool for niche identification has been developed in the field of cancer biology. The sLP-mCherry niche labeling system was used to label environments during breast cancer metastasis in the lung (\u003Ca href=\"#B76\"\u003EOmbrato et al., 2019\u003C\u002Fa\u003E). The authors engineered cells to release a cell-penetrating mCherry fluorescent protein that labeled nearby cells \u003Ci\u003Ein vivo\u003C\u002Fi\u003E. A similar strategy could be employed for studying intestinal stem cell niches or the specific environments that induce fate transitions along the crypt-villus axis. The Victora group took a different approach to discern direct cell interactions: they fused bacterial sortase A to a receptor on the surface of one cell population of interest and five N-terminal glycines to the corresponding ligand on the surface of another cell population of interest. When these two populations encountered each other in presence of a fluorescent or biotin marked substrate the fluorescent (or biotin) mark was transferred in an enzymatic reaction to the ligand-presenting cell. This method called LIPSTIC has been used to study the dynamic interactions of T-cells and dendritic cells, but could also be utilized to resolve specific cell interactions (e.g., alternative stem cell niche cells) in the intestinal epithelium \u003Ci\u003Ein vivo\u003C\u002Fi\u003E (see \u003Ca href=\"#F3\"\u003EFigure 3\u003C\u002Fa\u003E; \u003Ca href=\"#B79\"\u003EPasqual et al., 2018\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 3\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"FigureDesc\"\u003E\r\n\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g003.jpg\" name=\"figure3\" target=\"_blank\"\u003E\r\n\n \u003Cpicture\u003E\n \u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=480&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g003.jpg\" media=\"(max-width: 563px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=370&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g003.jpg\" media=\"(max-width: 1024px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=290&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g003.jpg\" media=\"(max-width: 1441px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=410&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g003.jpg\" media=\"\"\u003E\u003Csource type=\"image\u002Fjpg\" srcset=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g003.jpg\" media=\"\"\u003E \u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g003.jpg\" alt=\"www.frontiersin.org\" id=\"F3\" loading=\"lazy\"\u003E\n \u003C\u002Fpicture\u003E\n\u003C\u002Fa\u003E\r\n\u003Cp\u003E\u003Cstrong\u003EFigure 3.\u003C\u002Fstrong\u003E Comparison of the main methods to study spatio-temporal relationships.\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cp class=\"mb15 w100pc float_left mt15\"\u003EParallel to reporter systems, modified scRNA-seq techniques with inherent spatial resolution have gained traction. Spatial transcriptomics is an RNA-seq based approach that analyses transcriptomes at thousands of individual spots across a histologic tissue section (\u003Ca href=\"#B104\"\u003ESt&#x00E5;hl et al., 2016\u003C\u002Fa\u003E). Due to its unbiased nature, this approach has the potential to become a powerful tool to study tissue microstructure. Currently the method is still held back by limited spatial resolution (around three cells) and strongly reduced sensitivity in comparison to standard single cell RNA sequencing. In the gastrointestinal field spatial transcriptomic has recently been applied in combination with scRNA-seq to explore the early development of the human intestine (\u003Ca href=\"#B31\"\u003EFawkner-Corbett et al., 2021\u003C\u002Fa\u003E), but similar studies in adult tissue that characterize intestinal microstructure and its changes in various disease states are still missing.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EOverall, there is a wide variety of upcoming methods to interrogate the temporal and spatial dimensions of the gastrointestinal tract. Nevertheless, generation of a comprehensive picture of the dynamic changes in intestinal function during health and disease will remain a challenge. Future improvements to the scalability of multimodal methods (techniques that simultaneously measure multiple parameters in a single cell) or methods that aim at integrating data from different tools will be crucial to paint a comprehensive picture of position, fate and function. Particularly mesenchymal structure is an important part of the equation. Due to its role in instructing stem cell maintenance and differentiation, the mesenchyme is an equally structured component of the intestine that has yet to receive more attention.\u003C\u002Fp\u003E\r\n\u003Ca id=\"h4\" name=\"h4\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EMore Than Stroma &#x2013; the Intestinal Mesenchyme\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb15\"\u003EThe intestinal stroma consists of several cell types, namely fibroblasts, myofibroblasts, pericytes, telocytes, endothelial cells, neural cells, and immune cells. Altogether, they provide structural support to the tissue and produce signals that are essential for stem cell maintenance, self-renewal and tissue zonation (see \u003Ca href=\"#F1\"\u003EFigure 1\u003C\u002Fa\u003E). Mesenchymal cells produce diverse signaling molecules depending to their position across the crypt-villus axis. Stromal cells near the crypt bottom, where CBCs reside, mainly produce WNT ligands, RSPOs, and BMP inhibitors which block differentiation and support maintenance of stemness. Mesenchymal cells that are located above the crypt produce a rising BMP gradient toward the villus that induces maturation of CBC daughter cells and accounts for zonation of EE cells and most likely enterocytes (see \u003Ca href=\"#F2\"\u003EFigure 2\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb15\"\u003EMesenchymal cell populations in close proximity to the crypt have been investigated extensively for their potential role in constituting the niche of CBCs. A subset of PDGFRa\u003Csup\u003E+\u003C\u002Fsup\u003E; CD34\u003Csup\u003E+\u003C\u002Fsup\u003E fibroblasts located near the crypt base produce canonical WNT2B, RSPO1, RSPO2, and RSPO3 (\u003Ca href=\"#B63\"\u003EMcCarthy et al., 2020\u003C\u002Fa\u003E). This population serves also as the main source of the BMP antagonist GREM1. As a result, these cells enhance WNT but inhibit BMP signals in the crypt. Thus, they provide two essential components for stem cell maintenance (see \u003Ca href=\"#F2\"\u003EFigure 2\u003C\u002Fa\u003E). The niche function is further corroborated by the ability of the same cell population to support the formation and passaging of organoids in co-culture experiments in the absence of RSPO (a crucial WNT signaling potentiator) or NOGGIN (an otherwise necessary BMP inhibitor) (\u003Ca href=\"#B63\"\u003EMcCarthy et al., 2020\u003C\u002Fa\u003E). In addition, a rare (potentially overlapping), PDGFRa\u003Csup\u003E+\u003C\u002Fsup\u003E and CD34\u003Csup\u003E+\u003C\u002Fsup\u003E population of fibroblasts located around the crypts, in close proximity to the stem cell zone has been recently linked to production of Prostaglandin E\u003Csub\u003E2\u003C\u002Fsub\u003E (PGE\u003Csub\u003E2\u003C\u002Fsub\u003E) (see \u003Ca href=\"#F2\"\u003EFigure 2\u003C\u002Fa\u003E). Fibroblast-derived PGE\u003Csub\u003E2\u003C\u002Fsub\u003E binds to its receptor expressed in intestinal stem cells and induces the activation of a YAP transcriptional program, which drives the expansion of stem cells. In co-culture experiments, this population induced increased stem cell identity in organoids (\u003Ca href=\"#B93\"\u003ERoulis et al., 2020\u003C\u002Fa\u003E). Other mesenchymal cells positive for PDGFRa and CD34 lie above the crypt, but do not produce BMP inhibitors, which underscores the exquisite microstructure in the mesenchyme that enables epithelial zonation. Independently, pericryptal myofibroblasts marked by PDGFRa expression produce WNT ligands and RSPO3. In fact, presence of these cells in co-culture makes addition of RSPO to small intestinal organoids obsolete. When \u003Ci\u003ERspo3\u003C\u002Fi\u003E is specifically ablated from these myofibroblasts in co-culture, organoid growth is significantly reduced (\u003Ca href=\"#B40\"\u003EGreicius et al., 2018\u003C\u002Fa\u003E). It is apparent that many stromal populations can support organoid formation, however, whether the populations described are identical or partially overlapping remains to be further elucidated. In the colon, a sub-epithelial mesenchymal population expressing GLI1 provides WNT signals for CBCs. When \u003Ci\u003EWntless\u003C\u002Fi\u003E, which encodes a protein required for the secretion of WNT ligands, is genetically ablated in these stromal cells, LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E CBCs are lost and the integrity of the colonic epithelium is impaired. GLI1-expressing cells are also present in the small intestine, with a major role as a reserve source of WNT, when it is not sufficiently provided to stem cells by epithelial cells (\u003Ca href=\"#B25\"\u003EDegirmenci et al., 2018\u003C\u002Fa\u003E). The importance of mesenchymal WNT is likely more pronounced in humans than mice, since mouse Paneth cells do produce sufficient WNT to maintain stem cells, while their human equivalents do not. This is evidenced in organoid culture, where addition of WNT to the medium was only necessary for human small intestinal organoids.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb15\"\u003EAnother mesenchymal cell type of sub-epithelial cells, termed &#x201C;telocytes,&#x201D; has recently received increased attention due to its complex role in epithelial patterning. Telocytes are large cells with extended processes called &#x201C;telopodes,&#x201D; embedded in the basal lamina between the capillary plexus and the intestinal epithelium and are characterized by the expression of FOXL1 (\u003Ca href=\"#B101\"\u003EShoshkes-Carmel et al., 2018\u003C\u002Fa\u003E). Although telocytes can be found along the whole crypt-villus axis, their density is higher in the villus base and tips (see \u003Ca href=\"#F2\"\u003EFigure 2\u003C\u002Fa\u003E). Bulk sequencing detected production of canonical WNT2B, non-canonical WNT4, WNT5A, WNT5B, RSPO3, and several BMP ligands such as BMP2, BMP3, BMP4, BMP5, and BMP7 in these cells. However, expression of both BMPs and WNT ligands in the same population was paradoxical, since one pathway promoted differentiation, whereas the other induced stemness. Subsequent spatial analysis of telocytes \u003Ci\u003Evia\u003C\u002Fi\u003E single-molecule Fluorescence \u003Ci\u003Ein situ\u003C\u002Fi\u003E Hybridization (smFISH) identified several distinct telocyte populations with strikingly different expression profiles. Telocytes located near crypts produced canonical WNT2B and RSPO3, while non-canonical WNT5A and BMP5 were enriched in telocytes found in the crypt-villus junctions. More importantly, blocking WNT secretion from telocytes by genetic inactivation of \u003Ci\u003EPorcn\u003C\u002Fi\u003E, resulted in reduced proliferation of CBCs in both small and large intestine and reduced WNT signaling. This indicated that telocytes are a critical source of WNTs for epithelial cell proliferation (\u003Ca href=\"#B101\"\u003EShoshkes-Carmel et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B63\"\u003EMcCarthy et al., 2020\u003C\u002Fa\u003E). Moreover, an LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E subpopulation of telocytes located at villus tips has been recently described (see \u003Ca href=\"#F2\"\u003EFigure 2\u003C\u002Fa\u003E). These LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E telocytes produced BMPs and WNT5a, which suggested that non-canonical WNT signaling may play a role in establishing tip identity. Genetic ablation of these tip-telocytes led to loss of most tip-specific enterocyte markers. These markers only returned after 3 weeks, when also LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E telocytes had reappeared. This identified the LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E telocyte population as major regulator of the late enterocyte transcriptional program (\u003Ca href=\"#B43\"\u003EHalpern et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb15\"\u003EHowever, the intestinal epithelium is not shaped by fibroblast and telocyte-derived products alone. Intestinal endothelial cells have been recently linked to production of RSPO3 to maintain intestinal homeostasis (see \u003Ca href=\"#F2\"\u003EFigure 2B\u003C\u002Fa\u003E; \u003Ca href=\"#B75\"\u003EOgasawara et al., 2018\u003C\u002Fa\u003E). On the other hand, myocytes produce WNT antagonists, namely DKK3 and SFRP1 that may limit WNT signaling activation above the stem cell zone and thus induce differentiation of stem cell progeny (\u003Ca href=\"#B63\"\u003EMcCarthy et al., 2020\u003C\u002Fa\u003E). Moreover, distinct immune cells are linked to secretion of inflammatory cytokines that drive CBC proliferation and differentiation to secretory cells in order to maintain tissue integrity and homeostasis (see \u003Ca href=\"#F2\"\u003EFigure 2B\u003C\u002Fa\u003E and &#x201C;inflammation-related plasticity below&#x201D;).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EA major limitation of our current knowledge of mesenchymal populations and their spatial organization is the poor comparability of results. Without a more comprehensive approach it is difficult to ascertain, whether individual studies describe the same or differing cell populations. Additionally complexity comes from regionalization along the gastro-intestinal tract. It is very likely that the well-described regional differences from proximal to distal small intestinal epithelium are equally reflected in different mesenchymal populations. A coordinated effort with standardized methods, such as unbiased, spatially resolved single cell sequencing, will be needed to unlock the full complexity of the stromal structure that informs intestinal identity. Beyond identification and mapping of mesenchymal populations, functional assays are crucial to determine effects of epithelial-mesenchymal interactions. Thankfully, faithful \u003Ci\u003Ein vitro\u003C\u002Fi\u003E tissue modeling has become more accessible in the last decade due to the development of organoid technology.\u003C\u002Fp\u003E\r\n\u003Ca id=\"h5\" name=\"h5\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003E\u003Ci\u003EIn vivo\u003C\u002Fi\u003E Systems To Assess Niche Function and Epithelium-Mesenchyme Interactions\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb0\"\u003E\u003Ci\u003EIn vivo\u003C\u002Fi\u003E studies of epithelial-mesenchymal interactions are inherently difficult, due to low accessibility and high complexity of native tissues in a living organism. This is why \u003Ci\u003Ein vitro\u003C\u002Fi\u003E techniques, such as organoid technology see increased use in mechanistic exploration of basic tissue function. &#x201C;Mini guts&#x201D; give researchers the opportunity to simulate intestinal function, regeneration and disease in a dish as organoids recapitulate the cell type-composition, general structure and self-renewal process of their tissue of origin. They can be obtained either from pluripotent stem cells (either embryonic or induced), or multipotent adult stem cells (LGR5+ CBC cells). Either has distinct advantages, when exploring epithelial-mesenchymal interactions. Organoids derived from Pluripotent Stem Cells (PSC) recapitulate fetal development of the intestine and are excellent tools to study this process \u003Ci\u003Eex vivo\u003C\u002Fi\u003E. In addition, the guided differentiation of PSCs fosters co-development of epithelial and mesenchymal tissue, which provides important insights into co-dependencies of both layers. For example, PSC-derived human intestinal organoids have been used to study how mechanical forces that are necessary for intestinal development induce transcriptional changes that are crucial of correct maturation of epithelium and mesenchyme (\u003Ca href=\"#B83\"\u003EPoling et al., 2018\u003C\u002Fa\u003E). However, the differentiation procedure from PSCs to intestinal tissue is complex. It usually takes an average of 2&#x2013;3 months for the organoids to develop fully and, unless transplanted under the kidney capsule, they maintain fetal characteristics (\u003Ca href=\"#B64\"\u003EMcCracken et al., 2011\u003C\u002Fa\u003E) [for an in depth look at PSC derived endodermal organoids please refer to \u003Ca href=\"#B51\"\u003EKechele and Wells (2019)\u003C\u002Fa\u003E]. In contrast, adult stem cell derived organoids model adult tissue repair and solely consist of epithelium. This lack of mesenchymal structures reduces the system complexity, but also enables the investigation of deliberate, artificial environmental changes thanks to the defined nature of organoid media. This makes adult intestinal organoids a powerful system to investigate individual signaling molecules that can be simply added or withdrawn from the defined medium. Likewise, adult &#x201C;mini-guts&#x201D; can be employed to study epithelial-mesenchymal interactions in well-defined co-culture assays. Multiple studies that identified mesenchymal niche cell populations have used adult intestinal organoid co-culture to demonstrate niche-function of mesenchymal populations (\u003Ca href=\"#B106\"\u003EStzepourginski et al., 2017\u003C\u002Fa\u003E). A similar approach in the stomach used gastric organoid co-culture and single cell-sequencing to identify a particular LGR5+ fibroblast population as main source of RSPO3 in the tissue (\u003Ca href=\"#B21\"\u003EChen et al., 2019\u003C\u002Fa\u003E). Recently, the complexity of co-culture systems has been expanded even further, as both immune cells and bacteria have been added to mini-intestines, which greatly expands the possibilities for future uses of the system (\u003Ca href=\"#F4\"\u003EFigure 4\u003C\u002Fa\u003E; \u003Ca href=\"#B73\"\u003ENoel et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B5\"\u003EBar-Ephraim et al., 2020\u003C\u002Fa\u003E; \u003Ca href=\"#B82\"\u003EPleguezuelos-Manzano et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 4\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"FigureDesc\"\u003E\r\n\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g004.jpg\" name=\"figure4\" target=\"_blank\"\u003E\r\n\n \u003Cpicture\u003E\n \u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=480&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g004.jpg\" media=\"(max-width: 563px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=370&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g004.jpg\" media=\"(max-width: 1024px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=290&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g004.jpg\" media=\"(max-width: 1441px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=410&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g004.jpg\" media=\"\"\u003E\u003Csource type=\"image\u002Fjpg\" srcset=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g004.jpg\" media=\"\"\u003E \u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g004.jpg\" alt=\"www.frontiersin.org\" id=\"F4\" loading=\"lazy\"\u003E\n \u003C\u002Fpicture\u003E\n\u003C\u002Fa\u003E\r\n\u003Cp\u003E\u003Cstrong\u003EFigure 4.\u003C\u002Fstrong\u003E Comparison of different organoid systems to assess fate determination and plasticity in homeostasis and disease.\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cp class=\"mb15 w100pc float_left mt15\"\u003EBeyond studying environmental interactions, organoids also find applications in exploring the inherent self-organization of tissues. \u003Ca href=\"#B99\"\u003ESerra et al. (2019)\u003C\u002Fa\u003E used adult intestinal organoids to describe how single cells generate multicellular asymmetric structures and discovered a critical role of YAP-1 in the process. Furthermore, adult organoids were employed to describe how the metabolic activity of LGR5+ CBCs and Paneth cells play a role in supporting optimal stem cell function in the intestine (\u003Ca href=\"#B90\"\u003ERodr&#x00ED;guez-Colman et al., 2017\u003C\u002Fa\u003E). In general, the ease of establishment (3&#x2013;7 days), accessibility and expandability (split rates of 1:3 to 1:4 each week) make adult epithelial organoids excellent tools to study the effects of specific manipulations of an otherwise fully defined system. Yet, the simplicity of the system is also its limitation. Even current co-culture systems only add a single cell type at a time, which prevents cross-talk between mesenchymal or immune populations. Future efforts will have to develop more advanced co-culture systems that bridge the gap between impenetrable complexity \u003Ci\u003Ein vivo\u003C\u002Fi\u003E and over-simplified interactions \u003Ci\u003Ein vitro\u003C\u002Fi\u003E.\u003C\u002Fp\u003E\r\n\u003Ca id=\"h6\" name=\"h6\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003ECellular and Tissue Plasticity in the Intestinal Epithelium\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb15\"\u003EAt its core, plasticity describes the ability of individual cells or whole tissues to change their function dynamically in response to extrinsic factors. On a tissue level, extrinsic factors like diet, inflammatory signals or tissue damage change the cellular composition of the intestinal epithelium. These factors either directly affect differentiation decisions on stem cell level or induce cellular plasticity in mature populations. Both de-differentiation and trans-differentiation fall under the umbrella term of cellular plasticity. The former describes a process during which mature cells return to a progenitor\u002Fstem cell state, whereas the latter implies direct conversion from one mature cell type to another (\u003Ca href=\"#B113\"\u003ETetteh et al., 2015\u003C\u002Fa\u003E). In any tissue, the factors promoting and limiting plasticity need to be well balanced to confer adaptability and robustness at the same time. If this balance tips toward stability, the tissue may be unable to regenerate after injury, if it tips toward plasticity, cancer may ensue.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EThe intestinal epithelium is a highly plastic epithelium that can rapidly respond to metabolic, inflammatory or regenerative challenges. The adaptability of the intestine serves on the one hand to balance function with energy expenditure and on the other hand to ensure epithelial integrity. It comes in the form of trans-differentiation, as intestinal cell populations change their function in response to environmental stimuli and their position along the crypt-villus axis, but also in the form of de-differentiation, when regenerative capacities are exhausted. The intestine is lined by 30 m\u003Csup\u003E2\u003C\u002Fsup\u003E of single-layered epithelium that shields the rest of the organism from 10\u003Csup\u003E13\u003C\u002Fsup\u003E bacteria in its lumen. Due to its thinness, the barrier is ideal for nutrient uptake, but lacks the strength to withstand mechanical abrasion and environmental insults repeatedly. This is why continuous self-renewal, though energy expensive, is necessary to maintain epithelial integrity. Self-renewal depends on the presence of continuously dividing, healthy stem cell populations that provide a steady flow of replacement cells. However, unceasing cell division makes stem cells also susceptible to DNA damage, radiation and cytotoxic substances. Consequently, a variety of mechanisms (seclusion in crypts, neutral competition, and spatial niche limitations) is in place to protect stem cells and prevent malignant transformation. Likewise, an extensive backup system, in the form of intestinal plasticity, enables the intestine to re-establish homeostasis rapidly after catastrophic stem cell loss. Thus, both trans- and de-differentiation are integral components of normal intestinal function.\u003C\u002Fp\u003E\r\n\u003Ch3\u003EMetabolic Plasticity\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb0\"\u003EThe intestinal epithelium has a fast cell turnover that requires significant energy expenditure to maintain. Consequently, such energy-expensive process has to be well balanced with actual caloric intake, particularly if an organism undergoes prolonged periods of fasting. During starvation, the snake&#x2019;s intestine undergoes atrophy, a condition associated with reduced intestinal mass, as intestinal surface area and epithelial cell numbers are significantly reduced. Upon re-feeding, rapid and extensive remodeling occurs when the intestinal turnover is restarted (\u003Ca href=\"#B98\"\u003ESecor et al., 1994\u003C\u002Fa\u003E). Analogous mechanisms have also been described in mammals: long-term fasting caused atrophy in the rat intestine leading to a reduction in villi length, which was reversed upon re-feeding (\u003Ca href=\"#B28\"\u003EDunel-Erb et al., 2001\u003C\u002Fa\u003E). This shortening of villi was also reflected in changes in the regenerative compartment. Food withdrawal caused an increase in the number of Paneth cells and thus CBCs (due to increased niche space). Furthermore, it induced a decrease in TA cells, concomitant with overall reduced proliferation. Interestingly, calorie restriction was associated with reduction of mTORC1 signaling in Paneth cells (see \u003Ca href=\"#F5\"\u003EFigure 5A\u003C\u002Fa\u003E). Whether the detected loss of mTORC1 signaling in Paneth cells was directly responsible for the increase in their numbers, remains to be clarified. However, this mechanism was strongly suggested by the fact that forced activation of mTORC1 in Paneth cells prevented niche and stem cell expansion upon starvation. This identified the niche as main detector of metabolic status and regulator of stem cell numbers upon limited nutrient availability (\u003Ca href=\"#B124\"\u003EYilmaz et al., 2012\u003C\u002Fa\u003E). Whereas the reduction in proliferation conserves energy, the increase in CBC numbers may poise the tissue for immediate regeneration, once nutrients are available. Additional regenerative capacity upon re-feeding rests in reserve stem cell populations (often referred to as +4 cells). Nutrient deprivation induced PTEN inhibition in reserve stem cells (mostly progenitors of the secretory lineage) and an increase in their number (\u003Ca href=\"#B89\"\u003ERichmond et al., 2015\u003C\u002Fa\u003E). Surprisingly, mice on high-fat diet also showed elevated numbers of CBCs. In contrast to fasting, however, the number of Paneth cells was decreased. This finding was counter-intuitive, since stem cells depend on Notch signals that are only provided in direct membrane contact with Paneth cells during homeostasis. However, this contradiction was explained by the fact that high fat diet induced expression of Notch ligands in CBCs, which allowed them to act as their own primary niche cells and uncoupled them from Paneth cells (see \u003Ca href=\"#F5\"\u003EFigure 5B\u003C\u002Fa\u003E). Interestingly, this created a direct link between high caloric intake and carcinogenesis, since niche independence is the first important step that ensures survival of malignant cells. The nutritional status exerted its effect on stem cells \u003Ci\u003Evia\u003C\u002Fi\u003E PPAR&#x03B4; signaling (\u003Ca href=\"#B14\"\u003EBeyaz et al., 2016\u003C\u002Fa\u003E). Consistent with this assumption, pharmacological activation of PPAR&#x03B4; mimicked the high-fat response and granted non-ISC populations the capacity to form tumors upon APC loss (\u003Ca href=\"#B14\"\u003EBeyaz et al., 2016\u003C\u002Fa\u003E). Recently, another link between cell fate determination and metabolism has been described. Loss of \u003Ci\u003ELkb1\u003C\u002Fi\u003E in LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells induced a differentiation bias toward the secretory lineage and thus boosted the number of secretory cells (\u003Ca href=\"#B36\"\u003EGao et al., 2020\u003C\u002Fa\u003E). During homeostasis LKB1 inhibits PDK4, which would otherwise block pyruvate dehydrogenase. Pyruvate dehydrogenase is a key enzyme in oxidative phosphorylation on which CBCs rely metabolically. When \u003Ci\u003ELkb1\u003C\u002Fi\u003E was ablated oxidative phosphorylation was decreased, which resulted in upregulation of \u003Ci\u003EAtoh1\u003C\u002Fi\u003E mRNA levels, which in turn promoted an increase in the number of secretory cells (\u003Ca href=\"#B36\"\u003EGao et al., 2020\u003C\u002Fa\u003E). Likewise, loss of the pyruvate carrier \u003Ci\u003EMpc1\u003C\u002Fi\u003E in LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells resulted in increased proliferation and expansion of the stem cell compartment (\u003Ca href=\"#B95\"\u003ESchell et al., 2017\u003C\u002Fa\u003E). This expansion was likely caused by increased fatty acid metabolism, which translated to stabilization of &#x03B2;-catenin and increased WNT signaling (\u003Ca href=\"#B14\"\u003EBeyaz et al., 2016\u003C\u002Fa\u003E). Although these genetic loss-of-function models induced artificial metabolic changes, they clearly show that the metabolic state of CBCs can dynamically control proliferation as well as cell fate decisions. Future studies will have to address to which extent, circadian metabolic fluctuations and diet composition directly affect stem cell function.\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 5\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"FigureDesc\"\u003E\r\n\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g005.jpg\" name=\"figure5\" target=\"_blank\"\u003E\r\n\n \u003Cpicture\u003E\n \u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=480&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g005.jpg\" media=\"(max-width: 563px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=370&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g005.jpg\" media=\"(max-width: 1024px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=290&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g005.jpg\" media=\"(max-width: 1441px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=410&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g005.jpg\" media=\"\"\u003E\u003Csource type=\"image\u002Fjpg\" srcset=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g005.jpg\" media=\"\"\u003E \u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g005.jpg\" alt=\"www.frontiersin.org\" id=\"F5\" loading=\"lazy\"\u003E\n \u003C\u002Fpicture\u003E\n\u003C\u002Fa\u003E\r\n\u003Cp\u003E\u003Cstrong\u003EFigure 5.\u003C\u002Fstrong\u003E Plasticity of the intestinal epithelium upon different challenges. \u003Cb\u003E(A)\u003C\u002Fb\u003E Calorie restriction. Long-term fasting induces morphological changes in the intestine associated with reduced villus-length. It also affects the stem cell zone, by inducing an increase in the populations of CBCs and Paneth cells and decrease in TA cells. \u003Cb\u003E(B)\u003C\u002Fb\u003E Nutrient overabundance. High-fat diet affects the stem cell compartment, as it induces an increase in the number of CBCs and decrease in Paneth cells. This was linked to the acquisition of Notch independence by CBCs as they produce their own Notch ligands to stimulate Notch signaling. \u003Cb\u003E(C)\u003C\u002Fb\u003E Damage-induced plasticity. Severe damage of the epithelium can lead to profound inflammation that in turn activates group 3 innate lymphoid cells (ILC3), which produce IL-25 to support CBC proliferation. Alternatively, ILC3s can also promote tissue regeneration by CBCs \u003Ci\u003Evia\u003C\u002Fi\u003E an IL-25 independent mechanism, which involves the activation of YAP signaling in epithelial cells. This effect is most likely mediated by a stromal population that reacts to ILC3 activation with release of IL-11. If CBCs have been damaged or eliminated in the course of the insult, differentiated epithelial cells can fall back into the niche and de-differentiate to restart tissue replenishment. \u003Cb\u003E(D)\u003C\u002Fb\u003E Infection-related plasticity. Upon infection, Tuft and goblet cells are activated to produce anti-microbial products. Also, Tuft cells secrete IL-25 that activates ILC2s which in turn secrete Il-13. IL-13 acts on epithelial cells and strongly favors differentiation to Tuft and goblet cells, which results in Tuft and goblet cell hyperplasia.\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Ch3\u003EInflammation-Related Plasticity\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb15\"\u003ESimilarly to nutrition, inflammation-mediated signals play a significant role in regulating intestinal cell plasticity and have strong impact on CBC behavior. Inflammatory responses can be initiated by tissue damage or infection. In both cases, specialized immune cells are activated and secrete factors that support re-establishment of tissue homeostasis. Group 3 innate lymphoid cells (ILC3) are present in the intestine in close proximity to crypts. ILC3s react to tissue injury and secrete IL-22, which has been implicated in epithelial regeneration of the intestine. IL-22 activated the JAK-STAT signaling pathway in CBCs, which supported stem cell survival and proliferation in response to damage (\u003Ca href=\"#B59\"\u003ELindemans et al., 2015\u003C\u002Fa\u003E). Additional, IL-22 independent mechanisms have been identified that support crypt cell proliferation during intestinal tissue regeneration \u003Ci\u003Evia\u003C\u002Fi\u003E the Hippo pathway (\u003Ca href=\"#B92\"\u003ERomera-Hern&#x00E1;ndez et al., 2020\u003C\u002Fa\u003E). ILC3s activated YAP signaling in LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E CBCs to support the regeneration process of the tissue. YAP signaling plays key roles in the regenerating intestine, as loss of the pathway results in a defective regeneration process (\u003Ca href=\"#B8\"\u003EBarry et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B39\"\u003EGregorieff et al., 2015\u003C\u002Fa\u003E). ILC3s were necessary for the activation of YAP signaling, since no YAP response occurred in crypts of mice lacking ILC3s after Methotrexate (MTX)-induced intestinal damage. Mechanistically, YAP activation can be induced \u003Ci\u003Evia\u003C\u002Fi\u003E the IL-6 family receptor GP130. The GP130 receptor can dimerize with IL-6 or IL-11 receptors (IL-6R and IL-11R) to form functional receptor dimers that respond to their respective ligands (\u003Ca href=\"#B109\"\u003ETaniguchi et al., 2015\u003C\u002Fa\u003E). Although LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells express GP130 and IL-11RA1, ILC3s do not directly produce IL-11. Instead, IL-11 is known to be produced by other stromal cells. This implies the involvement of another stromal population as an intermediate between epithelial cells and ILC3 activation (see \u003Ca href=\"#F5\"\u003EFigure 5C\u003C\u002Fa\u003E; \u003Ca href=\"#B92\"\u003ERomera-Hern&#x00E1;ndez et al., 2020\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb15\"\u003EUpon infection with parasites, such as helminths, the intestinal epithelium presents with granulomatous infiltrates containing different immune cells, including natural killer cells (NK cells), neutrophils and innate lymphoid cells. However, not only immune cells but also mucus-producing goblet cells and chemo-sensory Tuft cells are heavily involved in the intestinal response to parasitic infection. In addition to producing anti-microbial molecules, Tuft cells respond to helminth infections by producing IL-25, which in turn activates tissue-resident group 2 innate lymphoid cells (ILC2). ILC2 cells produce IL-13 that binds to its receptor IL-4R&#x03B1; expressed in LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E stem cells and DLL1\u003Csup\u003E+\u003C\u002Fsup\u003E secretory progenitors. IL-13 signaling in these cells induces strong lineage bias in the differentiation process that favors production of Tuft and goblet cells. This leads to a profound goblet and Tuft cell hyperplasia, which is crucial to facilitate the successful expulsion of the nematode from the intestine (see \u003Ca href=\"#F5\"\u003EFigure 5D\u003C\u002Fa\u003E; \u003Ca href=\"#B38\"\u003EGerbe et al., 2016\u003C\u002Fa\u003E; \u003Ca href=\"#B118\"\u003EVon Moltke et al., 2016\u003C\u002Fa\u003E). Interestingly, helminth infection had a strong impact on the transcriptional profile of stem cells beyond the aforementioned lineage bias. Crypts in direct proximity to granulomatous infiltrates lost stem cell marker expression such as LGR5 and OLFM4, despite continuing proliferation. CBCs in these crypts displayed an IFN&#x03B3; signaling signature, which was associated with expression of \u003Ci\u003ESca-1\u003C\u002Fi\u003E and fetal markers such as \u003Ci\u003EGja1\u003C\u002Fi\u003E and \u003Ci\u003ESpp1\u003C\u002Fi\u003E. Culturing these SCA-1\u003Csup\u003E+\u003C\u002Fsup\u003E epithelial cells as organoids, led to the formation of spheroids that lacked markers of differentiated epithelial cells (\u003Ca href=\"#B74\"\u003ENusse et al., 2018\u003C\u002Fa\u003E). Furthermore, these spheroids were insensitive to RSPO withdrawal from medium, which had also been demonstrated in cultures of mouse fetal intestinal epithelium (\u003Ca href=\"#B70\"\u003EMustata et al., 2013\u003C\u002Fa\u003E). This indicates that CBCs can return to a partially fetal state under influence of a changed microenvironment during parasitic infection. To which extent this fetal reversion benefits re-establishment of tissue integrity and function is not yet fully established (\u003Ca href=\"#B74\"\u003ENusse et al., 2018\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EAnother study has recently shed light on the crosstalk between LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells and T-helper cells (T\u003Csub\u003E\u003Ci\u003Eh\u003C\u002Fi\u003E\u003C\u002Fsub\u003E cell) (\u003Ca href=\"#B16\"\u003EBiton et al., 2018\u003C\u002Fa\u003E). Two subpopulations of LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells were identified \u003Ci\u003Evia\u003C\u002Fi\u003E scRNA-seq analysis, that express MHC class II proteins (MHC II) and can activate T cells as antigen-presenting cells. The authors showed in organoid culture experiments that multiple inflammatory signals affect ISC proliferation and differentiation in contrasting ways. More specifically, co-culture of intestinal organoids with T regulatory cells (T\u003Csub\u003E\u003Ci\u003Eregs\u003C\u002Fi\u003E\u003C\u002Fsub\u003E) or IL-10, their secretory product, induced the expansion of CBCs. In contrast, co-culture with T\u003Csub\u003E\u003Ci\u003Eh\u003C\u002Fi\u003E\u003C\u002Fsub\u003E1 or supplementation with exogenous IFN-&#x03B3; resulted in the differentiation of CBCs to Paneth cells. Conversely, T\u003Csub\u003E\u003Ci\u003Eh\u003C\u002Fi\u003E\u003C\u002Fsub\u003E2 co-cultures or addition of IL-13 promoted the differentiation of CBCs to Tuft cells. Moreover, deletion of MHCII in LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells prevented remodeling of the tissue upon infection with pathogenic \u003Ci\u003EH\u003C\u002Fi\u003Eeligmosomoides \u003Ci\u003Epolygyrus\u003C\u002Fi\u003E and induced an increase in LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cell numbers, which disrupted the mucosal immune response (\u003Ca href=\"#B16\"\u003EBiton et al., 2018\u003C\u002Fa\u003E). Overall, these data suggest that CBCs play a role in regulating the tissue&#x2019;s adaptive immunity by responding to pro-inflammatory and anti-inflammatory signals with Paneth or Tuft cell differentiation respectively. This highlights the crosstalk of immune cells with stem cells as a mechanism to re-establish and maintain tissue homeostasis upon different inflammatory conditions.\u003C\u002Fp\u003E\r\n\u003Ch3\u003ECellular Plasticity During Regeneration of the Intestine\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb15\"\u003EDespite the &#x201C;proliferative vulnerability&#x201D; of its stem cells, the intestinal epithelium possesses a remarkable ability to recover from severe stress such as irradiation, or chemotherapy. In fact, the resistance of the intestinal epithelium surpasses that of tissues with quiescent stem cells such as the bone marrow (\u003Ca href=\"#B121\"\u003EWithers and Elkind, 2009\u003C\u002Fa\u003E). Even when stem cells are completely lost in the course of the insult, CBCs re-appear and are the main contributors to regeneration after injury. This is possible, since differentiated cells re-acquire CBC cell status when in contact with an empty niche space. This process relies equally on the instructive capacity of a dynamic stem cell niche and plasticity in the epithelium (see \u003Ca href=\"#F5\"\u003EFigure 5C\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb15\"\u003EDue to the role of LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E CBCs as stem cells during intestinal homeostasis and their importance in regeneration, several studies have tested their necessity for intestinal regeneration by depleting them \u003Ci\u003Evia\u003C\u002Fi\u003E irradiation or Diphtheria toxin (DT)-mediated ablation (\u003Ca href=\"#B114\"\u003ETian et al., 2011\u003C\u002Fa\u003E; \u003Ca href=\"#B115\"\u003Evan Es et al., 2012\u003C\u002Fa\u003E). Interestingly, in all cases LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells re-appeared within 2&#x2013;3 days after complete removal. However, when their resurgence was blocked due to continuous DT-mediated ablation, the regeneration process failed (\u003Ca href=\"#B67\"\u003EMetcalfe et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B108\"\u003ETan et al., 2021\u003C\u002Fa\u003E). This implies that the LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cell pool is essential for intestinal regeneration, but can be replenished by an alternative cell source. This replenishment could come either from a dedicated reserve stem cell population or from de-differentiation of more mature populations (see \u003Ca href=\"#F1\"\u003EFigure 1B\u003C\u002Fa\u003E). This question has recently been addressed in an elegant study that investigated intestinal recovery from irradiation with short-term lineage tracing. By limiting the timeframe of lineage labeling, the authors ensured that only recently generated cells would inherit a fluorescent mark and potential long-lived, quiescent reserve stem cell populations would not. Subsequent ablation of CBCs revealed that all re-appearing stem cells carried the fluorescent label. This clearly indicated that LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells were replenished from their recent progeny undergoing de-differentiation, rather than a reserve stem cell population. Interestingly, both absorptive and secretory lineage cells could contribute to the recovery of the CBCs (\u003Ca href=\"#B69\"\u003EMurata et al., 2020\u003C\u002Fa\u003E). The lack of evidence for a dedicated reserve stem cell population has shifted the research focus more and more toward plasticity. Indeed, the replenishment of LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells has been attributed to various alternative sources, ranging from secretory progenitors and enterocyte progenitors, to more differentiated cell types such as EECs. One of the first studies describing that lineage-committed cells could revert to stem cells, when LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells were depleted, identified DLL1\u003Csup\u003E+\u003C\u002Fsup\u003E secretory progenitors as source of new CBC cells (\u003Ca href=\"#B115\"\u003Evan Es et al., 2012\u003C\u002Fa\u003E). Due to their low proliferation index, secretory progenitors are likely to withstand insults that mainly affect dividing cells such as CBCs and TA cells. This low division rate also explains why former approaches to identify quiescent stem cells primarily identified cells with secretory characteristics. For example, genetic labeling of long-lived intestinal cells with low turnover with an elegant split-Cre-system revealed a reserve stem cell population that gave rise to the secretory lineage under homeostasis but could revert to CBC cells upon damage (\u003Ca href=\"#B19\"\u003EBuczacki et al., 2013\u003C\u002Fa\u003E). It is more than likely that both Dll1-lineage tracing and label retention experiments revealed the same cell population of secretory progenitors. Thus, the concept of plasticity reconciles reports of a quiescent +4 stem cell populations with the CBC stem cell model. However, plasticity is not limited to secretory progenitors. Multiple studies attributed the ability to acquire stem-cell like features to Paneth cells when CBCs were lost (\u003Ca href=\"#B126\"\u003EYu et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B47\"\u003EJones et al., 2019\u003C\u002Fa\u003E). Genetic labeling of Paneth cells and subsequent irradiation-induced stem cell depletion revealed lineage tracing of Paneth cells, suggesting that they are able to de-differentiate. This was further supported by their ability to form organoids and by analysis of their transcriptional status, which revealed stem cell-like expression profiles (\u003Ca href=\"#B126\"\u003EYu et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B47\"\u003EJones et al., 2019\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb15\"\u003ELikewise, Tuft cells marked by DCLK1 expression can contribute to recovery of intestinal injury. Upon loss of APC, Tuft cells can also initiate the formation of adenocarcinomas in a DSS-colitis model (\u003Ca href=\"#B120\"\u003EWestphalen et al., 2014\u003C\u002Fa\u003E). Additional de-differentiation capability has been attributed to EECs. \u003Ci\u003EBmi1\u003C\u002Fi\u003E and \u003Ci\u003EProx1\u003C\u002Fi\u003E based tracing of the early EEC lineage by \u003Ca href=\"#B122\"\u003EYan et al. (2017)\u003C\u002Fa\u003E showed extensive conversion to stem cell fate upon tissue damage. The ability of lineage-committed cell populations to de-differentiate is not limited to secretory cells, as it extends even to the upper crypt, where enterocyte progenitors are located. TA cells, which generate mature enterocytes, are marked by the expression of alkaline phosphatase (ALPI) and were also capable of de-differentiation upon targeted ablation of LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E stem cells (\u003Ca href=\"#B112\"\u003ETetteh et al., 2016\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EAlthough de-differentiation of multiple committed cell types in the intestine has been demonstrated, the exact mechanism and order of events during the de-differentiation process is unclear. Profiling of the epigenetic status of LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells and their progeny, revealed that there were no significant differences between them at the level of DNA methylation and histones (\u003Ca href=\"#B54\"\u003EKim et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B46\"\u003EJadhav et al., 2017\u003C\u002Fa\u003E). This lack of epigenetic changes during differentiation certainly facilitates the observed plasticity in the intestinal epithelium. However, we still lack mechanistic insight into the de-differentiation process and the instructive role of specific niche components. ASCL2 has been recently identified as requirement for successful recovery of the intestine after lethal damage to CBCs. In fact, ASCL2 expression was found to be specifically induced in intestinal epithelial cells, before they fell back into the stem cell zone and acquired LGR5 expression. Single-cell RNA-seq revealed that ASCL2\u003Csup\u003E+\u003C\u002Fsup\u003E cells lacked expression of \u003Ci\u003EClusterin\u003C\u002Fi\u003E, a marker of the recently described population of revival stem cells that were activated when the intestine was damaged by irradiation (\u003Ca href=\"#B3\"\u003EAyyaz et al., 2019\u003C\u002Fa\u003E), but expressed markers of EE and goblet cells. This suggested that these cells represented a transition state between mature cell and stem cell. Molecular analysis revealed IL-11RA as a direct target of ASCL2 and its upregulation in ASCL2\u003Csup\u003E+\u003C\u002Fsup\u003E regenerating crypt cells. Indeed, supplementation of IL-11 in organoid cultures of sorted ASCL2\u003Csup\u003E+\u003C\u002Fsup\u003E cells enhanced their spheroid formation ability, which suggests that ASCL2\u003Csup\u003E+\u003C\u002Fsup\u003E cells depended on the IL-11 signaling axis for proliferation in order to facilitate the regeneration of the damaged intestine (\u003Ca href=\"#B69\"\u003EMurata et al., 2020\u003C\u002Fa\u003E). Further studies will have to investigate the full extent of signals and pathways that induce these de-differentiation events. To this end, further characterization of the stem cell microenvironment during a de-differentiation stimulus would be of particular importance, to define essential regulators of the process and delineate how controlled plasticity could be utilized for regenerative medicine. Likewise, new lineage-tracing technologies will be necessary to study the quantitative contributions to de-differentiation of each cell type and to establish where the limits of plasticity lie. Interestingly, several new approaches have been recently developed that greatly increase the capabilities of classic lineage tracing experiments.\u003C\u002Fp\u003E\r\n\u003Ch3\u003ELooking Beyond the Field &#x2013; Upcoming Methods for Studying Lineage, Differentiation, and Plasticity\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb15\"\u003EPlasticity, differentiation, and particularly de-differentiation events have been predominantly studied \u003Ci\u003Ein vivo\u003C\u002Fi\u003E with classic Cre-lox based lineage tracing. In these experiments a fluorophore or lacZ is activated in a population of interest and the same label is inherited by all offspring. Although several improvement to the system have been made [e.g., Brainbow\u002FConfetti system to distinguish up to 100 individual clones (\u003Ca href=\"#B60\"\u003ELivet et al., 2007\u003C\u002Fa\u003E; \u003Ca href=\"#B20\"\u003ECai et al., 2013\u003C\u002Fa\u003E)] the general experimental setup and readouts (primarily imaging) have remained the same. Recently, the increased accessibility of sequencing technology and genome editing have created powerful alternatives to the classic lineage tracing experiment. In the following paragraph we look beyond the field of gastrointestinal biology and identify upcoming technologies that could deepen our understanding of lineage and plasticity in the gut.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EDNA or RNA barcoding strategies can easily overcome the limited number of labels that can be distinguished in fluorescence-based clonal identification. Whereas the first techniques to adopt barcoding still relied on Cre recombinases [e.g., Polylox and PolyloxExpress (\u003Ca href=\"#B80\"\u003EPei et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B81\"\u003EPei et al., 2020\u003C\u002Fa\u003E)] the field is predominantly switching to Cas9-based barcoding. The main reason for the switch lies in the difference of modification kinetics, with the Cre recombinase acting too fast to allow for progressively evolving labels that can later be used to reconstruct the order of events. CRISPR-Cas9 techniques, on the other hand, can utilize differing affinities of individual sites to tune modification speed and thus prolong the timeframe of lineage recording. Directed to a specific genomic locus by a guide RNA Cas9 nuclease generates a double strand break (DSB), which can lead to small insertions or deletions (indels). The continuous increase in indels across 10 or 100 s of potential targeting sites can then be used to establish the clonal history of each cell after the genomic regions containing the barcodes have been sequenced (\u003Ca href=\"#B66\"\u003EMcKenna et al., 2016\u003C\u002Fa\u003E; \u003Ca href=\"#B2\"\u003EAlemany et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B48\"\u003EKalhor et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B103\"\u003ESpanjaard et al., 2018\u003C\u002Fa\u003E). However, since a gRNA will no longer bind its target site once it is mutated, the number of scars that can be induced and thus the timeframe of recording and the complexity of the clonal information is inherently limited. To overcome this limitation, Church and colleagues developed mSCRIBE. By engineering a guide RNA that targeted its own spacer sequence, it was possible to perform multiple rounds of scarring over a longer period (\u003Ca href=\"#B49\"\u003EKalhor et al., 2017\u003C\u002Fa\u003E). Furthermore, alternative strategies have been developed to combine CRISPR-Cas9 scarring with additional readouts. On the one hand, MEMOIR used multiple transgenes that could be visualized with seqFISH (a high-throughput smFISH technique), adding a spatial dimension to the technique (\u003Ca href=\"#B34\"\u003EFrieda et al., 2017\u003C\u002Fa\u003E). On the other hand, several techniques integrated a CRISPR-Cas9 strategy with RNA-seq. This brings the great advantage that cell state and clonal history can be established in a single step (\u003Ca href=\"#B2\"\u003EAlemany et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B85\"\u003ERaj et al., 2018\u003C\u002Fa\u003E). However, all CRISPR-Cas9 based lineage tracing techniques share the same limitation. The generation of the barcoding indels causes DSBs, which are toxic to many cells and could bias the result of an experiment toward more resistant cell populations (see \u003Ca href=\"#F6\"\u003EFigure 6\u003C\u002Fa\u003E; \u003Ca href=\"#B7\"\u003EBaron and van Oudenaarden, 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B119\"\u003EWagner and Klein, 2020\u003C\u002Fa\u003E). Despite this limitation, barcoded lineage tracing could find wide application in intestinal biology. Clonal dynamics during neutral competition could be explored in thousands of clones in parallel. Combination with single cell sequencing could detect the existence of lineage bias in particular stem cell clones and the molecular mechanisms behind it. Finally, de-differentiation could be studied to quantify the individual contributions of each cell type in the process. However, particularly the last application needs an additional step in technology, since cell state and not only barcodes will need to be written into DNA at the beginning of the tracing. Interestingly, CRISPR has great potential not only as a gene editing tool, but also as a molecular recorder. Recently, Platt and his team made use of the system&#x2019;s capacity to acquire RNA and integrate it into a CRISPR array in a sequential manner. This approach makes it possible to sample a cell&#x2019;s RNA pool upon activation and store the information genetically (\u003Ca href=\"#B110\"\u003ETanna et al., 2020\u003C\u002Fa\u003E). Current applications of the method are still limited to bacteria and the obtained information is very sparse, but this promising technology could pave (upon further development) the way to internal recording of the transcriptional states of mammalian cells (\u003Ca href=\"#B97\"\u003ESchmidt et al., 2018\u003C\u002Fa\u003E).\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"Imageheaders\"\u003EFIGURE 6\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"FigureDesc\"\u003E\r\n\u003Ca href=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g006.jpg\" name=\"figure6\" target=\"_blank\"\u003E\r\n\n \u003Cpicture\u003E\n \u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=480&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g006.jpg\" media=\"(max-width: 563px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=370&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g006.jpg\" media=\"(max-width: 1024px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=290&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g006.jpg\" media=\"(max-width: 1441px)\"\u003E\u003Csource type=\"image\u002Fwebp\" srcset=\"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=410&f=webp\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g006.jpg\" media=\"\"\u003E\u003Csource type=\"image\u002Fjpg\" srcset=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g006.jpg\" media=\"\"\u003E \u003Cimg src=\"https:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g006.jpg\" alt=\"www.frontiersin.org\" id=\"F6\" loading=\"lazy\"\u003E\n \u003C\u002Fpicture\u003E\n\u003C\u002Fa\u003E\r\n\u003Cp\u003E\u003Cstrong\u003EFigure 6.\u003C\u002Fstrong\u003E Comparison of the main technologies available to perform lineage tracing.\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"DottedLine\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cp class=\"mb15 w100pc float_left mt15\"\u003EAll so far mentioned tools necessitate genetic modification of the traced organism. Therefore, they are suitable to study model systems but not humans. In order to study lineage tracing without genetic interventions, the continuous accumulation of somatic mutations in each cell can be utilized. Either single nucleotide variants (SNPs) or microsatellite mutations, which are mostly functionally neutral, can be followed (\u003Ca href=\"#B11\"\u003EBehjati et al., 2014\u003C\u002Fa\u003E). For example, microsatellites have previously been used to recapitulate the clonal evolution during the development of colonic crypts (\u003Ca href=\"#B87\"\u003EReizel et al., 2011\u003C\u002Fa\u003E). However, both SNPs and microsatellites are rare and scattered across the genome. Therefore, genome-wide sequencing approaches are necessary, which are expensive and still difficult to apply on single cell level (see \u003Ca href=\"#F6\"\u003EFigure 6\u003C\u002Fa\u003E). Overall, in the gastro-intestinal system these methods may prove useful to validate the vast body of knowledge on clonal dynamics and plasticity that has been primarily generated in the mouse. Although several studies followed fixation and expansion of individual mutations in human colon (\u003Ca href=\"#B72\"\u003ENicholson et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B4\"\u003EBaker et al., 2019\u003C\u002Fa\u003E), a comprehensive study of these dynamics in human subjects is still missing. Changes in clonal dynamics are particularly important in the field of intestinal cancer, where mutated cells first outcompete healthy stem cells in their own crypt before expanding laterally by crypt-fission, long before additional mutations will cause an overt malignancy. Next generation lineage-tracing approaches have the ability to follow the expansion of thousands of mutated subclones in parallel. This will enable researchers to determine the true extent of clonal variance in the intestinal epithelium and to study the nature of the competitive advantage of individual clonal populations that will eventually cause cancer.\u003C\u002Fp\u003E\r\n\u003Ch3\u003EPlasticity and Cancer: Two Sides of the Same Coin\u003C\u002Fh3\u003E\r\n\u003Cp class=\"mb15\"\u003EIn a healthy crypt cells compete for limited niche signals that are required for maintenance of stemness. The size of the niche controls the number of stem cells and the point of differentiation onset. It does so, \u003Ci\u003Evia\u003C\u002Fi\u003E gradients of signaling molecules that either promote stemness (e.g., WNT and EGF) or differentiation (e.g., BMP). For cancer to occur, epithelial cells need to develop independence from niche-derived proliferative signals and resistance to differentiation stimuli. Vogelstein and colleagues have proposed a model describing the adenoma-carcinoma sequence, as well as defining the genetic alterations that contribute to colorectal cancer progression. As one of the first steps, constitutive activation of WNT signaling (e.g., by loss of APC), is thought to be necessary for tumor initiation. Progression depends on activating mutations in EGFR pathway components, such as KRAS, and inactivating mutations in p53 and the TGF-&#x03B2;\u002FBMP signaling pathway component SMAD4 (\u003Ca href=\"#B32\"\u003EFearon and Vogelstein, 1990\u003C\u002Fa\u003E; \u003Ca href=\"#B71\"\u003EMuzny et al., 2012\u003C\u002Fa\u003E). It is thus apparent that colorectal cancer depends on the abnormal activation of signaling pathways that control stem cell identity and maintenance. In fact, stepwise genome editing in colon organoids demonstrated that three mutations in the main signaling pathways of the intestinal niche (WNT, EGF, and BMP signaling) together with loss of p53 were sufficient to transform a healthy epithelial cell to an invasive cancer cell (\u003Ca href=\"#B26\"\u003EDrost et al., 2015\u003C\u002Fa\u003E). Whereas healthy stem cells are limited by the spatial restrictions of the niche, cells that acquire the aforementioned mutations achieve niche-independence. In contrast to other cancers, colon cancer has a relatively narrow set of common mutations. In part, this may be due to continuous competition for niche space. Since mutations are acquired sequentially, a mutated sub-clone needs to constantly outcompete healthy stem cells in the course of its repeated mutagenesis. This means, that only mutations that provide an increased proliferative fitness [such as KRAS (\u003Ca href=\"#B71\"\u003EMuzny et al., 2012\u003C\u002Fa\u003E)] are permissive. Any mutation that reduces proliferative fitness, e.g., by prolonging the metaphase or reducing productive cell division will be quickly lost from the crypt. Once an epithelial cell has acquired niche independence, its offspring can outgrow normal tissue limits and form a tumor. However, even in a tumor, cells differ in proliferative capacity and differentiation status (\u003Ca href=\"#B24\"\u003Ede S. e Melo et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B58\"\u003ELenos et al., 2018\u003C\u002Fa\u003E). From these differences arose the concept of Cancer Stem Cells (CSCs). Indeed, lineage tracing studies revealed that LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells were capable of tumor initiation and gave rise to all tumor cells (\u003Ca href=\"#B96\"\u003ESchepers et al., 2012\u003C\u002Fa\u003E). However, genetic ablation of LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells in mouse intestinal tumor organoids (tumoroids) by the administration of DT restricted primary tumor growth but did not result in tumor regression. Moreover, once DT was withdrawn, LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells reappeared immediately. Similarly, LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cell depletion in human intestinal tumoroids, by insertion of an inducible Caspase-9 construct into the Lgr5 locus caused regression. However, when the chemical agent that induced caspase activation was no longer administered, LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells re-appeared. The authors elucidated that differentiated tumor cells characterized by expression of KRT20, could revert to LGR5\u003Csup\u003E+\u003C\u002Fsup\u003E cells, to fuel tumor growth (\u003Ca href=\"#B100\"\u003EShimokawa et al., 2017\u003C\u002Fa\u003E). This suggested, that similarly to the normal tissue, tumor growth was driven by cells in a stem cell state. However, the same plasticity that enabled healthy tissue to recover from catastrophic stem cell loss, also enabled more differentiated tumor cells to re-acquire stem cell characteristics (\u003Ca href=\"#B24\"\u003Ede S. e Melo et al., 2017\u003C\u002Fa\u003E). Recent studies have shed more light onto components of the normal tissue stem cell niche that enable plasticity (\u003Ca href=\"#B69\"\u003EMurata et al., 2020\u003C\u002Fa\u003E). The mechanisms that enable plasticity in a tumor are far less understood. \u003Ca href=\"#B58\"\u003ELenos et al. (2018)\u003C\u002Fa\u003E have shown that the CSC phenotype was adopted by cells located at the tumor edge, near cancer associated fibroblasts (CAFs). Although CSC markers were expressed throughout the tumor, only CSCs at the tumor edges displayed clonogenicity. However, re-transplantation of CSCs obtained from the center of xenografted tumors indicated that these cells could also effectively drive tumor growth, suggesting that functionality of CSCs was regulated by microenvironmentally derived signals and that tumor cell position was of particular importance for clonal expansion. CAFs produce Osteopontin (OPN), which enhanced \u003Ci\u003Ein vivo\u003C\u002Fi\u003E proliferation of CSCs located in the outer part of the tumor, where OPN concentrations were higher. Overexpression of OPN in tumor cells that were transplanted, accelerated tumor growth compared to respective controls and was sufficient to drive clonogenic growth of tumors independently of CAFs (\u003Ca href=\"#B58\"\u003ELenos et al., 2018\u003C\u002Fa\u003E). Besides tumor growth, CAF-derived signals have also been implicated in cancer initiation. A fibroblast subpopulation located near the crypts, in close proximity to the stem cell zone, produces PGE\u003Csub\u003E2\u003C\u002Fsub\u003E. PGE\u003Csub\u003E2\u003C\u002Fsub\u003E binds to its receptor PTGER4, expressed in stem cells of the crypt, which leads to de-phosphorylation of YAP and activation of YAP target genes (\u003Ca href=\"#B93\"\u003ERoulis et al., 2020\u003C\u002Fa\u003E). Active YAP signaling drives the expansion of a stem cell population characterized by the expression of SCA-1 also termed reserve stem cells (\u003Ca href=\"#B93\"\u003ERoulis et al., 2020\u003C\u002Fa\u003E). This signaling network was shown to be involved in tumor formation, as genetic ablation of \u003Ci\u003EPtgs2\u003C\u002Fi\u003E, which catalyzes the conversion of Arachidonic Acid to Prostaglandins, in fibroblasts or genetic ablation of \u003Ci\u003EPtger4\u003C\u002Fi\u003E in intestinal epithelial cells led to the formation of significantly fewer tumors in a mouse model of colorectal cancer. Interestingly, the growth of already established tumors was not affected, as tumor volumes did not differ from the respective controls, which suggested that this fibroblast-derived tumorigenic signal was necessary for tumor initiation but not for tumor growth (\u003Ca href=\"#B93\"\u003ERoulis et al., 2020\u003C\u002Fa\u003E). These studies provided evidence that the microenvironment has a crucial role in regulating stem cell states during normal homeostasis and carcinogenesis. Tumor initiation does not rely solely on cell-intrinsic properties (e.g., mutations), but also requires a finely orchestrated environment. Interactions within this tumor microenvironment remain poorly elucidated. This creates a need for elegant tools that enable their comprehensive characterization on single cell level. Understanding the plasticity promoting mechanisms at the interface between tumor and normal tissue may open new therapeutic avenues to prevent cancer progression.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EIn this context, organoids are a promising \u003Ci\u003Ein vitro\u003C\u002Fi\u003E system that enables researchers to study and compare normal tissue regeneration and cancer development. Several studies have shown that cancer organoids (or tumoroids) share the same clonal heterogeneity, the same resistances and the same vulnerabilities as their tumor of origin (\u003Ca href=\"#B117\"\u003EVlachogiannis et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B17\"\u003EBoretto et al., 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B123\"\u003EYao et al., 2020\u003C\u002Fa\u003E). Additionally, organoids can model the same plasticity that is observed in tumors. \u003Ca href=\"#B24\"\u003Ede S. e Melo et al. (2017)\u003C\u002Fa\u003E used mouse intestinal cancer-derived organoids as a model to demonstrate how tumor cells compensate for the loss of CSCs by de-differentiation of non-CSC populations. In addition, \u003Ca href=\"#B35\"\u003EFumagalli et al. (2020)\u003C\u002Fa\u003E used LGR5-reporter cancer organoids to prove that the majority of metastases are formed by LGR5- (non-CSC) tumor cells that acquire LGR5+ (CSC) identity upon engraftment at the metastatic site. The switch from non-CSC to CSC state was indeed necessary for efficient metastatic outgrowth. Beyond the mechanistic exploration of cancer biology, organoid tumor models can also be used in the context of personalized cancer medicine. In fact, several studies have shown that the organoid response \u003Ci\u003Ein vitro\u003C\u002Fi\u003E is predictive for the patient response (\u003Ca href=\"#B117\"\u003EVlachogiannis et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B17\"\u003EBoretto et al., 2019\u003C\u002Fa\u003E; \u003Ca href=\"#B123\"\u003EYao et al., 2020\u003C\u002Fa\u003E). Thanks to the expandability of tumoroid cultures, even a small biopsy generates sufficient tumoroid tissue for functional assays like drug screening. Alternatively, the ability to grow individual tumor subclones can be utilized to study tumor heterogeneity on a functional level. When \u003Ca href=\"#B91\"\u003ERoerink et al. (2018)\u003C\u002Fa\u003E established around 60 clonal tumoroid lines from three colon carcinomas they found functional differences in drug responses that would not have been predictable, based on epigenetic, genomic, and transcriptomic data alone. This study emphasized the need for functional experiments to tailor treatment to individual patients. However, the application of organoids for personalized cancer medicine still faces significant challenges. Although, tumoroids can be expanded in culture, the time from biopsy to assay remains in a range of 2&#x2013;3 months due to the required amount of tissue (see \u003Ca href=\"#F4\"\u003EFigure 4\u003C\u002Fa\u003E). Therefore, significant technological improvements will be necessary to make tumoroid based personalized medicine compatible with the necessary swiftness of therapeutic decisions. In the future, \u003Ci\u003Ein vitro\u003C\u002Fi\u003E drug screening assay may also need to account for plasticity in tumor cells, since drug susceptibilities inherently change when cells transition from CSC to non-CSC states. An increased understanding of the environments that induce these changes in cell identity and how to model them \u003Ci\u003Ein vitro\u003C\u002Fi\u003E could therefore further improve our ability to correctly predict disease outcome in intestinal cancer.\u003C\u002Fp\u003E\r\n\u003Ca id=\"h7\" name=\"h7\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EDiscussion\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb15\"\u003EThe growing number of techniques to study cellular relations in space and time have already transformed our understanding of tissue function in health and disease. Combined lineage-tracing, single-cell and organoid experiments have revealed surprising plasticity in the intestine. During health and disease, intestinal epithelial cells undergo de- and trans-differentiation that is integral to tissue function. The process creates zonation, allows for metabolic adaptation and spatially separates intestinal processes. Likewise, it gives the intestine surprising resistance against toxic, inflammatory, or irradiation insults. Cellular plasticity and particularly de-differentiation is not limited to the intestine. A growing number of reports finds de-differentiation events in a wide range of epithelial tissues (\u003Ca href=\"#B33\"\u003EFreedman et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B77\"\u003EPan et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B105\"\u003EStange et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B111\"\u003ETata et al., 2013\u003C\u002Fa\u003E; \u003Ca href=\"#B86\"\u003ERaven et al., 2017\u003C\u002Fa\u003E). This suggest that cellular plasticity plays a much larger role in adult mammalian organisms than currently appreciated. Technological improvements in single-cell methodology and upcoming lineage tracing methods will be crucial for gaging the true extent of functional and regenerative flexibility in mature tissues.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb15\"\u003EPlasticity complicates traditional models of stemness, maturity, and cell types. Already now, the classic, hierarchical differentiation tree of discrete, binary decisions seems incompatible with biological reality. Instead, a dynamic model emerges, where cells re-evaluate their identity continuously as a function of extrinsic pushes toward and intrinsic resistance against fate change. Resistance to fate change is a product of past environmental inputs that resulted in long-lasting cellular changes (e.g., epigenetic modification). With increasing epigenetic distance between two cell states the transition resistance grows, but can still be overcome by a strong enough trans-differentiation or de-differentiation signal. In the intestine the extent of epigenetic changes in the course of differentiation is surprisingly small, which certainly contributes to the high levels of intestinal plasticity (\u003Ca href=\"#B54\"\u003EKim et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B46\"\u003EJadhav et al., 2017\u003C\u002Fa\u003E). This low fate-change resistance is coupled with highly instructive signaling zones along the crypt-villus axis. One of the most potent ones, the stem cell niche, can overcome the de-differentiation resistance of differentiated progenitors (\u003Ca href=\"#B115\"\u003Evan Es et al., 2012\u003C\u002Fa\u003E; \u003Ca href=\"#B112\"\u003ETetteh et al., 2016\u003C\u002Fa\u003E) and most likely even mature cells (\u003Ca href=\"#B120\"\u003EWestphalen et al., 2014\u003C\u002Fa\u003E; \u003Ca href=\"#B122\"\u003EYan et al., 2017\u003C\u002Fa\u003E; \u003Ca href=\"#B126\"\u003EYu et al., 2018\u003C\u002Fa\u003E; \u003Ca href=\"#B47\"\u003EJones et al., 2019\u003C\u002Fa\u003E). Continuous, overlapping signaling gradients that stretch along the crypt-villus axis give each height increment a unique signaling environment. These environments instruct changes in the cells that move through them, which generates the diversity of the intestinal epithelium. Cell identity is thus not discrete but a wide spectrum of states with differing function. Enterocytes, enteroendocrine cells, goblet cells and most likely other cell types traverse through these identity spectra in the course of their lives. This allows the intestinal epithelium to retain static functional zonation despite the continuous movement of the epithelial cell sheet.\u003C\u002Fp\u003E\r\n\u003Cp class=\"mb0\"\u003EAlthough plasticity in the intestine has been convincingly demonstrated several important questions remain to be answered: Which epithelial and mesenchymal signals and cell populations shape the diversity along the crypt-villus axis? Which environmental signals induce and limit de-differentiation of mature cells? Do de-differentiated cells retain features of their former state and does this memory cause lineage bias? How can plasticity be utilized to enhance tissue regeneration? And how can plasticity in cancer be prevented to limit therapy escape? Spatially and temporally resolved reporter systems, spatial transcriptomics and advanced Cas9-based lineage tracing tools will be crucial in answering these questions. However, the vast amount of data that these tools can produce have to be validated and translated into mechanistic understanding. This is why, the transition from descriptive to functional exploration of niche environments is equally important. In this regard, organoids are a very powerful tool that is ideally suited to complement single-cell-resolved \u003Ci\u003Ein vivo\u003C\u002Fi\u003E experiments. Their capacity to replicate the microarchitecture, functionality, and cellular diversity makes them ideal to study tissue self-organization and microenvironments. Mapping the dynamic changes in these microenvironments will enable us to understand the general and tissue specific principles of regeneration and tumor progression. Thus, we may be able to replenish the regenerative capacity of stem cells or prevent malignant cells from escaping the limits of homeostasis, not by directly targeting them, but by reshaping their environments.\u003C\u002Fp\u003E\r\n\u003Ca id=\"h8\" name=\"h8\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EAuthor Contributions\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb0\"\u003EVB, CR, and HG researched and wrote the manuscript. HG reviewed and edited the manuscript before submission. All authors contributed to the article and approved the submitted version.\u003C\u002Fp\u003E\r\n\u003Ca id=\"fun1\" name=\"fun1\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EFunding\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb0\"\u003EThis project had received funding from the European Research Council (ERC) under the European Union&#x2019;s Horizon 2020 research and innovation program grant agreement No. 949781.\u003C\u002Fp\u003E\r\n\u003Ca id=\"conf1\" name=\"conf1\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EConflict of Interest\u003C\u002Fh2\u003E\r\n\u003Cp class=\"mb0\"\u003EThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.\u003C\u002Fp\u003E\r\n\u003Ca id=\"refer1\" name=\"refer1\"\u003E\u003C\u002Fa\u003E\u003Ch2\u003EReferences\u003C\u002Fh2\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B1\" id=\"B1\"\u003E\u003C\u002Fa\u003EAiken, K. D., Kisslinger, J. A., and Roth, K. A. (1994). Immunohistochemical studies indicate multiple enteroendocrine cell differentiation pathways in the mouse proximal small intestine. \u003Ci\u003EDev. Dynam.\u003C\u002Fi\u003E 201, 63&#x2013;70. doi: 10.1002\u002Faja.1002010107\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F7803848\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1002\u002Faja.1002010107\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Immunohistochemical+studies+indicate+multiple+enteroendocrine+cell+differentiation+pathways+in+the+mouse+proximal+small+intestine%2E&#x0026;journal=Dev%2E+Dynam%2E&#x0026;author=Aiken+K.+D.&#x0026;author=Kisslinger+J.+A.&#x0026;author=Roth+K.+A.&#x0026;publication_year=1994&#x0026;volume=201&#x0026;pages=63&#x2013;70\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B2\" id=\"B2\"\u003E\u003C\u002Fa\u003EAlemany, A., Florescu, M., Baron, C. S., Peterson-Maduro, J., and van Oudenaarden, A. (2018). Whole-organism clone tracing using single-cell sequencing. \u003Ci\u003ENature\u003C\u002Fi\u003E 556, 108&#x2013;112. doi: 10.1038\u002Fnature25969\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29590089\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature25969\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Whole-organism+clone+tracing+using+single-cell+sequencing%2E&#x0026;journal=Nature&#x0026;author=Alemany+A.&#x0026;author=Florescu+M.&#x0026;author=Baron+C.+S.&#x0026;author=Peterson-Maduro+J.&#x0026;author=van+Oudenaarden+A.&#x0026;publication_year=2018&#x0026;volume=556&#x0026;pages=108&#x2013;112\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B3\" id=\"B3\"\u003E\u003C\u002Fa\u003EAyyaz, A., Kumar, S., Sangiorgi, B., Ghoshal, B., Gosio, J., Ouladan, S., et al. (2019). Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. \u003Ci\u003ENature\u003C\u002Fi\u003E 569, 121&#x2013;125. doi: 10.1038\u002Fs41586-019-1154-y\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31019301\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-019-1154-y\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Single-cell+transcriptomes+of+the+regenerating+intestine+reveal+a+revival+stem+cell%2E&#x0026;journal=Nature&#x0026;author=Ayyaz+A.&#x0026;author=Kumar+S.&#x0026;author=Sangiorgi+B.&#x0026;author=Ghoshal+B.&#x0026;author=Gosio+J.&#x0026;author=Ouladan+S.&#x0026;publication_year=2019&#x0026;volume=569&#x0026;pages=121&#x2013;125\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B4\" id=\"B4\"\u003E\u003C\u002Fa\u003EBaker, A.-M., Gabbutt, C., Williams, M. J., Cereser, B., Jawad, N., Rodriguez-Justo, M., et al. (2019). Crypt fusion as a homeostatic mechanism in the human colon. \u003Ci\u003EGut\u003C\u002Fi\u003E 68:1986. doi: 10.1136\u002Fgutjnl-2018-317540\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30872394\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1136\u002Fgutjnl-2018-317540\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Crypt+fusion+as+a+homeostatic+mechanism+in+the+human+colon%2E&#x0026;journal=Gut&#x0026;author=Baker+A.-M.&#x0026;author=Gabbutt+C.&#x0026;author=Williams+M.+J.&#x0026;author=Cereser+B.&#x0026;author=Jawad+N.&#x0026;author=Rodriguez-Justo+M.&#x0026;publication_year=2019&#x0026;volume=68&#x0026;issue=1986\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B5\" id=\"B5\"\u003E\u003C\u002Fa\u003EBar-Ephraim, Y. E., Kretzschmar, K., and Clevers, H. (2020). Organoids in immunological research. \u003Ci\u003ENat. Rev. Immunol.\u003C\u002Fi\u003E 20, 279&#x2013;293. doi: 10.1038\u002Fs41577-019-0248-y\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31853049\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41577-019-0248-y\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Organoids+in+immunological+research%2E&#x0026;journal=Nat%2E+Rev%2E+Immunol%2E&#x0026;author=Bar-Ephraim+Y.+E.&#x0026;author=Kretzschmar+K.&#x0026;author=Clevers+H.&#x0026;publication_year=2020&#x0026;volume=20&#x0026;pages=279&#x2013;293\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B6\" id=\"B6\"\u003E\u003C\u002Fa\u003EBarker, N., van Es, J. H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. \u003Ci\u003ENature\u003C\u002Fi\u003E 449, 1003&#x2013;1007. doi: 10.1038\u002Fnature06196\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F17934449\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature06196\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Identification+of+stem+cells+in+small+intestine+and+colon+by+marker+gene+Lgr5%2E&#x0026;journal=Nature&#x0026;author=Barker+N.&#x0026;author=van+Es+J.+H.&#x0026;author=Kuipers+J.&#x0026;author=Kujala+P.&#x0026;author=van+den+Born+M.&#x0026;author=Cozijnsen+M.&#x0026;publication_year=2007&#x0026;volume=449&#x0026;pages=1003&#x2013;1007\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B7\" id=\"B7\"\u003E\u003C\u002Fa\u003EBaron, C. S., and van Oudenaarden, A. (2019). Unravelling cellular relationships during development and regeneration using genetic lineage tracing. \u003Ci\u003ENat. Rev. Mol. Cell Biol.\u003C\u002Fi\u003E 20, 753&#x2013;765. doi: 10.1038\u002Fs41580-019-0186-3\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31690888\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41580-019-0186-3\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Unravelling+cellular+relationships+during+development+and+regeneration+using+genetic+lineage+tracing%2E&#x0026;journal=Nat%2E+Rev%2E+Mol%2E+Cell+Biol%2E&#x0026;author=Baron+C.+S.&#x0026;author=van+Oudenaarden+A.&#x0026;publication_year=2019&#x0026;volume=20&#x0026;pages=753&#x2013;765\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B8\" id=\"B8\"\u003E\u003C\u002Fa\u003EBarry, E. R., Morikawa, T., Butler, B. L., Shrestha, K., de la Rosa, R., Yan, K. S., et al. (2013). Restriction of intestinal stem cell expansion and the regenerative response by YAP. \u003Ci\u003ENature\u003C\u002Fi\u003E 493, 106&#x2013;110. doi: 10.1038\u002Fnature11693\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23178811\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature11693\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Restriction+of+intestinal+stem+cell+expansion+and+the+regenerative+response+by+YAP%2E&#x0026;journal=Nature&#x0026;author=Barry+E.+R.&#x0026;author=Morikawa+T.&#x0026;author=Butler+B.+L.&#x0026;author=Shrestha+K.&#x0026;author=de+la+Rosa+R.&#x0026;author=Yan+K.+S.&#x0026;publication_year=2013&#x0026;volume=493&#x0026;pages=106&#x2013;110\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B9\" id=\"B9\"\u003E\u003C\u002Fa\u003EBasak, O., Born, M., Korving, J., Beumer, J., Elst, S., Es, J. H., et al. (2014). Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. \u003Ci\u003EEMBO J.\u003C\u002Fi\u003E 33, 2057&#x2013;2068. doi: 10.15252\u002Fembj.201488017\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25092767\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.15252\u002Fembj.201488017\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Mapping+early+fate+determination+in+Lgr5%2B+crypt+stem+cells+using+a+novel+Ki67-RFP+allele%2E&#x0026;journal=EMBO+J%2E&#x0026;author=Basak+O.&#x0026;author=Born+M.&#x0026;author=Korving+J.&#x0026;author=Beumer+J.&#x0026;author=Elst+S.&#x0026;author=Es+J.+H.&#x0026;publication_year=2014&#x0026;volume=33&#x0026;pages=2057&#x2013;2068\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B10\" id=\"B10\"\u003E\u003C\u002Fa\u003EBatlle, E., Henderson, J. T., Beghtel, H., van den Born, M. M. W., Sancho, E., Huls, G., et al. (2002). &#x03B2;-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB\u002FEphrinB. \u003Ci\u003ECell\u003C\u002Fi\u003E 111, 251&#x2013;263. doi: 10.1016\u002Fs0092-8674(02)01015-2\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fs0092-8674(02)01015-2\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=&#x03B2;-Catenin+and+TCF+mediate+cell+positioning+in+the+intestinal+epithelium+by+controlling+the+expression+of+EphB%2FEphrinB%2E&#x0026;journal=Cell&#x0026;author=Batlle+E.&#x0026;author=Henderson+J.+T.&#x0026;author=Beghtel+H.&#x0026;author=van+den+Born+M.+M.+W.&#x0026;author=Sancho+E.&#x0026;author=Huls+G.&#x0026;publication_year=2002&#x0026;volume=111&#x0026;pages=251&#x2013;263\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B11\" id=\"B11\"\u003E\u003C\u002Fa\u003EBehjati, S., Huch, M., van Boxtel, R., Karthaus, W., Wedge, D. C., Tamuri, A. U., et al. (2014). Genome sequencing of normal cells reveals developmental lineages and mutational processes. \u003Ci\u003ENature\u003C\u002Fi\u003E 513, 422&#x2013;425. doi: 10.1038\u002Fnature13448\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25043003\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature13448\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Genome+sequencing+of+normal+cells+reveals+developmental+lineages+and+mutational+processes%2E&#x0026;journal=Nature&#x0026;author=Behjati+S.&#x0026;author=Huch+M.&#x0026;author=van+Boxtel+R.&#x0026;author=Karthaus+W.&#x0026;author=Wedge+D.+C.&#x0026;author=Tamuri+A.+U.&#x0026;publication_year=2014&#x0026;volume=513&#x0026;pages=422&#x2013;425\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B12\" id=\"B12\"\u003E\u003C\u002Fa\u003EBeumer, J., Artegiani, B., Post, Y., Reimann, F., Gribble, F., Nguyen, T. N., et al. (2018). Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. \u003Ci\u003ENat. Cell Biol.\u003C\u002Fi\u003E 20, 909&#x2013;916. doi: 10.1038\u002Fs41556-018-0143-y\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30038251\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41556-018-0143-y\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Enteroendocrine+cells+switch+hormone+expression+along+the+crypt-to-villus+BMP+signalling+gradient%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Beumer+J.&#x0026;author=Artegiani+B.&#x0026;author=Post+Y.&#x0026;author=Reimann+F.&#x0026;author=Gribble+F.&#x0026;author=Nguyen+T.+N.&#x0026;publication_year=2018&#x0026;volume=20&#x0026;pages=909&#x2013;916\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B13\" id=\"B13\"\u003E\u003C\u002Fa\u003EBeumer, J., Gehart, H., and Clevers, H. (2020). Enteroendocrine dynamics &#x2013; new tools reveal hormonal plasticity in the gut. \u003Ci\u003EEndocr. Rev.\u003C\u002Fi\u003E 41:bnaa018.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Enteroendocrine+dynamics+&#x2013;+new+tools+reveal+hormonal+plasticity+in+the+gut%2E&#x0026;journal=Endocr%2E+Rev%2E&#x0026;author=Beumer+J.&#x0026;author=Gehart+H.&#x0026;author=Clevers+H.&#x0026;publication_year=2020&#x0026;volume=41&#x0026;issue=bnaa018\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B14\" id=\"B14\"\u003E\u003C\u002Fa\u003EBeyaz, S., Mana, M. D., Roper, J., Kedrin, D., Saadatpour, A., Hong, S.-J., et al. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. \u003Ci\u003ENature\u003C\u002Fi\u003E 531, 53&#x2013;58. doi: 10.1038\u002Fnature17173\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26935695\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature17173\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=High-fat+diet+enhances+stemness+and+tumorigenicity+of+intestinal+progenitors%2E&#x0026;journal=Nature&#x0026;author=Beyaz+S.&#x0026;author=Mana+M.+D.&#x0026;author=Roper+J.&#x0026;author=Kedrin+D.&#x0026;author=Saadatpour+A.&#x0026;author=Hong+S.-J.&#x0026;publication_year=2016&#x0026;volume=531&#x0026;pages=53&#x2013;58\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B15\" id=\"B15\"\u003E\u003C\u002Fa\u003EBirchenough, G. M. H., Nystr&#x00F6;m, E. E. L., Johansson, M. E. V., and Hansson, G. C. (2016). A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. \u003Ci\u003EScience\u003C\u002Fi\u003E 352, 1535&#x2013;1542. doi: 10.1126\u002Fscience.aaf7419\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27339979\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.aaf7419\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+sentinel+goblet+cell+guards+the+colonic+crypt+by+triggering+Nlrp6-dependent+Muc2+secretion%2E&#x0026;journal=Science&#x0026;author=Birchenough+G.+M.+H.&#x0026;author=Nystr&#x00F6;m+E.+E.+L.&#x0026;author=Johansson+M.+E.+V.&#x0026;author=Hansson+G.+C.&#x0026;publication_year=2016&#x0026;volume=352&#x0026;pages=1535&#x2013;1542\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B16\" id=\"B16\"\u003E\u003C\u002Fa\u003EBiton, M., Haber, A. L., Rogel, N., Burgin, G., Beyaz, S., Schnell, A., et al. (2018). T helper cell cytokines modulate intestinal stem cell renewal and differentiation. \u003Ci\u003ECell\u003C\u002Fi\u003E 175, 1307&#x2013;1320.e22.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=T+helper+cell+cytokines+modulate+intestinal+stem+cell+renewal+and+differentiation%2E&#x0026;journal=Cell&#x0026;author=Biton+M.&#x0026;author=Haber+A.+L.&#x0026;author=Rogel+N.&#x0026;author=Burgin+G.&#x0026;author=Beyaz+S.&#x0026;author=Schnell+A.&#x0026;publication_year=2018&#x0026;volume=175&#x0026;pages=1307&#x2013;1320.e22\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B17\" id=\"B17\"\u003E\u003C\u002Fa\u003EBoretto, M., Maenhoudt, N., Luo, X., Hennes, A., Boeckx, B., Bui, B., et al. (2019). Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. \u003Ci\u003ENat. Cell Biol.\u003C\u002Fi\u003E 21, 1041&#x2013;1051. doi: 10.1038\u002Fs41556-019-0360-z\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31371824\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41556-019-0360-z\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Patient-derived+organoids+from+endometrial+disease+capture+clinical+heterogeneity+and+are+amenable+to+drug+screening%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Boretto+M.&#x0026;author=Maenhoudt+N.&#x0026;author=Luo+X.&#x0026;author=Hennes+A.&#x0026;author=Boeckx+B.&#x0026;author=Bui+B.&#x0026;publication_year=2019&#x0026;volume=21&#x0026;pages=1041&#x2013;1051\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B18\" id=\"B18\"\u003E\u003C\u002Fa\u003EB&#x00F6;ttcher, A., B&#x00FC;ttner, M., Tritschler, S., Sterr, M., Aliluev, A., Oppenl&#x00E4;nder, L., et al. (2021). Non-canonical Wnt\u002FPCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. \u003Ci\u003ENat. Cell Biol.\u003C\u002Fi\u003E 23, 23&#x2013;31. doi: 10.1038\u002Fs41556-020-00617-2\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33398177\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41556-020-00617-2\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Non-canonical+Wnt%2FPCP+signalling+regulates+intestinal+stem+cell+lineage+priming+towards+enteroendocrine+and+Paneth+cell+fates%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=B&#x00F6;ttcher+A.&#x0026;author=B&#x00FC;ttner+M.&#x0026;author=Tritschler+S.&#x0026;author=Sterr+M.&#x0026;author=Aliluev+A.&#x0026;author=Oppenl&#x00E4;nder+L.&#x0026;publication_year=2021&#x0026;volume=23&#x0026;pages=23&#x2013;31\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B19\" id=\"B19\"\u003E\u003C\u002Fa\u003EBuczacki, S. J. A., Zecchini, H. I., Nicholson, A. M., Russell, R., Vermeulen, L., Kemp, R., et al. (2013). Intestinal label-retaining cells are secretory precursors expressing Lgr5. \u003Ci\u003ENature\u003C\u002Fi\u003E 495, 65&#x2013;69. doi: 10.1038\u002Fnature11965\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23446353\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature11965\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intestinal+label-retaining+cells+are+secretory+precursors+expressing+Lgr5%2E&#x0026;journal=Nature&#x0026;author=Buczacki+S.+J.+A.&#x0026;author=Zecchini+H.+I.&#x0026;author=Nicholson+A.+M.&#x0026;author=Russell+R.&#x0026;author=Vermeulen+L.&#x0026;author=Kemp+R.&#x0026;publication_year=2013&#x0026;volume=495&#x0026;pages=65&#x2013;69\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B20\" id=\"B20\"\u003E\u003C\u002Fa\u003ECai, D., Cohen, K. B., Luo, T., Lichtman, J. W., and Sanes, J. R. (2013). Improved tools for the Brainbow toolbox. \u003Ci\u003ENat. Methods\u003C\u002Fi\u003E 10, 540&#x2013;547. doi: 10.1038\u002Fnmeth.2450\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23817127\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnmeth.2450\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Improved+tools+for+the+Brainbow+toolbox%2E&#x0026;journal=Nat%2E+Methods&#x0026;author=Cai+D.&#x0026;author=Cohen+K.+B.&#x0026;author=Luo+T.&#x0026;author=Lichtman+J.+W.&#x0026;author=Sanes+J.+R.&#x0026;publication_year=2013&#x0026;volume=10&#x0026;pages=540&#x2013;547\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B21\" id=\"B21\"\u003E\u003C\u002Fa\u003EChen, J., Lau, B. T., Andor, N., Grimes, S. M., Handy, C., Wood-Bouwens, C., et al. (2019). Single-cell transcriptome analysis identifies distinct cell types and niche signaling in a primary gastric organoid model. \u003Ci\u003ESci. Rep.\u003C\u002Fi\u003E 9:4536.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Single-cell+transcriptome+analysis+identifies+distinct+cell+types+and+niche+signaling+in+a+primary+gastric+organoid+model%2E&#x0026;journal=Sci%2E+Rep%2E&#x0026;author=Chen+J.&#x0026;author=Lau+B.+T.&#x0026;author=Andor+N.&#x0026;author=Grimes+S.+M.&#x0026;author=Handy+C.&#x0026;author=Wood-Bouwens+C.&#x0026;publication_year=2019&#x0026;volume=9&#x0026;issue=4536\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B22\" id=\"B22\"\u003E\u003C\u002Fa\u003EDarwich, A. S., Aslam, U., Ashcroft, D. M., and Rostami-Hodjegan, A. (2014). Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. \u003Ci\u003EDrug Metab. Dispos.\u003C\u002Fi\u003E 42, 2016&#x2013;2022. doi: 10.1124\u002Fdmd.114.058404\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25233858\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1124\u002Fdmd.114.058404\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Meta-analysis+of+the+turnover+of+intestinal+epithelia+in+preclinical+animal+species+and+humans%2E&#x0026;journal=Drug+Metab%2E+Dispos%2E&#x0026;author=Darwich+A.+S.&#x0026;author=Aslam+U.&#x0026;author=Ashcroft+D.+M.&#x0026;author=Rostami-Hodjegan+A.&#x0026;publication_year=2014&#x0026;volume=42&#x0026;pages=2016&#x2013;2022\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B23\" id=\"B23\"\u003E\u003C\u002Fa\u003Ede Lau, W., Kujala, P., Schneeberger, K., Middendorp, S., Li, V. S. W., Barker, N., et al. (2012). Peyer&#x2019;s patch M cells derived from Lgr5+ stem cells require SpiB and are induced by RankL in cultured &#x201C;Miniguts.&#x201D;. \u003Ci\u003EMol. Cell Biol.\u003C\u002Fi\u003E 32, 3639&#x2013;3647. doi: 10.1128\u002Fmcb.00434-12\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22778137\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1128\u002Fmcb.00434-12\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Peyer&#x2019;s+patch+M+cells+derived+from+Lgr5%2B+stem+cells+require+SpiB+and+are+induced+by+RankL+in+cultured+&#x201C;Miniguts%2E&#x201D;%2E&#x0026;journal=Mol%2E+Cell+Biol%2E&#x0026;author=de+Lau+W.&#x0026;author=Kujala+P.&#x0026;author=Schneeberger+K.&#x0026;author=Middendorp+S.&#x0026;author=Li+V.+S.+W.&#x0026;author=Barker+N.&#x0026;publication_year=2012&#x0026;volume=32&#x0026;pages=3639&#x2013;3647\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B24\" id=\"B24\"\u003E\u003C\u002Fa\u003Ede S. e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., et al. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. \u003Ci\u003ENature\u003C\u002Fi\u003E 543, 676&#x2013;680. doi: 10.1038\u002Fnature21713\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28358093\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature21713\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+distinct+role+for+Lgr5%2B+stem+cells+in+primary+and+metastatic+colon+cancer%2E&#x0026;journal=Nature&#x0026;author=de+S.+e+Melo+F.&#x0026;author=Kurtova+A.+V.&#x0026;author=Harnoss+J.+M.&#x0026;author=Kljavin+N.&#x0026;author=Hoeck+J.+D.&#x0026;author=Hung+J.&#x0026;publication_year=2017&#x0026;volume=543&#x0026;pages=676&#x2013;680\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B25\" id=\"B25\"\u003E\u003C\u002Fa\u003EDegirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G., and Basler, K. (2018). GLI1-expressing mesenchymal cells form the essential Wnt-secreting niche for colon stem cells. \u003Ci\u003ENature\u003C\u002Fi\u003E 558, 449&#x2013;453. doi: 10.1038\u002Fs41586-018-0190-3\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29875413\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-018-0190-3\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=GLI1-expressing+mesenchymal+cells+form+the+essential+Wnt-secreting+niche+for+colon+stem+cells%2E&#x0026;journal=Nature&#x0026;author=Degirmenci+B.&#x0026;author=Valenta+T.&#x0026;author=Dimitrieva+S.&#x0026;author=Hausmann+G.&#x0026;author=Basler+K.&#x0026;publication_year=2018&#x0026;volume=558&#x0026;pages=449&#x2013;453\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B26\" id=\"B26\"\u003E\u003C\u002Fa\u003EDrost, J., van Jaarsveld, R. H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., et al. (2015). Sequential cancer mutations in cultured human intestinal stem cells. \u003Ci\u003ENature\u003C\u002Fi\u003E 521, 43&#x2013;47. doi: 10.1038\u002Fnature14415\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25924068\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature14415\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Sequential+cancer+mutations+in+cultured+human+intestinal+stem+cells%2E&#x0026;journal=Nature&#x0026;author=Drost+J.&#x0026;author=van+Jaarsveld+R.+H.&#x0026;author=Ponsioen+B.&#x0026;author=Zimberlin+C.&#x0026;author=van+Boxtel+R.&#x0026;author=Buijs+A.&#x0026;publication_year=2015&#x0026;volume=521&#x0026;pages=43&#x2013;47\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B27\" id=\"B27\"\u003E\u003C\u002Fa\u003EDudhwala, Z. M., Hammond, P. D., Howarth, G. S., and Cummins, A. G. (2020). Intestinal stem cells promote crypt fission during postnatal growth of the small intestine. \u003Ci\u003EBMJ Open Gastroenterol.\u003C\u002Fi\u003E 7:e000388. doi: 10.1136\u002Fbmjgast-2020-000388\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32586946\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1136\u002Fbmjgast-2020-000388\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intestinal+stem+cells+promote+crypt+fission+during+postnatal+growth+of+the+small+intestine%2E&#x0026;journal=BMJ+Open+Gastroenterol%2E&#x0026;author=Dudhwala+Z.+M.&#x0026;author=Hammond+P.+D.&#x0026;author=Howarth+G.+S.&#x0026;author=Cummins+A.+G.&#x0026;publication_year=2020&#x0026;volume=7&#x0026;issue=e000388\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B28\" id=\"B28\"\u003E\u003C\u002Fa\u003EDunel-Erb, S., Chevalier, C., Laurent, P., Bach, A., Decrock, F., and Maho, Y. L. (2001). Restoration of the jejunal mucosa in rats refed after prolonged fasting. \u003Ci\u003EComp. Biochem. Physiol. A Mol. Integr. Physiol.\u003C\u002Fi\u003E 129, 933&#x2013;947. doi: 10.1016\u002Fs1095-6433(01)00360-9\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fs1095-6433(01)00360-9\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Restoration+of+the+jejunal+mucosa+in+rats+refed+after+prolonged+fasting%2E&#x0026;journal=Comp%2E+Biochem%2E+Physiol%2E+A+Mol%2E+Integr%2E+Physiol%2E&#x0026;author=Dunel-Erb+S.&#x0026;author=Chevalier+C.&#x0026;author=Laurent+P.&#x0026;author=Bach+A.&#x0026;author=Decrock+F.&#x0026;author=Maho+Y.+L.&#x0026;publication_year=2001&#x0026;volume=129&#x0026;pages=933&#x2013;947\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B29\" id=\"B29\"\u003E\u003C\u002Fa\u003EDurand, A., Donahue, B., Peignon, G., Letourneur, F., Cagnard, N., Slomianny, C., et al. (2012). Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). \u003Ci\u003EProc. Natl. Acad. Sci. U.S.A.\u003C\u002Fi\u003E 109, 8965&#x2013;8970. doi: 10.1073\u002Fpnas.1201652109\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22586121\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1073\u002Fpnas.1201652109\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Functional+intestinal+stem+cells+after+Paneth+cell+ablation+induced+by+the+loss+of+transcription+factor+Math1+%28Atoh1%29%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Durand+A.&#x0026;author=Donahue+B.&#x0026;author=Peignon+G.&#x0026;author=Letourneur+F.&#x0026;author=Cagnard+N.&#x0026;author=Slomianny+C.&#x0026;publication_year=2012&#x0026;volume=109&#x0026;pages=8965&#x2013;8970\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B30\" id=\"B30\"\u003E\u003C\u002Fa\u003EFarin, H. F., Karthaus, W. R., Kujala, P., Rakhshandehroo, M., Schwank, G., Vries, R. G. J., et al. (2014). Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell&#x2013;derived IFN-&#x03B3;Paneth cell response to IFN-&#x03B3;. \u003Ci\u003EJ. Exp. Med.\u003C\u002Fi\u003E 211, 1393&#x2013;1405. doi: 10.1084\u002Fjem.20130753\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24980747\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1084\u002Fjem.20130753\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Paneth+cell+extrusion+and+release+of+antimicrobial+products+is+directly+controlled+by+immune+cell&#x2013;derived+IFN-&#x03B3;Paneth+cell+response+to+IFN-&#x03B3;%2E&#x0026;journal=J%2E+Exp%2E+Med%2E&#x0026;author=Farin+H.+F.&#x0026;author=Karthaus+W.+R.&#x0026;author=Kujala+P.&#x0026;author=Rakhshandehroo+M.&#x0026;author=Schwank+G.&#x0026;author=Vries+R.+G.+J.&#x0026;publication_year=2014&#x0026;volume=211&#x0026;pages=1393&#x2013;1405\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B31\" id=\"B31\"\u003E\u003C\u002Fa\u003EFawkner-Corbett, D., Antanaviciute, A., Parikh, K., Jagielowicz, M., Ger&#x00F3;s, A. S., Gupta, T., et al. (2021). Spatiotemporal analysis of human intestinal development at single-cell resolution. \u003Ci\u003ECell\u003C\u002Fi\u003E 184, 810&#x2013;826.e23.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Spatiotemporal+analysis+of+human+intestinal+development+at+single-cell+resolution%2E&#x0026;journal=Cell&#x0026;author=Fawkner-Corbett+D.&#x0026;author=Antanaviciute+A.&#x0026;author=Parikh+K.&#x0026;author=Jagielowicz+M.&#x0026;author=Ger&#x00F3;s+A.+S.&#x0026;author=Gupta+T.&#x0026;publication_year=2021&#x0026;volume=184&#x0026;pages=810&#x2013;826.e23\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B32\" id=\"B32\"\u003E\u003C\u002Fa\u003EFearon, E. R., and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. \u003Ci\u003ECell\u003C\u002Fi\u003E 61, 759&#x2013;767. doi: 10.1016\u002F0092-8674(90)90186-i\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002F0092-8674(90)90186-i\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+genetic+model+for+colorectal+tumorigenesis%2E&#x0026;journal=Cell&#x0026;author=Fearon+E.+R.&#x0026;author=Vogelstein+B.&#x0026;publication_year=1990&#x0026;volume=61&#x0026;pages=759&#x2013;767\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B33\" id=\"B33\"\u003E\u003C\u002Fa\u003EFreedman, B. D., Kempna, P. B., Carlone, D. L., Shah, M. S., Guagliardo, N. A., Barrett, P. Q., et al. (2013). Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. \u003Ci\u003EDev. Cell\u003C\u002Fi\u003E 26, 666&#x2013;673. doi: 10.1016\u002Fj.devcel.2013.07.016\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24035414\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.devcel.2013.07.016\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Adrenocortical+zonation+results+from+lineage+conversion+of+differentiated+zona+glomerulosa+cells%2E&#x0026;journal=Dev%2E+Cell&#x0026;author=Freedman+B.+D.&#x0026;author=Kempna+P.+B.&#x0026;author=Carlone+D.+L.&#x0026;author=Shah+M.+S.&#x0026;author=Guagliardo+N.+A.&#x0026;author=Barrett+P.+Q.&#x0026;publication_year=2013&#x0026;volume=26&#x0026;pages=666&#x2013;673\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B34\" id=\"B34\"\u003E\u003C\u002Fa\u003EFrieda, K. L., Linton, J. M., Hormoz, S., Choi, J., Chow, K.-H. K., Singer, Z. S., et al. (2017). Synthetic recording and in situ readout of lineage information in single cells. \u003Ci\u003ENature\u003C\u002Fi\u003E 541, 107&#x2013;111. doi: 10.1038\u002Fnature20777\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27869821\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature20777\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Synthetic+recording+and+in+situ+readout+of+lineage+information+in+single+cells%2E&#x0026;journal=Nature&#x0026;author=Frieda+K.+L.&#x0026;author=Linton+J.+M.&#x0026;author=Hormoz+S.&#x0026;author=Choi+J.&#x0026;author=Chow+K.-H.+K.&#x0026;author=Singer+Z.+S.&#x0026;publication_year=2017&#x0026;volume=541&#x0026;pages=107&#x2013;111\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B35\" id=\"B35\"\u003E\u003C\u002Fa\u003EFumagalli, A., Oost, K. C., Kester, L., Morgner, J., Bornes, L., Bruens, L., et al. (2020). Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 26, 569&#x2013;578.e7.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Plasticity+of+Lgr5-negative+cancer+cells+drives+metastasis+in+colorectal+cancer%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Fumagalli+A.&#x0026;author=Oost+K.+C.&#x0026;author=Kester+L.&#x0026;author=Morgner+J.&#x0026;author=Bornes+L.&#x0026;author=Bruens+L.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=569&#x2013;578.e7\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B36\" id=\"B36\"\u003E\u003C\u002Fa\u003EGao, Y., Yan, Y., Tripathi, S., Pentinmikko, N., Amaral, A., P&#x00E4;ivinen, P., et al. (2020). LKB1 Represses ATOH1 via PDK4 and Energy Metabolism and Regulates Intestinal Stem Cell Fate. \u003Ci\u003EGastroenterology\u003C\u002Fi\u003E 158, 1389.e&#x2013;1401.e.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=LKB1+Represses+ATOH1+via+PDK4+and+Energy+Metabolism+and+Regulates+Intestinal+Stem+Cell+Fate%2E&#x0026;journal=Gastroenterology&#x0026;author=Gao+Y.&#x0026;author=Yan+Y.&#x0026;author=Tripathi+S.&#x0026;author=Pentinmikko+N.&#x0026;author=Amaral+A.&#x0026;author=P&#x00E4;ivinen+P.&#x0026;publication_year=2020&#x0026;volume=158&#x0026;pages=1389.e&#x2013;1401.e\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B37\" id=\"B37\"\u003E\u003C\u002Fa\u003EGehart, H., van Es, J. H., Hamer, K., Beumer, J., Kretzschmar, K., Dekkers, J. F., et al. (2019). Identification of enteroendocrine regulators by real-time single-cell differentiation mapping. \u003Ci\u003ECell\u003C\u002Fi\u003E 176, 1158&#x2013;1173.e16.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Identification+of+enteroendocrine+regulators+by+real-time+single-cell+differentiation+mapping%2E&#x0026;journal=Cell&#x0026;author=Gehart+H.&#x0026;author=van+Es+J.+H.&#x0026;author=Hamer+K.&#x0026;author=Beumer+J.&#x0026;author=Kretzschmar+K.&#x0026;author=Dekkers+J.+F.&#x0026;publication_year=2019&#x0026;volume=176&#x0026;pages=1158&#x2013;1173.e16\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B38\" id=\"B38\"\u003E\u003C\u002Fa\u003EGerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., et al. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. \u003Ci\u003ENature\u003C\u002Fi\u003E 529, 226&#x2013;230. doi: 10.1038\u002Fnature16527\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26762460\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature16527\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intestinal+epithelial+tuft+cells+initiate+type+2+mucosal+immunity+to+helminth+parasites%2E&#x0026;journal=Nature&#x0026;author=Gerbe+F.&#x0026;author=Sidot+E.&#x0026;author=Smyth+D.+J.&#x0026;author=Ohmoto+M.&#x0026;author=Matsumoto+I.&#x0026;author=Dardalhon+V.&#x0026;publication_year=2016&#x0026;volume=529&#x0026;pages=226&#x2013;230\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B39\" id=\"B39\"\u003E\u003C\u002Fa\u003EGregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y., and Wrana, J. L. (2015). Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. \u003Ci\u003ENature\u003C\u002Fi\u003E 526, 715&#x2013;718. doi: 10.1038\u002Fnature15382\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26503053\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature15382\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Yap-dependent+reprogramming+of+Lgr5%2B+stem+cells+drives+intestinal+regeneration+and+cancer%2E&#x0026;journal=Nature&#x0026;author=Gregorieff+A.&#x0026;author=Liu+Y.&#x0026;author=Inanlou+M.+R.&#x0026;author=Khomchuk+Y.&#x0026;author=Wrana+J.+L.&#x0026;publication_year=2015&#x0026;volume=526&#x0026;pages=715&#x2013;718\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B40\" id=\"B40\"\u003E\u003C\u002Fa\u003EGreicius, G., Kabiri, Z., Sigmundsson, K., Liang, C., Bunte, R., Singh, M. K., et al. (2018). PDGFR&#x03B1;+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. \u003Ci\u003EProc. Natl. Acad. Sci. U.S.A.\u003C\u002Fi\u003E 115:201713510.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=PDGFR&#x03B1;%2B+pericryptal+stromal+cells+are+the+critical+source+of+Wnts+and+RSPO3+for+murine+intestinal+stem+cells+in+vivo%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Greicius+G.&#x0026;author=Kabiri+Z.&#x0026;author=Sigmundsson+K.&#x0026;author=Liang+C.&#x0026;author=Bunte+R.&#x0026;author=Singh+M.+K.&#x0026;publication_year=2018&#x0026;volume=115&#x0026;issue=201713510\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B41\" id=\"B41\"\u003E\u003C\u002Fa\u003EHaber, A. L., Biton, M., Rogel, N., Herbst, R. H., Shekhar, K., Smillie, C., et al. (2017). A single-cell survey of the small intestinal epithelium. \u003Ci\u003ENature\u003C\u002Fi\u003E 551, 333&#x2013;339.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+single-cell+survey+of+the+small+intestinal+epithelium%2E&#x0026;journal=Nature&#x0026;author=Haber+A.+L.&#x0026;author=Biton+M.&#x0026;author=Rogel+N.&#x0026;author=Herbst+R.+H.&#x0026;author=Shekhar+K.&#x0026;author=Smillie+C.&#x0026;publication_year=2017&#x0026;volume=551&#x0026;pages=333&#x2013;339\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B42\" id=\"B42\"\u003E\u003C\u002Fa\u003EHabib, A. M., Richards, P., Cairns, L. S., Rogers, G. J., Bannon, C. A. M., Parker, H. E., et al. (2012). Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. \u003Ci\u003EEndocrinology\u003C\u002Fi\u003E 153, 3054&#x2013;3065. doi: 10.1210\u002Fen.2011-2170\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22685263\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1210\u002Fen.2011-2170\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Overlap+of+endocrine+hormone+expression+in+the+mouse+intestine+revealed+by+transcriptional+profiling+and+flow+cytometry%2E&#x0026;journal=Endocrinology&#x0026;author=Habib+A.+M.&#x0026;author=Richards+P.&#x0026;author=Cairns+L.+S.&#x0026;author=Rogers+G.+J.&#x0026;author=Bannon+C.+A.+M.&#x0026;author=Parker+H.+E.&#x0026;publication_year=2012&#x0026;volume=153&#x0026;pages=3054&#x2013;3065\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B43\" id=\"B43\"\u003E\u003C\u002Fa\u003EHalpern, K. B., Massalha, H., Zwick, R. K., Moor, A. E., Castillo-Azofeifa, D., Rozenberg, M., et al. (2020). Lgr5+ telocytes are a signaling source at the intestinal villus tip. \u003Ci\u003ENat. Commun.\u003C\u002Fi\u003E 11:1936.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Lgr5%2B+telocytes+are+a+signaling+source+at+the+intestinal+villus+tip%2E&#x0026;journal=Nat%2E+Commun%2E&#x0026;author=Halpern+K.+B.&#x0026;author=Massalha+H.&#x0026;author=Zwick+R.+K.&#x0026;author=Moor+A.+E.&#x0026;author=Castillo-Azofeifa+D.&#x0026;author=Rozenberg+M.&#x0026;publication_year=2020&#x0026;volume=11&#x0026;issue=1936\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B44\" id=\"B44\"\u003E\u003C\u002Fa\u003EHao, H.-X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., et al. (2012). ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. \u003Ci\u003ENature\u003C\u002Fi\u003E 485, 195&#x2013;200. doi: 10.1038\u002Fnature11019\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22575959\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature11019\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=ZNRF3+promotes+Wnt+receptor+turnover+in+an+R-spondin-sensitive+manner%2E&#x0026;journal=Nature&#x0026;author=Hao+H.-X.&#x0026;author=Xie+Y.&#x0026;author=Zhang+Y.&#x0026;author=Charlat+O.&#x0026;author=Oster+E.&#x0026;author=Avello+M.&#x0026;publication_year=2012&#x0026;volume=485&#x0026;pages=195&#x2013;200\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B45\" id=\"B45\"\u003E\u003C\u002Fa\u003EHowitt, M. R., Lavoie, S., Michaud, M., Blum, A. M., Tran, S. V., Weinstock, J. V., et al. (2016). Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. \u003Ci\u003EScience\u003C\u002Fi\u003E 351, 1329&#x2013;1333. doi: 10.1126\u002Fscience.aaf1648\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26847546\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.aaf1648\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Tuft+cells%2C+taste-chemosensory+cells%2C+orchestrate+parasite+type+2+immunity+in+the+gut%2E&#x0026;journal=Science&#x0026;author=Howitt+M.+R.&#x0026;author=Lavoie+S.&#x0026;author=Michaud+M.&#x0026;author=Blum+A.+M.&#x0026;author=Tran+S.+V.&#x0026;author=Weinstock+J.+V.&#x0026;publication_year=2016&#x0026;volume=351&#x0026;pages=1329&#x2013;1333\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B46\" id=\"B46\"\u003E\u003C\u002Fa\u003EJadhav, U., Saxena, M., O&#x2019;Neill, N. K., Saadatpour, A., Yuan, G.-C., Herbert, Z., et al. (2017). Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 21, 65&#x2013;77.e5.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Dynamic+reorganization+of+chromatin+accessibility+signatures+during+dedifferentiation+of+secretory+precursors+into+Lgr5%2B+intestinal+stem+cells%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Jadhav+U.&#x0026;author=Saxena+M.&#x0026;author=O&#x2019;Neill+N.+K.&#x0026;author=Saadatpour+A.&#x0026;author=Yuan+G.-C.&#x0026;author=Herbert+Z.&#x0026;publication_year=2017&#x0026;volume=21&#x0026;pages=65&#x2013;77.e5\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B47\" id=\"B47\"\u003E\u003C\u002Fa\u003EJones, J. C., Brindley, C. D., Elder, N. H., Myers, M. G., Rajala, M. W., Dekaney, C. M., et al. (2019). Cellular plasticity of Defa4 Cre -expressing paneth cells in response to notch activation and intestinal injury. \u003Ci\u003ECell Mol. Gastroenterol. Hepatol.\u003C\u002Fi\u003E 7, 533&#x2013;554. doi: 10.1016\u002Fj.jcmgh.2018.11.004\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30827941\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.jcmgh.2018.11.004\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Cellular+plasticity+of+Defa4+Cre+-expressing+paneth+cells+in+response+to+notch+activation+and+intestinal+injury%2E&#x0026;journal=Cell+Mol%2E+Gastroenterol%2E+Hepatol%2E&#x0026;author=Jones+J.+C.&#x0026;author=Brindley+C.+D.&#x0026;author=Elder+N.+H.&#x0026;author=Myers+M.+G.&#x0026;author=Rajala+M.+W.&#x0026;author=Dekaney+C.+M.&#x0026;publication_year=2019&#x0026;volume=7&#x0026;pages=533&#x2013;554\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B48\" id=\"B48\"\u003E\u003C\u002Fa\u003EKalhor, R., Kalhor, K., Mejia, L., Leeper, K., Graveline, A., Mali, P., et al. (2018). Developmental barcoding of whole mouse via homing CRISPR. \u003Ci\u003EScience\u003C\u002Fi\u003E 361:eaat9804. doi: 10.1126\u002Fscience.aat9804\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30093604\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.aat9804\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Developmental+barcoding+of+whole+mouse+via+homing+CRISPR%2E&#x0026;journal=Science&#x0026;author=Kalhor+R.&#x0026;author=Kalhor+K.&#x0026;author=Mejia+L.&#x0026;author=Leeper+K.&#x0026;author=Graveline+A.&#x0026;author=Mali+P.&#x0026;publication_year=2018&#x0026;volume=361&#x0026;issue=eaat9804\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B49\" id=\"B49\"\u003E\u003C\u002Fa\u003EKalhor, R., Mali, P., and Church, G. M. (2017). Rapidly evolving homing CRISPR barcodes. \u003Ci\u003ENat. Methods\u003C\u002Fi\u003E 14, 195&#x2013;200. doi: 10.1038\u002Fnmeth.4108\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27918539\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnmeth.4108\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Rapidly+evolving+homing+CRISPR+barcodes%2E&#x0026;journal=Nat%2E+Methods&#x0026;author=Kalhor+R.&#x0026;author=Mali+P.&#x0026;author=Church+G.+M.&#x0026;publication_year=2017&#x0026;volume=14&#x0026;pages=195&#x2013;200\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B50\" id=\"B50\"\u003E\u003C\u002Fa\u003EKanaya, T., Hase, K., Takahashi, D., Fukuda, S., Hoshino, K., Sasaki, I., et al. (2012). The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. \u003Ci\u003ENat. Immunol.\u003C\u002Fi\u003E 13, 729&#x2013;736. doi: 10.1038\u002Fni.2352\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22706340\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fni.2352\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=The+Ets+transcription+factor+Spi-B+is+essential+for+the+differentiation+of+intestinal+microfold+cells%2E&#x0026;journal=Nat%2E+Immunol%2E&#x0026;author=Kanaya+T.&#x0026;author=Hase+K.&#x0026;author=Takahashi+D.&#x0026;author=Fukuda+S.&#x0026;author=Hoshino+K.&#x0026;author=Sasaki+I.&#x0026;publication_year=2012&#x0026;volume=13&#x0026;pages=729&#x2013;736\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B51\" id=\"B51\"\u003E\u003C\u002Fa\u003EKechele, D. O., and Wells, J. M. (2019). Recent advances in deriving human endodermal tissues from pluripotent stem cells. \u003Ci\u003ECurr. Opin. Cell Biol.\u003C\u002Fi\u003E 61, 92&#x2013;100. doi: 10.1016\u002Fj.ceb.2019.07.009\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31425933\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.ceb.2019.07.009\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Recent+advances+in+deriving+human+endodermal+tissues+from+pluripotent+stem+cells%2E&#x0026;journal=Curr%2E+Opin%2E+Cell+Biol%2E&#x0026;author=Kechele+D.+O.&#x0026;author=Wells+J.+M.&#x0026;publication_year=2019&#x0026;volume=61&#x0026;pages=92&#x2013;100\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B52\" id=\"B52\"\u003E\u003C\u002Fa\u003EKiela, P. R., and Ghishan, F. K. (2016). Physiology of intestinal absorption and secretion. \u003Ci\u003EBest Pract. Res. Clin. Gastroenterol.\u003C\u002Fi\u003E 30, 145&#x2013;159.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Physiology+of+intestinal+absorption+and+secretion%2E&#x0026;journal=Best+Pract%2E+Res%2E+Clin%2E+Gastroenterol%2E&#x0026;author=Kiela+P.+R.&#x0026;author=Ghishan+F.+K.&#x0026;publication_year=2016&#x0026;volume=30&#x0026;pages=145&#x2013;159\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B53\" id=\"B53\"\u003E\u003C\u002Fa\u003EKim, T.-H., Escudero, S., and Shivdasani, R. A. (2012). Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. \u003Ci\u003EProc. Natl. Acad. Sci. U.S.A.\u003C\u002Fi\u003E 109, 3932&#x2013;3937. doi: 10.1073\u002Fpnas.1113890109\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22355124\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1073\u002Fpnas.1113890109\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intact+function+of+Lgr5+receptor-expressing+intestinal+stem+cells+in+the+absence+of+Paneth+cells%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Kim+T.-H.&#x0026;author=Escudero+S.&#x0026;author=Shivdasani+R.+A.&#x0026;publication_year=2012&#x0026;volume=109&#x0026;pages=3932&#x2013;3937\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B54\" id=\"B54\"\u003E\u003C\u002Fa\u003EKim, T.-H., Li, F., Ferreiro-Neira, I., Ho, L.-L., Luyten, A., Nalapareddy, K., et al. (2014). Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. \u003Ci\u003ENature\u003C\u002Fi\u003E 506, 511&#x2013;515. doi: 10.1038\u002Fnature12903\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24413398\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature12903\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Broadly+permissive+intestinal+chromatin+underlies+lateral+inhibition+and+cell+plasticity%2E&#x0026;journal=Nature&#x0026;author=Kim+T.-H.&#x0026;author=Li+F.&#x0026;author=Ferreiro-Neira+I.&#x0026;author=Ho+L.-L.&#x0026;author=Luyten+A.&#x0026;author=Nalapareddy+K.&#x0026;publication_year=2014&#x0026;volume=506&#x0026;pages=511&#x2013;515\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B55\" id=\"B55\"\u003E\u003C\u002Fa\u003EKnoop, K. A., Kumar, N., Butler, B. R., Sakthivel, S. K., Taylor, R. T., Nochi, T., et al. (2009). RANKL Is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. \u003Ci\u003EJ. Immunol.\u003C\u002Fi\u003E 183, 5738&#x2013;5747. doi: 10.4049\u002Fjimmunol.0901563\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F19828638\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.4049\u002Fjimmunol.0901563\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=RANKL+Is+necessary+and+sufficient+to+initiate+development+of+antigen-sampling+M+cells+in+the+intestinal+epithelium%2E&#x0026;journal=J%2E+Immunol%2E&#x0026;author=Knoop+K.+A.&#x0026;author=Kumar+N.&#x0026;author=Butler+B.+R.&#x0026;author=Sakthivel+S.+K.&#x0026;author=Taylor+R.+T.&#x0026;author=Nochi+T.&#x0026;publication_year=2009&#x0026;volume=183&#x0026;pages=5738&#x2013;5747\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B56\" id=\"B56\"\u003E\u003C\u002Fa\u003EKoo, B.-K., Spit, M., Jordens, I., Low, T. Y., Stange, D. E., van de Wetering, M., et al. (2012). Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. \u003Ci\u003ENature\u003C\u002Fi\u003E 488, 665&#x2013;669. doi: 10.1038\u002Fnature11308\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22895187\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature11308\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Tumour+suppressor+RNF43+is+a+stem-cell+E3+ligase+that+induces+endocytosis+of+Wnt+receptors%2E&#x0026;journal=Nature&#x0026;author=Koo+B.-K.&#x0026;author=Spit+M.&#x0026;author=Jordens+I.&#x0026;author=Low+T.+Y.&#x0026;author=Stange+D.+E.&#x0026;author=van+de+Wetering+M.&#x0026;publication_year=2012&#x0026;volume=488&#x0026;pages=665&#x2013;669\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B57\" id=\"B57\"\u003E\u003C\u002Fa\u003ELai, N. Y., Musser, M. A., Pinho-Ribeiro, F. A., Baral, P., Jacobson, A., Ma, P., et al. (2020). Gut-innervating nociceptor neurons regulate peyer&#x2019;s patch microfold cells and SFB levels to mediate \u003Ci\u003ESalmonella\u003C\u002Fi\u003E host defense. \u003Ci\u003ECell\u003C\u002Fi\u003E 180, 33&#x2013;49.e22.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Gut-innervating+nociceptor+neurons+regulate+peyer&#x2019;s+patch+microfold+cells+and+SFB+levels+to+mediate+Salmonella+host+defense%2E&#x0026;journal=Cell&#x0026;author=Lai+N.+Y.&#x0026;author=Musser+M.+A.&#x0026;author=Pinho-Ribeiro+F.+A.&#x0026;author=Baral+P.&#x0026;author=Jacobson+A.&#x0026;author=Ma+P.&#x0026;publication_year=2020&#x0026;volume=180&#x0026;pages=33&#x2013;49.e22\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B58\" id=\"B58\"\u003E\u003C\u002Fa\u003ELenos, K. J., Miedema, D. M., Lodestijn, S. C., Nijman, L. E., van den Bosch, T., Ros, X. R., et al. (2018). Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. \u003Ci\u003ENat. Cell Biol.\u003C\u002Fi\u003E 20, 1193&#x2013;1202. doi: 10.1038\u002Fs41556-018-0179-z\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30177776\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41556-018-0179-z\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Stem+cell+functionality+is+microenvironmentally+defined+during+tumour+expansion+and+therapy+response+in+colon+cancer%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Lenos+K.+J.&#x0026;author=Miedema+D.+M.&#x0026;author=Lodestijn+S.+C.&#x0026;author=Nijman+L.+E.&#x0026;author=van+den+Bosch+T.&#x0026;author=Ros+X.+R.&#x0026;publication_year=2018&#x0026;volume=20&#x0026;pages=1193&#x2013;1202\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B59\" id=\"B59\"\u003E\u003C\u002Fa\u003ELindemans, C. A., Calafiore, M., Mertelsmann, A. M., O&#x2019;Connor, M. H., Dudakov, J. A., Jenq, R. R., et al. (2015). Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. \u003Ci\u003ENature\u003C\u002Fi\u003E 528, 560&#x2013;564.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Interleukin-22+promotes+intestinal-stem-cell-mediated+epithelial+regeneration%2E&#x0026;journal=Nature&#x0026;author=Lindemans+C.+A.&#x0026;author=Calafiore+M.&#x0026;author=Mertelsmann+A.+M.&#x0026;author=O&#x2019;Connor+M.+H.&#x0026;author=Dudakov+J.+A.&#x0026;author=Jenq+R.+R.&#x0026;publication_year=2015&#x0026;volume=528&#x0026;pages=560&#x2013;564\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B60\" id=\"B60\"\u003E\u003C\u002Fa\u003ELivet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. \u003Ci\u003ENature\u003C\u002Fi\u003E 450, 56&#x2013;62.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Transgenic+strategies+for+combinatorial+expression+of+fluorescent+proteins+in+the+nervous+system%2E&#x0026;journal=Nature&#x0026;author=Livet+J.&#x0026;author=Weissman+T.+A.&#x0026;author=Kang+H.&#x0026;author=Draft+R.+W.&#x0026;author=Lu+J.&#x0026;author=Bennis+R.+A.&#x0026;publication_year=2007&#x0026;volume=450&#x0026;pages=56&#x2013;62\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B61\" id=\"B61\"\u003E\u003C\u002Fa\u003ELopez-Garcia, C., Klein, A. M., Simons, B. D., and Winton, D. J. (2010). Intestinal stem cell replacement follows a pattern of neutral drift. \u003Ci\u003EScience\u003C\u002Fi\u003E 330, 822&#x2013;825. doi: 10.1126\u002Fscience.1196236\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F20929733\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.1196236\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intestinal+stem+cell+replacement+follows+a+pattern+of+neutral+drift%2E&#x0026;journal=Science&#x0026;author=Lopez-Garcia+C.&#x0026;author=Klein+A.+M.&#x0026;author=Simons+B.+D.&#x0026;author=Winton+D.+J.&#x0026;publication_year=2010&#x0026;volume=330&#x0026;pages=822&#x2013;825\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B62\" id=\"B62\"\u003E\u003C\u002Fa\u003EMaj, J. G., Paris, F., Haimovitz-Friedman, A., Venkatraman, E., Kolesnick, R., and Fuks, Z. (2003). Microvascular function regulates intestinal crypt response to radiation. \u003Ci\u003ECancer Res.\u003C\u002Fi\u003E 63, 4338&#x2013;4341.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Microvascular+function+regulates+intestinal+crypt+response+to+radiation%2E&#x0026;journal=Cancer+Res%2E&#x0026;author=Maj+J.+G.&#x0026;author=Paris+F.&#x0026;author=Haimovitz-Friedman+A.&#x0026;author=Venkatraman+E.&#x0026;author=Kolesnick+R.&#x0026;author=Fuks+Z.&#x0026;publication_year=2003&#x0026;volume=63&#x0026;pages=4338&#x2013;4341\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B63\" id=\"B63\"\u003E\u003C\u002Fa\u003EMcCarthy, N., Manieri, E., Storm, E. E., Saadatpour, A., Luoma, A. M., Kapoor, V. N., et al. (2020). Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 26, 391&#x2013;402.e5.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Distinct+mesenchymal+cell+populations+generate+the+essential+intestinal+BMP+signaling+gradient%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=McCarthy+N.&#x0026;author=Manieri+E.&#x0026;author=Storm+E.+E.&#x0026;author=Saadatpour+A.&#x0026;author=Luoma+A.+M.&#x0026;author=Kapoor+V.+N.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=391&#x2013;402.e5\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B64\" id=\"B64\"\u003E\u003C\u002Fa\u003EMcCracken, K. W., Howell, J. C., Wells, J. M., and Spence, J. R. (2011). Generating human intestinal tissue from pluripotent stem cells in vitro. \u003Ci\u003ENat. Protoc.\u003C\u002Fi\u003E 6, 1920&#x2013;1928. doi: 10.1038\u002Fnprot.2011.410\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22082986\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnprot.2011.410\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Generating+human+intestinal+tissue+from+pluripotent+stem+cells+in+vitro%2E&#x0026;journal=Nat%2E+Protoc%2E&#x0026;author=McCracken+K.+W.&#x0026;author=Howell+J.+C.&#x0026;author=Wells+J.+M.&#x0026;author=Spence+J.+R.&#x0026;publication_year=2011&#x0026;volume=6&#x0026;pages=1920&#x2013;1928\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B65\" id=\"B65\"\u003E\u003C\u002Fa\u003EMcDole, J. R., Wheeler, L. W., McDonald, K. G., Wang, B., Konjufca, V., Knoop, K. A., et al. (2012). Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. \u003Ci\u003ENature\u003C\u002Fi\u003E 483, 345&#x2013;349. doi: 10.1038\u002Fnature10863\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22422267\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature10863\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Goblet+cells+deliver+luminal+antigen+to+CD103%2B+dendritic+cells+in+the+small+intestine%2E&#x0026;journal=Nature&#x0026;author=McDole+J.+R.&#x0026;author=Wheeler+L.+W.&#x0026;author=McDonald+K.+G.&#x0026;author=Wang+B.&#x0026;author=Konjufca+V.&#x0026;author=Knoop+K.+A.&#x0026;publication_year=2012&#x0026;volume=483&#x0026;pages=345&#x2013;349\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B66\" id=\"B66\"\u003E\u003C\u002Fa\u003EMcKenna, A., Findlay, G. M., Gagnon, J. A., Horwitz, M. S., Schier, A. F., and Shendure, J. (2016). Whole-organism lineage tracing by combinatorial and cumulative genome editing. \u003Ci\u003EScience\u003C\u002Fi\u003E 353:aaf7907. doi: 10.1126\u002Fscience.aaf7907\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27229144\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.aaf7907\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Whole-organism+lineage+tracing+by+combinatorial+and+cumulative+genome+editing%2E&#x0026;journal=Science&#x0026;author=McKenna+A.&#x0026;author=Findlay+G.+M.&#x0026;author=Gagnon+J.+A.&#x0026;author=Horwitz+M.+S.&#x0026;author=Schier+A.+F.&#x0026;author=Shendure+J.&#x0026;publication_year=2016&#x0026;volume=353&#x0026;issue=aaf7907\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B67\" id=\"B67\"\u003E\u003C\u002Fa\u003EMetcalfe, C., Kljavin, N. M., Ybarra, R., and de Sauvage, F. J. (2014). Lgr5 + stem cells are indispensable for radiation-induced intestinal regeneration. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 14, 149&#x2013;159. doi: 10.1016\u002Fj.stem.2013.11.008\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24332836\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.stem.2013.11.008\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Lgr5+%2B+stem+cells+are+indispensable+for+radiation-induced+intestinal+regeneration%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Metcalfe+C.&#x0026;author=Kljavin+N.+M.&#x0026;author=Ybarra+R.&#x0026;author=de+Sauvage+F.+J.&#x0026;publication_year=2014&#x0026;volume=14&#x0026;pages=149&#x2013;159\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B68\" id=\"B68\"\u003E\u003C\u002Fa\u003EMoor, A. E., Harnik, Y., Ben-Moshe, S., Massasa, E. E., Rozenberg, M., Eilam, R., et al. (2018). Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. \u003Ci\u003ECell\u003C\u002Fi\u003E 175, 1156&#x2013;1167.e15.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Spatial+reconstruction+of+single+enterocytes+uncovers+broad+zonation+along+the+intestinal+villus+axis%2E&#x0026;journal=Cell&#x0026;author=Moor+A.+E.&#x0026;author=Harnik+Y.&#x0026;author=Ben-Moshe+S.&#x0026;author=Massasa+E.+E.&#x0026;author=Rozenberg+M.&#x0026;author=Eilam+R.&#x0026;publication_year=2018&#x0026;volume=175&#x0026;pages=1156&#x2013;1167.e15\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B69\" id=\"B69\"\u003E\u003C\u002Fa\u003EMurata, K., Jadhav, U., Madha, S., van Es, J., Dean, J., Cavazza, A., et al. (2020). Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 26, 377&#x2013;390.e6.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Ascl2-dependent+cell+dedifferentiation+drives+regeneration+of+ablated+intestinal+stem+cells%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Murata+K.&#x0026;author=Jadhav+U.&#x0026;author=Madha+S.&#x0026;author=van+Es+J.&#x0026;author=Dean+J.&#x0026;author=Cavazza+A.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=377&#x2013;390.e6\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B70\" id=\"B70\"\u003E\u003C\u002Fa\u003EMustata, R. C., Vasile, G., Fernandez-Vallone, V., Strollo, S., Lefort, A., Libert, F., et al. (2013). Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. \u003Ci\u003ECell Rep.\u003C\u002Fi\u003E 5, 421&#x2013;432. doi: 10.1016\u002Fj.celrep.2013.09.005\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24139799\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.celrep.2013.09.005\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Identification+of+Lgr5-independent+spheroid-generating+progenitors+of+the+mouse+fetal+intestinal+epithelium%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Mustata+R.+C.&#x0026;author=Vasile+G.&#x0026;author=Fernandez-Vallone+V.&#x0026;author=Strollo+S.&#x0026;author=Lefort+A.&#x0026;author=Libert+F.&#x0026;publication_year=2013&#x0026;volume=5&#x0026;pages=421&#x2013;432\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B71\" id=\"B71\"\u003E\u003C\u002Fa\u003EMuzny, D. M., Bainbridge, M. N., Chang, K., Dinh, H. H., Drummond, J. A., Fowler, G., et al. (2012). Comprehensive molecular characterization of human colon and rectal cancer. \u003Ci\u003ENature\u003C\u002Fi\u003E 487, 330&#x2013;337. doi: 10.1038\u002Fnature11252\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22810696\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature11252\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Comprehensive+molecular+characterization+of+human+colon+and+rectal+cancer%2E&#x0026;journal=Nature&#x0026;author=Muzny+D.+M.&#x0026;author=Bainbridge+M.+N.&#x0026;author=Chang+K.&#x0026;author=Dinh+H.+H.&#x0026;author=Drummond+J.+A.&#x0026;author=Fowler+G.&#x0026;publication_year=2012&#x0026;volume=487&#x0026;pages=330&#x2013;337\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B72\" id=\"B72\"\u003E\u003C\u002Fa\u003ENicholson, A. M., Olpe, C., Hoyle, A., Thorsen, A.-S., Rus, T., Colomb&#x00E9;, M., et al. (2018). Fixation and spread of somatic mutations in adult human colonic epithelium. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 22, 909&#x2013;918.e8.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Fixation+and+spread+of+somatic+mutations+in+adult+human+colonic+epithelium%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Nicholson+A.+M.&#x0026;author=Olpe+C.&#x0026;author=Hoyle+A.&#x0026;author=Thorsen+A.-S.&#x0026;author=Rus+T.&#x0026;author=Colomb&#x00E9;+M.&#x0026;publication_year=2018&#x0026;volume=22&#x0026;pages=909&#x2013;918.e8\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B73\" id=\"B73\"\u003E\u003C\u002Fa\u003ENoel, G., Baetz, N. W., Staab, J. F., Donowitz, M., Kovbasnjuk, O., Pasetti, M. F., et al. (2017). A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. \u003Ci\u003ESci. Rep.\u003C\u002Fi\u003E 7:45270.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+primary+human+macrophage-enteroid+co-culture+model+to+investigate+mucosal+gut+physiology+and+host-pathogen+interactions%2E&#x0026;journal=Sci%2E+Rep%2E&#x0026;author=Noel+G.&#x0026;author=Baetz+N.+W.&#x0026;author=Staab+J.+F.&#x0026;author=Donowitz+M.&#x0026;author=Kovbasnjuk+O.&#x0026;author=Pasetti+M.+F.&#x0026;publication_year=2017&#x0026;volume=7&#x0026;issue=45270\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B74\" id=\"B74\"\u003E\u003C\u002Fa\u003ENusse, Y. M., Savage, A. K., Marangoni, P., Rosendahl-Huber, A. K. M., Landman, T. A., de Sauvage, F. J., et al. (2018). Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. \u003Ci\u003ENature\u003C\u002Fi\u003E 559, 109&#x2013;113. doi: 10.1038\u002Fs41586-018-0257-1\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29950724\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-018-0257-1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Parasitic+helminths+induce+fetal-like+reversion+in+the+intestinal+stem+cell+niche%2E&#x0026;journal=Nature&#x0026;author=Nusse+Y.+M.&#x0026;author=Savage+A.+K.&#x0026;author=Marangoni+P.&#x0026;author=Rosendahl-Huber+A.+K.+M.&#x0026;author=Landman+T.+A.&#x0026;author=de+Sauvage+F.+J.&#x0026;publication_year=2018&#x0026;volume=559&#x0026;pages=109&#x2013;113\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B75\" id=\"B75\"\u003E\u003C\u002Fa\u003EOgasawara, R., Hashimoto, D., Kimura, S., Hayase, E., Ara, T., Takahashi, S., et al. (2018). Intestinal lymphatic endothelial cells produce R-Spondin3. \u003Ci\u003ESci. Rep.\u003C\u002Fi\u003E 8:10719.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intestinal+lymphatic+endothelial+cells+produce+R-Spondin3%2E&#x0026;journal=Sci%2E+Rep%2E&#x0026;author=Ogasawara+R.&#x0026;author=Hashimoto+D.&#x0026;author=Kimura+S.&#x0026;author=Hayase+E.&#x0026;author=Ara+T.&#x0026;author=Takahashi+S.&#x0026;publication_year=2018&#x0026;volume=8&#x0026;issue=10719\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B76\" id=\"B76\"\u003E\u003C\u002Fa\u003EOmbrato, L., Nolan, E., Kurelac, I., Mavousian, A., Bridgeman, V. L., Heinze, I., et al. (2019). Metastatic-niche labelling reveals parenchymal cells with stem features. \u003Ci\u003ENature\u003C\u002Fi\u003E 572, 603&#x2013;608. doi: 10.1038\u002Fs41586-019-1487-6\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31462798\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-019-1487-6\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Metastatic-niche+labelling+reveals+parenchymal+cells+with+stem+features%2E&#x0026;journal=Nature&#x0026;author=Ombrato+L.&#x0026;author=Nolan+E.&#x0026;author=Kurelac+I.&#x0026;author=Mavousian+A.&#x0026;author=Bridgeman+V.+L.&#x0026;author=Heinze+I.&#x0026;publication_year=2019&#x0026;volume=572&#x0026;pages=603&#x2013;608\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B77\" id=\"B77\"\u003E\u003C\u002Fa\u003EPan, F. C., Bankaitis, E. D., Boyer, D., Xu, X., de Casteele, M. V., Magnuson, M. A., et al. (2013). Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. \u003Ci\u003EDevelopment\u003C\u002Fi\u003E 140, 751&#x2013;764. doi: 10.1242\u002Fdev.090159\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23325761\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1242\u002Fdev.090159\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Spatiotemporal+patterns+of+multipotentiality+in+Ptf1a-expressing+cells+during+pancreas+organogenesis+and+injury-induced+facultative+restoration%2E&#x0026;journal=Development&#x0026;author=Pan+F.+C.&#x0026;author=Bankaitis+E.+D.&#x0026;author=Boyer+D.&#x0026;author=Xu+X.&#x0026;author=de+Casteele+M.+V.&#x0026;author=Magnuson+M.+A.&#x0026;publication_year=2013&#x0026;volume=140&#x0026;pages=751&#x2013;764\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B78\" id=\"B78\"\u003E\u003C\u002Fa\u003EParikh, K., Antanaviciute, A., Fawkner-Corbett, D., Jagielowicz, M., Aulicino, A., Lagerholm, C., et al. (2019). Colonic epithelial cell diversity in health and inflammatory bowel disease. \u003Ci\u003ENature\u003C\u002Fi\u003E 567, 49&#x2013;55.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Colonic+epithelial+cell+diversity+in+health+and+inflammatory+bowel+disease%2E&#x0026;journal=Nature&#x0026;author=Parikh+K.&#x0026;author=Antanaviciute+A.&#x0026;author=Fawkner-Corbett+D.&#x0026;author=Jagielowicz+M.&#x0026;author=Aulicino+A.&#x0026;author=Lagerholm+C.&#x0026;publication_year=2019&#x0026;volume=567&#x0026;pages=49&#x2013;55\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B79\" id=\"B79\"\u003E\u003C\u002Fa\u003EPasqual, G., Chudnovskiy, A., Tas, J. M. J., Agudelo, M., Schweitzer, L. D., Cui, A., et al. (2018). Monitoring T cell&#x2013;dendritic cell interactions in vivo by intercellular enzymatic labelling. \u003Ci\u003ENature\u003C\u002Fi\u003E 553, 496&#x2013;500. doi: 10.1038\u002Fnature25442\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29342141\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature25442\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Monitoring+T+cell&#x2013;dendritic+cell+interactions+in+vivo+by+intercellular+enzymatic+labelling%2E&#x0026;journal=Nature&#x0026;author=Pasqual+G.&#x0026;author=Chudnovskiy+A.&#x0026;author=Tas+J.+M.+J.&#x0026;author=Agudelo+M.&#x0026;author=Schweitzer+L.+D.&#x0026;author=Cui+A.&#x0026;publication_year=2018&#x0026;volume=553&#x0026;pages=496&#x2013;500\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B80\" id=\"B80\"\u003E\u003C\u002Fa\u003EPei, W., Feyerabend, T. B., R&#x00F6;ssler, J., Wang, X., Postrach, D., Busch, K., et al. (2017). Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. \u003Ci\u003ENature\u003C\u002Fi\u003E 548, 456&#x2013;460. doi: 10.1038\u002Fnature23653\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28813413\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature23653\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Polylox+barcoding+reveals+haematopoietic+stem+cell+fates+realized+in+vivo%2E&#x0026;journal=Nature&#x0026;author=Pei+W.&#x0026;author=Feyerabend+T.+B.&#x0026;author=R&#x00F6;ssler+J.&#x0026;author=Wang+X.&#x0026;author=Postrach+D.&#x0026;author=Busch+K.&#x0026;publication_year=2017&#x0026;volume=548&#x0026;pages=456&#x2013;460\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B81\" id=\"B81\"\u003E\u003C\u002Fa\u003EPei, W., Shang, F., Wang, X., Fanti, A.-K., Greco, A., Busch, K., et al. (2020). Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polyloxexpress barcoding. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 27, 383.e&#x2013;395.e8.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Resolving+fates+and+single-cell+transcriptomes+of+hematopoietic+stem+cell+clones+by+polyloxexpress+barcoding%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Pei+W.&#x0026;author=Shang+F.&#x0026;author=Wang+X.&#x0026;author=Fanti+A.-K.&#x0026;author=Greco+A.&#x0026;author=Busch+K.&#x0026;publication_year=2020&#x0026;volume=27&#x0026;pages=383.e&#x2013;395.e8\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B82\" id=\"B82\"\u003E\u003C\u002Fa\u003EPleguezuelos-Manzano, C., Puschhof, J., Huber, A. R., van Hoeck, A., Wood, H. M., Nomburg, J., et al. (2020). Mutational signature in colorectal cancer caused by genotoxic pks+E. coli. \u003Ci\u003ENature\u003C\u002Fi\u003E 580, 269&#x2013;273. doi: 10.1038\u002Fs41586-020-2080-8\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32106218\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-020-2080-8\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Mutational+signature+in+colorectal+cancer+caused+by+genotoxic+pks%2BE%2E+coli%2E&#x0026;journal=Nature&#x0026;author=Pleguezuelos-Manzano+C.&#x0026;author=Puschhof+J.&#x0026;author=Huber+A.+R.&#x0026;author=van+Hoeck+A.&#x0026;author=Wood+H.+M.&#x0026;author=Nomburg+J.&#x0026;publication_year=2020&#x0026;volume=580&#x0026;pages=269&#x2013;273\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B83\" id=\"B83\"\u003E\u003C\u002Fa\u003EPoling, H. M., Wu, D., Brown, N., Baker, M., Hausfeld, T. A., Huynh, N., et al. (2018). Mechanically induced development and maturation of human intestinal organoids in vivo. \u003Ci\u003ENat. Biomed. Eng.\u003C\u002Fi\u003E 2, 429&#x2013;442. doi: 10.1038\u002Fs41551-018-0243-9\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30151330\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41551-018-0243-9\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Mechanically+induced+development+and+maturation+of+human+intestinal+organoids+in+vivo%2E&#x0026;journal=Nat%2E+Biomed%2E+Eng%2E&#x0026;author=Poling+H.+M.&#x0026;author=Wu+D.&#x0026;author=Brown+N.&#x0026;author=Baker+M.&#x0026;author=Hausfeld+T.+A.&#x0026;author=Huynh+N.&#x0026;publication_year=2018&#x0026;volume=2&#x0026;pages=429&#x2013;442\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B84\" id=\"B84\"\u003E\u003C\u002Fa\u003EPotten, C. S. (1998). Stem cells in gastrointestinal epithelium: numbers, characteristics and death. \u003Ci\u003EPhilos. Trans. R. Soc. Lond. B Biol. Sci.\u003C\u002Fi\u003E 353, 821&#x2013;830. doi: 10.1098\u002Frstb.1998.0246\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F9684279\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1098\u002Frstb.1998.0246\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Stem+cells+in+gastrointestinal+epithelium%3A+numbers%2C+characteristics+and+death%2E&#x0026;journal=Philos%2E+Trans%2E+R%2E+Soc%2E+Lond%2E+B+Biol%2E+Sci%2E&#x0026;author=Potten+C.+S.&#x0026;publication_year=1998&#x0026;volume=353&#x0026;pages=821&#x2013;830\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B85\" id=\"B85\"\u003E\u003C\u002Fa\u003ERaj, B., Gagnon, J. A., and Schier, A. F. (2018). Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR&#x2013;Cas9 barcodes by scGESTALT. \u003Ci\u003ENat. Protoc.\u003C\u002Fi\u003E 13, 2685&#x2013;2713. doi: 10.1038\u002Fs41596-018-0058-x\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30353175\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41596-018-0058-x\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Large-scale+reconstruction+of+cell+lineages+using+single-cell+readout+of+transcriptomes+and+CRISPR&#x2013;Cas9+barcodes+by+scGESTALT%2E&#x0026;journal=Nat%2E+Protoc%2E&#x0026;author=Raj+B.&#x0026;author=Gagnon+J.+A.&#x0026;author=Schier+A.+F.&#x0026;publication_year=2018&#x0026;volume=13&#x0026;pages=2685&#x2013;2713\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B86\" id=\"B86\"\u003E\u003C\u002Fa\u003ERaven, A., Lu, W.-Y., Man, T. Y., Ferreira-Gonzalez, S., O&#x2019;Duibhir, E., Dwyer, B. J., et al. (2017). Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. \u003Ci\u003ENature\u003C\u002Fi\u003E 547, 350&#x2013;354. doi: 10.1038\u002Fnature23015\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28700576\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature23015\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Cholangiocytes+act+as+facultative+liver+stem+cells+during+impaired+hepatocyte+regeneration%2E&#x0026;journal=Nature&#x0026;author=Raven+A.&#x0026;author=Lu+W.-Y.&#x0026;author=Man+T.+Y.&#x0026;author=Ferreira-Gonzalez+S.&#x0026;author=O&#x2019;Duibhir+E.&#x0026;author=Dwyer+B.+J.&#x0026;publication_year=2017&#x0026;volume=547&#x0026;pages=350&#x2013;354\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B87\" id=\"B87\"\u003E\u003C\u002Fa\u003EReizel, Y., Chapal-Ilani, N., Adar, R., Itzkovitz, S., Elbaz, J., Maruvka, Y. E., et al. (2011). Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. \u003Ci\u003EPLoS Genet.\u003C\u002Fi\u003E 7:e1002192. doi: 10.1371\u002Fjournal.pgen.1002192\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21829376\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1371\u002Fjournal.pgen.1002192\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Colon+stem+cell+and+crypt+dynamics+exposed+by+cell+lineage+reconstruction%2E&#x0026;journal=PLoS+Genet%2E&#x0026;author=Reizel+Y.&#x0026;author=Chapal-Ilani+N.&#x0026;author=Adar+R.&#x0026;author=Itzkovitz+S.&#x0026;author=Elbaz+J.&#x0026;author=Maruvka+Y.+E.&#x0026;publication_year=2011&#x0026;volume=7&#x0026;issue=e1002192\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B88\" id=\"B88\"\u003E\u003C\u002Fa\u003ERiccio, O., van Gijn, M. E., Bezdek, A. C., Pellegrinet, L., van Es, J. H., Zimber-Strobl, U., et al. (2008). Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. \u003Ci\u003EEMBO Rep.\u003C\u002Fi\u003E 9, 377&#x2013;383. doi: 10.1038\u002Fembor.2008.7\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F18274550\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fembor.2008.7\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Loss+of+intestinal+crypt+progenitor+cells+owing+to+inactivation+of+both+Notch1+and+Notch2+is+accompanied+by+derepression+of+CDK+inhibitors+p27Kip1+and+p57Kip2%2E&#x0026;journal=EMBO+Rep%2E&#x0026;author=Riccio+O.&#x0026;author=van+Gijn+M.+E.&#x0026;author=Bezdek+A.+C.&#x0026;author=Pellegrinet+L.&#x0026;author=van+Es+J.+H.&#x0026;author=Zimber-Strobl+U.&#x0026;publication_year=2008&#x0026;volume=9&#x0026;pages=377&#x2013;383\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B89\" id=\"B89\"\u003E\u003C\u002Fa\u003ERichmond, C. A., Shah, M. S., Deary, L. T., Trotier, D. C., Thomas, H., Ambruzs, D. M., et al. (2015). Dormant intestinal stem cells are regulated by PTEN and nutritional status. \u003Ci\u003ECell Rep.\u003C\u002Fi\u003E 13, 2403&#x2013;2411. doi: 10.1016\u002Fj.celrep.2015.11.035\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26686631\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.celrep.2015.11.035\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Dormant+intestinal+stem+cells+are+regulated+by+PTEN+and+nutritional+status%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Richmond+C.+A.&#x0026;author=Shah+M.+S.&#x0026;author=Deary+L.+T.&#x0026;author=Trotier+D.+C.&#x0026;author=Thomas+H.&#x0026;author=Ambruzs+D.+M.&#x0026;publication_year=2015&#x0026;volume=13&#x0026;pages=2403&#x2013;2411\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B90\" id=\"B90\"\u003E\u003C\u002Fa\u003ERodr&#x00ED;guez-Colman, M. J., Schewe, M., Meerlo, M., Stigter, E., Gerrits, J., Pras-Raves, M., et al. (2017). Interplay between metabolic identities in the intestinal crypt supports stem cell function. \u003Ci\u003ENature\u003C\u002Fi\u003E 543, 424&#x2013;427. doi: 10.1038\u002Fnature21673\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28273069\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature21673\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Interplay+between+metabolic+identities+in+the+intestinal+crypt+supports+stem+cell+function%2E&#x0026;journal=Nature&#x0026;author=Rodr&#x00ED;guez-Colman+M.+J.&#x0026;author=Schewe+M.&#x0026;author=Meerlo+M.&#x0026;author=Stigter+E.&#x0026;author=Gerrits+J.&#x0026;author=Pras-Raves+M.&#x0026;publication_year=2017&#x0026;volume=543&#x0026;pages=424&#x2013;427\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B91\" id=\"B91\"\u003E\u003C\u002Fa\u003ERoerink, S. F., Sasaki, N., Lee-Six, H., Young, M. D., Alexandrov, L. B., Behjati, S., et al. (2018). Intra-tumour diversification in colorectal cancer at the single-cell level. \u003Ci\u003ENature\u003C\u002Fi\u003E 556, 457&#x2013;462. doi: 10.1038\u002Fs41586-018-0024-3\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29643510\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-018-0024-3\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intra-tumour+diversification+in+colorectal+cancer+at+the+single-cell+level%2E&#x0026;journal=Nature&#x0026;author=Roerink+S.+F.&#x0026;author=Sasaki+N.&#x0026;author=Lee-Six+H.&#x0026;author=Young+M.+D.&#x0026;author=Alexandrov+L.+B.&#x0026;author=Behjati+S.&#x0026;publication_year=2018&#x0026;volume=556&#x0026;pages=457&#x2013;462\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B92\" id=\"B92\"\u003E\u003C\u002Fa\u003ERomera-Hern&#x00E1;ndez, M., Aparicio-Domingo, P., Papazian, N., Karrich, J. J., Cornelissen, F., Hoogenboezem, R. M., et al. (2020). Yap1-driven intestinal repair is controlled by group 3 innate lymphoid cells. \u003Ci\u003ECell Rep.\u003C\u002Fi\u003E 30, 37&#x2013;45.e3.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Yap1-driven+intestinal+repair+is+controlled+by+group+3+innate+lymphoid+cells%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Romera-Hern&#x00E1;ndez+M.&#x0026;author=Aparicio-Domingo+P.&#x0026;author=Papazian+N.&#x0026;author=Karrich+J.+J.&#x0026;author=Cornelissen+F.&#x0026;author=Hoogenboezem+R.+M.&#x0026;publication_year=2020&#x0026;volume=30&#x0026;pages=37&#x2013;45.e3\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B93\" id=\"B93\"\u003E\u003C\u002Fa\u003ERoulis, M., Kaklamanos, A., Schernthanner, M., Bielecki, P., Zhao, J., Kaffe, E., et al. (2020). Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. \u003Ci\u003ENature\u003C\u002Fi\u003E 580, 524&#x2013;529. doi: 10.1038\u002Fs41586-020-2166-3\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32322056\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-020-2166-3\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Paracrine+orchestration+of+intestinal+tumorigenesis+by+a+mesenchymal+niche%2E&#x0026;journal=Nature&#x0026;author=Roulis+M.&#x0026;author=Kaklamanos+A.&#x0026;author=Schernthanner+M.&#x0026;author=Bielecki+P.&#x0026;author=Zhao+J.&#x0026;author=Kaffe+E.&#x0026;publication_year=2020&#x0026;volume=580&#x0026;pages=524&#x2013;529\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B94\" id=\"B94\"\u003E\u003C\u002Fa\u003ESasaki, N., Sachs, N., Wiebrands, K., Ellenbroek, S. I. J., Fumagalli, A., Lyubimova, A., et al. (2016). Reg4+ deep crypt secretory cells function as epithelial niche for Lgr5+ stem cells in colon. \u003Ci\u003EProc. Natl. Acad. Sci. U.S.A.\u003C\u002Fi\u003E 113, E5399&#x2013;E5407.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Reg4%2B+deep+crypt+secretory+cells+function+as+epithelial+niche+for+Lgr5%2B+stem+cells+in+colon%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Sasaki+N.&#x0026;author=Sachs+N.&#x0026;author=Wiebrands+K.&#x0026;author=Ellenbroek+S.+I.+J.&#x0026;author=Fumagalli+A.&#x0026;author=Lyubimova+A.&#x0026;publication_year=2016&#x0026;volume=113&#x0026;pages=E5399&#x2013;E5407\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B95\" id=\"B95\"\u003E\u003C\u002Fa\u003ESchell, J. C., Wisidagama, D. R., Bensard, C., Zhao, H., Wei, P., Tanner, J., et al. (2017). Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. \u003Ci\u003ENat. Cell Biol.\u003C\u002Fi\u003E 19, 1027&#x2013;1036. doi: 10.1038\u002Fncb3593\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28812582\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fncb3593\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Control+of+intestinal+stem+cell+function+and+proliferation+by+mitochondrial+pyruvate+metabolism%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=Schell+J.+C.&#x0026;author=Wisidagama+D.+R.&#x0026;author=Bensard+C.&#x0026;author=Zhao+H.&#x0026;author=Wei+P.&#x0026;author=Tanner+J.&#x0026;publication_year=2017&#x0026;volume=19&#x0026;pages=1027&#x2013;1036\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B96\" id=\"B96\"\u003E\u003C\u002Fa\u003ESchepers, A. G., Snippert, H. J., Stange, D. E., van den Born, M., van Es, J. H., van de Wetering, M., et al. (2012). Lineage tracing reveals Lgr5\u003Csup\u003E+\u003C\u002Fsup\u003E stem cell activity in mouse intestinal adenomas. \u003Ci\u003EScience\u003C\u002Fi\u003E 337, 730&#x2013;735. doi: 10.1126\u002Fscience.1224676\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22855427\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.1224676\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Lineage+tracing+reveals+Lgr5%2B+stem+cell+activity+in+mouse+intestinal+adenomas%2E&#x0026;journal=Science&#x0026;author=Schepers+A.+G.&#x0026;author=Snippert+H.+J.&#x0026;author=Stange+D.+E.&#x0026;author=van+den+Born+M.&#x0026;author=van+Es+J.+H.&#x0026;author=van+de+Wetering+M.&#x0026;publication_year=2012&#x0026;volume=337&#x0026;pages=730&#x2013;735\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B97\" id=\"B97\"\u003E\u003C\u002Fa\u003ESchmidt, F., Cherepkova, M. Y., and Platt, R. J. (2018). Transcriptional recording by CRISPR spacer acquisition from RNA. \u003Ci\u003ENature\u003C\u002Fi\u003E 562, 380&#x2013;385. doi: 10.1038\u002Fs41586-018-0569-1\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F30283135\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-018-0569-1\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Transcriptional+recording+by+CRISPR+spacer+acquisition+from+RNA%2E&#x0026;journal=Nature&#x0026;author=Schmidt+F.&#x0026;author=Cherepkova+M.+Y.&#x0026;author=Platt+R.+J.&#x0026;publication_year=2018&#x0026;volume=562&#x0026;pages=380&#x2013;385\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B98\" id=\"B98\"\u003E\u003C\u002Fa\u003ESecor, S. M., Stein, E. D., and Diamond, J. (1994). Rapid upregulation of snake intestine in response to feeding: a new model of intestinal adaptation. \u003Ci\u003EAm. J. Physiol.\u003C\u002Fi\u003E 266, G695&#x2013;G705.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Rapid+upregulation+of+snake+intestine+in+response+to+feeding%3A+a+new+model+of+intestinal+adaptation%2E&#x0026;journal=Am%2E+J%2E+Physiol%2E&#x0026;author=Secor+S.+M.&#x0026;author=Stein+E.+D.&#x0026;author=Diamond+J.&#x0026;publication_year=1994&#x0026;volume=266&#x0026;pages=G695&#x2013;G705\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B99\" id=\"B99\"\u003E\u003C\u002Fa\u003ESerra, D., Mayr, U., Boni, A., Lukonin, I., Rempfler, M., Meylan, L. C., et al. (2019). Self-organization and symmetry breaking in intestinal organoid development. \u003Ci\u003ENature\u003C\u002Fi\u003E 569, 66&#x2013;72. doi: 10.1038\u002Fs41586-019-1146-y\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31019299\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-019-1146-y\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Self-organization+and+symmetry+breaking+in+intestinal+organoid+development%2E&#x0026;journal=Nature&#x0026;author=Serra+D.&#x0026;author=Mayr+U.&#x0026;author=Boni+A.&#x0026;author=Lukonin+I.&#x0026;author=Rempfler+M.&#x0026;author=Meylan+L.+C.&#x0026;publication_year=2019&#x0026;volume=569&#x0026;pages=66&#x2013;72\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B100\" id=\"B100\"\u003E\u003C\u002Fa\u003EShimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., et al. (2017). Visualization and targeting of LGR5+ human colon cancer stem cells. \u003Ci\u003ENature\u003C\u002Fi\u003E 545, 187&#x2013;192. doi: 10.1038\u002Fnature22081\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F28355176\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature22081\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Visualization+and+targeting+of+LGR5%2B+human+colon+cancer+stem+cells%2E&#x0026;journal=Nature&#x0026;author=Shimokawa+M.&#x0026;author=Ohta+Y.&#x0026;author=Nishikori+S.&#x0026;author=Matano+M.&#x0026;author=Takano+A.&#x0026;author=Fujii+M.&#x0026;publication_year=2017&#x0026;volume=545&#x0026;pages=187&#x2013;192\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B101\" id=\"B101\"\u003E\u003C\u002Fa\u003EShoshkes-Carmel, M., Wang, Y. J., Wangensteen, K. J., T&#x00F3;th, B., Kondo, A., Massasa, E. E., et al. (2018). Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. \u003Ci\u003ENature\u003C\u002Fi\u003E 557, 242&#x2013;246. doi: 10.1038\u002Fs41586-018-0084-4\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29720649\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41586-018-0084-4\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Subepithelial+telocytes+are+an+important+source+of+Wnts+that+supports+intestinal+crypts%2E&#x0026;journal=Nature&#x0026;author=Shoshkes-Carmel+M.&#x0026;author=Wang+Y.+J.&#x0026;author=Wangensteen+K.+J.&#x0026;author=T&#x00F3;th+B.&#x0026;author=Kondo+A.&#x0026;author=Massasa+E.+E.&#x0026;publication_year=2018&#x0026;volume=557&#x0026;pages=242&#x2013;246\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B102\" id=\"B102\"\u003E\u003C\u002Fa\u003ESnippert, H. J., van der Flier, L. G., Sato, T., van Es, J. H., van den Born, M., Kroon-Veenboer, C., et al. (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing lgr5 stem cells. \u003Ci\u003ECell\u003C\u002Fi\u003E 143, 134&#x2013;144. doi: 10.1016\u002Fj.cell.2010.09.016\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F20887898\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.cell.2010.09.016\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intestinal+crypt+homeostasis+results+from+neutral+competition+between+symmetrically+dividing+lgr5+stem+cells%2E&#x0026;journal=Cell&#x0026;author=Snippert+H.+J.&#x0026;author=van+der+Flier+L.+G.&#x0026;author=Sato+T.&#x0026;author=van+Es+J.+H.&#x0026;author=van+den+Born+M.&#x0026;author=Kroon-Veenboer+C.&#x0026;publication_year=2010&#x0026;volume=143&#x0026;pages=134&#x2013;144\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B103\" id=\"B103\"\u003E\u003C\u002Fa\u003ESpanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N., et al. (2018). Simultaneous lineage tracing and cell-type identification using CRISPR&#x2013;Cas9-induced genetic scars. \u003Ci\u003ENat. Biotechnol.\u003C\u002Fi\u003E 36, 469&#x2013;473. doi: 10.1038\u002Fnbt.4124\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F29644996\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnbt.4124\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Simultaneous+lineage+tracing+and+cell-type+identification+using+CRISPR&#x2013;Cas9-induced+genetic+scars%2E&#x0026;journal=Nat%2E+Biotechnol%2E&#x0026;author=Spanjaard+B.&#x0026;author=Hu+B.&#x0026;author=Mitic+N.&#x0026;author=Olivares-Chauvet+P.&#x0026;author=Janjuha+S.&#x0026;author=Ninov+N.&#x0026;publication_year=2018&#x0026;volume=36&#x0026;pages=469&#x2013;473\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B104\" id=\"B104\"\u003E\u003C\u002Fa\u003ESt&#x00E5;hl, P. L., Salm&#x00E9;n, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., et al. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. \u003Ci\u003EScience\u003C\u002Fi\u003E 353, 78&#x2013;82. doi: 10.1126\u002Fscience.aaf2403\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F27365449\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1126\u002Fscience.aaf2403\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Visualization+and+analysis+of+gene+expression+in+tissue+sections+by+spatial+transcriptomics%2E&#x0026;journal=Science&#x0026;author=St&#x00E5;hl+P.+L.&#x0026;author=Salm&#x00E9;n+F.&#x0026;author=Vickovic+S.&#x0026;author=Lundmark+A.&#x0026;author=Navarro+J.+F.&#x0026;author=Magnusson+J.&#x0026;publication_year=2016&#x0026;volume=353&#x0026;pages=78&#x2013;82\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B105\" id=\"B105\"\u003E\u003C\u002Fa\u003EStange, D. E., Koo, B.-K., Huch, M., Sibbel, G., Basak, O., Lyubimova, A., et al. (2013). Differentiated troy + chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. \u003Ci\u003ECell\u003C\u002Fi\u003E 155, 357&#x2013;368. doi: 10.1016\u002Fj.cell.2013.09.008\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24120136\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.cell.2013.09.008\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Differentiated+troy+%2B+chief+cells+act+as+reserve+stem+cells+to+generate+all+lineages+of+the+stomach+epithelium%2E&#x0026;journal=Cell&#x0026;author=Stange+D.+E.&#x0026;author=Koo+B.-K.&#x0026;author=Huch+M.&#x0026;author=Sibbel+G.&#x0026;author=Basak+O.&#x0026;author=Lyubimova+A.&#x0026;publication_year=2013&#x0026;volume=155&#x0026;pages=357&#x2013;368\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B106\" id=\"B106\"\u003E\u003C\u002Fa\u003EStzepourginski, I., Nigro, G., Jacob, J.-M., Dulauroy, S., Sansonetti, P. J., Eberl, G., et al. (2017). CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. \u003Ci\u003EProc. Natl. Acad. Sci. U.S.A.\u003C\u002Fi\u003E 114, E506&#x2013;E513.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=CD34%2B+mesenchymal+cells+are+a+major+component+of+the+intestinal+stem+cells+niche+at+homeostasis+and+after+injury%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Stzepourginski+I.&#x0026;author=Nigro+G.&#x0026;author=Jacob+J.-M.&#x0026;author=Dulauroy+S.&#x0026;author=Sansonetti+P.+J.&#x0026;author=Eberl+G.&#x0026;publication_year=2017&#x0026;volume=114&#x0026;pages=E506&#x2013;E513\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B107\" id=\"B107\"\u003E\u003C\u002Fa\u003ETahoun, A., Mahajan, S., Paxton, E., Malterer, G., Donaldson, D. S., Wang, D., et al. (2012). \u003Ci\u003ESalmonella\u003C\u002Fi\u003E transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. \u003Ci\u003ECell Host Microbe\u003C\u002Fi\u003E 12, 645&#x2013;656. doi: 10.1016\u002Fj.chom.2012.10.009\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23159054\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.chom.2012.10.009\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Salmonella+transforms+follicle-associated+epithelial+cells+into+M+cells+to+promote+intestinal+invasion%2E&#x0026;journal=Cell+Host+Microbe&#x0026;author=Tahoun+A.&#x0026;author=Mahajan+S.&#x0026;author=Paxton+E.&#x0026;author=Malterer+G.&#x0026;author=Donaldson+D.+S.&#x0026;author=Wang+D.&#x0026;publication_year=2012&#x0026;volume=12&#x0026;pages=645&#x2013;656\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B108\" id=\"B108\"\u003E\u003C\u002Fa\u003ETan, S. H., Phuah, P., Tan, L. T., Yada, S., Goh, J., Tomaz, L. B., et al. (2021). A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis. \u003Ci\u003ECell Rep.\u003C\u002Fi\u003E 34:108633. doi: 10.1016\u002Fj.celrep.2020.108633\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F33503423\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.celrep.2020.108633\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+constant+pool+of+Lgr5%2B+intestinal+stem+cells+is+required+for+intestinal+homeostasis%2E&#x0026;journal=Cell+Rep%2E&#x0026;author=Tan+S.+H.&#x0026;author=Phuah+P.&#x0026;author=Tan+L.+T.&#x0026;author=Yada+S.&#x0026;author=Goh+J.&#x0026;author=Tomaz+L.+B.&#x0026;publication_year=2021&#x0026;volume=34&#x0026;issue=108633\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B109\" id=\"B109\"\u003E\u003C\u002Fa\u003ETaniguchi, K., Wu, L.-W., Grivennikov, S. I., de Jong, P. R., Lian, I., Yu, F.-X., et al. (2015). A gp130&#x2013;Src&#x2013;YAP module links inflammation to epithelial regeneration. \u003Ci\u003ENature\u003C\u002Fi\u003E 519, 57&#x2013;62. doi: 10.1038\u002Fnature14228\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25731159\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature14228\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+gp130&#x2013;Src&#x2013;YAP+module+links+inflammation+to+epithelial+regeneration%2E&#x0026;journal=Nature&#x0026;author=Taniguchi+K.&#x0026;author=Wu+L.-W.&#x0026;author=Grivennikov+S.+I.&#x0026;author=de+Jong+P.+R.&#x0026;author=Lian+I.&#x0026;author=Yu+F.-X.&#x0026;publication_year=2015&#x0026;volume=519&#x0026;pages=57&#x2013;62\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B110\" id=\"B110\"\u003E\u003C\u002Fa\u003ETanna, T., Schmidt, F., Cherepkova, M. Y., Okoniewski, M., and Platt, R. J. (2020). Recording transcriptional histories using Record-seq. \u003Ci\u003ENat. Protoc.\u003C\u002Fi\u003E 15, 513&#x2013;539. doi: 10.1038\u002Fs41596-019-0253-4\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31925399\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41596-019-0253-4\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Recording+transcriptional+histories+using+Record-seq%2E&#x0026;journal=Nat%2E+Protoc%2E&#x0026;author=Tanna+T.&#x0026;author=Schmidt+F.&#x0026;author=Cherepkova+M.+Y.&#x0026;author=Okoniewski+M.&#x0026;author=Platt+R.+J.&#x0026;publication_year=2020&#x0026;volume=15&#x0026;pages=513&#x2013;539\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B111\" id=\"B111\"\u003E\u003C\u002Fa\u003ETata, P. R., Mou, H., Pardo-Saganta, A., Zhao, R., Prabhu, M., Law, B. M., et al. (2013). Dedifferentiation of committed epithelial cells into stem cells in vivo. \u003Ci\u003ENature\u003C\u002Fi\u003E 503, 218&#x2013;223. doi: 10.1038\u002Fnature12777\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24196716\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature12777\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Dedifferentiation+of+committed+epithelial+cells+into+stem+cells+in+vivo%2E&#x0026;journal=Nature&#x0026;author=Tata+P.+R.&#x0026;author=Mou+H.&#x0026;author=Pardo-Saganta+A.&#x0026;author=Zhao+R.&#x0026;author=Prabhu+M.&#x0026;author=Law+B.+M.&#x0026;publication_year=2013&#x0026;volume=503&#x0026;pages=218&#x2013;223\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B112\" id=\"B112\"\u003E\u003C\u002Fa\u003ETetteh, P. W., Basak, O., Farin, H. F., Wiebrands, K., Kretzschmar, K., Begthel, H., et al. (2016). Replacement of Lost Lgr5-Positive stem cells through plasticity of their enterocyte-lineage daughters. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 18, 203&#x2013;213. doi: 10.1016\u002Fj.stem.2016.01.001\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26831517\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.stem.2016.01.001\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Replacement+of+Lost+Lgr5-Positive+stem+cells+through+plasticity+of+their+enterocyte-lineage+daughters%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Tetteh+P.+W.&#x0026;author=Basak+O.&#x0026;author=Farin+H.+F.&#x0026;author=Wiebrands+K.&#x0026;author=Kretzschmar+K.&#x0026;author=Begthel+H.&#x0026;publication_year=2016&#x0026;volume=18&#x0026;pages=203&#x2013;213\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B113\" id=\"B113\"\u003E\u003C\u002Fa\u003ETetteh, P. W., Farin, H. F., and Clevers, H. (2015). Plasticity within stem cell hierarchies in mammalian epithelia. \u003Ci\u003ETrends Cell Biol.\u003C\u002Fi\u003E 25, 100&#x2013;108. doi: 10.1016\u002Fj.tcb.2014.09.003\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F25308311\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1016\u002Fj.tcb.2014.09.003\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Plasticity+within+stem+cell+hierarchies+in+mammalian+epithelia%2E&#x0026;journal=Trends+Cell+Biol%2E&#x0026;author=Tetteh+P.+W.&#x0026;author=Farin+H.+F.&#x0026;author=Clevers+H.&#x0026;publication_year=2015&#x0026;volume=25&#x0026;pages=100&#x2013;108\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B114\" id=\"B114\"\u003E\u003C\u002Fa\u003ETian, H., Biehs, B., Warming, S., Leong, K. G., Rangell, L., Klein, O. D., et al. (2011). A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. \u003Ci\u003ENature\u003C\u002Fi\u003E 478, 255&#x2013;259. doi: 10.1038\u002Fnature10408\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F21927002\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature10408\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=A+reserve+stem+cell+population+in+small+intestine+renders+Lgr5-positive+cells+dispensable%2E&#x0026;journal=Nature&#x0026;author=Tian+H.&#x0026;author=Biehs+B.&#x0026;author=Warming+S.&#x0026;author=Leong+K.+G.&#x0026;author=Rangell+L.&#x0026;author=Klein+O.+D.&#x0026;publication_year=2011&#x0026;volume=478&#x0026;pages=255&#x2013;259\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B115\" id=\"B115\"\u003E\u003C\u002Fa\u003Evan Es, J. H., Sato, T., van de Wetering, M., Lyubimova, A., Nee, A. N. Y., Gregorieff, A., et al. (2012). Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. \u003Ci\u003ENat. Cell Biol.\u003C\u002Fi\u003E 14, 1099&#x2013;1104. doi: 10.1038\u002Fncb2581\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F23000963\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fncb2581\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Dll1%2B+secretory+progenitor+cells+revert+to+stem+cells+upon+crypt+damage%2E&#x0026;journal=Nat%2E+Cell+Biol%2E&#x0026;author=van+Es+J.+H.&#x0026;author=Sato+T.&#x0026;author=van+de+Wetering+M.&#x0026;author=Lyubimova+A.&#x0026;author=Nee+A.+N.+Y.&#x0026;author=Gregorieff+A.&#x0026;publication_year=2012&#x0026;volume=14&#x0026;pages=1099&#x2013;1104\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B116\" id=\"B116\"\u003E\u003C\u002Fa\u003EVan Es, J. H., Wiebrands, K., L&#x00F3;pez-Iglesias, C., van de Wetering, M., Zeinstra, L., van den Born, M., et al. (2019). Enteroendocrine and tuft cells support Lgr5 stem cells on Paneth cell depletion. \u003Ci\u003EProc. Natl. Acad. Sci. U.S.A.\u003C\u002Fi\u003E 116, 26599&#x2013;26605. doi: 10.1073\u002Fpnas.1801888117\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F31843916\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1073\u002Fpnas.1801888117\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Enteroendocrine+and+tuft+cells+support+Lgr5+stem+cells+on+Paneth+cell+depletion%2E&#x0026;journal=Proc%2E+Natl%2E+Acad%2E+Sci%2E+U%2ES%2EA%2E&#x0026;author=Van+Es+J.+H.&#x0026;author=Wiebrands+K.&#x0026;author=L&#x00F3;pez-Iglesias+C.&#x0026;author=van+de+Wetering+M.&#x0026;author=Zeinstra+L.&#x0026;author=van+den+Born+M.&#x0026;publication_year=2019&#x0026;volume=116&#x0026;pages=26599&#x2013;26605\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B117\" id=\"B117\"\u003E\u003C\u002Fa\u003EVlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fern&#x00E1;ndez-Mateos, J., Khan, K., et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. \u003Ci\u003EScience\u003C\u002Fi\u003E 359, 920&#x2013;926.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Patient-derived+organoids+model+treatment+response+of+metastatic+gastrointestinal+cancers%2E&#x0026;journal=Science&#x0026;author=Vlachogiannis+G.&#x0026;author=Hedayat+S.&#x0026;author=Vatsiou+A.&#x0026;author=Jamin+Y.&#x0026;author=Fern&#x00E1;ndez-Mateos+J.&#x0026;author=Khan+K.&#x0026;publication_year=2018&#x0026;volume=359&#x0026;pages=920&#x2013;926\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B118\" id=\"B118\"\u003E\u003C\u002Fa\u003EVon Moltke, J., Ji, M., Liang, H.-E., and Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2&#x2013;epithelial response circuit. \u003Ci\u003ENature\u003C\u002Fi\u003E 529, 221&#x2013;225. doi: 10.1038\u002Fnature16161\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F26675736\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature16161\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Tuft-cell-derived+IL-25+regulates+an+intestinal+ILC2&#x2013;epithelial+response+circuit%2E&#x0026;journal=Nature&#x0026;author=Von+Moltke+J.&#x0026;author=Ji+M.&#x0026;author=Liang+H.-E.&#x0026;author=Locksley+R.+M.&#x0026;publication_year=2016&#x0026;volume=529&#x0026;pages=221&#x2013;225\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B119\" id=\"B119\"\u003E\u003C\u002Fa\u003EWagner, D. E., and Klein, A. M. (2020). Lineage tracing meets single-cell omics: opportunities and challenges. \u003Ci\u003ENat. Rev. Genet.\u003C\u002Fi\u003E 21, 410&#x2013;427. doi: 10.1038\u002Fs41576-020-0223-2\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F32235876\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fs41576-020-0223-2\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Lineage+tracing+meets+single-cell+omics%3A+opportunities+and+challenges%2E&#x0026;journal=Nat%2E+Rev%2E+Genet%2E&#x0026;author=Wagner+D.+E.&#x0026;author=Klein+A.+M.&#x0026;publication_year=2020&#x0026;volume=21&#x0026;pages=410&#x2013;427\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B120\" id=\"B120\"\u003E\u003C\u002Fa\u003EWestphalen, C. B., Asfaha, S., Hayakawa, Y., Takemoto, Y., Lukin, D. J., Nuber, A. H., et al. (2014). Long-lived intestinal tuft cells serve as colon cancer&#x2013;initiating cells. \u003Ci\u003EJ. Clin. Invest.\u003C\u002Fi\u003E 124, 1283&#x2013;1295. doi: 10.1172\u002Fjci73434\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24487592\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1172\u002Fjci73434\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Long-lived+intestinal+tuft+cells+serve+as+colon+cancer&#x2013;initiating+cells%2E&#x0026;journal=J%2E+Clin%2E+Invest%2E&#x0026;author=Westphalen+C.+B.&#x0026;author=Asfaha+S.&#x0026;author=Hayakawa+Y.&#x0026;author=Takemoto+Y.&#x0026;author=Lukin+D.+J.&#x0026;author=Nuber+A.+H.&#x0026;publication_year=2014&#x0026;volume=124&#x0026;pages=1283&#x2013;1295\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B121\" id=\"B121\"\u003E\u003C\u002Fa\u003EWithers, H. R., and Elkind, M. M. (2009). Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. \u003Ci\u003EInt. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.\u003C\u002Fi\u003E 17, 261&#x2013;267. doi: 10.1080\u002F09553007014550291\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F4912514\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1080\u002F09553007014550291\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Microcolony+survival+assay+for+cells+of+mouse+intestinal+mucosa+exposed+to+radiation%2E&#x0026;journal=Int%2E+J%2E+Radiat%2E+Biol%2E+Relat%2E+Stud%2E+Phys%2E+Chem%2E+Med%2E&#x0026;author=Withers+H.+R.&#x0026;author=Elkind+M.+M.&#x0026;publication_year=2009&#x0026;volume=17&#x0026;pages=261&#x2013;267\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B122\" id=\"B122\"\u003E\u003C\u002Fa\u003EYan, K. S., Gevaert, O., Zheng, G. X. Y., Anchang, B., Probert, C. S., Larkin, K. A., et al. (2017). Intestinal enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 21, 78&#x2013;90.e6.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Intestinal+enteroendocrine+lineage+cells+possess+homeostatic+and+injury-inducible+stem+cell+activity%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Yan+K.+S.&#x0026;author=Gevaert+O.&#x0026;author=Zheng+G.+X.+Y.&#x0026;author=Anchang+B.&#x0026;author=Probert+C.+S.&#x0026;author=Larkin+K.+A.&#x0026;publication_year=2017&#x0026;volume=21&#x0026;pages=78&#x2013;90.e6\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B123\" id=\"B123\"\u003E\u003C\u002Fa\u003EYao, Y., Xu, X., Yang, L., Zhu, J., Wan, J., Shen, L., et al. (2020). Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 26, 17&#x2013;26.e6.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Patient-derived+organoids+predict+chemoradiation+responses+of+locally+advanced+rectal+cancer%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Yao+Y.&#x0026;author=Xu+X.&#x0026;author=Yang+L.&#x0026;author=Zhu+J.&#x0026;author=Wan+J.&#x0026;author=Shen+L.&#x0026;publication_year=2020&#x0026;volume=26&#x0026;pages=17&#x2013;26.e6\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B124\" id=\"B124\"\u003E\u003C\u002Fa\u003EYilmaz, &#x00D6;H., Katajisto, P., Lamming, D. W., G&#x00FC;ltekin, Y., Bauer-Rowe, K. E., Sengupta, S., et al. (2012). mTORC1 in the paneth cell niche couples intestinal stem-cell function to calorie intake. \u003Ci\u003ENature\u003C\u002Fi\u003E 486, 490&#x2013;495. doi: 10.1038\u002Fnature11163\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F22722868\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnature11163\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=mTORC1+in+the+paneth+cell+niche+couples+intestinal+stem-cell+function+to+calorie+intake%2E&#x0026;journal=Nature&#x0026;author=Yilmaz+&#x00D6;H.&#x0026;author=Katajisto+P.&#x0026;author=Lamming+D.+W.&#x0026;author=G&#x00FC;ltekin+Y.&#x0026;author=Bauer-Rowe+K.+E.&#x0026;author=Sengupta+S.&#x0026;publication_year=2012&#x0026;volume=486&#x0026;pages=490&#x2013;495\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B125\" id=\"B125\"\u003E\u003C\u002Fa\u003EYin, X., Farin, H. F., van Es, J. H., Clevers, H., Langer, R., and Karp, J. M. (2014). Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. \u003Ci\u003ENat. Methods\u003C\u002Fi\u003E 11, 106&#x2013;112. doi: 10.1038\u002Fnmeth.2737\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"https:\u002F\u002Fpubmed.ncbi.nlm.nih.gov\u002F24292484\" target=\"_blank\"\u003EPubMed Abstract\u003C\u002Fa\u003E | \u003Ca href=\"https:\u002F\u002Fdoi.org\u002F10.1038\u002Fnmeth.2737\" target=\"_blank\"\u003ECrossRef Full Text\u003C\u002Fa\u003E | \u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Niche-independent+high-purity+cultures+of+Lgr5%2B+intestinal+stem+cells+and+their+progeny%2E&#x0026;journal=Nat%2E+Methods&#x0026;author=Yin+X.&#x0026;author=Farin+H.+F.&#x0026;author=van+Es+J.+H.&#x0026;author=Clevers+H.&#x0026;author=Langer+R.&#x0026;author=Karp+J.+M.&#x0026;publication_year=2014&#x0026;volume=11&#x0026;pages=106&#x2013;112\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"References\" style=\"margin-bottom:0.5em;\"\u003E\r\n\u003Cp class=\"ReferencesCopy1\"\u003E\u003Ca name=\"B126\" id=\"B126\"\u003E\u003C\u002Fa\u003EYu, S., Tong, K., Zhao, Y., Balasubramanian, I., Yap, G. S., Ferraris, R. P., et al. (2018). Paneth cell multipotency induced by notch activation following injury. \u003Ci\u003ECell Stem Cell\u003C\u002Fi\u003E 23, 46&#x2013;59.e5.\u003C\u002Fp\u003E\r\n\u003Cp class=\"ReferencesCopy2\"\u003E\u003Ca href=\"http:\u002F\u002Fscholar.google.com\u002Fscholar_lookup?&#x0026;title=Paneth+cell+multipotency+induced+by+notch+activation+following+injury%2E&#x0026;journal=Cell+Stem+Cell&#x0026;author=Yu+S.&#x0026;author=Tong+K.&#x0026;author=Zhao+Y.&#x0026;author=Balasubramanian+I.&#x0026;author=Yap+G.+S.&#x0026;author=Ferraris+R.+P.&#x0026;publication_year=2018&#x0026;volume=23&#x0026;pages=46&#x2013;59.e5\" target=\"_blank\"\u003EGoogle Scholar\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"thinLineM20\"\u003E\u003C\u002Fdiv\u003E\r\n\u003Cdiv class=\"AbstractSummary\"\u003E\r\n\u003Cp\u003E\u003Cspan\u003EKeywords\u003C\u002Fspan\u003E: intestine, stem cell, plasticity, differentiation, single cell, organoid, regeneration, cancer\u003C\u002Fp\u003E\r\n\u003Cp\u003E\u003Cspan\u003ECitation:\u003C\u002Fspan\u003E Bonis V, Rossell C and Gehart H (2021) The Intestinal Epithelium &#x2013; Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip. \u003Ci\u003EFront. Cell Dev. Biol.\u003C\u002Fi\u003E 9:661931. doi: 10.3389\u002Ffcell.2021.661931\u003C\u002Fp\u003E\r\n\u003Cp id=\"timestamps\"\u003E\r\n\u003Cspan\u003EReceived:\u003C\u002Fspan\u003E 31 January 2021; \u003Cspan\u003EAccepted:\u003C\u002Fspan\u003E 21 April 2021;\u003Cbr\u003E\u003Cspan\u003EPublished:\u003C\u002Fspan\u003E 20 May 2021.\u003C\u002Fp\u003E\r\n\u003Cdiv\u003E\r\n\u003Cp\u003EEdited by:\u003C\u002Fp\u003E\r\n\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F994990\u002Foverview\"\u003EDelilah Hendriks\u003C\u002Fa\u003E, Hubrecht Institute (KNAW), Netherlands\u003C\u002Fdiv\u003E\r\n\u003Cdiv\u003E\r\n\u003Cp\u003EReviewed by:\u003C\u002Fp\u003E\r\n\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F1224665\u002Foverview\"\u003ERamesh Shivdasani\u003C\u002Fa\u003E, Dana&#x2013;Farber Cancer Institute, United States\u003Cbr\u003E\r\n\u003Ca href=\"https:\u002F\u002Floop.frontiersin.org\u002Fpeople\u002F881358\u002Foverview\"\u003EVanesa Muncan\u003C\u002Fa\u003E, University of Amsterdam, Netherlands\u003C\u002Fdiv\u003E\r\n\u003Cp\u003E\u003Cspan\u003ECopyright\u003C\u002Fspan\u003E &#x00A9; 2021 Bonis, Rossell and Gehart. This is an open-access article distributed under the terms of the \u003Ca rel=\"license\" href=\"http:\u002F\u002Fcreativecommons.org\u002Flicenses\u002Fby\u002F4.0\u002F\" target=\"_blank\"\u003ECreative Commons Attribution License (CC BY)\u003C\u002Fa\u003E. The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.\u003C\u002Fp\u003E\r\n\u003Cp\u003E\u003Cspan\u003E*Correspondence:\u003C\u002Fspan\u003E Helmuth Gehart, \u003Ca id=\"encmail\"\u003EaGVsbXV0aC5nZWhhcnRAYmlvbC5ldGh6LmNo\u003C\u002Fa\u003E\u003C\u002Fp\u003E\r\n\u003Cp\u003E\u003Csup\u003E&#x2020;\u003C\u002Fsup\u003EThese authors share first authorship\u003C\u002Fp\u003E\r\n\u003Cdiv class=\"clear\"\u003E\u003C\u002Fdiv\u003E\r\n\u003C\u002Fdiv\u003E",menuHtml:"\u003Cul class=\"flyoutJournal\"\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h1\"\u003EAbstract\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h2\"\u003EIntroduction\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h3\"\u003ESimple Yet Diverse &#x2013; the Intestinal Epithelium\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h4\"\u003EMore Than Stroma &#x2013; the Intestinal Mesenchyme\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h5\"\u003E\u003Ci\u003EIn vivo\u003C\u002Fi\u003E Systems To Assess Niche Function and Epithelium-Mesenchyme Interactions\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h6\"\u003ECellular and Tissue Plasticity in the Intestinal Epithelium\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h7\"\u003EDiscussion\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#h8\"\u003EAuthor Contributions\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#fun1\"\u003EFunding\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#conf1\"\u003EConflict of Interest\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003Cli\u003E\u003Ca href=\"#refer1\"\u003EReferences\u003C\u002Fa\u003E\u003C\u002Fli\u003E\r\n\u003C\u002Ful\u003E\r\n"},files:[{name:"EPUB.epub",fileServerPackageEntryId:h,type:{code:as,name:as}},{name:at,fileServerPackageEntryId:"fcell-09-661931\u002Ffcell-09-661931.pdf",type:{code:o,name:o}},{name:at,fileServerPackageEntryId:h,type:{code:o,name:o}},{name:"fcell-09-661931.xml",fileServerPackageEntryId:"fcell-09-661931\u002Ffcell-09-661931.xml",type:{code:"NLM_XML",name:"XML"}},{name:"Provisional PDF.pdf",fileServerPackageEntryId:h,type:{code:o,name:o}}]},currentArticlePageMetaInfo:{title:au,link:[{rel:"canonical",href:av}],meta:[{hid:v,property:v,name:v,content:aw},{hid:ax,property:ax,name:"title",content:au},{hid:ay,property:ay,name:v,content:aw},{hid:az,name:az,content:"intestine,stem cell,plasticity,differentiation,single cell,Organoid,Regeneration,Cancer"},{hid:aA,property:aA,name:"site_name",content:w},{hid:aB,property:aB,name:C,content:"https:\u002F\u002Fimages-provider.frontiersin.org\u002Fapi\u002Fipx\u002Fw=1200&f=png\u002Fhttps:\u002F\u002Fwww.frontiersin.org\u002Ffiles\u002FArticles\u002F661931\u002Ffcell-09-661931-HTML\u002Fimage_m\u002Ffcell-09-661931-g001.jpg"},{hid:aC,property:aC,name:"type",content:"article"},{hid:aD,property:aD,name:"url",content:av},{hid:aE,name:aE,content:"summary_large_image"},{hid:aF,name:aF,content:"9"},{hid:aG,name:aG,content:n},{hid:aH,name:aH,content:w},{hid:aI,name:aI,content:E},{hid:aJ,name:aJ,content:F},{hid:aK,name:aK,content:_},{hid:aL,name:aL,content:"661931"},{hid:aM,name:aM,content:"English"},{hid:aN,name:aN,content:$},{hid:aO,name:aO,content:"intestine; stem cell; plasticity; differentiation; single cell; Organoid; Regeneration; Cancer"},{hid:aP,name:aP,content:aa},{hid:aQ,name:aQ,content:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Farticles\u002F10.3389\u002Ffcell.2021.661931\u002Fpdf"},{hid:aR,name:aR,content:"2021\u002F04\u002F21"},{hid:aS,name:aS,content:"2021\u002F05\u002F20"},{hid:"citation_author_0",name:M,content:"Bonis, Vangelis"},{hid:"citation_author_institution_0",name:N,content:O},{hid:"citation_author_1",name:M,content:"Rossell, Carla"},{hid:"citation_author_institution_1",name:N,content:O},{hid:"citation_author_2",name:M,content:"Gehart, Helmuth"},{hid:"citation_author_institution_2",name:N,content:O},{hid:aT,name:aT,content:"doi:10.3389\u002Ffcell.2021.661931"}],script:[{src:"https:\u002F\u002Fcdnjs.cloudflare.com\u002Fpolyfill\u002Fv3\u002Fpolyfill.min.js?features=es6",body:g,async:g},{src:"https:\u002F\u002Fcdnjs.cloudflare.com\u002Fajax\u002Flibs\u002Fmathjax\u002F2.7.1\u002FMathJax.js?config=TeX-MML-AM_CHTML",body:g,async:g},{src:"https:\u002F\u002Fd1bxh8uas1mnw7.cloudfront.net\u002Fassets\u002Faltmetric_badges-f0bc9b243ff5677d05460c1eb71834ca998946d764eb3bc244ab4b18ba50d21e.js",body:g,async:g},{src:"https:\u002F\u002Fapi.altmetric.com\u002Fv1\u002Fdoi\u002F10.3389\u002Ffcell.2021.661931?callback=_altmetric.embed_callback&domain=www.frontiersin.org&key=3c130976ca2b8f2e88f8377633751ba1&cache_until=14-15",body:g,async:g},{src:"https:\u002F\u002Fcrossmark-cdn.crossref.org\u002Fwidget\u002Fv2.0\u002Fwidget.js",body:g,async:g}]},articleHubArticlesList:[],showCrossmarkWidget:g,hasSupplementalData:l,isPreviewArticlePage:l,settingsFeaturesSwitchers:{displayTitlePillLabels:g,displayRelatedArticlesBox:g,showEditors:g,showReviewers:g,showLoopImpactLink:g,enableFigshare:l},tenantConfig:{spaceId:c,name:w,availableJournalPages:[aU,aV,aW,"volumes","about"],announcement:{sys:{id:"2tE5oIdYfULBQILAgR2OSx",__typename:"Sys"},preHeader:"Research integrity at Frontiers",title:"94% of researchers rate our articles as excellent or good",description:"Learn more about the work of our research integrity team to safeguard the quality of each article we publish.",image:[{id:"0B4B1380-42EB-4FD5-9D7E2DBC603E79F8",src:aX,name:aY,tags:["ultra","sunset","achieving","summer","challenge","winning","extreme","workout","hike","path","action","uphill","effort","athlete","physical","height","activity","mountaineering","endurance","mount","runner","nordic","race","male","achieve","nature","run","adventure",D,"perseverance","freedom","fitness","backcountry","altitude","sports","man","hill","mountain","outdoor","exercise","energetic","trail","climb","skyrunning","lifestyle"],type:C,width:7100,height:4733,archive:m,brandId:W,limited:m,fileSize:16838862,isPublic:m,original:e,copyright:e,extension:["jpg"],thumbnails:{mini:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002Fmini-C4875379-1478-416F-B03DF68FE3D8DBB5.png",thul:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002Fthul-C4875379-1478-416F-B03DF68FE3D8DBB5.png",webimage:aX,Guidelines:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002FGuidelines-C4875379-1478-416F-B03DF68FE3D8DBB5.png",WebsiteJpg_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002FWebsiteJpg_XL-C4875379-1478-416F-B03DF68FE3D8DBB5.jpg",WebsiteWebP_L:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002FWebsiteWebP_L-C4875379-1478-416F-B03DF68FE3D8DBB5.webp",WebsiteWebP_M:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002FWebsiteWebP_M-C4875379-1478-416F-B03DF68FE3D8DBB5.webp",WebsiteWebP_XL:"https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002FWebsiteWebP_XL-C4875379-1478-416F-B03DF68FE3D8DBB5.webp"},dateCreated:"2022-12-14T15:44:00Z",description:aY,orientation:D,watermarked:m,dateModified:"2023-01-26T09:08:47Z",datePublished:"2022-12-14T16:40:06Z",videoPreviewURLs:[],textMetaproperties:[]}],link:{text:"Find out more ",url:aZ,target:f,ariaLabel:"About our research integrity team",__typename:s},__typename:"Announcement"}},components:{ibar:{tenantLogo:h,journalLogo:h,aboutUs:[{title:"Who we are",links:[{text:"Mission and values",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fmission",target:f,ariaLabel:e},{text:"History",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fhistory",target:f,ariaLabel:e},{text:"Leadership",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fleadership",target:f,ariaLabel:e},{text:"Awards",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fawards",target:f,ariaLabel:e}]},{title:"Impact and progress",links:[{text:"Frontiers' impact",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fimpact",target:f,ariaLabel:e},{text:"Progress Report 2022",url:"https:\u002F\u002Fprogressreport.frontiersin.org\u002F?utm_source=fweb&utm_medium=frep&utm_campaign=pr20",target:k,ariaLabel:e},{text:"All progress reports",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fprogress-reports",target:f,ariaLabel:e}]},{title:"Publishing model",links:[{text:a_,url:a$,target:f,ariaLabel:e},{text:"Open access",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fopen-access",target:f,ariaLabel:e},{text:ba,url:bb,target:f,ariaLabel:e},{text:"Peer review",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fpeer-review",target:f,ariaLabel:e},{text:"Research integrity",url:aZ,target:f,ariaLabel:e},{text:bc,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fresearch-topics",target:f,ariaLabel:e}]},{title:"Services",links:[{text:"Societies",url:"https:\u002F\u002Fpublishingpartnerships.frontiersin.org\u002F",target:k,ariaLabel:e},{text:"National consortia",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fopen-access-agreements\u002Fconsortia",target:f,ariaLabel:e},{text:"Institutional partnerships",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fopen-access-agreements",target:f,ariaLabel:e},{text:"Collaborators",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fcollaborators",target:f,ariaLabel:e}]},{title:"More from Frontiers",links:[{text:"Frontiers Forum",url:bd,target:k,ariaLabel:"this link will take you to the Frontiers Forum website"},{text:be,url:bf,target:k,ariaLabel:bg},{text:"Press office",url:"https:\u002F\u002Fpressoffice.frontiersin.org\u002F",target:k,ariaLabel:"this link will take you to the Frontiers press office website"},{text:"Sustainability",url:"https:\u002F\u002Fwww.frontiersin.orgabout\u002Fsustainability",target:f,ariaLabel:"link to information about Frontiers' sustainability"},{text:bh,url:bi,target:k,ariaLabel:"this link will take you to the Frontiers careers website"},{text:"Contact us",url:bj,target:f,ariaLabel:"this link will take you to the help pages to contact our support team"}]}],submitUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Fsubmission\u002Fsubmit?domainid=1&fieldid=10&specialtyid=0&entitytype=2&entityid=403",showSubmitButton:g,journal:{id:q,name:n,slug:r,sections:[{id:2245,name:"Cancer Cell Biology",slug:"cancer-cell-biology"},{id:1065,name:"Cell Adhesion and Migration",slug:"cell-adhesion-and-migration"},{id:680,name:"Cell Death and Survival",slug:"cell-death-and-survival"},{id:1021,name:"Cell Growth and Division",slug:"cell-growth-and-division"},{id:716,name:"Cellular Biochemistry",slug:"cellular-biochemistry"},{id:1385,name:"Developmental Epigenetics",slug:"developmental-epigenetics"},{id:2220,name:"Embryonic Development",slug:"embryonic-development"},{id:455,name:"Epigenomics and Epigenetics",slug:"epigenomics-and-epigenetics"},{id:566,name:"Evolutionary Developmental Biology",slug:"evolutionary-developmental-biology"},{id:675,name:"Membrane Traffic and Organelle Dynamics",slug:"membrane-traffic-and-organelle-dynamics"},{id:691,name:"Molecular and Cellular Pathology",slug:"molecular-and-cellular-pathology"},{id:1914,name:"Molecular and Cellular Reproduction",slug:"molecular-and-cellular-reproduction"},{id:1913,name:"Morphogenesis and Patterning",slug:"morphogenesis-and-patterning"},{id:1098,name:"Signaling",slug:"signaling"},{id:ap,name:aq,slug:ar}]},sectionTerm:"Sections",aboutJournal:[{title:"Scope",links:[{text:"Field chief editors",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Fabout#about-editors",target:f,ariaLabel:e},{text:"Mission & scope",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Fabout#about-scope",target:f,ariaLabel:e},{text:"Facts",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Fabout#about-facts",target:f,ariaLabel:e},{text:"Journal sections",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Fabout#about-submission",target:f,ariaLabel:e},{text:"Open access statement",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Fabout#about-open",target:f,ariaLabel:e},{text:"Copyright statement",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Fabout#copyright-statement",target:f,ariaLabel:e},{text:"Quality",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Fabout#about-quality",target:f,ariaLabel:e}]},{title:"For authors",links:[{text:"Why submit?",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Ffor-authors\u002Fwhy-submit",target:f,ariaLabel:e},{text:"Article types",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Ffor-authors\u002Farticle-types",target:f,ariaLabel:e},{text:bk,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Ffor-authors\u002Fauthor-guidelines",target:f,ariaLabel:e},{text:bl,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Ffor-authors\u002Feditor-guidelines",target:f,ariaLabel:e},{text:"Publishing fees",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Ffor-authors\u002Fpublishing-fees",target:f,ariaLabel:e},{text:"Submission checklist",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Ffor-authors\u002Fsubmission-checklist",target:f,ariaLabel:e},{text:"Contact editorial office",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Ffor-authors\u002Fcontact-editorial-office",target:f,ariaLabel:e}]}],mainLinks:[{text:"All journals",url:bm,target:f,ariaLabel:e},{text:"All articles",url:bn,target:f,ariaLabel:e}],journalLinks:[{text:bo,url:aU,target:f,ariaLabel:e},{text:bc,url:aW,target:f,ariaLabel:e},{text:"Editorial board",url:aV,target:f,ariaLabel:e}],helpCenterLink:{text:x,url:bp,target:k,ariaLabel:x}},footer:{blocks:[{title:"Guidelines",links:[{text:bk,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Fauthor-guidelines",target:f,ariaLabel:e},{text:bl,url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Feditor-guidelines",target:f,ariaLabel:e},{text:"Policies and publication ethics",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fguidelines\u002Fpolicies-and-publication-ethics",target:f,ariaLabel:e},{text:ba,url:bb,target:f,ariaLabel:e}]},{title:"Explore",links:[{text:bo,url:bn,target:f,ariaLabel:e},{text:"Research Topics ",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fresearch-topics",target:f,ariaLabel:e},{text:"Journals",url:bm,target:f,ariaLabel:e},{text:a_,url:a$,target:f,ariaLabel:e}]},{title:"Outreach",links:[{text:"Frontiers Forum ",url:bd,target:k,ariaLabel:"Frontiers Forum website"},{text:"Frontiers Policy Labs ",url:"https:\u002F\u002Fpolicylabs.frontiersin.org\u002F",target:k,ariaLabel:e},{text:bq,url:"https:\u002F\u002Fkids.frontiersin.org\u002F",target:k,ariaLabel:"Frontiers for Young Minds journal"},{text:be,url:bf,target:k,ariaLabel:bg}]},{title:"Connect",links:[{text:x,url:bp,target:k,ariaLabel:x},{text:"Emails and alerts ",url:"https:\u002F\u002Floop.frontiersin.org\u002Fsettings\u002Femail-preferences?a=publishers",target:k,ariaLabel:"Subscribe to Frontiers emails"},{text:"Contact us ",url:bj,target:f,ariaLabel:"Subscribe to newsletter"},{text:"Submit",url:"https:\u002F\u002Fwww.frontiersin.org\u002Fsubmission\u002Fsubmit",target:f,ariaLabel:e},{text:bh,url:bi,target:k,ariaLabel:e}]}],socialLinks:[{link:{text:br,url:"https:\u002F\u002Fwww.facebook.com\u002FFrontiersin",target:k,ariaLabel:br},type:s,color:y,icon:"Facebook",size:z,hiddenText:g},{link:{text:"Frontiers Twitter",url:"https:\u002F\u002Ftwitter.com\u002Ffrontiersin",target:k,ariaLabel:e},type:s,color:y,icon:"Twitter",size:z,hiddenText:g},{link:{text:"Frontiers LinkedIn",url:"https:\u002F\u002Fwww.linkedin.com\u002Fcompany\u002Ffrontiers",target:k,ariaLabel:e},type:s,color:y,icon:"LinkedIn",size:z,hiddenText:g},{link:{text:"Frontiers Instagram",url:"https:\u002F\u002Fwww.instagram.com\u002Ffrontiersin_",target:k,ariaLabel:e},type:s,color:y,icon:"Instagram",size:z,hiddenText:g}],copyright:"Frontiers Media S.A. All rights reserved",termsAndConditionsUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Flegal\u002Fterms-and-conditions",privacyPolicyUrl:"https:\u002F\u002Fwww.frontiersin.org\u002Flegal\u002Fprivacy-policy"},newsletterComponent:e,snackbarItems:[]},mainHeader:{title:h,image:H,breadcrumbs:[],linksCollection:{total:m,items:[]},metricsCollection:{total:m,items:[]}},user:{loggedUserInfo:H},journals:[{id:L,name:bs,slug:bt,abbreviation:bu,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2445,name:bs,slug:bt,abbreviation:bu,space:{id:c,domainName:d,__typename:b},__typename:a},{id:P,name:"Test SSPH Journal",slug:"test-ssph-journal",abbreviation:"testjournal",space:{id:p,domainName:A,__typename:b},__typename:a},{id:bv,name:"TEST ALF Journal",slug:"test-alf-journal",abbreviation:"talfj",space:{id:t,domainName:Q,__typename:b},__typename:a},{id:i,name:bw,slug:bx,abbreviation:by,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2360,name:bw,slug:bx,abbreviation:by,space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Smoke Test Field",slug:"smoke-test-field",abbreviation:"FJST",space:{id:R,domainName:bz,__typename:b},__typename:a},{id:bv,name:bA,slug:bB,abbreviation:bC,space:{id:p,domainName:A,__typename:b},__typename:a},{id:2077,name:bA,slug:bB,abbreviation:bC,space:{id:c,domainName:d,__typename:b},__typename:a},{id:P,name:bD,slug:bE,abbreviation:bF,space:{id:t,domainName:Q,__typename:b},__typename:a},{id:P,name:bD,slug:bE,abbreviation:bF,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bG,name:bH,slug:bI,abbreviation:bJ,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3776,name:bH,slug:bI,abbreviation:bJ,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bK,name:bL,slug:bM,abbreviation:bN,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3765,name:bL,slug:bM,abbreviation:bN,space:{id:c,domainName:d,__typename:b},__typename:a},{id:14,name:bO,slug:bP,abbreviation:bQ,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3414,name:bO,slug:bP,abbreviation:bQ,space:{id:c,domainName:d,__typename:b},__typename:a},{id:20,name:bR,slug:bS,abbreviation:bT,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3754,name:bR,slug:bS,abbreviation:bT,space:{id:c,domainName:d,__typename:b},__typename:a},{id:R,name:bU,slug:bV,abbreviation:bW,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2444,name:bU,slug:bV,abbreviation:bW,space:{id:c,domainName:d,__typename:b},__typename:a},{id:bX,name:bY,slug:bZ,abbreviation:b_,space:{id:p,domainName:A,__typename:b},__typename:a},{id:bX,name:bY,slug:bZ,abbreviation:b_,space:{id:c,domainName:d,__typename:b},__typename:a},{id:i,name:"GSL Test",slug:"gsl-test",abbreviation:"gslt",space:{id:u,domainName:S,__typename:b},__typename:a},{id:2356,name:"Frontiers in the Internet of Things",slug:"the-internet-of-things",abbreviation:"friot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:656,name:"Frontiers in Zoological Science",slug:"zoological-science",abbreviation:"fzoos",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1720,name:"Frontiers in Zoological Research",slug:"zoological-research",abbreviation:"fzolr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3162,name:"Frontiers in Wound Care",slug:"wound-care",abbreviation:"fwoca",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3136,name:"Frontiers in Worm Science",slug:"worm-science",abbreviation:"fwors",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3583,name:"Frontiers in Wind Energy",slug:"wind-energy",abbreviation:"fwinde",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1451,name:"Frontiers in Water",slug:"water",abbreviation:"frwa",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1561,name:"Frontiers in Virtual Reality",slug:"virtual-reality",abbreviation:"frvir",space:{id:c,domainName:d,__typename:b},__typename:a},{id:Y,name:"Frontiers in Virology",slug:"virology",abbreviation:"fviro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:649,name:"Frontiers in Veterinary Science",slug:"veterinary-science",abbreviation:"fvets",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2176,name:"Frontiers in Urology",slug:"urology",abbreviation:"fruro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3099,name:"Frontiers in Tuberculosis",slug:"tuberculosis",abbreviation:"ftubr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1843,name:"Frontiers in Tropical Diseases",slug:"tropical-diseases",abbreviation:"fitd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2417,name:"Frontiers in Transplantation",slug:"transplantation",abbreviation:"frtra",space:{id:c,domainName:d,__typename:b},__typename:a},{id:473,name:"Frontiers in Toxicology",slug:"toxicology",abbreviation:"ftox",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2105,name:"Frontiers in Thermal Engineering",slug:"thermal-engineering",abbreviation:"fther",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3190,name:"Frontiers in The Neurobiology of Pain",slug:"the-neurobiology-of-pain",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:1967,name:"Frontiers in Test_Field_Science_Archive",slug:"testfieldsciencearchive",abbreviation:"fntesc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1347,name:"Frontiers in Test_Field_Humanities_Archive",slug:"testfieldhumanitiesarchive",abbreviation:"fntes",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3573,name:"Frontiers in Taxonomy",slug:"taxonomy",abbreviation:"Front. Taxon.",space:{id:c,domainName:d,__typename:b},__typename:a},{id:p,name:"Frontiers in Systems Neuroscience",slug:"systems-neuroscience",abbreviation:"fnsys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1721,name:"Frontiers in Systems Biology",slug:"systems-biology",abbreviation:"fsysb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3381,name:"Frontiers in Synthetic Biology",slug:"synthetic-biology",abbreviation:"fsybi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:22,name:"Frontiers in Synaptic Neuroscience",slug:"synaptic-neuroscience",abbreviation:"fnsyn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2299,name:"Frontiers in Sustainable Tourism",slug:"sustainable-tourism",abbreviation:"frsut",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2483,name:"Frontiers in Sustainable Resource Management",slug:"sustainable-resource-management",abbreviation:"fsrma",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1335,name:"Frontiers in Sustainable Food Systems",slug:"sustainable-food-systems",abbreviation:"fsufs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2726,name:"Frontiers in Sustainable Energy Policy",slug:"sustainable-energy-policy",abbreviation:"fsuep",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1468,name:"Frontiers in Sustainable Cities",slug:"sustainable-cities",abbreviation:"frsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1397,name:"Frontiers in Sustainable Business",slug:"sustainable-business",abbreviation:"fisb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1547,name:"Frontiers in Sustainability",slug:"sustainability",abbreviation:"frsus",space:{id:c,domainName:d,__typename:b},__typename:a},{id:604,name:"Frontiers in Surgery",slug:"surgery",abbreviation:"fsurg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2504,name:"Frontiers in Structural Biology",slug:"structural-biology",abbreviation:"frsbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2497,name:"Frontiers in Stroke",slug:"stroke",abbreviation:"fstro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3434,name:"Frontiers in Stem Cells",slug:"stem-cells",abbreviation:"fstce",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1482,name:"Frontiers in Sports and Active Living",slug:"sports-and-active-living",abbreviation:"fspor",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1695,name:"Frontiers in Space Technologies",slug:"space-technologies",abbreviation:"frspt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3519,name:"Frontiers in Solar Energy",slug:"solar-energy",abbreviation:"fsoln",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1718,name:"Frontiers in Soil Science",slug:"soil-science",abbreviation:"fsoil",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2346,name:"Frontiers in Soft Matter",slug:"soft-matter",abbreviation:"frsfm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1213,name:"Frontiers in Sociology",slug:"sociology",abbreviation:"fsoc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:T,name:"Frontiers in Society Journal Archive",slug:"society-journal-archive",abbreviation:U,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2690,name:"Frontiers in Social Psychology",slug:"social-psychology",abbreviation:"frsps",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2819,name:"Frontiers in Smart Grids",slug:"smart-grids",abbreviation:"frsgr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2288,name:"Frontiers in Sleep",slug:"sleep",abbreviation:"frsle",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2552,name:"Frontiers in Skin Cancer",slug:"skin-cancer",abbreviation:"fskcr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1786,name:"Frontiers in Signal Processing",slug:"signal-processing",abbreviation:"frsip",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1704,name:"Frontiers in Sensors",slug:"sensors",abbreviation:"fsens",space:{id:c,domainName:d,__typename:b},__typename:a},{id:p,name:"Frontiers in Science archive",slug:"science-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3737,name:"Frontiers in Science Diplomacy",slug:"science-diplomacy",abbreviation:"fsdip",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2766,name:"Frontiers in Science",slug:"science",abbreviation:"fsci",space:{id:c,domainName:d,__typename:b},__typename:a},{id:657,name:"Frontiers in Robotics and AI",slug:"robotics-and-ai",abbreviation:"frobt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1606,name:"Frontiers in Research Metrics and Analytics",slug:"research-metrics-and-analytics",abbreviation:"frma",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1479,name:"Frontiers in Reproductive Health",slug:"reproductive-health",abbreviation:"frph",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1830,name:"Frontiers in Remote Sensing",slug:"remote-sensing",abbreviation:"frsen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:659,name:"Frontiers in Rehabilitation Sciences",slug:"rehabilitation-sciences",abbreviation:"fresc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3550,name:"Frontiers in Regenerative Medicine",slug:"regenerative-medicine",abbreviation:"fregm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1949,name:"Frontiers in Radiology",slug:"radiology",abbreviation:"fradi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3189,name:"Frontiers in RNA Research",slug:"rna-research",abbreviation:"frnar",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2306,name:"Frontiers in Quantum Science and Technology",slug:"quantum-science-and-technology",abbreviation:"frqst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:T,name:"Frontiers in Public Health Archive",slug:"public-health-archive",abbreviation:U,space:{id:p,domainName:A,__typename:b},__typename:a},{id:609,name:"Frontiers in Public Health",slug:"public-health",abbreviation:"fpubh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:36,name:"Frontiers in Psychology",slug:"psychology",abbreviation:"fpsyg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:71,name:"Frontiers in Psychiatry",slug:"psychiatry",abbreviation:"fpsyt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3267,name:"Frontiers in Protistology",slug:"protistology",abbreviation:"frpro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2452,name:"Frontiers in Proteomics",slug:"proteomics",abbreviation:"fprot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3171,name:"Frontiers in Prosthetics and Orthotics",slug:"prosthetics-and-orthotics",abbreviation:"fpror ",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3643,name:"Frontiers in Polymer Science",slug:"polymer-science",abbreviation:"fplms",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1558,name:"Frontiers in Political Science",slug:"political-science",abbreviation:"fpos",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3615,name:"Frontiers in Polar Science",slug:"polar-science",abbreviation:"fposc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:373,name:"Frontiers in Plant Science",slug:"plant-science",abbreviation:"fpls",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3477,name:"Frontiers in Plant Physiology",slug:"plant-physiology",abbreviation:"fphgy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3589,name:"Frontiers in Plant Genomics",slug:"plant-genomics",abbreviation:"fpgen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3579,name:"Frontiers in Plant Ecology",slug:"plant-ecology",abbreviation:"fpley",space:{id:c,domainName:d,__typename:b},__typename:a},{id:210,name:"Frontiers in Physiology",slug:"physiology",abbreviation:"fphys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:616,name:"Frontiers in Physics",slug:"physics",abbreviation:"fphy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1803,name:"Frontiers in Photonics",slug:"photonics",abbreviation:"fphot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3604,name:"Frontiers in Photobiology",slug:"photobiology",abbreviation:"fphbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:176,name:"Frontiers in Pharmacology",slug:"pharmacology",abbreviation:"fphar",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3388,name:"Frontiers in Personality Disorders",slug:"personality-disorders",abbreviation:"fprsd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:606,name:"Frontiers in Pediatrics",slug:"pediatrics",abbreviation:"fped",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2554,name:"Frontiers in Pediatric Dermatology",slug:"pediatric-dermatology",abbreviation:"fpdm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:T,name:"Frontiers in Pathology and Oncology Archive",slug:"pathology-and-oncology-archive",abbreviation:U,space:{id:t,domainName:Q,__typename:b},__typename:a},{id:610,name:b$,slug:ca,abbreviation:cb,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3351,name:b$,slug:ca,abbreviation:cb,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2705,name:"Frontiers in Parasitology",slug:"parasitology",abbreviation:"fpara",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1727,name:"Frontiers in Pain Research",slug:"pain-research",abbreviation:"fpain",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2679,name:"Frontiers in Organizational Psychology",slug:"organizational-psychology",abbreviation:"forgp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1702,name:"Frontiers in Oral Health",slug:"oral-health",abbreviation:"froh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2232,name:"Frontiers in Ophthalmology",slug:"ophthalmology",abbreviation:"fopht",space:{id:c,domainName:d,__typename:b},__typename:a},{id:451,name:"Frontiers in Oncology",slug:"oncology",abbreviation:"fonc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3123,name:"Frontiers in Ocean Sustainability",slug:"ocean-sustainability",abbreviation:"focsu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2612,name:"Frontiers in Occupational Therapy",slug:"occupational-therapy",abbreviation:"froct",space:{id:c,domainName:d,__typename:b},__typename:a},{id:628,name:"Frontiers in Nutrition",slug:"nutrition",abbreviation:"fnut",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2062,name:"Frontiers in Nuclear Medicine",slug:"nuclear-medicine",abbreviation:"fnume",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2172,name:"Frontiers in Nuclear Engineering",slug:"nuclear-engineering",abbreviation:"fnuen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in Neuroscience",slug:"neuroscience",abbreviation:"fnins",space:{id:c,domainName:d,__typename:b},__typename:a},{id:cc,name:"Frontiers in Neurorobotics",slug:"neurorobotics",abbreviation:"fnbot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3056,name:"Frontiers in Neuropsychiatry",slug:"neuropsychiatry",abbreviation:"fnpsy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:141,name:"Frontiers in Neurology",slug:"neurology",abbreviation:"fneur",space:{id:c,domainName:d,__typename:b},__typename:a},{id:cd,name:"Frontiers in Neuroinformatics",slug:"neuroinformatics",abbreviation:"fninf",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3283,name:"Frontiers in Neuroinflammation",slug:"neuroinflammation",abbreviation:"fnein",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1973,name:"Frontiers in Neuroimaging",slug:"neuroimaging",abbreviation:"fnimg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1833,name:"Frontiers in Neuroergonomics",slug:"neuroergonomics",abbreviation:"fnrgo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:I,name:"Frontiers in Neuroengineering",slug:"neuroengineering",abbreviation:"fneng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:ce,name:"Frontiers in Neuroenergetics",slug:"neuroenergetics",abbreviation:"fnene",space:{id:c,domainName:d,__typename:b},__typename:a},{id:t,name:"Frontiers in Neuroanatomy",slug:"neuroanatomy",abbreviation:"fnana",space:{id:c,domainName:d,__typename:b},__typename:a},{id:bK,name:"Frontiers in Neural Circuits",slug:"neural-circuits",abbreviation:"fncir",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2021,name:"Frontiers in Network Physiology",slug:"network-physiology",abbreviation:"fnetp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3130,name:"Frontiers in Network Neuroscience",slug:"network-neuroscience",abbreviation:"fnnsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2357,name:"Frontiers in Nephrology",slug:"nephrology",abbreviation:"fneph",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2320,name:"Frontiers in Natural Products",slug:"natural-products",abbreviation:"fntpr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1528,name:"Frontiers in Nanotechnology",slug:"nanotechnology",abbreviation:"fnano",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2882,name:"Frontiers in Musculoskeletal Disorders",slug:"musculoskeletal-disorders",abbreviation:"fmscd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3275,name:"Frontiers in Multiple Sclerosis",slug:"multiple-sclerosis",abbreviation:"fmscr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3152,name:"Frontiers in Mollusk Science",slug:"mollusk-science",abbreviation:"fmlsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2031,name:"Frontiers in Molecular Neuroscience",slug:"molecular-neuroscience",abbreviation:"fnmol",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2086,name:"Frontiers in Molecular Medicine",slug:"molecular-medicine",abbreviation:"fmmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:698,name:"Frontiers in Molecular Biosciences",slug:"molecular-biosciences",abbreviation:"fmolb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2807,name:"Frontiers in Microbiomes",slug:"microbiomes",abbreviation:"frmbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:310,name:"Frontiers in Microbiology",slug:"microbiology",abbreviation:"fmicb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2327,name:"Frontiers in Metals and Alloys",slug:"metals-and-alloys",abbreviation:"ftmal",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2307,name:"Frontiers in Membrane Science and Technology",slug:"membrane-science-and-technology",abbreviation:"frmst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:602,name:"Frontiers in Medicine",slug:"medicine",abbreviation:"fmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1573,name:"Frontiers in Medical Technology",slug:"medical-technology",abbreviation:"fmedt",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3135,name:"Frontiers in Medical Engineering",slug:"medical-engineering",abbreviation:"fmede",space:{id:c,domainName:d,__typename:b},__typename:a},{id:950,name:"Frontiers in Mechanical Engineering",slug:"mechanical-engineering",abbreviation:"fmech",space:{id:c,domainName:d,__typename:b},__typename:a},{id:608,name:"Frontiers in Materials",slug:"materials",abbreviation:"fmats",space:{id:c,domainName:d,__typename:b},__typename:a},{id:655,name:"Frontiers in Marine Science",slug:"marine-science",abbreviation:"fmars",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2100,name:"Frontiers in Manufacturing Technology",slug:"manufacturing-technology",abbreviation:"fmtec",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2931,name:"Frontiers in Mammal Science",slug:"mammal-science",abbreviation:"fmamm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2896,name:"Frontiers in Malaria",slug:"malaria",abbreviation:"fmala",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3107,name:"Frontiers in Lupus",slug:"lupus",abbreviation:"flupu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:435,name:"Frontiers in Linguistics",slug:"linguistics",abbreviation:"fling",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2636,name:"Frontiers in Language Sciences",slug:"language-sciences",abbreviation:"flang",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2670,name:"Frontiers in Lab on a Chip Technologies",slug:"lab-on-a-chip-technologies",abbreviation:"frlct",space:{id:c,domainName:d,__typename:b},__typename:a},{id:cf,name:"Frontiers in Integrative Neuroscience",slug:"integrative-neuroscience",abbreviation:"fnint",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1723,name:"Frontiers in Insect Science",slug:"insect-science",abbreviation:"finsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3093,name:"Frontiers in Influenza",slug:"influenza",abbreviation:"finfl",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3073,name:"Frontiers in Inflammation",slug:"inflammation",abbreviation:"finmn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3200,name:"Frontiers in Industrial Microbiology",slug:"industrial-microbiology",abbreviation:"finmi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3291,name:"Frontiers in Industrial Engineering",slug:"industrial-engineering",abbreviation:"fieng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2765,name:"Frontiers in Impact Journals",slug:"impact-journals",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3078,name:"Frontiers in Immunotherapeutics",slug:"immunotherapeutics",abbreviation:"fimms",space:{id:c,domainName:d,__typename:b},__typename:a},{id:276,name:"Frontiers in Immunology",slug:"immunology",abbreviation:"fimmu",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2379,name:"Frontiers in Imaging",slug:"imaging",abbreviation:"fimag",space:{id:c,domainName:d,__typename:b},__typename:a},{id:629,name:"Frontiers in ICT",slug:"ict",abbreviation:"fict",space:{id:c,domainName:d,__typename:b},__typename:a},{id:16,name:"Frontiers in Humanities and Social Sciences Archive",slug:"humanities-and-social-sciences-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3759,name:"Frontiers in Human Rights",slug:"human-rights",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:1588,name:"Frontiers in Human Neuroscience",slug:"human-neuroscience",abbreviation:"fnhum",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1533,name:"Frontiers in Human Dynamics",slug:"human-dynamics",abbreviation:"fhumd",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2733,name:"Frontiers in Horticulture",slug:"horticulture",abbreviation:"fhort",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3316,name:"Frontiers in Histology",slug:"histology",abbreviation:"frhis",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2378,name:"Frontiers in High Performance Computing",slug:"high-performance-computing",abbreviation:"fhpcp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2456,name:"Frontiers in Hematology",slug:"hematology",abbreviation:"frhem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2063,name:"Frontiers in Health Services",slug:"health-services",abbreviation:"frhs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:t,name:"Frontiers in Health Archive",slug:"health-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3508,name:"Frontiers in Green Chemistry",slug:"green-chemistry",abbreviation:"fgrch",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1728,name:"Frontiers in Global Women's Health",slug:"global-womens-health",abbreviation:"fgwh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2918,name:"Frontiers in Geochemistry",slug:"geochemistry",abbreviation:"fgeoc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1540,name:"Frontiers in Genome Editing",slug:"genome-editing",abbreviation:"fgeed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:240,name:"Frontiers in Genetics",slug:"genetics",abbreviation:"fgene",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3496,name:"Frontiers in Genetic Microbiology",slug:"genetic-microbiology",abbreviation:"fgemi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3227,name:"Frontiers in Genetic Disorders",slug:"genetic-disorders",abbreviation:"frged",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2333,name:"Frontiers in Gastroenterology",slug:"gastroenterology",abbreviation:"fgstr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1529,name:"Frontiers in Future Transportation",slug:"future-transportation",abbreviation:"ffutr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1725,name:"Frontiers in Fungal Biology",slug:"fungal-biology",abbreviation:"ffunb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2826,name:"Frontiers in Fuels",slug:"fuels",abbreviation:"ffuel",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3207,name:"Frontiers in Freshwater Science",slug:"freshwater-science",abbreviation:"ffwsc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1366,name:"Frontiers in Forests and Global Change",slug:"forests-and-global-change",abbreviation:"ffgc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2689,name:"Frontiers in Forensic Science",slug:"forensic-science",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2289,name:"Frontiers in Food Science and Technology",slug:"food-science-and-technology",abbreviation:"frfst",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3559,name:"Frontiers in Fluorescence",slug:"fluorescence",abbreviation:"fflur",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2987,name:"Frontiers in Fish Science",slug:"fish-science",abbreviation:"frish",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3489,name:"Frontiers in Fire Science and Technology",slug:"fire-science-and-technology",abbreviation:"firtc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2749,name:"Frontiers in Financial Economics",slug:"financial-economics",abbreviation:"ffecn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in FSHIP Test Journal",slug:"fship-test-journal",abbreviation:"ftest",space:{id:i,domainName:j,__typename:b},__typename:a},{id:bG,name:"Frontiers in Evolutionary Neuroscience",slug:"evolutionary-neuroscience",abbreviation:"fnevo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2955,name:"Frontiers in Ethology",slug:"ethology",abbreviation:"fetho",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3032,name:"Frontiers in Epigenetics and Epigenomics",slug:"epigenetics-and-epigenomics",abbreviation:"freae",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2394,name:"Frontiers in Epidemiology",slug:"epidemiology",abbreviation:"fepid",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3450,name:"Frontiers in Environmental Toxicology",slug:"environmental-toxicology",abbreviation:"fentx",space:{id:c,domainName:d,__typename:b},__typename:a},{id:627,name:"Frontiers in Environmental Science",slug:"environmental-science",abbreviation:"fenvs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2888,name:"Frontiers in Environmental Health",slug:"environmental-health",abbreviation:"fenvh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2851,name:"Frontiers in Environmental Engineering",slug:"environmental-engineering",abbreviation:"fenve",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2547,name:"Frontiers in Environmental Economics",slug:"environmental-economics",abbreviation:"frevc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1697,name:"Frontiers in Environmental Chemistry",slug:"environmental-chemistry",abbreviation:"fenvc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2756,name:"Frontiers in Environmental Archaeology",slug:"environmental-archaeology",abbreviation:"fearc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:15,name:"Frontiers in Engineering archive",slug:"engineering-archive",abbreviation:B,space:{id:i,domainName:j,__typename:b},__typename:a},{id:626,name:"Frontiers in Energy Research",slug:"energy-research",abbreviation:"fenrg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3115,name:"Frontiers in Energy Efficiency",slug:"energy-efficiency",abbreviation:"fenef",space:{id:c,domainName:d,__typename:b},__typename:a},{id:106,name:"Frontiers in Endocrinology",slug:"endocrinology",abbreviation:"fendo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1696,name:"Frontiers in Electronics",slug:"electronics",abbreviation:"felec",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1800,name:"Frontiers in Electronic Materials",slug:"electronic-materials",abbreviation:"femat",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2998,name:"Frontiers in Educational Psychology",slug:"educational-psychology",abbreviation:"fepys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1239,name:"Frontiers in Education",slug:"education",abbreviation:"feduc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:625,name:"Frontiers in Economics",slug:"economics",abbreviation:"fecon",space:{id:c,domainName:d,__typename:b},__typename:a},{id:471,name:"Frontiers in Ecology and Evolution",slug:"ecology-and-evolution",abbreviation:"fevo",space:{id:c,domainName:d,__typename:b},__typename:a},{id:c,name:"Frontiers in Earth Science Archive",slug:"earth-science-archive",abbreviation:"gslfj",space:{id:u,domainName:S,__typename:b},__typename:a},{id:654,name:"Frontiers in Earth Science",slug:"earth-science",abbreviation:"feart",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3309,name:"Frontiers in Earth Observation and Land Monitoring",slug:"earth-observation-and-land-monitoring",abbreviation:"feolm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2161,name:"Frontiers in Drug Safety and Regulation",slug:"drug-safety-and-regulation",abbreviation:"fdsfr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2137,name:"Frontiers in Drug Discovery",slug:"drug-discovery",abbreviation:"fddsv",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2136,name:"Frontiers in Drug Delivery",slug:"drug-delivery",abbreviation:"fddev",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2775,name:"Frontiers in Disaster and Emergency Medicine",slug:"disaster-and-emergency-medicine",abbreviation:"femer",space:{id:c,domainName:d,__typename:b},__typename:a},{id:788,name:"Frontiers in Digital Humanities",slug:"digital-humanities",abbreviation:"fdigh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1534,name:"Frontiers in Digital Health",slug:"digital-health",abbreviation:"fdgth",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2999,name:"Frontiers in Developmental Psychology",slug:"developmental-psychology",abbreviation:"fdpys",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2873,name:"Frontiers in Detector Science and Technology",slug:"detector-science-and-technology",abbreviation:"fdest",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3611,name:"Frontiers in Design Engineering",slug:"design-engineering",abbreviation:"fdese",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2550,name:"Frontiers in Dermatological Research",slug:"dermatological-research",abbreviation:"fdmre",space:{id:c,domainName:d,__typename:b},__typename:a},{id:607,name:"Frontiers in Dental Medicine",slug:"dental-medicine",abbreviation:"fdmed",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2597,name:"Frontiers in Dementia",slug:"dementia",abbreviation:"frdem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1785,name:"Frontiers in Control Engineering",slug:"control-engineering",abbreviation:"fcteg",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1724,name:"Frontiers in Conservation Science",slug:"conservation-science",abbreviation:"fcosc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3454,name:"Frontiers in Condensed Matter",slug:"condensed-matter",abbreviation:"fconm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1511,name:"Frontiers in Computer Science",slug:"computer-science",abbreviation:"fcomp",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3566,name:"Frontiers in Computational Physiology",slug:"computational-physiology",abbreviation:"fcphy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:L,name:"Frontiers in Computational Neuroscience",slug:"computational-neuroscience",abbreviation:"fncom",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3234,name:"Frontiers in Complex Systems",slug:"complex-systems",abbreviation:"fcpxs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1787,name:"Frontiers in Communications and Networks",slug:"communications-and-networks",abbreviation:"frcmn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1238,name:"Frontiers in Communication",slug:"communication",abbreviation:"fcomm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2535,name:"Frontiers in Cognition",slug:"cognition",abbreviation:"fcogn",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2857,name:"Frontiers in Coatings, Dyes and Interface Engineering",slug:"coatings-dyes-and-interface-engineering",abbreviation:"frcdi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3222,name:"Frontiers in Clinical Microbiology",slug:"clinical-microbiology",abbreviation:"fclmi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1729,name:"Frontiers in Clinical Diabetes and Healthcare",slug:"clinical-diabetes-and-healthcare",abbreviation:"fcdhc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2551,name:"Frontiers in Clinical Dermatology",slug:"clinical-dermatology",abbreviation:"fcldm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1490,name:"Frontiers in Climate",slug:"climate",abbreviation:"fclim",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3338,name:"Frontiers in Chromosome Research",slug:"chromosome-research",abbreviation:h,space:{id:c,domainName:d,__typename:b},__typename:a},{id:2587,name:"Frontiers in Child and Adolescent Psychiatry",slug:"child-and-adolescent-psychiatry",abbreviation:"frcha",space:{id:c,domainName:d,__typename:b},__typename:a},{id:601,name:"Frontiers in Chemistry",slug:"chemistry",abbreviation:"fchem",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1532,name:"Frontiers in Chemical Engineering",slug:"chemical-engineering",abbreviation:"fceng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3038,name:"Frontiers in Chemical Biology",slug:"chemical-biology",abbreviation:"fchbi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3322,name:"Frontiers in Ceramics",slug:"ceramics",abbreviation:"fceic",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1440,name:"Frontiers in Cellular and Infection Microbiology",slug:"cellular-and-infection-microbiology",abbreviation:"fcimb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1523,name:"Frontiers in Cellular Neuroscience",slug:"cellular-neuroscience",abbreviation:"fncel",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3084,name:"Frontiers in Cellular Immunology",slug:"cellular-immunology",abbreviation:"fcimy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:q,name:n,slug:r,abbreviation:Z,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3178,name:"Frontiers in Cell Signaling",slug:"cell-signaling",abbreviation:"fcsig",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2655,name:"Frontiers in Cell Death",slug:"cell-death",abbreviation:"fceld",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1901,name:"Frontiers in Catalysis",slug:"catalysis",abbreviation:"fctls",space:{id:c,domainName:d,__typename:b},__typename:a},{id:755,name:"Frontiers in Cardiovascular Medicine",slug:"cardiovascular-medicine",abbreviation:"fcvm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2662,name:"Frontiers in Carbon",slug:"carbon",abbreviation:"frcrb",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3513,name:"Frontiers in Cancer Interception",slug:"cancer-interception",abbreviation:"fcint",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3433,name:"Frontiers in Cancer Control and Society",slug:"cancer-control-and-society",abbreviation:"fcacs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:921,name:"Frontiers in Built Environment",slug:"built-environment",abbreviation:"fbuil",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1418,name:"Frontiers in Blockchain",slug:"blockchain",abbreviation:"fbloc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2971,name:"Frontiers in Bird Science",slug:"bird-science",abbreviation:"fbirs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3300,name:"Frontiers in Biophysics",slug:"biophysics",abbreviation:"frbis",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2222,name:"Frontiers in Biomaterials Science",slug:"biomaterials-science",abbreviation:"fbiom",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1722,name:"Frontiers in Bioinformatics",slug:"bioinformatics",abbreviation:"fbinf",space:{id:c,domainName:d,__typename:b},__typename:a},{id:452,name:"Frontiers in Bioengineering and Biotechnology",slug:"bioengineering-and-biotechnology",abbreviation:"fbioe",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1380,name:"Frontiers in Big Data",slug:"big-data",abbreviation:"fdata",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1589,name:"Frontiers in Behavioral Neuroscience",slug:"behavioral-neuroscience",abbreviation:"fnbeh",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2432,name:"Frontiers in Behavioral Economics",slug:"behavioral-economics",abbreviation:"frbhe",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2796,name:"Frontiers in Bee Science",slug:"bee-science",abbreviation:"frbee",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3214,name:"Frontiers in Batteries and Electrochemistry",slug:"batteries-and-electrochemistry",abbreviation:"fbael",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3011,name:"Frontiers in Bacteriology",slug:"bacteriology",abbreviation:"fbrio",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3040,name:"Frontiers in Audiology and Otology",slug:"audiology-and-otology",abbreviation:"fauot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:603,name:"Frontiers in Astronomy and Space Sciences",slug:"astronomy-and-space-sciences",abbreviation:"fspas",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1437,name:"Frontiers in Artificial Intelligence",slug:"artificial-intelligence",abbreviation:"frai",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2940,name:"Frontiers in Arachnid Science",slug:"arachnid-science",abbreviation:"frchs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2834,name:"Frontiers in Aquaculture",slug:"aquaculture",abbreviation:"faquc",space:{id:c,domainName:d,__typename:b},__typename:a},{id:981,name:"Frontiers in Applied Mathematics and Statistics",slug:"applied-mathematics-and-statistics",abbreviation:"fams",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3417,name:"Frontiers in Applied Environmental Microbiology",slug:"applied-environmental-microbiology",abbreviation:"faemi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2714,name:"Frontiers in Antibiotics",slug:"antibiotics",abbreviation:"frabi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3443,name:"Frontiers in Anti-Cancer Therapies",slug:"anti-cancer-therapies",abbreviation:"facth",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3253,name:"Frontiers in Antennas and Propagation",slug:"antennas-and-propagation",abbreviation:"fanpr",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1719,name:"Frontiers in Animal Science",slug:"animal-science",abbreviation:"fanim",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2513,name:"Frontiers in Anesthesiology",slug:"anesthesiology",abbreviation:"fanes",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1989,name:"Frontiers in Analytical Science",slug:"analytical-science",abbreviation:"frans",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2909,name:"Frontiers in Amphibian and Reptile Science",slug:"amphibian-and-reptile-science",abbreviation:"famrs",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1705,name:"Frontiers in Allergy",slug:"allergy",abbreviation:"falgy",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1541,name:"Frontiers in Agronomy",slug:"agronomy",abbreviation:"fagro",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3631,name:"Frontiers in Agricultural Engineering",slug:"agricultural-engineering",abbreviation:"faeng",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2477,name:"Frontiers in Aging Neuroscience",slug:"aging-neuroscience",abbreviation:"fnagi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:1566,name:"Frontiers in Aging",slug:"aging",abbreviation:"fragi",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2449,name:"Frontiers in Aerospace Engineering",slug:"aerospace-engineering",abbreviation:"fpace",space:{id:c,domainName:d,__typename:b},__typename:a},{id:2195,name:"Frontiers in Adolescent Medicine",slug:"adolescent-medicine",abbreviation:"fradm",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3426,name:"Frontiers in Acoustics",slug:"acoustics",abbreviation:"facou",space:{id:c,domainName:d,__typename:b},__typename:a},{id:979,name:bq,slug:"frontiers-for-young-minds",abbreviation:"frym",space:{id:c,domainName:d,__typename:b},__typename:a},{id:3260,name:"Frontiers In Ocean Engineering",slug:"frontiers-in-ocean-engineering",abbreviation:"focen",space:{id:c,domainName:d,__typename:b},__typename:a},{id:cc,name:"FSHIP Test Journal 2",slug:"fship-test-journal-2",abbreviation:"FTJ2",space:{id:i,domainName:j,__typename:b},__typename:a},{id:i,name:cg,slug:ch,abbreviation:ci,space:{id:R,domainName:bz,__typename:b},__typename:a},{id:3746,name:cg,slug:ch,abbreviation:ci,space:{id:c,domainName:d,__typename:b},__typename:a},{id:cd,name:cj,slug:ck,abbreviation:cl,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3231,name:cj,slug:ck,abbreviation:cl,space:{id:c,domainName:d,__typename:b},__typename:a},{id:u,name:cm,slug:cn,abbreviation:co,space:{id:u,domainName:S,__typename:b},__typename:a},{id:2078,name:cm,slug:cn,abbreviation:co,space:{id:c,domainName:d,__typename:b},__typename:a},{id:cf,name:cp,slug:cq,abbreviation:cr,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2359,name:cp,slug:cq,abbreviation:cr,space:{id:c,domainName:d,__typename:b},__typename:a},{id:8,name:cs,slug:ct,abbreviation:cu,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2446,name:cs,slug:ct,abbreviation:cu,space:{id:c,domainName:d,__typename:b},__typename:a},{id:G,name:cv,slug:cw,abbreviation:cx,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3230,name:cv,slug:cw,abbreviation:cx,space:{id:c,domainName:d,__typename:b},__typename:a},{id:u,name:cy,slug:cz,abbreviation:cA,space:{id:i,domainName:j,__typename:b},__typename:a},{id:2358,name:cy,slug:cz,abbreviation:cA,space:{id:c,domainName:d,__typename:b},__typename:a},{id:3660,name:"Advanced Optical Technologies",slug:"advanced-optical-technologies",abbreviation:"aot",space:{id:c,domainName:d,__typename:b},__typename:a},{id:ce,name:cB,slug:cC,abbreviation:cD,space:{id:i,domainName:j,__typename:b},__typename:a},{id:3659,name:cB,slug:cC,abbreviation:cD,space:{id:c,domainName:d,__typename:b},__typename:a},{id:I,name:cE,slug:cF,abbreviation:"abp",space:{id:i,domainName:j,__typename:b},__typename:a},{id:3695,name:cE,slug:cF,abbreviation:"ABP",space:{id:c,domainName:d,__typename:b},__typename:a}]},serverRendered:g,routePath:"\u002Fjournals\u002Fcell-and-developmental-biology\u002Farticles\u002F10.3389\u002Ffcell.2021.661931\u002Ffull",config:{baseUrl:"https:\u002F\u002Fwww.frontiersin.org",appName:"article-pages-2022",spaceId:c,spaceName:w,domain:d,loopUrl:"https:\u002F\u002Floop.frontiersin.org",ssMainDomain:d,googleRecaptchaKeyName:"FrontiersRecaptchaV2",googleRecaptchaSiteKey:"6LdG3i0UAAAAAOC4qUh35ubHgJotEHp_STXHgr_v",linkedArticleCopyText:"'{\"articleTypeCopyText\":[{\"articleTypeId\":0,\"originalArticleCopyText\":\"Part of this article's content has been mentioned in:\",\"linkedArticleCopyText\":\"This article mentions parts of:\"},{\"articleTypeId\":122,\"originalArticleCopyText\":\"Parts of this article's content have been modified or rectified in:\",\"linkedArticleCopyText\":\"This article is an erratum on:\"},{\"articleTypeId\":129,\"originalArticleCopyText\":\"Parts of this article's content have been modified or rectified in:\",\"linkedArticleCopyText\":\"This article is an addendum to:\"},{\"articleTypeId\":128,\"originalArticleCopyText\":\"A correction has been applied to this article in:\",\"linkedArticleCopyText\":\"This article is a correction to:\"},{\"articleTypeId\":134,\"originalArticleCopyText\":\"A retraction of this article was approved in:\",\"linkedArticleCopyText\":\"This article is a retraction of:\"},{\"articleTypeId\":29,\"originalArticleCopyText\":\"A commentary has been posted on this article:\",\"linkedArticleCopyText\":\"This article is a commentary on:\"},{\"articleTypeId\":30,\"originalArticleCopyText\":\"A commentary has been posted on this article:\",\"linkedArticleCopyText\":\"This article is a commentary on:\"}],\"articleIdCopyText\":[]}'\n",articleTypeConfigurableLabel:"\u003C\u003Carticle-type:uppercase\u003E\u003E article",terminologySettings:"'{\"terms\":[{\"sequenceNumber\":1,\"key\":\"frontiers\",\"tenantTerm\":\"Frontiers\",\"frontiersDefaultTerm\":\"Frontiers\",\"category\":\"Customer\"},{\"sequenceNumber\":2,\"key\":\"submission_system\",\"tenantTerm\":\"submission system\",\"frontiersDefaultTerm\":\"submission system\",\"category\":\"Product\"},{\"sequenceNumber\":3,\"key\":\"public_pages\",\"tenantTerm\":\"public pages\",\"frontiersDefaultTerm\":\"public pages\",\"category\":\"Product\"},{\"sequenceNumber\":4,\"key\":\"my_frontiers\",\"tenantTerm\":\"my frontiers\",\"frontiersDefaultTerm\":\"my frontiers\",\"category\":\"Product\"},{\"sequenceNumber\":5,\"key\":\"digital_editorial_office\",\"tenantTerm\":\"digital editorial office\",\"frontiersDefaultTerm\":\"digital editorial office\",\"category\":\"Product\"},{\"sequenceNumber\":6,\"key\":\"deo\",\"tenantTerm\":\"DEO\",\"frontiersDefaultTerm\":\"DEO\",\"category\":\"Product\"},{\"sequenceNumber\":7,\"key\":\"digital_editorial_office_for_chiefs\",\"tenantTerm\":\"digital editorial office for chiefs\",\"frontiersDefaultTerm\":\"digital editorial office for chiefs\",\"category\":\"Product\"},{\"sequenceNumber\":8,\"key\":\"digital_editorial_office_for_eof\",\"tenantTerm\":\"digital editorial office for eof\",\"frontiersDefaultTerm\":\"digital editorial office for eof\",\"category\":\"Product\"},{\"sequenceNumber\":9,\"key\":\"editorial_office\",\"tenantTerm\":\"editorial office\",\"frontiersDefaultTerm\":\"editorial office\",\"category\":\"Product\"},{\"sequenceNumber\":10,\"key\":\"eof\",\"tenantTerm\":\"EOF\",\"frontiersDefaultTerm\":\"EOF\",\"category\":\"Product\"},{\"sequenceNumber\":11,\"key\":\"research_topic_management\",\"tenantTerm\":\"research topic management\",\"frontiersDefaultTerm\":\"research topic management\",\"category\":\"Product\"},{\"sequenceNumber\":12,\"key\":\"review_forum\",\"tenantTerm\":\"review forum\",\"frontiersDefaultTerm\":\"review forum\",\"category\":\"Product\"},{\"sequenceNumber\":13,\"key\":\"accounting_office\",\"tenantTerm\":\"accounting office\",\"frontiersDefaultTerm\":\"accounting office\",\"category\":\"Product\"},{\"sequenceNumber\":14,\"key\":\"aof\",\"tenantTerm\":\"AOF\",\"frontiersDefaultTerm\":\"AOF\",\"category\":\"Product\"},{\"sequenceNumber\":15,\"key\":\"publishing_office\",\"tenantTerm\":\"publishing office\",\"frontiersDefaultTerm\":\"publishing office\",\"category\":\"Product\"},{\"sequenceNumber\":16,\"key\":\"production_office\",\"tenantTerm\":\"production office forum\",\"frontiersDefaultTerm\":\"production office forum\",\"category\":\"Product\"},{\"sequenceNumber\":17,\"key\":\"pof\",\"tenantTerm\":\"POF\",\"frontiersDefaultTerm\":\"POF\",\"category\":\"Product\"},{\"sequenceNumber\":18,\"key\":\"book_office_forum\",\"tenantTerm\":\"book office forum\",\"frontiersDefaultTerm\":\"book office forum\",\"category\":\"Product\"},{\"sequenceNumber\":19,\"key\":\"bof\",\"tenantTerm\":\"BOF\",\"frontiersDefaultTerm\":\"BOF\",\"category\":\"Product\"},{\"sequenceNumber\":20,\"key\":\"aira\",\"tenantTerm\":\"AIRA\",\"frontiersDefaultTerm\":\"AIRA\",\"category\":\"Product\"},{\"sequenceNumber\":21,\"key\":\"editorial_board_management\",\"tenantTerm\":\"editorial board management\",\"frontiersDefaultTerm\":\"editorial board management\",\"category\":\"Product\"},{\"sequenceNumber\":22,\"key\":\"ebm\",\"tenantTerm\":\"EBM\",\"frontiersDefaultTerm\":\"EBM\",\"category\":\"Product\"},{\"sequenceNumber\":23,\"key\":\"domain\",\"tenantTerm\":\"domain\",\"frontiersDefaultTerm\":\"domain\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":24,\"key\":\"journal\",\"tenantTerm\":\"journal\",\"frontiersDefaultTerm\":\"journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":25,\"key\":\"section\",\"tenantTerm\":\"section\",\"frontiersDefaultTerm\":\"section\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":26,\"key\":\"domains\",\"tenantTerm\":\"domains\",\"frontiersDefaultTerm\":\"domains\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":27,\"key\":\"specialty_section\",\"tenantTerm\":\"specialty section\",\"frontiersDefaultTerm\":\"specialty section\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":28,\"key\":\"specialty_journal\",\"tenantTerm\":\"specialty journal\",\"frontiersDefaultTerm\":\"specialty journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":29,\"key\":\"journals\",\"tenantTerm\":\"journals\",\"frontiersDefaultTerm\":\"journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":30,\"key\":\"sections\",\"tenantTerm\":\"sections\",\"frontiersDefaultTerm\":\"sections\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":31,\"key\":\"specialty_sections\",\"tenantTerm\":\"specialty sections\",\"frontiersDefaultTerm\":\"specialty sections\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":32,\"key\":\"specialty_journals\",\"tenantTerm\":\"specialty journals\",\"frontiersDefaultTerm\":\"specialty journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":33,\"key\":\"manuscript\",\"tenantTerm\":\"manuscript\",\"frontiersDefaultTerm\":\"manuscript\",\"category\":\"Core\"},{\"sequenceNumber\":34,\"key\":\"manuscripts\",\"tenantTerm\":\"manuscripts\",\"frontiersDefaultTerm\":\"manuscripts\",\"category\":\"Core\"},{\"sequenceNumber\":35,\"key\":\"article\",\"tenantTerm\":\"article\",\"frontiersDefaultTerm\":\"article\",\"category\":\"Core\"},{\"sequenceNumber\":36,\"key\":\"articles\",\"tenantTerm\":\"articles\",\"frontiersDefaultTerm\":\"articles\",\"category\":\"Core\"},{\"sequenceNumber\":37,\"key\":\"article_type\",\"tenantTerm\":\"article type\",\"frontiersDefaultTerm\":\"article type\",\"category\":\"Core\"},{\"sequenceNumber\":38,\"key\":\"article_types\",\"tenantTerm\":\"article types\",\"frontiersDefaultTerm\":\"article types\",\"category\":\"Core\"},{\"sequenceNumber\":39,\"key\":\"author\",\"tenantTerm\":\"author\",\"frontiersDefaultTerm\":\"author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":40,\"key\":\"authors\",\"tenantTerm\":\"authors\",\"frontiersDefaultTerm\":\"authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":41,\"key\":\"authoring\",\"tenantTerm\":\"authoring\",\"frontiersDefaultTerm\":\"authoring\",\"category\":\"Core\"},{\"sequenceNumber\":42,\"key\":\"authored\",\"tenantTerm\":\"authored\",\"frontiersDefaultTerm\":\"authored\",\"category\":\"Core\"},{\"sequenceNumber\":43,\"key\":\"accept\",\"tenantTerm\":\"accept\",\"frontiersDefaultTerm\":\"accept\",\"category\":\"Process\"},{\"sequenceNumber\":44,\"key\":\"accepted\",\"tenantTerm\":\"accepted\",\"frontiersDefaultTerm\":\"accepted\",\"category\":\"Process\"},{\"sequenceNumber\":45,\"key\":\"assistant_field_chief_editor\",\"tenantTerm\":\"Assistant Field Chief Editor\",\"frontiersDefaultTerm\":\"Assistant Field Chief Editor\",\"description\":\"An editorial role on a Field Journal that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":46,\"key\":\"assistant_specialty_chief_editor\",\"tenantTerm\":\"Assistant Specialty Chief Editor\",\"frontiersDefaultTerm\":\"Assistant Specialty Chief Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":47,\"key\":\"assistant_specialty_chief_editors\",\"tenantTerm\":\"Assistant Specialty Chief Editors\",\"frontiersDefaultTerm\":\"Assistant Specialty Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":48,\"key\":\"associate_editor\",\"tenantTerm\":\"Associate Editor\",\"frontiersDefaultTerm\":\"Associate Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":49,\"key\":\"specialty_chief_editor\",\"tenantTerm\":\"Specialty Chief Editor\",\"frontiersDefaultTerm\":\"Specialty Chief Editor\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":50,\"key\":\"specialty_chief_editors\",\"tenantTerm\":\"Specialty Chief Editors\",\"frontiersDefaultTerm\":\"Specialty Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":51,\"key\":\"chief_editor\",\"tenantTerm\":\"Chief Editor\",\"frontiersDefaultTerm\":\"Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":52,\"key\":\"chief_editors\",\"tenantTerm\":\"Chief Editors\",\"frontiersDefaultTerm\":\"Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":53,\"key\":\"call_for_participation\",\"tenantTerm\":\"call for participation\",\"frontiersDefaultTerm\":\"call for participation\",\"category\":\"Process\"},{\"sequenceNumber\":54,\"key\":\"citation\",\"tenantTerm\":\"citation\",\"frontiersDefaultTerm\":\"citation\",\"category\":\"Misc.\"},{\"sequenceNumber\":55,\"key\":\"citations\",\"tenantTerm\":\"citations\",\"frontiersDefaultTerm\":\"citations\",\"category\":\"Misc.\"},{\"sequenceNumber\":56,\"key\":\"contributor\",\"tenantTerm\":\"contributor\",\"frontiersDefaultTerm\":\"contributor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":57,\"key\":\"contributors\",\"tenantTerm\":\"contributors\",\"frontiersDefaultTerm\":\"contributors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":58,\"key\":\"corresponding_author\",\"tenantTerm\":\"corresponding author\",\"frontiersDefaultTerm\":\"corresponding author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":59,\"key\":\"corresponding_authors\",\"tenantTerm\":\"corresponding authors\",\"frontiersDefaultTerm\":\"corresponding authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":60,\"key\":\"decline\",\"tenantTerm\":\"decline\",\"frontiersDefaultTerm\":\"decline\",\"category\":\"Process\"},{\"sequenceNumber\":61,\"key\":\"declined\",\"tenantTerm\":\"declined\",\"frontiersDefaultTerm\":\"declined\",\"category\":\"Process\"},{\"sequenceNumber\":62,\"key\":\"reject\",\"tenantTerm\":\"reject\",\"frontiersDefaultTerm\":\"reject\",\"category\":\"Process\"},{\"sequenceNumber\":63,\"key\":\"rejected\",\"tenantTerm\":\"rejected\",\"frontiersDefaultTerm\":\"rejected\",\"category\":\"Process\"},{\"sequenceNumber\":64,\"key\":\"publish\",\"tenantTerm\":\"publish\",\"frontiersDefaultTerm\":\"publish\",\"category\":\"Core\"},{\"sequenceNumber\":65,\"key\":\"published\",\"tenantTerm\":\"published\",\"frontiersDefaultTerm\":\"published\",\"category\":\"Core\"},{\"sequenceNumber\":66,\"key\":\"publication\",\"tenantTerm\":\"publication\",\"frontiersDefaultTerm\":\"publication\",\"category\":\"Core\"},{\"sequenceNumber\":67,\"key\":\"peer_review\",\"tenantTerm\":\"peer review\",\"frontiersDefaultTerm\":\"peer review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":68,\"key\":\"peer_reviewed\",\"tenantTerm\":\"peer reviewed\",\"frontiersDefaultTerm\":\"peer reviewed\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":69,\"key\":\"initial_validation\",\"tenantTerm\":\"initial validation\",\"frontiersDefaultTerm\":\"initial validation\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":70,\"key\":\"editorial_assignment\",\"tenantTerm\":\"editorial assignment\",\"frontiersDefaultTerm\":\"editorial assignment\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":71,\"key\":\"independent_review\",\"tenantTerm\":\"independent review\",\"frontiersDefaultTerm\":\"independent review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":72,\"key\":\"interactive_review\",\"tenantTerm\":\"interactive review\",\"frontiersDefaultTerm\":\"interactive review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":73,\"key\":\"review\",\"tenantTerm\":\"review\",\"frontiersDefaultTerm\":\"review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":74,\"key\":\"reviewing\",\"tenantTerm\":\"reviewing\",\"frontiersDefaultTerm\":\"reviewing\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":75,\"key\":\"reviewer\",\"tenantTerm\":\"reviewer\",\"frontiersDefaultTerm\":\"reviewer\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":76,\"key\":\"reviewers\",\"tenantTerm\":\"reviewers\",\"frontiersDefaultTerm\":\"reviewers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":77,\"key\":\"review_finalized\",\"tenantTerm\":\"review finalized\",\"frontiersDefaultTerm\":\"review finalized\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":78,\"key\":\"final_decision\",\"tenantTerm\":\"final decision\",\"frontiersDefaultTerm\":\"final decision\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":79,\"key\":\"final_validation\",\"tenantTerm\":\"final validation\",\"frontiersDefaultTerm\":\"final validation\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":80,\"key\":\"ae_accept_manuscript\",\"tenantTerm\":\"recommend to accept manuscript\",\"frontiersDefaultTerm\":\"accept manuscript\",\"category\":\"Process\"},{\"sequenceNumber\":81,\"key\":\"fee\",\"tenantTerm\":\"fee\",\"frontiersDefaultTerm\":\"fee\",\"category\":\"Accounting\"},{\"sequenceNumber\":82,\"key\":\"fees\",\"tenantTerm\":\"fees\",\"frontiersDefaultTerm\":\"fees\",\"category\":\"Accounting\"},{\"sequenceNumber\":83,\"key\":\"guest_associate_editor\",\"tenantTerm\":\"Guest Associate Editor\",\"frontiersDefaultTerm\":\"Guest Associate Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":84,\"key\":\"guest_associate_editors\",\"tenantTerm\":\"Guest Associate Editors\",\"frontiersDefaultTerm\":\"Guest Associate Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":85,\"key\":\"in_review\",\"tenantTerm\":\"in review\",\"frontiersDefaultTerm\":\"in review\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":86,\"key\":\"institutional_member\",\"tenantTerm\":\"institutional partner\",\"frontiersDefaultTerm\":\"institutional partner\",\"category\":\"Accounting\"},{\"sequenceNumber\":87,\"key\":\"institutional_membership\",\"tenantTerm\":\"institutional partnership\",\"frontiersDefaultTerm\":\"institutional partnership\",\"category\":\"Accounting\"},{\"sequenceNumber\":88,\"key\":\"article_processing_charge\",\"tenantTerm\":\"article processing charge\",\"frontiersDefaultTerm\":\"article processing charge\",\"category\":\"Accounting\"},{\"sequenceNumber\":89,\"key\":\"article_processing_charges\",\"tenantTerm\":\"article processing charges\",\"frontiersDefaultTerm\":\"article processing charges\",\"category\":\"Accounting\"},{\"sequenceNumber\":90,\"key\":\"apcs\",\"tenantTerm\":\"APCs\",\"frontiersDefaultTerm\":\"APCs\",\"category\":\"Accounting\"},{\"sequenceNumber\":91,\"key\":\"apc\",\"tenantTerm\":\"APC\",\"frontiersDefaultTerm\":\"APC\",\"category\":\"Accounting\"},{\"sequenceNumber\":92,\"key\":\"received\",\"tenantTerm\":\"received\",\"frontiersDefaultTerm\":\"received\",\"description\":\"Date manuscript was received on.\",\"category\":\"Core\"},{\"sequenceNumber\":93,\"key\":\"transferred\",\"tenantTerm\":\"transferred\",\"frontiersDefaultTerm\":\"transferred\",\"category\":\"Core\"},{\"sequenceNumber\":94,\"key\":\"transfer\",\"tenantTerm\":\"transfer\",\"frontiersDefaultTerm\":\"transfer\",\"category\":\"Core\"},{\"sequenceNumber\":95,\"key\":\"research_topic\",\"tenantTerm\":\"research topic\",\"frontiersDefaultTerm\":\"research topic\",\"category\":\"Core\"},{\"sequenceNumber\":96,\"key\":\"research_topics\",\"tenantTerm\":\"research topics\",\"frontiersDefaultTerm\":\"research topics\",\"category\":\"Core\"},{\"sequenceNumber\":97,\"key\":\"topic_editor\",\"tenantTerm\":\"Topic Editor\",\"frontiersDefaultTerm\":\"Topic Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":98,\"key\":\"review_editor\",\"tenantTerm\":\"Review Editor\",\"frontiersDefaultTerm\":\"Review Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":99,\"key\":\"title\",\"tenantTerm\":\"title\",\"frontiersDefaultTerm\":\"title\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":100,\"key\":\"running_title\",\"tenantTerm\":\"running title\",\"frontiersDefaultTerm\":\"running title\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":101,\"key\":\"submit\",\"tenantTerm\":\"submit\",\"frontiersDefaultTerm\":\"submit\",\"category\":\"Process\"},{\"sequenceNumber\":102,\"key\":\"submitted\",\"tenantTerm\":\"submitted\",\"frontiersDefaultTerm\":\"submitted\",\"category\":\"Process\"},{\"sequenceNumber\":103,\"key\":\"submitting\",\"tenantTerm\":\"submitting\",\"frontiersDefaultTerm\":\"submitting\",\"category\":\"Process\"},{\"sequenceNumber\":104,\"key\":\"t_e\",\"tenantTerm\":\"TE\",\"frontiersDefaultTerm\":\"TE\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":105,\"key\":\"topic\",\"tenantTerm\":\"topic\",\"frontiersDefaultTerm\":\"topic\",\"category\":\"Process\"},{\"sequenceNumber\":106,\"key\":\"topic_summary\",\"tenantTerm\":\"topic summary\",\"frontiersDefaultTerm\":\"topic summary\",\"category\":\"Process\"},{\"sequenceNumber\":107,\"key\":\"figure\",\"tenantTerm\":\"figure\",\"frontiersDefaultTerm\":\"figure\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":108,\"key\":\"figures\",\"tenantTerm\":\"figures\",\"frontiersDefaultTerm\":\"figures\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":109,\"key\":\"editorial_file\",\"tenantTerm\":\"editorial file\",\"frontiersDefaultTerm\":\"editorial file\",\"category\":\"Core\"},{\"sequenceNumber\":110,\"key\":\"editorial_files\",\"tenantTerm\":\"editorial files\",\"frontiersDefaultTerm\":\"editorial files\",\"category\":\"Core\"},{\"sequenceNumber\":111,\"key\":\"e_book\",\"tenantTerm\":\"e-book\",\"frontiersDefaultTerm\":\"e-book\",\"category\":\"Core\"},{\"sequenceNumber\":112,\"key\":\"organization\",\"tenantTerm\":\"organization\",\"frontiersDefaultTerm\":\"organization\",\"category\":\"Core\"},{\"sequenceNumber\":113,\"key\":\"institution\",\"tenantTerm\":\"institution\",\"frontiersDefaultTerm\":\"institution\",\"category\":\"Core\"},{\"sequenceNumber\":114,\"key\":\"reference\",\"tenantTerm\":\"reference\",\"frontiersDefaultTerm\":\"reference\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":115,\"key\":\"references\",\"tenantTerm\":\"references\",\"frontiersDefaultTerm\":\"references\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":116,\"key\":\"sce\",\"tenantTerm\":\"SCE\",\"frontiersDefaultTerm\":\"SCE\",\"description\":\"Abbreviation for Specialty Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":117,\"key\":\"submission\",\"tenantTerm\":\"submission\",\"frontiersDefaultTerm\":\"submission\",\"category\":\"Process\"},{\"sequenceNumber\":118,\"key\":\"submissions\",\"tenantTerm\":\"submissions\",\"frontiersDefaultTerm\":\"submissions\",\"category\":\"Process\"},{\"sequenceNumber\":119,\"key\":\"editing\",\"tenantTerm\":\"editing\",\"frontiersDefaultTerm\":\"editing\",\"category\":\"Process\"},{\"sequenceNumber\":120,\"key\":\"in_preparation\",\"tenantTerm\":\"in preparation\",\"frontiersDefaultTerm\":\"in preparation\",\"category\":\"Process\"},{\"sequenceNumber\":121,\"key\":\"country_region\",\"tenantTerm\":\"country\u002Fregion\",\"frontiersDefaultTerm\":\"country\u002Fregion\",\"description\":\"Because of political issues, some of the country listings are actually classified as `regions` and we need to include this. However other clients may not want to do this.\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":122,\"key\":\"countries_regions\",\"tenantTerm\":\"countries\u002Fregions\",\"frontiersDefaultTerm\":\"countries\u002Fregions\",\"description\":\"Because of political issues, some of the country listings are actually classified as `regions` and we need to include this. However other clients may not want to do this.\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":123,\"key\":\"specialty\",\"tenantTerm\":\"specialty\",\"frontiersDefaultTerm\":\"specialty\",\"category\":\"Core\"},{\"sequenceNumber\":124,\"key\":\"specialties\",\"tenantTerm\":\"specialties\",\"frontiersDefaultTerm\":\"specialties\",\"category\":\"Core\"},{\"sequenceNumber\":125,\"key\":\"associate_editors\",\"tenantTerm\":\"Associate Editors\",\"frontiersDefaultTerm\":\"Associate Editors\",\"description\":\"An editorial role on a specialty that a Registered User may hold. This gives them rights to different functionality and parts of the platform\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":126,\"key\":\"reviewed\",\"tenantTerm\":\"reviewed\",\"frontiersDefaultTerm\":\"reviewed\",\"category\":\"Peer Review Process\"},{\"sequenceNumber\":127,\"key\":\"institutional_members\",\"tenantTerm\":\"institutional partners\",\"frontiersDefaultTerm\":\"institutional partners\",\"category\":\"Accounting\"},{\"sequenceNumber\":128,\"key\":\"institutional_memberships\",\"tenantTerm\":\"institutional partnerships\",\"frontiersDefaultTerm\":\"institutional partnerships\",\"category\":\"Accounting\"},{\"sequenceNumber\":129,\"key\":\"assistant_field_chief_editors\",\"tenantTerm\":\"Assistant Field Chief Editors\",\"frontiersDefaultTerm\":\"Assistant Field Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":130,\"key\":\"publications\",\"tenantTerm\":\"publications\",\"frontiersDefaultTerm\":\"publications\",\"category\":\"Process\"},{\"sequenceNumber\":131,\"key\":\"ae_accepted\",\"tenantTerm\":\"recommended acceptance\",\"frontiersDefaultTerm\":\"accepted\",\"category\":\"Process\"},{\"sequenceNumber\":132,\"key\":\"field_journal\",\"tenantTerm\":\"field journal\",\"frontiersDefaultTerm\":\"field journal\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":133,\"key\":\"field_journals\",\"tenantTerm\":\"field journals\",\"frontiersDefaultTerm\":\"field journals\",\"category\":\"Taxonomy\"},{\"sequenceNumber\":134,\"key\":\"program_manager\",\"tenantTerm\":\"program manager\",\"frontiersDefaultTerm\":\"program manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":135,\"key\":\"journal_manager\",\"tenantTerm\":\"journal manager\",\"frontiersDefaultTerm\":\"journal manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":136,\"key\":\"journal_specialist\",\"tenantTerm\":\"journal specialist\",\"frontiersDefaultTerm\":\"journal specialist\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":137,\"key\":\"program_managers\",\"tenantTerm\":\"program managers\",\"frontiersDefaultTerm\":\"program managers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":138,\"key\":\"journal_managers\",\"tenantTerm\":\"journal managers\",\"frontiersDefaultTerm\":\"journal managers\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":139,\"key\":\"journal_specialists\",\"tenantTerm\":\"journal specialists\",\"frontiersDefaultTerm\":\"journal specialists\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":140,\"key\":\"cover_letter\",\"tenantTerm\":\"manuscript contribution to the field\",\"frontiersDefaultTerm\":\"manuscript contribution to the field\",\"category\":\"Process\"},{\"sequenceNumber\":141,\"key\":\"ae_accepted_manuscript\",\"tenantTerm\":\"recommended to accept manuscript\",\"frontiersDefaultTerm\":\"accepted manuscript\",\"category\":\"Process\"},{\"sequenceNumber\":142,\"key\":\"recommend_for_rejection\",\"tenantTerm\":\"recommend for rejection\",\"frontiersDefaultTerm\":\"recommend for rejection\",\"category\":\"Process\"},{\"sequenceNumber\":143,\"key\":\"recommended_for_rejection\",\"tenantTerm\":\"recommended for rejection\",\"frontiersDefaultTerm\":\"recommended for rejection\",\"category\":\"Process\"},{\"sequenceNumber\":144,\"key\":\"ae\",\"tenantTerm\":\"AE\",\"frontiersDefaultTerm\":\"AE\",\"description\":\"Associate Editor - board member\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":145,\"key\":\"re\",\"tenantTerm\":\"RE\",\"frontiersDefaultTerm\":\"RE\",\"description\":\"Review Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":146,\"key\":\"rev\",\"tenantTerm\":\"REV\",\"frontiersDefaultTerm\":\"REV\",\"description\":\"Reviewer\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":147,\"key\":\"aut\",\"tenantTerm\":\"AUT\",\"frontiersDefaultTerm\":\"AUT\",\"description\":\"Author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":148,\"key\":\"coraut\",\"tenantTerm\":\"CORAUT\",\"frontiersDefaultTerm\":\"CORAUT\",\"description\":\"Corresponding author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":149,\"key\":\"saut\",\"tenantTerm\":\"SAUT\",\"frontiersDefaultTerm\":\"SAUT\",\"description\":\"Submitting author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":150,\"key\":\"coaut\",\"tenantTerm\":\"COAUT\",\"frontiersDefaultTerm\":\"COAUT\",\"description\":\"co-author\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":151,\"key\":\"tsof\",\"tenantTerm\":\"TSOF\",\"frontiersDefaultTerm\":\"TSOF\",\"description\":\"Typesetter\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":152,\"key\":\"typesetting_office\",\"tenantTerm\":\"typesetting office\",\"frontiersDefaultTerm\":\"typesetting office\",\"category\":\"Product\"},{\"sequenceNumber\":153,\"key\":\"config\",\"tenantTerm\":\"CONFIG\",\"frontiersDefaultTerm\":\"CONFIG\",\"description\":\"Configuration office role\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":154,\"key\":\"jm\",\"tenantTerm\":\"JM\",\"frontiersDefaultTerm\":\"JM\",\"description\":\"Journal Manager\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":155,\"key\":\"rte\",\"tenantTerm\":\"RTE\",\"frontiersDefaultTerm\":\"RTE\",\"description\":\"Research topic editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":156,\"key\":\"organizations\",\"tenantTerm\":\"organizations\",\"frontiersDefaultTerm\":\"organizations\",\"category\":\"Core\"},{\"sequenceNumber\":157,\"key\":\"publishing\",\"tenantTerm\":\"publishing\",\"frontiersDefaultTerm\":\"publishing\",\"category\":\"Core\"},{\"sequenceNumber\":158,\"key\":\"acceptance\",\"tenantTerm\":\"acceptance\",\"frontiersDefaultTerm\":\"acceptance\",\"category\":\"Process\"},{\"sequenceNumber\":159,\"key\":\"preferred_associate_editor\",\"tenantTerm\":\"preferred associate editor\",\"frontiersDefaultTerm\":\"preferred associate editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":160,\"key\":\"topic_editors\",\"tenantTerm\":\"Topic Editors\",\"frontiersDefaultTerm\":\"Topic Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":161,\"key\":\"institutions\",\"tenantTerm\":\"institutions\",\"frontiersDefaultTerm\":\"institutions\",\"category\":\"Core\"},{\"sequenceNumber\":162,\"key\":\"author(s)\",\"tenantTerm\":\"author(s)\",\"frontiersDefaultTerm\":\"author(s)\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":163,\"key\":\"figure(s)\",\"tenantTerm\":\"figure(s)\",\"frontiersDefaultTerm\":\"figure(s)\",\"category\":\"Manuscript Metadata\"},{\"sequenceNumber\":164,\"key\":\"co-authors\",\"tenantTerm\":\"co-authors\",\"frontiersDefaultTerm\":\"co-authors\",\"description\":\"co-authors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":165,\"key\":\"editorial_board_members\",\"tenantTerm\":\"editorial board members\",\"frontiersDefaultTerm\":\"editorial board members\",\"description\":\"editorial board members\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":166,\"key\":\"editorial_board\",\"tenantTerm\":\"editorial board\",\"frontiersDefaultTerm\":\"editorial board\",\"description\":\"editorial board\",\"category\":\"Product\"},{\"sequenceNumber\":167,\"key\":\"co-authorship\",\"tenantTerm\":\"co-authorship\",\"frontiersDefaultTerm\":\"co-authorship\",\"description\":\"co-authorship\",\"category\":\"Misc.\"},{\"sequenceNumber\":168,\"key\":\"role_id_1\",\"tenantTerm\":\"registration office\",\"frontiersDefaultTerm\":\"registration office\",\"category\":\"User Role\"},{\"sequenceNumber\":169,\"key\":\"role_id_2\",\"tenantTerm\":\"editorial office\",\"frontiersDefaultTerm\":\"editorial office\",\"category\":\"User Role\"},{\"sequenceNumber\":170,\"key\":\"role_id_7\",\"tenantTerm\":\"field chief editor\",\"frontiersDefaultTerm\":\"field chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":171,\"key\":\"role_id_8\",\"tenantTerm\":\"assistant field chief editor\",\"frontiersDefaultTerm\":\"assistant field chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":172,\"key\":\"role_id_9\",\"tenantTerm\":\"specialty chief editor\",\"frontiersDefaultTerm\":\"specialty chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":173,\"key\":\"role_id_10\",\"tenantTerm\":\"assistant specialty chief editor\",\"frontiersDefaultTerm\":\"assistant specialty chief editor\",\"category\":\"User Role\"},{\"sequenceNumber\":174,\"key\":\"role_id_11\",\"tenantTerm\":\"associate editor\",\"frontiersDefaultTerm\":\"associate editor\",\"category\":\"User Role\"},{\"sequenceNumber\":175,\"key\":\"role_id_12\",\"tenantTerm\":\"guest associate editor\",\"frontiersDefaultTerm\":\"guest associate editor\",\"category\":\"User Role\"},{\"sequenceNumber\":176,\"key\":\"role_id_13\",\"tenantTerm\":\"review editor\",\"frontiersDefaultTerm\":\"review editor\",\"category\":\"User Role\"},{\"sequenceNumber\":177,\"key\":\"role_id_14\",\"tenantTerm\":\"reviewer\",\"frontiersDefaultTerm\":\"reviewer\",\"category\":\"User Role\"},{\"sequenceNumber\":178,\"key\":\"role_id_15\",\"tenantTerm\":\"author\",\"frontiersDefaultTerm\":\"author\",\"category\":\"User Role\"},{\"sequenceNumber\":179,\"key\":\"role_id_16\",\"tenantTerm\":\"corresponding author\",\"frontiersDefaultTerm\":\"corresponding author\",\"category\":\"User Role\"},{\"sequenceNumber\":180,\"key\":\"role_id_17\",\"tenantTerm\":\"submitting author\",\"frontiersDefaultTerm\":\"submitting author\",\"category\":\"User Role\"},{\"sequenceNumber\":181,\"key\":\"role_id_18\",\"tenantTerm\":\"co-author\",\"frontiersDefaultTerm\":\"co-author\",\"category\":\"User Role\"},{\"sequenceNumber\":182,\"key\":\"role_id_20\",\"tenantTerm\":\"production office\",\"frontiersDefaultTerm\":\"production office\",\"category\":\"User Role\"},{\"sequenceNumber\":183,\"key\":\"role_id_22\",\"tenantTerm\":\"typesetting office (typesetter)\",\"frontiersDefaultTerm\":\"typesetting office (typesetter)\",\"category\":\"User Role\"},{\"sequenceNumber\":184,\"key\":\"role_id_24\",\"tenantTerm\":\"registered user\",\"frontiersDefaultTerm\":\"registered user\",\"category\":\"User Role\"},{\"sequenceNumber\":185,\"key\":\"role_id_35\",\"tenantTerm\":\"job office\",\"frontiersDefaultTerm\":\"job office\",\"category\":\"User Role\"},{\"sequenceNumber\":186,\"key\":\"role_id_41\",\"tenantTerm\":\"special event administrator\",\"frontiersDefaultTerm\":\"special event administrator\",\"category\":\"User Role\"},{\"sequenceNumber\":187,\"key\":\"role_id_42\",\"tenantTerm\":\"special event reviewer\",\"frontiersDefaultTerm\":\"special event reviewer\",\"category\":\"User Role\"},{\"sequenceNumber\":188,\"key\":\"role_id_43\",\"tenantTerm\":\"submit abstract\",\"frontiersDefaultTerm\":\"submit abstract\",\"category\":\"User Role\"},{\"sequenceNumber\":189,\"key\":\"role_id_52\",\"tenantTerm\":\"events office\",\"frontiersDefaultTerm\":\"events office\",\"category\":\"User Role\"},{\"sequenceNumber\":190,\"key\":\"role_id_53\",\"tenantTerm\":\"event administrator\",\"frontiersDefaultTerm\":\"event administrator\",\"category\":\"User Role\"},{\"sequenceNumber\":191,\"key\":\"role_id_89\",\"tenantTerm\":\"content management office\",\"frontiersDefaultTerm\":\"content management office\",\"category\":\"User Role\"},{\"sequenceNumber\":192,\"key\":\"role_id_98\",\"tenantTerm\":\"accounting office\",\"frontiersDefaultTerm\":\"accounting office\",\"category\":\"User Role\"},{\"sequenceNumber\":193,\"key\":\"role_id_99\",\"tenantTerm\":\"projects\",\"frontiersDefaultTerm\":\"projects\",\"category\":\"User Role\"},{\"sequenceNumber\":194,\"key\":\"role_id_103\",\"tenantTerm\":\"configuration office\",\"frontiersDefaultTerm\":\"configuration office\",\"category\":\"User Role\"},{\"sequenceNumber\":195,\"key\":\"role_id_104\",\"tenantTerm\":\"beta user\",\"frontiersDefaultTerm\":\"beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":196,\"key\":\"role_id_106\",\"tenantTerm\":\"wfconf\",\"frontiersDefaultTerm\":\"wfconf\",\"category\":\"User Role\"},{\"sequenceNumber\":197,\"key\":\"role_id_107\",\"tenantTerm\":\"rt management beta user\",\"frontiersDefaultTerm\":\"rt management beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":198,\"key\":\"role_id_108\",\"tenantTerm\":\"deo beta user\",\"frontiersDefaultTerm\":\"deo beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":199,\"key\":\"role_id_109\",\"tenantTerm\":\"search beta user\",\"frontiersDefaultTerm\":\"search beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":200,\"key\":\"role_id_110\",\"tenantTerm\":\"journal manager\",\"frontiersDefaultTerm\":\"journal manager\",\"category\":\"User Role\"},{\"sequenceNumber\":201,\"key\":\"role_id_111\",\"tenantTerm\":\"myfrontiers beta user\",\"frontiersDefaultTerm\":\"myfrontiers beta user\",\"category\":\"User Role\"},{\"sequenceNumber\":202,\"key\":\"role_id_21\",\"tenantTerm\":\"copy editor\",\"frontiersDefaultTerm\":\"copy editor\",\"category\":\"User Role\"},{\"sequenceNumber\":203,\"key\":\"role_id_1_abr\",\"tenantTerm\":\"ROF\",\"frontiersDefaultTerm\":\"ROF\",\"category\":\"User Role\"},{\"sequenceNumber\":204,\"key\":\"role_id_2_abr\",\"tenantTerm\":\"EOF\",\"frontiersDefaultTerm\":\"EOF\",\"category\":\"User Role\"},{\"sequenceNumber\":205,\"key\":\"role_id_7_abr\",\"tenantTerm\":\"FCE\",\"frontiersDefaultTerm\":\"FCE\",\"category\":\"User Role\"},{\"sequenceNumber\":206,\"key\":\"role_id_8_abr\",\"tenantTerm\":\"AFCE\",\"frontiersDefaultTerm\":\"AFCE\",\"category\":\"User Role\"},{\"sequenceNumber\":207,\"key\":\"role_id_9_abr\",\"tenantTerm\":\"SCE\",\"frontiersDefaultTerm\":\"SCE\",\"category\":\"User Role\"},{\"sequenceNumber\":208,\"key\":\"role_id_10_abr\",\"tenantTerm\":\"ASCE\",\"frontiersDefaultTerm\":\"ASCE\",\"category\":\"User Role\"},{\"sequenceNumber\":209,\"key\":\"role_id_11_abr\",\"tenantTerm\":\"AE\",\"frontiersDefaultTerm\":\"AE\",\"category\":\"User Role\"},{\"sequenceNumber\":210,\"key\":\"role_id_12_abr\",\"tenantTerm\":\"GAE\",\"frontiersDefaultTerm\":\"GAE\",\"category\":\"User Role\"},{\"sequenceNumber\":211,\"key\":\"role_id_13_abr\",\"tenantTerm\":\"RE\",\"frontiersDefaultTerm\":\"RE\",\"category\":\"User Role\"},{\"sequenceNumber\":212,\"key\":\"role_id_14_abr\",\"tenantTerm\":\"REV\",\"frontiersDefaultTerm\":\"REV\",\"category\":\"User Role\"},{\"sequenceNumber\":213,\"key\":\"role_id_15_abr\",\"tenantTerm\":\"AUT\",\"frontiersDefaultTerm\":\"AUT\",\"category\":\"User Role\"},{\"sequenceNumber\":214,\"key\":\"role_id_16_abr\",\"tenantTerm\":\"CORAUT\",\"frontiersDefaultTerm\":\"CORAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":215,\"key\":\"role_id_17_abr\",\"tenantTerm\":\"SAUT\",\"frontiersDefaultTerm\":\"SAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":216,\"key\":\"role_id_18_abr\",\"tenantTerm\":\"COAUT\",\"frontiersDefaultTerm\":\"COAUT\",\"category\":\"User Role\"},{\"sequenceNumber\":217,\"key\":\"role_id_20_abr\",\"tenantTerm\":\"POF\",\"frontiersDefaultTerm\":\"POF\",\"category\":\"User Role\"},{\"sequenceNumber\":218,\"key\":\"role_id_22_abr\",\"tenantTerm\":\"TSOF\",\"frontiersDefaultTerm\":\"TSOF\",\"category\":\"User Role\"},{\"sequenceNumber\":219,\"key\":\"role_id_24_abr\",\"tenantTerm\":\"RU\",\"frontiersDefaultTerm\":\"RU\",\"category\":\"User Role\"},{\"sequenceNumber\":220,\"key\":\"role_id_35_abr\",\"tenantTerm\":\"JOF\",\"frontiersDefaultTerm\":\"JOF\",\"category\":\"User Role\"},{\"sequenceNumber\":221,\"key\":\"role_id_41_abr\",\"tenantTerm\":\"SE-ADM\",\"frontiersDefaultTerm\":\"SE-ADM\",\"category\":\"User Role\"},{\"sequenceNumber\":222,\"key\":\"role_id_42_abr\",\"tenantTerm\":\"SE-REV\",\"frontiersDefaultTerm\":\"SE-REV\",\"category\":\"User Role\"},{\"sequenceNumber\":223,\"key\":\"role_id_43_abr\",\"tenantTerm\":\"SE-AUT\",\"frontiersDefaultTerm\":\"SE-AUT\",\"category\":\"User Role\"},{\"sequenceNumber\":224,\"key\":\"role_id_52_abr\",\"tenantTerm\":\"EVOF\",\"frontiersDefaultTerm\":\"EVOF\",\"category\":\"User Role\"},{\"sequenceNumber\":225,\"key\":\"role_id_53_abr\",\"tenantTerm\":\"EV-ADM\",\"frontiersDefaultTerm\":\"EV-ADM\",\"category\":\"User Role\"},{\"sequenceNumber\":226,\"key\":\"role_id_89_abr\",\"tenantTerm\":\"COMOF\",\"frontiersDefaultTerm\":\"COMOF\",\"category\":\"User Role\"},{\"sequenceNumber\":227,\"key\":\"role_id_98_abr\",\"tenantTerm\":\"AOF\",\"frontiersDefaultTerm\":\"AOF\",\"category\":\"User Role\"},{\"sequenceNumber\":228,\"key\":\"role_id_99_abr\",\"tenantTerm\":\"Projects\",\"frontiersDefaultTerm\":\"Projects\",\"category\":\"User Role\"},{\"sequenceNumber\":229,\"key\":\"role_id_103_abr\",\"tenantTerm\":\"CONFIG\",\"frontiersDefaultTerm\":\"CONFIG\",\"category\":\"User Role\"},{\"sequenceNumber\":230,\"key\":\"role_id_104_abr\",\"tenantTerm\":\"BETA\",\"frontiersDefaultTerm\":\"BETA\",\"category\":\"User Role\"},{\"sequenceNumber\":231,\"key\":\"role_id_106_abr\",\"tenantTerm\":\"WFCONF\",\"frontiersDefaultTerm\":\"WFCONF\",\"category\":\"User Role\"},{\"sequenceNumber\":232,\"key\":\"role_id_107_abr\",\"tenantTerm\":\"RTBETA\",\"frontiersDefaultTerm\":\"RTBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":233,\"key\":\"role_id_108_abr\",\"tenantTerm\":\"DEOBETA\",\"frontiersDefaultTerm\":\"DEOBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":234,\"key\":\"role_id_109_abr\",\"tenantTerm\":\"SEARCHBETA\",\"frontiersDefaultTerm\":\"SEARCHBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":235,\"key\":\"role_id_110_abr\",\"tenantTerm\":\"JM\",\"frontiersDefaultTerm\":\"JM\",\"category\":\"User Role\"},{\"sequenceNumber\":236,\"key\":\"role_id_111_abr\",\"tenantTerm\":\"MFBETA\",\"frontiersDefaultTerm\":\"MFBETA\",\"category\":\"User Role\"},{\"sequenceNumber\":237,\"key\":\"role_id_21_abr\",\"tenantTerm\":\"COPED\",\"frontiersDefaultTerm\":\"COPED\",\"category\":\"User Role\"},{\"sequenceNumber\":238,\"key\":\"reviewer_editorial_board\",\"tenantTerm\":\"editorial board\",\"frontiersDefaultTerm\":\"editorial board\",\"description\":\"This is the label for the review editorial board\",\"category\":\"Label\"},{\"sequenceNumber\":239,\"key\":\"field_chief_editor\",\"tenantTerm\":\"Field Chief Editor\",\"frontiersDefaultTerm\":\"Field Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":240,\"key\":\"field_chief_editors\",\"tenantTerm\":\"Field Chief Editors\",\"frontiersDefaultTerm\":\"Field Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":241,\"key\":\"editor\",\"tenantTerm\":\"editor\",\"frontiersDefaultTerm\":\"editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":242,\"key\":\"editors\",\"tenantTerm\":\"editors\",\"frontiersDefaultTerm\":\"editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":243,\"key\":\"board\",\"tenantTerm\":\"board\",\"frontiersDefaultTerm\":\"board\",\"category\":\"Label\"},{\"sequenceNumber\":244,\"key\":\"boards\",\"tenantTerm\":\"boards\",\"frontiersDefaultTerm\":\"boards\",\"category\":\"Label\"},{\"sequenceNumber\":245,\"key\":\"article_collection\",\"tenantTerm\":\"article collection\",\"frontiersDefaultTerm\":\"article collection\",\"category\":\"Label\"},{\"sequenceNumber\":246,\"key\":\"article_collections\",\"tenantTerm\":\"article collections\",\"frontiersDefaultTerm\":\"article collections\",\"category\":\"Label\"},{\"sequenceNumber\":247,\"key\":\"handling_editor\",\"tenantTerm\":\"handling editor\",\"frontiersDefaultTerm\":\"associate editor\",\"description\":\"This terminology key is for the person assigned to edit a manuscript. It is a label for the temporary handling editor assignment.\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":248,\"key\":\"handling_editors\",\"tenantTerm\":\"handling editors\",\"frontiersDefaultTerm\":\"associate editors\",\"description\":\"This terminology key is for the person assigned to edit a manuscript. It is a label for the temporary handling editor assignment.\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":249,\"key\":\"ae_accept\",\"tenantTerm\":\"recommend acceptance\",\"frontiersDefaultTerm\":\"accept\",\"category\":\"Process\"},{\"sequenceNumber\":250,\"key\":\"rtm\",\"tenantTerm\":\"RTM\",\"frontiersDefaultTerm\":\"RTM\",\"category\":\"Product\"},{\"sequenceNumber\":251,\"key\":\"frontiers_media_sa\",\"tenantTerm\":\"Frontiers Media S.A\",\"frontiersDefaultTerm\":\"Frontiers Media S.A\",\"category\":\"Customer\"},{\"sequenceNumber\":252,\"key\":\"review_editors\",\"tenantTerm\":\"Review Editors\",\"frontiersDefaultTerm\":\"Review Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":253,\"key\":\"journal_card_chief_editor\",\"tenantTerm\":\"Chief Editor\",\"frontiersDefaultTerm\":\"Chief Editor\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":254,\"key\":\"journal_card_chief_editors\",\"tenantTerm\":\"Chief Editors\",\"frontiersDefaultTerm\":\"Chief Editors\",\"category\":\"Label (Role)\"},{\"sequenceNumber\":255,\"key\":\"call_for_papers\",\"tenantTerm\":\"Call for papers\",\"frontiersDefaultTerm\":\"Call for papers\",\"category\":\"Label\"},{\"sequenceNumber\":256,\"key\":\"calls_for_papers\",\"tenantTerm\":\"Calls for papers\",\"frontiersDefaultTerm\":\"Calls for papers\",\"category\":\"Label\"},{\"sequenceNumber\":257,\"key\":\"supervising_editor\",\"tenantTerm\":\"Supervising Editor\",\"frontiersDefaultTerm\":\"Supervising Editor\",\"description\":\"A Chief or Assistant Chief editor who is assigned to a manuscript to supervise.\",\"category\":\"Role\",\"externalKey\":\"supervising_editor\"},{\"sequenceNumber\":258,\"key\":\"supervising_editors\",\"tenantTerm\":\"Supervising Editors\",\"frontiersDefaultTerm\":\"Supervising Editors\",\"description\":\"A Chief or Assistant Chief editor who is assigned to a manuscript to supervise.\",\"category\":\"Role\",\"externalKey\":\"supervising_editors\"},{\"sequenceNumber\":259,\"key\":\"reviewer_endorse\",\"tenantTerm\":\"endorse\",\"frontiersDefaultTerm\":\"endorse\",\"category\":\"Label\"},{\"sequenceNumber\":260,\"key\":\"reviewer_endorsed\",\"tenantTerm\":\"endorsed\",\"frontiersDefaultTerm\":\"endorsed\",\"category\":\"Label\"},{\"sequenceNumber\":261,\"key\":\"reviewer_endorse_publication\",\"tenantTerm\":\"endorse publication\",\"frontiersDefaultTerm\":\"endorse publication\",\"category\":\"Label\"},{\"sequenceNumber\":262,\"key\":\"reviewer_endorsed_publication\",\"tenantTerm\":\"endorsed publication\",\"frontiersDefaultTerm\":\"endorsed publication\",\"category\":\"Label\"},{\"sequenceNumber\":263,\"key\":\"editor_role\",\"tenantTerm\":\"editor role\",\"frontiersDefaultTerm\":\"Editor Role\",\"category\":\"Label\"},{\"sequenceNumber\":264,\"key\":\"editor_roles\",\"tenantTerm\":\"editor roles\",\"frontiersDefaultTerm\":\"Editor Roles\",\"category\":\"Label\"},{\"sequenceNumber\":265,\"key\":\"editorial_role\",\"tenantTerm\":\"editorial role\",\"frontiersDefaultTerm\":\"Editorial Role\",\"category\":\"Label\"},{\"sequenceNumber\":266,\"key\":\"editorial_roles\",\"tenantTerm\":\"editorial roles\",\"frontiersDefaultTerm\":\"Editorial Roles\",\"category\":\"Label\"},{\"sequenceNumber\":267,\"key\":\"call_for_paper\",\"tenantTerm\":\"Call for paper\",\"frontiersDefaultTerm\":\"Call for paper\",\"category\":\"Label\"},{\"sequenceNumber\":268,\"key\":\"research_topic_abstract\",\"tenantTerm\":\"manuscript summary\",\"frontiersDefaultTerm\":\"manuscript summary\",\"category\":\"Process\"},{\"sequenceNumber\":269,\"key\":\"research_topic_abstracts\",\"tenantTerm\":\"manuscript summaries\",\"frontiersDefaultTerm\":\"manuscript summaries\",\"category\":\"Process\"},{\"sequenceNumber\":270,\"key\":\"submissions_team_manager\",\"tenantTerm\":\"Journal Manager\",\"frontiersDefaultTerm\":\"Content Manager\",\"category\":\"Process\"},{\"sequenceNumber\":271,\"key\":\"submissions_team\",\"tenantTerm\":\"Journal Team\",\"frontiersDefaultTerm\":\"Content Team\",\"category\":\"Process\"},{\"sequenceNumber\":272,\"key\":\"topic_coordinator\",\"tenantTerm\":\"topic coordinator\",\"frontiersDefaultTerm\":\"topic coordinator\",\"category\":\"Process\"},{\"sequenceNumber\":273,\"key\":\"topic_coordinators\",\"tenantTerm\":\"topic coordinators\",\"frontiersDefaultTerm\":\"topic coordinators\",\"category\":\"Process\"}]}'\n",gtmId:"GTM-M322FV2",gtmAuth:"owVbWxfaJr21yQv1fe1cAQ",gtmServerUrl:"https:\u002F\u002Ftag-manager.frontiersin.org",gtmPreview:"env-1",faviconSize512:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002Fed3f9ce840a03d7\u002Ffavicon_512-tenantFavicon-Frontiers.png",socialMediaImg:"https:\u002F\u002Fbrand.frontiersin.org\u002Fm\u002F1c8bcb536c789e11\u002FGuidelines-Frontiers_Logo_1200x628_1-91to1.png",_app:{basePath:"\u002F",assetsPath:"\u002Farticle-pages\u002F_nuxt\u002F",cdnURL:e}},apollo:{contentfulJournalsDelivery:Object.create(null),contentfulJournalsPreview:Object.create(null),contentfulHomeDelivery:Object.create(null),contentfulHomePreview:Object.create(null),frontiersGraph:Object.create(null)}}}("journal_journal","public_space",1,"frontiersin.org",null,"_self",true,"",3,"frontierspartnerships.org","_blank",false,0,"Frontiers in Cell and Developmental Biology","PDF",5,403,"cell-and-developmental-biology","Link",4,2,"description","Frontiers","Help center","Grey","Medium","ssph-journal.org","fship","image","landscape","Front. Cell Dev. Biol.","2296-634X",10,void 0,18,"Institute of Molecular Health Sciences","Switzerland",9,"citation_author","citation_author_institution","Institute of Molecular Health Sciences, Switzerland",1920,"por-journal.com",7,"escubed.org",1918,"fipp","https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0A59C792-A2E1-415E-85D099C64C84D821\u002Fwebimage-A2D69EFA-B893-4809-9530D3B542ABEA2F.jpg","22C10171-81B3-4DA6-99342F272A32E8BB","2022-06-27T09:59:04Z",2000,"fcell","10.3389\u002Ffcell.2021.661931","The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip","\u003Cp\u003EThe single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Despite its seemingly simple architecture, the intestinal lining consists of highly distinct cell populations that are continuously renewed by the same stem cell population. The need to maintain balanced diversity of cell types in an unceasingly regenerating tissue demands intricate mechanisms of spatial or temporal cell fate control. Recent advances in single-cell sequencing, spatio-temporal profiling and organoid technology have shed new light on the intricate micro-structure of the intestinal epithelium and on the mechanisms that maintain it. This led to the discovery of unexpected plasticity, zonation along the crypt-villus axis and new mechanism of self-organization. However, not only the epithelium, but also the underlying mesenchyme is distinctly structured. Several new studies have explored the intestinal stroma with single cell resolution and unveiled important interactions with the epithelium that are crucial for intestinal function and regeneration. In this review, we will discuss these recent findings and highlight the technologies that lead to their discovery. We will examine strengths and limitations of each approach and consider the wider impact of these results on our understanding of the intestine in health and disease.\u003C\u002Fp\u003E",1218360,"Vangelis",1246986,"Carla",1051420,"Helmuth",994990,"Delilah","Netherlands",881358,"Vanesa",1224665,"Ramesh",{},685,"Stem Cell Research","stem-cell-research","EPUB","fcell-09-661931.pdf","Frontiers | The Intestinal Epithelium – Fluid Fate and Rigid Structure From Crypt Bottom to Villus Tip","https:\u002F\u002Fwww.frontiersin.org\u002Fjournals\u002Fcell-and-developmental-biology\u002Farticles\u002F10.3389\u002Ffcell.2021.661931\u002Ffull","The single-layered, simple epithelium of the gastro-intestinal tract controls nutrient uptake, coordinates our metabolism and shields us from pathogens. Desp...","og:title","og:description","keywords","og:site_name","og:image","og:type","og:url","twitter:card","citation_volume","citation_journal_title","citation_publisher","citation_journal_abbrev","citation_issn","citation_doi","citation_firstpage","citation_language","citation_title","citation_keywords","citation_abstract","citation_pdf_url","citation_online_date","citation_publication_date","dc.identifier","articles","editors","research-topics","https:\u002F\u002Fd2csxpduxe849s.cloudfront.net\u002Fmedia\u002FE32629C6-9347-4F84-81FEAEF7BFA342B3\u002F0B4B1380-42EB-4FD5-9D7E2DBC603E79F8\u002Fwebimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png","Man ultramarathon runner in the mountains he trains at sunset","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fresearch-integrity","How we publish","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fhow-we-publish","Fee policy","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Ffee-policy","Research Topics","https:\u002F\u002Fforum.frontiersin.org\u002F","Frontiers Planet Prize","https:\u002F\u002Fwww.frontiersplanetprize.org\u002F","this link will take you to the Frontiers Planet Prize website","Career opportunities","https:\u002F\u002Fcareers.frontiersin.org\u002F","https:\u002F\u002Fwww.frontiersin.org\u002Fabout\u002Fcontact","Author guidelines","Editor guidelines","https:\u002F\u002Fwww.frontiersin.org\u002Fjournals","https:\u002F\u002Fwww.frontiersin.org\u002Farticles","Articles","https:\u002F\u002Fhelpcenter.frontiersin.org","Frontiers for Young Minds","Frontiers Facebook","Transplant International","transplant-international","ti",1921,"Spanish Journal of Soil Science","spanish-journal-of-soil-science","sjss","ebm-journal.org","Public Health Reviews","public-health-reviews","phrs","Pathology and Oncology Research","pathology-and-oncology-research","pore",21,"Pastoralism: Research, Policy and Practice","pastoralism-research-policy-and-practice","past",11,"Oncology Reviews","oncology-reviews","or","Journal of Pharmacy & Pharmaceutical Sciences","journal-of-pharmacy-pharmaceutical-sciences","jpps","Journal of Cutaneous Immunology and Allergy","journal-of-cutaneous-immunology-and-allergy","JCIA","Journal of Abdominal Wall Surgery","journal-of-abdominal-wall-surgery","jaws",1919,"International Journal of Public Health","international-journal-of-public-health","ijph","Frontiers in Pathology","pathology","fpath",13,12,17,6,"Experimental Biology and Medicine","experimental-biology-and-medicine","EBM","European Journal of Cultural Management and Policy","european-journal-of-cultural-management-and-policy","ejcmp","Earth Science, Systems and Society","earth-science-systems-and-society","esss","Dystonia","dystonia","dyst","British Journal of Biomedical Science","british-journal-of-biomedical-science","bjbs","Aerospace Research Communications","aerospace-research-communications","arc","Advances in Drug and Alcohol Research","advances-in-drug-and-alcohol-research","adar","Acta Virologica","acta-virologica","av","Acta Biochimica Polonica","acta-biochimica-polonica"));</script><script src="/article-pages/_nuxt/75f1046.js" defer></script><script src="/article-pages/_nuxt/a5e7651.js" defer></script><script src="/article-pages/_nuxt/f548f7f.js" defer></script><script src="/article-pages/_nuxt/e3c5a8f.js" defer></script><script src="/article-pages/_nuxt/d89174d.js" defer></script><script src="/article-pages/_nuxt/ed7fc59.js" defer></script><script src="/article-pages/_nuxt/2abb6c5.js" defer></script><script src="/article-pages/_nuxt/701e3a3.js" defer></script><script src="/article-pages/_nuxt/c9b2266.js" defer></script><script data-n-head="ssr" src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6" data-body="true" async></script><script data-n-head="ssr" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML" data-body="true" async></script><script data-n-head="ssr" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/altmetric_badges-f0bc9b243ff5677d05460c1eb71834ca998946d764eb3bc244ab4b18ba50d21e.js" data-body="true" async></script><script data-n-head="ssr" src="https://api.altmetric.com/v1/doi/10.3389/fcell.2021.661931?callback=_altmetric.embed_callback&amp;domain=www.frontiersin.org&amp;key=3c130976ca2b8f2e88f8377633751ba1&amp;cache_until=14-15" data-body="true" async></script><script data-n-head="ssr" src="https://crossmark-cdn.crossref.org/widget/v2.0/widget.js" data-body="true" async></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10