CINXE.COM
Search results for: tissue equivalent materials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tissue equivalent materials</title> <meta name="description" content="Search results for: tissue equivalent materials"> <meta name="keywords" content="tissue equivalent materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tissue equivalent materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tissue equivalent materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9031</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tissue equivalent materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9031</span> Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunwei%20Zhang">Yunwei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%20Li"> Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhong%20Niu"> Yuhong Niu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20tissue%20engineering" title="bone tissue engineering">bone tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20analysis" title=" patent analysis"> patent analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Scaffold%20material" title=" Scaffold material"> Scaffold material</a>, <a href="https://publications.waset.org/abstracts/search?q=patent%20protection" title=" patent protection"> patent protection</a> </p> <a href="https://publications.waset.org/abstracts/105186/analysis-of-patent-protection-of-bone-tissue-engineering-scaffold-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9030</span> Simulation Study of Multiple-Thick Gas Electron Multiplier-Based Microdosimeters for Fast Neutron Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Moslehi">Amir Moslehi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Raisali"> Gholamreza Raisali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microdosimetric detectors based on multiple-thick gas electron multiplier (multiple-THGEM) configurations are being used in various fields of radiation protection and dosimetry. In the present work, microdosimetric response of these detectors to fast neutrons has been investigated by Monte Carlo method. Three similar microdosimeters made of A-150 and rexolite as the wall materials are designed; the first based on single-THGEM, the second based on double-THGEM and the third is based on triple-THGEM. Sensitive volume of the three microdosimeters is a right cylinder of 5 mm height and diameter which is filled with the propane-based tissue-equivalent (TE) gas. The TE gas with 0.11 atm pressure at the room temperature simulates 1 µm of tissue. Lineal energy distributions for several neutron energies from 10 keV to 14 MeV including 241Am-Be neutrons are calculated by the Geant4 simulation toolkit. Also, mean quality factor and dose-equivalent value for any neutron energy has been determined by these distributions. Obtained data derived from the three microdosimeters are in agreement. Therefore, we conclude that the multiple-THGEM structures present similar microdosimetric responses to fast neutrons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20neutrons" title="fast neutrons">fast neutrons</a>, <a href="https://publications.waset.org/abstracts/search?q=geant4" title=" geant4"> geant4</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-thick%20gas%20electron%20multiplier" title=" multiple-thick gas electron multiplier"> multiple-thick gas electron multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=microdosimeter" title=" microdosimeter"> microdosimeter</a> </p> <a href="https://publications.waset.org/abstracts/39231/simulation-study-of-multiple-thick-gas-electron-multiplier-based-microdosimeters-for-fast-neutron-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9029</span> Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaia%20N.%20Koukou">Vaia N. Koukou</a>, <a href="https://publications.waset.org/abstracts/search?q=Niki%20D.%20Martini"> Niki D. Martini</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20P.%20Fountos"> George P. Fountos</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20M.%20Michail"> Christos M. Michail</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Bakas"> Athanasios Bakas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20S.%20Kandarakis"> Ioannis S. Kandarakis</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Nikiforidis"> George C. Nikiforidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcification%20materials" title="calcification materials">calcification materials</a>, <a href="https://publications.waset.org/abstracts/search?q=CNR" title=" CNR"> CNR</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20energy" title=" dual energy"> dual energy</a>, <a href="https://publications.waset.org/abstracts/search?q=X-rays" title=" X-rays"> X-rays</a> </p> <a href="https://publications.waset.org/abstracts/63600/contrast-to-noise-ratio-comparison-of-different-calcification-types-in-dual-energy-breast-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9028</span> Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Salehi">S. S. Salehi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shamloo"> A. Shamloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cartilage%20tissue%20engineering" title="cartilage tissue engineering">cartilage tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a> </p> <a href="https://publications.waset.org/abstracts/65407/design-and-fabrication-of-a-scaffold-with-appropriate-features-for-cartilage-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9027</span> Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Alharbi">Afaf Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Qianni%20Zhang"> Qianni Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention%20multiple%20instance%20learning" title="attention multiple instance learning">attention multiple instance learning</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL%20and%20transfer%20learning" title=" MIL and transfer learning"> MIL and transfer learning</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathological%20slides" title=" histopathological slides"> histopathological slides</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20tissue%20classification" title=" cancer tissue classification"> cancer tissue classification</a> </p> <a href="https://publications.waset.org/abstracts/167708/attention-multiple-instance-learning-for-cancer-tissue-classification-in-digital-histopathology-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9026</span> Management and Evaluating Technologies of Tissue Engineering Various Fields of Bone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sepehri%20Bonab">Arash Sepehri Bonab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Techniques to switch cells between development and differentiation, which tend to be commonly exclusive, are utilized in arrange to supply an expansive cell mass that can perform particular separated capacities required for the tissue to develop. Approaches to tissue engineering center on the have to give signals to cell populaces to advance cell multiplication and separation. Current tissue regenerative procedures depend primarily on tissue repair by transplantation of synthetic/natural inserts. In any case, restrictions on the existing procedures have expanded the request for tissue designing approaches. Tissue engineering innovation and stem cell investigation based on tissue building have made awesome advances in overcoming the issues of tissue and organ damage, useful loss, and surgical complications. Bone tissue has the capability to recover itself; in any case, surrenders of a basic estimate anticipate the bone from recovering and require extra support. The advancement of bone tissue building has been utilized to form useful options to recover the bone. This paper primarily portrays current advances in tissue engineering in different fields of bone and talks about the long-term trend of tissue designing innovation in the treatment of complex diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title="tissue engineering">tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=bone" title=" bone"> bone</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/149864/management-and-evaluating-technologies-of-tissue-engineering-various-fields-of-bone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9025</span> Non-Linear Behavior of Granular Materials in Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Tichamakdj">Mounir Tichamakdj</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Sandjak"> Khaled Sandjak</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Tiliouine"> Boualem Tiliouine </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of flexible pavements is currently carried out using a multilayer elastic theory. However, for thin-surface pavements subject to light or medium traffic volumes, the importance of the non-linear stress-strain behavior of unbound granular materials requires the use of more sophisticated numerical models for the structural design of these pavements. The simplified analysis of the nonlinear behavior of granular materials in pavement design will be developed in this study. To achieve this objective, an equivalent linear model derived from a volumetric shear stress model is used to simulate the nonlinear elastic behavior of two unlinked local granular materials often used in pavements. This model is included here to adequately incorporate material non-linearity due to stress dependence and stiffness of the granular layers in the flexible pavement analysis. The sensitivity of the pavement design criteria to the likely variations in asphalt layer thickness and the mineralogical nature of unbound granular materials commonly used in pavement structures are also evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granular%20materials" title="granular materials">granular materials</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20equivalent%20model" title=" linear equivalent model"> linear equivalent model</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20behavior" title=" non-linear behavior"> non-linear behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20design" title=" pavement design"> pavement design</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20volumetric%20strain%20model" title=" shear volumetric strain model"> shear volumetric strain model</a> </p> <a href="https://publications.waset.org/abstracts/95649/non-linear-behavior-of-granular-materials-in-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9024</span> Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Forouharmajd">Farhad Forouharmajd</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ebrahimi"> Hossein Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Pourabdian"> Siamak Pourabdian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20phone" title="mobile phone">mobile phone</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20waves" title=" radio frequency waves"> radio frequency waves</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tissue" title=" brain tissue"> brain tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/98613/exposure-to-radio-frequency-waves-of-mobile-phone-and-temperature-changes-of-brain-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9023</span> Self-Regenerating, Vascularizing Hybrid Scaffold-Hydrogel For Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alisha%20Gupta">Alisha Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoarthritis (OA) is the most common form of arthritis which is a degenerative joint disease causing joints to begin to break down and underlying bones to change. This “wear and tear” most frequently affects hands, hips, and knees. This is important because OA pain is considered to be a leading cause of mobility impairment in older adults, with hip and knee OA ranked 11th highest contributors to global disability. Bone tissue engineering utilizing polymer scaffolds and hydrogels is an emerging field for treating osteoarthritis. Polymer scaffolds provide a three-dimensional structure for tissue growth, and hydrogels can be used to deliver drugs and growth factors. The combination of the two materials creates a hybrid structure that can better withstand physiological and mechanical demands while also providing a more controlled environment for drug and nutrient delivery. I think using bone tissue engineering for making scaffold-hydrogel composites that are self-regenerating and vascularizing might be useful in solving this problem. Successful implementation can reconstruct healthy, simulated bone tissue on deficient applicants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title="tissue engineering">tissue engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold-hydrogel%20composites" title=" scaffold-hydrogel composites"> scaffold-hydrogel composites</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoarthritis" title=" osteoarthritis"> osteoarthritis</a> </p> <a href="https://publications.waset.org/abstracts/160621/self-regenerating-vascularizing-hybrid-scaffold-hydrogel-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9022</span> Equivalent Circuit Modelling of Active Reflectarray Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Ismail">M. Y. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Inam"> M. Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents equivalent circuit modeling of active planar reflectors which can be used for the detailed analysis and characterization of reflector performance in terms of lumped components. Equivalent circuit representation has been proposed for PIN diodes and liquid crystal based active planar reflectors designed within X-band frequency range. A very close agreement has been demonstrated between equivalent circuit results, 3D EM simulated results as well as measured scattering parameter results. In the case of measured results, a maximum discrepancy of 1.05dB was observed in the reflection loss performance, which can be attributed to the losses occurred during measurement process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Equivalent%20circuit%20modelling" title="Equivalent circuit modelling">Equivalent circuit modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20reflectors" title=" planar reflectors"> planar reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectarray%20antenna" title=" reflectarray antenna"> reflectarray antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=PIN%20diode" title=" PIN diode"> PIN diode</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title=" liquid crystal"> liquid crystal</a> </p> <a href="https://publications.waset.org/abstracts/52038/equivalent-circuit-modelling-of-active-reflectarray-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9021</span> Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Susana%20Gon%C3%A7alves">Susana Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20Lencart"> Joana Lencart</a>, <a href="https://publications.waset.org/abstracts/search?q=Anabela%20Greg%C3%B3rio%20Dias"> Anabela Gregório Dias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TBI" title="TBI">TBI</a>, <a href="https://publications.waset.org/abstracts/search?q=VMAT" title=" VMAT"> VMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20phantom" title=" anthropomorphic phantom"> anthropomorphic phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials" title=" tissue equivalent materials"> tissue equivalent materials</a> </p> <a href="https://publications.waset.org/abstracts/160191/pre-implementation-of-total-body-irradiation-using-volumetric-modulated-arc-therapy-full-body-anthropomorphic-phantom-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9020</span> Exploring the Influence of High-Frequency Acoustic Parameters on Wave Behavior in Porous Bilayer Materials: An Equivalent Fluid Theory Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Sadouk">Mustapha Sadouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the sensitivity of high-frequency acoustic parameters in a rigid air-saturated porous bilayer material within the framework of the equivalent fluid theory, a specific case of the Biot model. The study specifically focuses on the sensitivity analysis in the frequency domain. The interaction between the fluid and solid phases of the porous medium incorporates visco-inertial and thermal exchange, characterized by two functions: the dynamic tortuosity α(ω) proposed by Johnson et al. and the dynamic compressibility β(ω) proposed by Allard, refined by Sadouki for the low-frequency domain of ultrasound. The parameters under investigation encompass porosity, tortuosity, viscous characteristic length, thermal characteristic length, as well as viscous and thermal shape factors. A +30% variation in these parameters is considered to assess their impact on the transmitted wave amplitudes. By employing this larger variation, a more comprehensive understanding of the sensitivity of these parameters is obtained. The outcomes of this study contribute to a better comprehension of the high-frequency wave behavior in porous bilayer materials, providing valuable insights for the design and optimization of such materials across various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilayer%20materials" title="bilayer materials">bilayer materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20fluid%20theory" title=" equivalent fluid theory"> equivalent fluid theory</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20tortuosity." title=" dynamic tortuosity."> dynamic tortuosity.</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title=" porous material"> porous material</a> </p> <a href="https://publications.waset.org/abstracts/168056/exploring-the-influence-of-high-frequency-acoustic-parameters-on-wave-behavior-in-porous-bilayer-materials-an-equivalent-fluid-theory-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9019</span> Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chiu">Chien-Kuo Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=displacement-based%20design" title="displacement-based design">displacement-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility%20demand%20spectrum" title=" ductility demand spectrum"> ductility demand spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20linearization%20method" title=" equivalent linearization method"> equivalent linearization method</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=single-degree-of-freedom" title=" single-degree-of-freedom"> single-degree-of-freedom</a> </p> <a href="https://publications.waset.org/abstracts/91802/maximum-deformation-estimation-for-reinforced-concrete-buildings-using-equivalent-linearization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9018</span> Comparison of Water Equivalent Ratio of Several Dosimetric Materials in Proton Therapy Using Monte Carlo Simulations and Experimental Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Akbari">M. R. Akbari </a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Mirrezaei"> E. Mirrezaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Range uncertainties of protons are currently a topic of interest in proton therapy. Two of the parameters that are often used to specify proton range are water equivalent thickness (WET) and water equivalent ratio (WER). Since WER values for a specific material is nearly constant at different proton energies, it is a more useful parameter to compare. In this study, WER values were calculated for different proton energies in polymethyl methacrylate (PMMA), polystyrene (PS) and aluminum (Al) using FLUKA and TRIM codes. The results were compared with analytical, experimental and simulated SEICS code data obtained from the literature. In FLUKA simulation, a cylindrical phantom, 1000 mm in height and 300 mm in diameter, filled with the studied materials was simulated. A typical mono-energetic proton pencil beam in a wide range of incident energies usually applied in proton therapy (50 MeV to 225 MeV) impinges normally on the phantom. In order to obtain the WER values for the considered materials, cylindrical detectors, 1 mm in height and 20 mm in diameter, were also simulated along the beam trajectory in the phantom. In TRIM calculations, type of projectile, energy and angle of incidence, type of target material and thickness should be defined. The mode of 'detailed calculation with full damage cascades' was selected for proton transport in the target material. The biggest difference in WER values between the codes was 3.19%, 1.9% and 0.67% for Al, PMMA and PS, respectively. In Al and PMMA, the biggest difference between each code and experimental data was 1.08%, 1.26%, 2.55%, 0.94%, 0.77% and 0.95% for SEICS, FLUKA and SRIM, respectively. FLUKA and SEICS had the greatest agreement (≤0.77% difference in PMMA and ≤1.08% difference in Al, respectively) with the available experimental data in this study. It is concluded that, FLUKA and TRIM codes have capability for Bragg curves simulation and WER values calculation in the studied materials. They can also predict Bragg peak location and range of proton beams with acceptable accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20equivalent%20ratio" title="water equivalent ratio">water equivalent ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetric%20materials" title=" dosimetric materials"> dosimetric materials</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20therapy" title=" proton therapy"> proton therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulations" title=" Monte Carlo simulations"> Monte Carlo simulations</a> </p> <a href="https://publications.waset.org/abstracts/7211/comparison-of-water-equivalent-ratio-of-several-dosimetric-materials-in-proton-therapy-using-monte-carlo-simulations-and-experimental-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9017</span> Evolution of Cord Absorbed Dose during Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Heidari">Mohammad Hassan Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Goodarzi"> Amir Hossein Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Azarniush"> Majid Azarniush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space which it should pass through before reaching the lesion. Specially in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypo pharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20treatment%20planning" title="3D treatment planning">3D treatment planning</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropomorphic%20phantom" title=" anthropomorphic phantom"> anthropomorphic phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=larynx%20cancer" title=" larynx cancer"> larynx cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotherapy" title=" radiotherapy "> radiotherapy </a> </p> <a href="https://publications.waset.org/abstracts/3432/evolution-of-cord-absorbed-dose-during-larynx-cancer-radiotherapy-with-3d-treatment-planning-and-tissue-equivalent-phantom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9016</span> Calibration of Mini TEPC and Measurement of Lineal Energy in a Mixed Radiation Field Produced by Neutrons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20C.%20Cho">I. C. Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20Wen"> W. H. Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Tsai"> H. Y. Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Chao"> T. C. Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Tung"> C. J. Tung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissue-equivalent proportional counter (TEPC) is a useful instrument used to measure radiation single-event energy depositions in a subcellular target volume. The quantity of measurements is the microdosimetric lineal energy, which determines the relative biological effectiveness, RBE, for radiation therapy or the radiation-weighting factor, WR, for radiation protection. TEPC is generally used in a mixed radiation field, where each component radiation has its own RBE or WR value. To reduce the pile-up effect during radiotherapy measurements, a miniature TEPC (mini TEPC) with cavity size in the order of 1 mm may be required. In the present work, a homemade mini TEPC with a cylindrical cavity of 1 mm in both the diameter and the height was constructed to measure the lineal energy spectrum of a mixed radiation field with high- and low-LET radiations. Instead of using external radiation beams to penetrate the detector wall, mixed radiation fields were produced by the interactions of neutrons with TEPC walls that contained small plugs of different materials, i.e. Li, B, A150, Cd and N. In all measurements, mini TEPC was placed at the beam port of the Tsing Hua Open-pool Reactor (THOR). Measurements were performed using the propane-based tissue-equivalent gas mixture, i.e. 55% C3H8, 39.6% CO2 and 5.4% N2 by partial pressures. The gas pressure of 422 torr was applied for the simulation of a 1 m diameter biological site. The calibration of mini TEPC was performed using two marking points in the lineal energy spectrum, i.e. proton edge and electron edge. Measured spectra revealed high lineal energy (> 100 keV/m) peaks due to neutron-capture products, medium lineal energy (10 – 100 keV/m) peaks from hydrogen-recoil protons, and low lineal energy (< 10 keV/m) peaks of reactor photons. For cases of Li and B plugs, the high lineal energy peaks were quite prominent. The medium lineal energy peaks were in the decreasing order of Li, Cd, N, A150, and B. The low lineal energy peaks were smaller compared to other peaks. This study demonstrated that internally produced mixed radiations from the interactions of neutrons with different plugs in the TEPC wall provided a useful approach for TEPC measurements of lineal energies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TEPC" title="TEPC">TEPC</a>, <a href="https://publications.waset.org/abstracts/search?q=lineal%20energy" title=" lineal energy"> lineal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=microdosimetry" title=" microdosimetry"> microdosimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20quality" title=" radiation quality"> radiation quality</a> </p> <a href="https://publications.waset.org/abstracts/39418/calibration-of-mini-tepc-and-measurement-of-lineal-energy-in-a-mixed-radiation-field-produced-by-neutrons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9015</span> On Chromaticity of Wheels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Yasir%20Abed%20Al-Rekaby">Zainab Yasir Abed Al-Rekaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Jalil%20M.%20Khalaf"> Abdul Jalil M. Khalaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let the vertices of a graph such that every two adjacent vertices have different color is a very common problem in the graph theory. This is known as proper coloring of graphs. The possible number of different proper colorings on a graph with a given number of colors can be represented by a function called the chromatic polynomial. Two graphs G and H are said to be chromatically equivalent, if they share the same chromatic polynomial. A Graph G is chromatically unique, if G is isomorphic to H for any graph H such that G is chromatically equivalent to H. The study of chromatically equivalent and chromatically unique problems is called chromaticity. This paper shows that a wheel W12 is chromatically unique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromatic%20polynomial" title="chromatic polynomial">chromatic polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatically%20equivalent" title=" chromatically equivalent"> chromatically equivalent</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatically%20unique" title=" chromatically unique"> chromatically unique</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/12874/on-chromaticity-of-wheels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9014</span> Development of an Auxetic Tissue Implant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhwinder%20K.%20Bhullar">Sukhwinder K. Bhullar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20G.%20Jun"> M. B. G. Jun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auxetic%20materials" title="auxetic materials">auxetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20mechanism" title=" deformation mechanism"> deformation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20mechanical%20properties" title=" enhanced mechanical properties"> enhanced mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissues" title=" soft tissues"> soft tissues</a> </p> <a href="https://publications.waset.org/abstracts/7948/development-of-an-auxetic-tissue-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9013</span> Infringement of Patent Rights with Doctrine of Equivalent for Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duru%20Helin%20Ozaner">Duru Helin Ozaner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the doctrine of equivalent, the words in the claims' sentences are insufficient for the protection area provided by the patent registration. While this situation widens the boundaries of the protection area, it also obscures the boundaries of the protected area of patents. In addition, it creates distrust for third parties. Therefore, the doctrine of equivalent aims to establish a balance between the rights of patent owners and the legal security of third parties. The current legal system of Turkey has been tried to be created as a parallel judicial system to the widely applied regulations. Therefore, the regulations regarding the protection provided by patents in the current Turkish legal system are similar to many countries. However, infringement through equivalent is common by third parties. This study, it is aimed to explain that the protection provided by the patent is not only limited to the words of the claims but also the wide-ranging protection provided by the claims for the doctrine of equivalence. This study is important to determine the limits of the protection provided by the patent right holder and to indicate the importance of the equivalent elements of the protection granted to the patent right holder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patent" title="patent">patent</a>, <a href="https://publications.waset.org/abstracts/search?q=infringement" title=" infringement"> infringement</a>, <a href="https://publications.waset.org/abstracts/search?q=intellectual%20property" title=" intellectual property"> intellectual property</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20doctrine%20of%20equivalent" title=" the doctrine of equivalent"> the doctrine of equivalent</a> </p> <a href="https://publications.waset.org/abstracts/141450/infringement-of-patent-rights-with-doctrine-of-equivalent-for-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9012</span> Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Er-Yuan%20Chuang">Er-Yuan Chuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=protein%20based" title="protein based">protein based</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20study" title=" in vitro study"> in vitro study</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20study" title=" in vivo study"> in vivo study</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a> </p> <a href="https://publications.waset.org/abstracts/105449/bio-functional-polymeric-protein-based-materials-utilized-for-soft-tissue-engineering-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9011</span> A Study of Chromatic Uniqueness of W14</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Yasir%20Al-Rekaby">Zainab Yasir Al-Rekaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Jalil%20M.%20Khalaf"> Abdul Jalil M. Khalaf </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coloring the vertices of a graph such that every two adjacent vertices have different color is a very common problem in the graph theory. This is known as proper coloring of graphs. The possible number of different proper colorings on a graph with a given number of colors can be represented by a function called the chromatic polynomial. Two graphs G and H are said to be chromatically equivalent, if they share the same chromatic polynomial. A Graph G is chromatically unique, if G is isomorphic to H for any graph H such that G is chromatically equivalent to H. The study of chromatically equivalent and chromatically unique problems is called chromaticity. This paper shows that a wheel W14 is chromatically unique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromatic%20polynomial" title="chromatic polynomial">chromatic polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatically%20Equivalent" title=" chromatically Equivalent"> chromatically Equivalent</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatically%20unique" title=" chromatically unique"> chromatically unique</a>, <a href="https://publications.waset.org/abstracts/search?q=wheel" title=" wheel"> wheel</a> </p> <a href="https://publications.waset.org/abstracts/20242/a-study-of-chromatic-uniqueness-of-w14" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9010</span> Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Limen%20Njinga">Raymond Limen Njinga</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeneye%20Samuel%20Olaolu"> Adeneye Samuel Olaolu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinyode%20Ojumoola%20Ajimo"> Akinyode Ojumoola Ajimo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20accelerator" title="linear accelerator">linear accelerator</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose%20rate" title=" absorbed dose rate"> absorbed dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=isocenter" title=" isocenter"> isocenter</a>, <a href="https://publications.waset.org/abstracts/search?q=phantom" title=" phantom"> phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=ionization%20chamber" title=" ionization chamber"> ionization chamber</a> </p> <a href="https://publications.waset.org/abstracts/183165/absorbed-dose-measurements-for-teletherapy-prediction-of-superficial-dose-using-halcyon-linear-accelerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9009</span> Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitish%20Kumar%20Vaja">Nitish Kumar Vaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Oumar%20Barry"> Oumar Barry</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20DeJong"> Brian DeJong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20stiffness" title="equivalent stiffness">equivalent stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration%20response" title=" free vibration response"> free vibration response</a>, <a href="https://publications.waset.org/abstracts/search?q=Stockbridge%20damper" title=" Stockbridge damper"> Stockbridge damper</a> </p> <a href="https://publications.waset.org/abstracts/60205/finite-element-modeling-of-stockbridge-damper-and-vibration-analysis-equivalent-cable-stiffness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9008</span> Effect of PMMA Shield on the Patient Dose Equivalent from Photoneutrons Produced by High Energy Medical Linacs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehdi%20Hashemi">Seyed Mehdi Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Raisali"> Gholamreza Raisali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20Taheri"> Mehran Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important problems of using high energy linacs at IMRT is the production of photoneutrons. Besides the clinically useful photon beams, high-energy photon beams from medical linacs produce secondary neutrons. These photoneutrons increase the patient dose and may cause secondary malignancies. The effect of the shield on the reduction of photoneutron dose equivalent produced by a high energy medical linac at the patient plane is investigated in this study. To determine the photoneutron dose equivalent received to the patient a Varian linac working at 18 MV photon mode investigated. Photoneutron dose equivalent measured with Polycarbonate films of 0.25 mm thick. PC films placed at distances of 0, 10, 20, and 50 cm from the center of X-ray field on the patient couch. The results show that by increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreases rapidly for both open and shielded fields and that by inserting the shield in the path of the X-ray beam, the photoneutron dose equivalent was decreased obviously compared to open field. Results show the shield, significantly reduces photoneutron dose equivalent to the patient. Results can be readily generalized to other models of medical linacs. It may be concluded that using this kind of shield can help more safe, inexpensive and efficient employment of high energy linacs in radiotherapy and IMRT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoneutron" title="photoneutron">photoneutron</a>, <a href="https://publications.waset.org/abstracts/search?q=Linac" title=" Linac"> Linac</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA%20shield" title=" PMMA shield"> PMMA shield</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20dose" title=" equivalent dose"> equivalent dose</a> </p> <a href="https://publications.waset.org/abstracts/32830/effect-of-pmma-shield-on-the-patient-dose-equivalent-from-photoneutrons-produced-by-high-energy-medical-linacs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9007</span> Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiguo%20Shi">Zhiguo Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Ning%20Loong"> Cheng Ning Loong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiazeng%20Shan"> Jiazeng Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Weichao%20Wu">Weichao Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20current%20damping" title=" eddy current damping"> eddy current damping</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=shake%20table%20test" title=" shake table test"> shake table test</a> </p> <a href="https://publications.waset.org/abstracts/119732/equivalent-circuit-model-for-the-eddy-current-damping-with-frequency-dependence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9006</span> Synthesis of Tricalcium Phosphate Substituted with Magnesium Ions for Bone Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreia%20Cucuruz">Andreia Cucuruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Daniela%20Ghitulica"> Cristina Daniela Ghitulica</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgeta%20Voicu"> Georgeta Voicu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Busuioc"> Cristina Busuioc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramics based on calcium phosphates have lately increased attention for tissue engineering because they can be used as substitute bones or for bone regeneration since they mimic very well the nanostructure of tough bone tissue, but also because of other advantages such as a very good biocompatibility and osseointegration. This study aims the preparation and characterization of ceramic materials on the basis of TCP (Ca₃(PO₄)₂), within which calcium ions are substituted by magnesium ions (Mg²⁺) in order to improve the regenerative properties of these materials. TCP-Mg material was synthesized by chemical precipitation method using calcium oxide (CaO) and phosphoric acid (H₃PO₄) as precursors. The objective was to obtain powders with different concentrations of Mg in order to analyze the effect of magnesium ions on the physicochemical properties of phosphate ceramics and in vitro degradation in simulated biological fluid (SBF). Ceramic powders were characterized in vitro but also from the compositional and microstructural point of view. TCP_Mg powders were prepared through wet chemical method from calcium oxide (CaO), magnesium oxide nanopowder (MgO < 50 nm particle size (BET) Sigma Aldrich), phosphoric acid (H₃PO₄ - 85 wt.% in H₂O, 99.99% trace metals basis - Sigma Aldrich). In order to determine the quantities of raw materials, calculations were performed to obtain HAp with Ca/P ratio of 1.5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title="bone regeneration">bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20substitution" title=" magnesium substitution"> magnesium substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=tricalcium%20phosphate" title=" tricalcium phosphate"> tricalcium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/62756/synthesis-of-tricalcium-phosphate-substituted-with-magnesium-ions-for-bone-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9005</span> The Effect of Vibration Amplitude on Tissue Temperature and Lesion Size When Using a Vibrating Cardiac Catheter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaihong%20Yu">Kaihong Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsui%20Yamashita"> Tetsui Yamashita</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeaki%20Shingyochi"> Shigeaki Shingyochi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Matsumoto"> Kazuo Matsumoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Makoto%20Ohta"> Makoto Ohta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During cardiac ablation, high power delivery for deeper lesion formation is limited by electrode-tissue interface overheating which can cause serious complications such as thrombus. To prevent this overheating, temperature control and open irrigation are often used. In temperature control, radiofrequency generator is adjusted to deliver the maximum output power, which maintains the electrode temperature at a target temperature (commonly 55°C or 60°C). Then the electrode-tissue interface temperature is also limited. The electrode temperature is a result of heating from the contacted tissue and cooling from the surrounding blood. Because the cooling from blood is decreased under conditions of low blood flow, the generator needs to decrease the output power. Thus, temperature control cannot deliver high power under conditions of low blood flow. In open irrigation, saline in room temperature is flushed through the holes arranged in the electrode. The electrode-tissue interface is cooled by the sufficient environmental cooling. And high power delivery can also be done under conditions of low blood flow. However, a large amount of saline infusions (approximately 1500 ml) during irrigation can cause other serious complication. When open irrigation cannot be used under conditions of low blood flow, a new overheating prevention may be required. The authors have proposed a new electrode cooling method by making the catheter vibrating. The previous work has introduced that the vibration can make a cooling effect on electrode, which may result form that the vibration could increase the flow velocity around the catheter. The previous work has also proved that increasing vibration frequency can increase the cooling by vibration. However, the effect of the vibration amplitude is still unknown. Thus, the present study investigated the effect of vibration amplitude on tissue temperature and lesion size. An agar phantom model was used as a tissue-equivalent material for measuring tissue temperature. Thermocouples were inserted into the agar to measure the internal temperature. Porcine myocardium was used for lesion size measurement. A normal ablation catheter was set perpendicular to the tissue (agar or porcine myocardium) with 10 gf contact force in 37°C saline without flow. Vibration amplitude of ± 0.5, ± 0.75, and ± 1.0 mm with a constant frequency (31 Hz or 63) was used. A temperature control protocol (45°C for agar phantom, 60°C for porcine myocardium) was used for the radiofrequency applications. The larger amplitude shows the larger lesion sizes. And the higher tissue temperatures in agar phantom are also shown with the higher amplitude. With a same frequency, the larger amplitude has the higher vibrating speed. And the higher vibrating speed will increase the flow velocity around the electrode more, which leads to a larger electrode temperature decrease. To maintain the electrode at the target temperature, ablator has to increase the output power. With the higher output power in the same duration, the released energy also increases. Consequently, the tissue temperature will be increased and lead to larger lesion sizes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20ablation" title="cardiac ablation">cardiac ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode%20cooling" title=" electrode cooling"> electrode cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=lesion%20size" title=" lesion size"> lesion size</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20temperature" title=" tissue temperature"> tissue temperature</a> </p> <a href="https://publications.waset.org/abstracts/35503/the-effect-of-vibration-amplitude-on-tissue-temperature-and-lesion-size-when-using-a-vibrating-cardiac-catheter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9004</span> Development and Characterization of Hydroxyapatite Based Nanocomposites for Local Drug Delivery to Periodontal Pockets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Lata%20Kanwar">Indu Lata Kanwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20K.%20Suresh"> Preeti K. Suresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to fabricate hydroxyapatite based nanocomposites for local drug delivery in periodontal pockets. Hydroxyapatite is chemically similar to the mineral component of bones and hard tissues in mammals. Synthetic biocompatibility and bioactivity with human teeth and bone, making it very attractive for biomedical applications. Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometres (nm), or structures having nanoscale repeat distances between the different phases that make up the material. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Nano-sized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. The specific biological properties of the nanocomposites, as well as their interaction with cells, include the use of bioactive molecules. The approach of periodontal tissue engineering is considered promising to restore bone defect through the use of engineered materials with the aim that they will prohibit the invasion of fibrous connective tissue and help repair the function during bone regeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive" title="bioactive">bioactive</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposities" title=" nanocomposities"> nanocomposities</a>, <a href="https://publications.waset.org/abstracts/search?q=periondontal" title=" periondontal"> periondontal</a> </p> <a href="https://publications.waset.org/abstracts/47664/development-and-characterization-of-hydroxyapatite-based-nanocomposites-for-local-drug-delivery-to-periodontal-pockets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9003</span> Durable Phantom Production Identical to Breast Tissue for Use in Breast Cancer Detection Research Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayrettin%20Eroglu">Hayrettin Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adem%20Kara"> Adem Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently there has been significant attention given to imaging of the biological tissues via microwave imaging techniques. In this study, a phantom for the test and calibration of Microwave imaging used in detecting unhealthy breast structure or tumors was produced by using sol gel method. The liquid and gel phantoms being used nowadays are not durable due to evaporation and their organic ingredients, hence a new design was proposed. This phantom was fabricated from materials that were widely available (water, salt, gelatin, and glycerol) and was easy to make. This phantom was aimed to be better from the ones already proposed in the literature in terms of its durability and stability. S Parameters of phantom was measured with 1-18 GHz Probe Kit and permittivity was calculated via Debye method in “85070” commercial software. One, three, and five-week measurements were taken for this phantom. Finally, it was verified that measurement results were very close to the real biological tissue measurement results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phantom" title="phantom">phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20tissue" title=" breast tissue"> breast tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a> </p> <a href="https://publications.waset.org/abstracts/12850/durable-phantom-production-identical-to-breast-tissue-for-use-in-breast-cancer-detection-research-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9002</span> The Effect of Jujube Extract and Resistance Training on the Reduction of Complications Caused by the Induction of Anabolic Steroid Boldenone on the Histopathological Changes of Pancreatic Tissue of Male Wistar Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayyed-javad%20Ziaolhagh">Sayyed-javad Ziaolhagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali-Reza%20Saadatifar"> Ali-Reza Saadatifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Athletes frequently perform anabolic steroid resistance exercise, but the effects of medical doses and abuse along with resistance exercise on structural damage to the Pancreases and also jujube extract are unknown. The aim of this study was to investigate the effects of resistance training on body weight and hip fractures induced by boldenone injection in male rats. Materials and methods: In this experimental study, 30 male Wistar rats aged 8-12 weeks (weight 202±9.34 g) were randomly divided into five groups: control, boldenone, extract of iujuba+boldenone, boldenone+resistance training and boldenone+resistance training +extract of jujuba. The resistance training program included climbing the ladder for 8 weeks, 3 days a week, 1 session training in a day and each session consisted of the 3 sets and 5 repetitions. Injection was conducted in depth in the hamstring once a week on an appointed day. After anesthesia, autopsy was performed, and the cardiac tissue was isolated. Results: Results showed that boldenone caused tissue damage, congestion, and nuclei unclear and diffuse. In the group "resistance + Boldenone," The Pancreases tissue showed a high degree of hyperemia, and the muscle cells were somewhat abnormal. In boldenone + jujube, the appearance of the tissue was normal, and the rejuvenating effect was visible. Conclusion: Boldenone appears to cause structural damage to the Pancreases tissue. Strength training with Jujube Extract can reduce part of the pancreatic system disorders (necrosis and inflammation) caused by anabolic steroid use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boldenone" title="boldenone">boldenone</a>, <a href="https://publications.waset.org/abstracts/search?q=Jujube%20extract" title=" Jujube extract"> Jujube extract</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreases%20tissue" title=" pancreases tissue"> pancreases tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title=" resistance training"> resistance training</a> </p> <a href="https://publications.waset.org/abstracts/168411/the-effect-of-jujube-extract-and-resistance-training-on-the-reduction-of-complications-caused-by-the-induction-of-anabolic-steroid-boldenone-on-the-histopathological-changes-of-pancreatic-tissue-of-male-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=301">301</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=302">302</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tissue%20equivalent%20materials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>