CINXE.COM

Search results for: glioma invasion

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: glioma invasion</title> <meta name="description" content="Search results for: glioma invasion"> <meta name="keywords" content="glioma invasion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="glioma invasion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="glioma invasion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 232</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: glioma invasion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shangerganesh%20Lingeshwaran">Shangerganesh Lingeshwaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioma%20invasion" title="glioma invasion">glioma invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20diffusion" title=" nonlinear diffusion"> nonlinear diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-diffusion" title=" reaction-diffusion"> reaction-diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20eleament%20method" title=" finite eleament method"> finite eleament method</a> </p> <a href="https://publications.waset.org/abstracts/76998/a-simple-finite-element-method-for-glioma-tumor-growth-model-with-density-dependent-diffusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahkameh%20Asadi">Mahkameh Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Habibollah%20Dadgar"> Habibollah Dadgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positron%20emission%20tomography" title="positron emission tomography">positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20positron%20emission%20tomography" title=" amino acid positron emission tomography"> amino acid positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20grade%20glioma" title=" low and high grade glioma"> low and high grade glioma</a> </p> <a href="https://publications.waset.org/abstracts/127798/o-2-18f-fluoroethyl-l-tyrosine-positron-emission-tomographycomputed-tomography-in-patients-with-suspicious-recurrent-low-and-high-grade-glioma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhimanyu%20Thakur">Abhimanyu Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngjin%20Lee"> Youngjin Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioma" title="glioma">glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20vesicles" title=" extracellular vesicles"> extracellular vesicles</a>, <a href="https://publications.waset.org/abstracts/search?q=exosomes" title=" exosomes"> exosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=microvesicles" title=" microvesicles"> microvesicles</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysical%20properties" title=" biophysical properties"> biophysical properties</a> </p> <a href="https://publications.waset.org/abstracts/131887/biophysical-features-of-glioma-derived-extracellular-vesicles-as-potential-diagnostic-markers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Anti-Western Sentiment amongst Arabs and How It Drives Support for Russia against Ukraine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soran%20Tarkhani">Soran Tarkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A glance at social media shows that Russia's invasion of Ukraine receives considerable support among Arabs. This significant support for the Russian invasion of Ukraine is puzzling since most Arab leaders openly condemned the Russian invasion through the UN ES‑11/4 Resolution, and Arabs are among the first who experienced the devastating consequences of war firsthand. This article tries to answer this question by using multiple regression to analyze the online content of Arab responses to Russia's invasion of Ukraine on seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. The article argues that the underlying reason for this Arab support is a reaction to the common anti-Western sentiments among Arabs. The empirical result from regression analysis supports the central arguments and uncovers the motivations behind the endorsement of the Russian invasion of Ukraine and the opposing Ukraine by many Arabs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ukraine" title="Ukraine">Ukraine</a>, <a href="https://publications.waset.org/abstracts/search?q=Russia" title=" Russia"> Russia</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabs" title=" Arabs"> Arabs</a>, <a href="https://publications.waset.org/abstracts/search?q=Ukrainians" title=" Ukrainians"> Ukrainians</a>, <a href="https://publications.waset.org/abstracts/search?q=Russians" title=" Russians"> Russians</a>, <a href="https://publications.waset.org/abstracts/search?q=Putin" title=" Putin"> Putin</a>, <a href="https://publications.waset.org/abstracts/search?q=invasion" title=" invasion"> invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=Europe" title=" Europe"> Europe</a>, <a href="https://publications.waset.org/abstracts/search?q=war" title=" war"> war</a> </p> <a href="https://publications.waset.org/abstracts/168102/anti-western-sentiment-amongst-arabs-and-how-it-drives-support-for-russia-against-ukraine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Liquid Biopsy and Screening Biomarkers in Glioma Grading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Abdu%20Qaseem%20Shamsan">Abdullah Abdu Qaseem Shamsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Gliomas represent the most frequent, heterogeneous group of tumors arising from glial cells, characterized by difficult monitoring, poor prognosis, and fatality. Tissue biopsy is an established procedure for tumor cell sampling that aids diagnosis, tumor grading, and prediction of prognosis. We studied and compared the levels of liquid biopsy markers in patients with different grades of glioma. Also, it tried to establish the potential association between glioma and specific blood groups antigen. Result: 78 patients were identified, among whom maximum percentage with glioblastoma possessed blood group O+ (53.8%). The second highest frequency had blood group A+ (20.4%), followed by B+ (9.0%) and A- (5.1%), and least with O-. Liquid biopsy biomarkers comprised of ALT, LDH, lymphocytes, Urea, Alkaline phosphatase, AST Neutrophils, and CRP. The levels of all the components increased significantly with the severity of glioma, with maximum levels seen in glioblastoma (grade IV), followed by grade III and grade II respectively. Conclusion: Gliomas possess significant clinical challenges due to their progression with heterogeneous nature and aggressive behavior. Liquid biopsy is a non-invasive approach which aids to establish the status of the patient and determine the tumor grade, therefore may show diagnostic and prognostic utility. Additionally, our study provides evidence to demonstrate the role of ABO blood group antigens in the development of glioma. However, future clinical research on liquid biopsy will improve the sensitivity and specificity of these tests and validate their clinical usefulness to guide treatment approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GBM%3A%20glioblastoma%20multiforme" title="GBM: glioblastoma multiforme">GBM: glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=CT%3A%20computed%20tomography" title=" CT: computed tomography"> CT: computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%3A%20magnetic%20resonance%20imaging" title=" MRI: magnetic resonance imaging"> MRI: magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ctRNA%3A%20circulating%20tumor%20RNA" title=" ctRNA: circulating tumor RNA"> ctRNA: circulating tumor RNA</a> </p> <a href="https://publications.waset.org/abstracts/185991/liquid-biopsy-and-screening-biomarkers-in-glioma-grading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Evaluation of Mito-Uncoupler Induced Hyper Metabolic and Aggressive Phenotype in Glioma Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Rai">Yogesh Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Saurabh%20Singh"> Saurabh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Pandey"> Sanjay Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjay%20K.%20Sah"> Dhananjay K. Sah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Roy"> B. G. Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Dwarakanath"> B. S. Dwarakanath</a>, <a href="https://publications.waset.org/abstracts/search?q=Anant%20N.%20Bhatt"> Anant N. Bhatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most common signatures of highly malignant gliomas is their capacity to metabolize more glucose to lactic acid than normal brain tissues, even under normoxic conditions (Warburg effect), indicating that aerobic glycolysis is constitutively upregulated through stable genetic or epigenetic changes. However, oxidative phosphorylation (OxPhos) is also required to maintain the mitochondrial membrane potential for tumor cell survival. In the process of tumorigenesis, tumor cells during fastest growth rate exhibit both high glycolytic and high OxPhos. Therefore, metabolically reprogrammed cancer cells with combination of both aerobic glycolysis and altered OxPhos develop a robust metabolic phenotype, which confers a selective growth advantage. In our study, we grew the high glycolytic BMG-1 (glioma) cells with continuous exposure of mitochondrial uncoupler 2, 4, dinitro phenol (DNP) for 10 passages to obtain a phenotype of high glycolysis with enhanced altered OxPhos. We found that OxPhos modified BMG (OPMBMG) cells has similar growth rate and cell cycle distribution but high mitochondrial mass and functional enzymatic activity than parental cells. In in-vitro studies, OPMBMG cells showed enhanced invasion, proliferation and migration properties. Moreover, it also showed enhanced angiogenesis in matrigel plug assay. Xenografted tumors from OPMBMG cells showed reduced latent period, faster growth rate and nearly five folds reduction in the tumor take in nude mice compared to BMG-1 cells, suggesting that robust metabolic phenotype facilitates tumor formation and growth. OPMBMG cells which were found radio-resistant, showed enhanced radio-sensitization by 2-DG as compared to the parental BMG-1 cells. This study suggests that metabolic reprogramming in cancer cells enhances the potential of migration, invasion and proliferation. It also strengthens the cancer cells to escape the death processes, conferring resistance to therapeutic modalities. Our data also suggest that combining metabolic inhibitors like 2-DG with conventional therapeutic modalities can sensitize such metabolically aggressive cancer cells more than the therapies alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-DG" title="2-DG">2-DG</a>, <a href="https://publications.waset.org/abstracts/search?q=BMG" title=" BMG"> BMG</a>, <a href="https://publications.waset.org/abstracts/search?q=DNP" title=" DNP"> DNP</a>, <a href="https://publications.waset.org/abstracts/search?q=OPM-BMG" title=" OPM-BMG"> OPM-BMG</a> </p> <a href="https://publications.waset.org/abstracts/61952/evaluation-of-mito-uncoupler-induced-hyper-metabolic-and-aggressive-phenotype-in-glioma-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Dexamethasone Treatment Deregulates Proteoglycans Expression in Normal Brain Tissue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Y.%20Tsidulko">A. Y. Tsidulko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Pankova"> T. M. Pankova</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Grigorieva"> E. V. Grigorieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-grade gliomas are the most frequent and most aggressive brain tumors which are characterized by active invasion of tumor cells into the surrounding brain tissue, where the extracellular matrix (ECM) plays a crucial role. Disruption of ECM can be involved in anticancer drugs effectiveness, side-effects and also in tumor relapses. The anti-inflammatory agent dexamethasone is a common drug used during high-grade glioma treatment for alleviating cerebral edema. Although dexamethasone is widely used in the clinic, its effects on normal brain tissue ECM remain poorly investigated. It is known that proteoglycans (PGs) are a major component of the extracellular matrix in the central nervous system. In our work, we studied the effects of dexamethasone on the ECM proteoglycans (syndecan-1, glypican-1, perlecan, versican, brevican, NG2, decorin, biglican, lumican) using RT-PCR in the experimental animal model. It was shown that proteoglycans in rat brain have age-specific expression patterns. In early post-natal rat brain (8 days old rat pups) overall PGs expression was quite high and mainly expressed PGs were biglycan, decorin, and syndecan-1. The overall transcriptional activity of PGs in adult rat brain is 1.5-fold decreased compared to post-natal brain. The expression pattern was changed as well with biglycan, decorin, syndecan-1, glypican-1 and brevican becoming almost equally expressed. PGs expression patterns create a specific tissue microenvironment that differs in developing and adult brain. Dexamethasone regimen close to the one used in the clinic during high-grade glioma treatment significantly affects proteoglycans expression. It was shown that overall PGs transcription activity is 1.5-2-folds increased after dexamethasone treatment. The most up-regulated PGs were biglycan, decorin, and lumican. The PGs expression pattern in adult brain changed after treatment becoming quite close to the expression pattern in developing brain. It is known that microenvironment in developing tissues promotes cells proliferation while in adult tissues proliferation is usually suppressed. The changes occurring in the adult brain after dexamethasone treatment may lead to re-activation of cell proliferation due to signals from changed microenvironment. Taken together obtained data show that dexamethasone treatment significantly affects the normal brain ECM, creating the appropriate microenvironment for tumor cells proliferation and thus can reduce the effectiveness of anticancer treatment and promote tumor relapses. This work has been supported by a Russian Science Foundation (RSF Grant 16-15-10243) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dexamthasone" title="dexamthasone">dexamthasone</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix" title=" extracellular matrix"> extracellular matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=glioma" title=" glioma"> glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=proteoglycan" title=" proteoglycan"> proteoglycan</a> </p> <a href="https://publications.waset.org/abstracts/53326/dexamethasone-treatment-deregulates-proteoglycans-expression-in-normal-brain-tissue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> PTOP Expression Correlates with Telomerase Activity and Grades of Malignancy in Human Glioma Tissues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Polito">F. Polito</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cucinotta"> M. Cucinotta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Conti"> A. Conti</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lo%20Giudice"> C. Lo Giudice</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Tomasello"> C. Tomasello</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Angileri"> F. Angileri</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20La%20Torre"> D. La Torre</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aguennouz"> M. Aguennouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors, with an extremely poor prognosis. Telomeres lenght is associated with tumor progression in several type of human cancers and telomere elongation is a common molecular feature of advanced malignancies. Among the telomeric shelterin proteins PTOP is required for telomeric protein complex assembly, telomerase recruitment and activity, and telomere length regulation through a PTOP-telomerase interaction. Previous studies suggest that PTOP upregulation is involved in radioresistance and telomere lengthening in colorectal cancer cells. Moreover, in human osteosarcoma cells PTOP deletion led to telomere shortening, increased apoptosis and radiation sensitivity enhancement. However, to date, little is known about the role of PTOP in progression of glioma cancers. In light of this background aim of the study is to investigate the expression of PTOP in different grades of human glioma and its correlation with the pathological grade of gliomas, grades of malignancy, proliferative activity and apoptosis. Fifteen Low Grade Astrocytomas (LGA), 18 Anaplastic Astrocytomas (AA) and 26 Glioblastoma Multiforme (GBM) samples were analyzed. Three samples of normal brain tissue (NBT) were used as controls. The expression levels of PTOP, h-TERT, BIRC1 and cyclin D1 were determined by real time PCR and/or western blot. Results obtained shows that PTOP expression in glioma tissues is tightly correlated with clinical grade ( p < 0.01 ). No correlation was found between PTOP expression and other clinicopathologic parameters. The expression of PTOP was positively correlated with the expression of hTERT and TERF1. Furthermore PTOP positively correlates with cyclin D1 and negatively correlates with the expression of BIRC1. Our findings indicate that PTOP might play key role in the progression of glioma regulating telomerase activity and likely through regulation of cell cycle and apoptosis. In conclusion results obtained prompted us to speculate that PTOP might represents a potential molecular bio marker and a therapeutic target for the treatment of glioblastoma tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title="glioblastoma">glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=PTOP" title=" PTOP"> PTOP</a>, <a href="https://publications.waset.org/abstracts/search?q=telomere" title=" telomere"> telomere</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a> </p> <a href="https://publications.waset.org/abstracts/21211/ptop-expression-correlates-with-telomerase-activity-and-grades-of-malignancy-in-human-glioma-tissues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceyda%20Okudu">Ceyda Okudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Secil%20Eroglu"> Secil Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Khandakar%20A.%20S.%20M.%20Saadat"> Khandakar A. S. M. Saadat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibel%20O.%20Balci"> Sibel O. Balci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic" title=" epigenetic"> epigenetic</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNAs" title=" microRNAs"> microRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=RNF2" title=" RNF2"> RNF2</a> </p> <a href="https://publications.waset.org/abstracts/88136/ring-fingerportein-2-rnf2-targeting-by-mirnas-in-breast-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Phylogeographic Reconstruction of the Tiger Shrimp (Penaeus monodon) Invasion in the Atlantic Ocean: The Role of the Farming Systems in the Marine Biological Invasions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Aguirre%20Pabon">Juan Carlos Aguirre Pabon</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Sabatino"> Stephen Sabatino</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Morris"> James Morris</a>, <a href="https://publications.waset.org/abstracts/search?q=Khor%20Waiho"> Khor Waiho</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Murias"> Antonio Murias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tiger shrimp Penaeus monodon is one of the most important species in aquaculture and is native to the Indo-Pacific Ocean. During its greatest success in world production (70s and 80s) was introduced in many Atlantic Ocean countries for cultivation purposes and is currently reported as established in several countries of this area. Because there are no studies to understand the magnitude of the invasion process, this is an exciting opportunity to test evolutionary hypotheses in the context of marine invasions mediated by culture systems; therefore, the purpose of this study was to reconstruct the scenario of invasion of P. monodon in the Atlantic Ocean, by using mitochondrial DNA and eight loci microsatellites. In addition, samples of the invasion area in the Atlantic Ocean (US, Colombia, Venezuela, Brazil, Guienne Bissau, Senegal), the Indo-Pacific Ocean (Indonesia, India, Mozambique), and some cultivation systems (India, Bangladesh, Madagascar) were collected; and analysis of phylogenetic relationships (using some species of the family), genetic diversity, structure population, and demographic changes were performed. High intraspecific divergence in P. semisulcatus and P. monodon were found, high genetic variability in all sites (especially with microsatellites) and the presence of three clusters or populations. In addition, signs of demographic expansion in the culture population and bottlenecks in the invasive and native populations were found, as well as evidence of gene mixtures from all of the populations studied, implying that cropping systems play an essential role in mitigating the negative effects of the founder effect and providing a source of genetic variability that can ensure the success of the invasion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=species%20introduction" title="species introduction">species introduction</a>, <a href="https://publications.waset.org/abstracts/search?q=increased%20variability" title=" increased variability"> increased variability</a>, <a href="https://publications.waset.org/abstracts/search?q=demographic%20changes" title=" demographic changes"> demographic changes</a>, <a href="https://publications.waset.org/abstracts/search?q=promoting%20invasion." title=" promoting invasion."> promoting invasion.</a> </p> <a href="https://publications.waset.org/abstracts/186582/phylogeographic-reconstruction-of-the-tiger-shrimp-penaeus-monodon-invasion-in-the-atlantic-ocean-the-role-of-the-farming-systems-in-the-marine-biological-invasions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Double-Spear 1-H2-1 Oncolytic-Immunotherapy for Refractory and Relapsing High-Risk Human Neuroblastoma and Glioma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lian%20Zeng">Lian Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Double-Spear 1-H2-1 (DS1-H2-1) is an oncolytic virus and an innovative biological drug candidate. The chemical composition of the drug product is a live attenuated West Nile virus (WNV) containing the human T cell costimulator (CD86) gene. After intratumoral injection, the virus can rapidly self-replicate in the injected site and lyse/kill the tumor by repeated infection among tumor cells. We also established xenograft tumor models in mice to evaluate the drug candidate's efficacy on those tumors. The results from preclinical studies on transplanted tumors in immunodeficient mice showed that DS1-H2-1 had significant oncolytic effects on human-origin cancers: it completely (100%) shrieked human glioma; limited human neuroblastoma growth reached as high as 95% growth inhibition rate (%TGITW). The safety data of preclinical animal experiments confirmed that DS1-H2-1 is safe as a biological drug for clinical use. In the preclinical drug efficacy experiment, virus-drug administration with different doses did not show abnormal signs and disease symptoms in more than 300 tested mice, and no side effects or death occurred through various administration routes. Intravenous administration did not cause acute infectious disease or other side effects. However, the replication capacity of the virus in tumor tissue via intravenous administration is only 1% of that of direct intratumoral administration. The direct intratumoral administration of DS1-H2-1 had a higher rate of viral replication. Therefore, choosing direct intratumoral injection can ensure both efficacy and safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oncolytic%20virus" title="oncolytic virus">oncolytic virus</a>, <a href="https://publications.waset.org/abstracts/search?q=WNV-CD86" title=" WNV-CD86"> WNV-CD86</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy%20drugs" title=" immunotherapy drugs"> immunotherapy drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=glioma" title=" glioma"> glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroblastoma" title=" neuroblastoma"> neuroblastoma</a> </p> <a href="https://publications.waset.org/abstracts/163981/double-spear-1-h2-1-oncolytic-immunotherapy-for-refractory-and-relapsing-high-risk-human-neuroblastoma-and-glioma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pamela%20R.%20%20Jackson">Pamela R. Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Hawkins-Daarud"> Andrea Hawkins-Daarud</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassandra%20R.%20%20Rickertsen"> Cassandra R. Rickertsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamala%20Clark-Swanson"> Kamala Clark-Swanson</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20A.%20%20Whitmire"> Scott A. Whitmire</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristin%20R.%20%20Swanson"> Kristin R. Swanson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extracellular%20space" title="extracellular space">extracellular space</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma%20multiforme" title=" glioblastoma multiforme"> glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a> </p> <a href="https://publications.waset.org/abstracts/67871/connecting-mri-physics-to-glioma-microenvironment-comparing-simulated-t2-weighted-mri-models-of-fixed-and-expanding-extracellular-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> HIV-1 Nef Mediates Host Invasion by Differential Expression of Alpha-Enolase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshu%20Saxena">Reshu Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Tripathi"> R. K. Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HIV-1 transmission and spread involves significant host-virus interaction. Potential targets for prevention of HIV-1 lies at the site of mucosal barriers. Thus a better understanding of how HIV-1 infects target cells at such sites and lead their invasion is required, with prime focus on the host determinants regulating HIV-1 spread. HIV-1 Nef is important for viral infectivity and pathogenicity. It promotes HIV-1 replication, facilitating immune evasion by interacting with various host factors and altering cellular pathways via multiple protein-protein interactions. In this study nef was sequenced from HIV-1 patients, and showed specific mutations revealing sequence variability in nef. To explore the difference in Nef functionality based on sequence variability we have studied the effects of HIV-1 Nef in human SupT1 T cell line and (THP-1) monocyte-macrophage cell lines through proteomics approach. 2D-Gel Electrophoresis in control and Nef-transfected SupT1 cells demonstrated several differentially expressed proteins with significant modulation of alpha-enolase. Through further studies, effects of Nef on alpha-enolase regulation were found to be cell lineage-specific, being stimulatory in macrophages/monocytes, inhibitory in T cells and without effect in HEK-293 cells. Cell migration and invasion studies were employed to determine biological function affected by Nef mediated regulation of alpha-enolase. Cell invasion was enhanced in THP-1 cells but was inhibited in SupT1 cells by wildtype nef. In addition, the modulation of enolase and cell invasion remained unaffected by a unique nef variant. These results indicated that regulation of alpha-enolase expression and invasive property of host cells by Nef is sequence specific, suggesting involvement of a particular motif of Nef. To precisely determine this site, we designed a heptapeptide including the suggested alpha-enolase regulating sequence of nef and a nef mutant with deletion of this site. Macrophages/monocytes being the major cells affected by HIV-1 at mucosal barriers, were particularly investigated by the nef mutant and peptide. Both the nef mutant and heptapeptide led to inhibition of enhanced enolase expression and increased invasiveness in THP-1 cells. Together, these findings suggest a possible mechanism of host invasion by HIV-1 through Nef mediated regulation of alpha-enolase and identifies a potential therapeutic target for HIV-1 entry at mucosal barriers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV-1%20Nef" title="HIV-1 Nef">HIV-1 Nef</a>, <a href="https://publications.waset.org/abstracts/search?q=nef%20variants" title=" nef variants"> nef variants</a>, <a href="https://publications.waset.org/abstracts/search?q=host-virus%20interaction" title=" host-virus interaction"> host-virus interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20invasion" title=" tissue invasion"> tissue invasion</a> </p> <a href="https://publications.waset.org/abstracts/21200/hiv-1-nef-mediates-host-invasion-by-differential-expression-of-alpha-enolase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhat%20Abu%20Al-Naeem">Madhat Abu Al-Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Yusoff"> Ismail Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Ng%20Tham%20Fatt"> Ng Tham Fatt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yatimah%20Alias"> Yatimah Alias</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendrogram%20and%20cluster%20analysis" title="dendrogram and cluster analysis">dendrogram and cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20facies" title=" water facies"> water facies</a>, <a href="https://publications.waset.org/abstracts/search?q=Eocene%20saline%20invasion%20and%20sea%20water%20invasion" title=" Eocene saline invasion and sea water invasion"> Eocene saline invasion and sea water invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification%20and%20denitrification" title=" nitrification and denitrification"> nitrification and denitrification</a> </p> <a href="https://publications.waset.org/abstracts/66947/evaluating-the-factors-controlling-the-hydrochemistry-of-gaza-coastal-aquifer-using-hydrochemical-and-multivariate-statistical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajeeha%20Ansar">Sajeeha Ansar</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20Ali%20Safi"> Asad Ali Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheikh%20Ziauddin"> Sheikh Ziauddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20R.%20Shahid"> Ahmad R. Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Ahsan"> Faraz Ahsan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20tumor%20segmentation" title="brain tumor segmentation">brain tumor segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LGG" title=" LGG"> LGG</a> </p> <a href="https://publications.waset.org/abstracts/89567/lgg-architecture-for-brain-tumor-segmentation-using-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Dual Drug Piperine-Paclitaxel Nanoparticles Inhibit Migration and Invasion in Human Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Verma">Monika Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Renuka%20Sharma"> Renuka Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Gulati"> B. R. Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Namita%20Singh"> Namita Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In combination therapy, two chemotherapeutic agents work together in a collaborative action. It has appeared as one of the promising approaches to improve anti-cancer treatment efficacy. In the present investigation, piperine (P-NPS), paclitaxel (PTX NPS), and a combination of both, piperine-paclitaxel nanoparticle (Pip-PTX NPS), were made by the nanoprecipitation method and later characterized by PSA, DSC, SEM, TEM, and FTIR. All nanoparticles exhibited a monodispersed size distribution with a size of below 200 nm, zeta potential ranges from (-30-40mV) and a narrow polydispersity index (>0.3) of the drugs. The average encapsulation efficiency was found to be between 80 and 90%. In vitro release of drugs for nanoparticles was done spectrophotometrically. FTIR and DSC results confirmed the presence of the drug. The Pip-PTX NPS significantly inhibit cell proliferation as compared to the native drugs nanoparticles in the breast cancer cell line MCF-7. In addition, Pip-PTX NPS suppresses cells in colony formation and soft gel agar assay. Scratch migration and Transwell chamber invasion assays revealed that combined nanoparticles reduce the migration and invasion of breast cancer cells. Morphological studies showed that Pip-PTX NPS penetrates the cells and induces apoptosis, which was further confirmed by DNA fragmentation, SEM, and western blot analysis. Taken together, Pip-PTX NPS inhibits cell proliferation, anchorage dependent and anchorage independent cell growth, reduces migration and invasion, and induces apoptosis in cells. These findings support that combination therapy using Pip-PTX NPS represents a potential approach and could be helpful in the future for breast cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperine" title="piperine">piperine</a>, <a href="https://publications.waset.org/abstracts/search?q=paclitaxel" title=" paclitaxel"> paclitaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/154025/dual-drug-piperine-paclitaxel-nanoparticles-inhibit-migration-and-invasion-in-human-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Inhibitory Effect of 13-Butoxyberberine Bromide on Metastasis of Skin Cancer A431 Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuriwat%20Laomethakorn">Phuriwat Laomethakorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Siritron%20Samosorn"> Siritron Samosorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramida%20Watanapokasin"> Ramida Watanapokasin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer metastasis is the major cause of cancer-related death. Therefore searching for a compound that could inhibit cancer metastasis is necessary. 13-Butoxyberberine bromide is a berberine derivative that has not been reported an anti-metastatic effect on skin cancer cells. This study aimed to investigate the anti-metastatic effect of 13-butoxyberberine bromide on skin cancer A431 cells. The effect of 13-butoxyberberine bromide on A431 cell viability was examined by MTT assay. Suppression of cell migration and invasion in A431 cells were determined by wound healing assay, transwell migration assay, and transwell invasion assay. Metastasis proteins were determined by western blotting. The results demonstrated that 13-butoxyberberine bromide decreased A431 cell viability in a dose-dependent manner. In addition, sub-toxic concentrations of 13-butoxyberberine bromide suppressed cell migration and invasion in A431 cells. In addition, 13-butoxyberberine bromide showed anti-metastatic effects by down-regulated MMP-2 and MMP-9 expression. These findings may be useful in the development of 13-butoxyberberine bromide as an anti-metastatic drug in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=13-butoxyberberine%20bromide" title="13-butoxyberberine bromide">13-butoxyberberine bromide</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20cancer" title=" skin cancer"> skin cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP" title=" MMP"> MMP</a> </p> <a href="https://publications.waset.org/abstracts/158142/inhibitory-effect-of-13-butoxyberberine-bromide-on-metastasis-of-skin-cancer-a431-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Deteriorating Ambient Air Quality Resulted from Invasion of Foreign Air Pollutants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuo-C.%20Lo">Kuo-C. Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-H.%20Hung"> Chung-H. Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Invasion of foreign air pollutants to deteriorate local air quality has become an emerging international issue of concern. This study aimed to apply meteorological and air quality model, WRF-Chem (V3.1), for simulating and analyzing the phenomenon of forming of high-concentrated particulate matters, PM10 and PM2.5, in ambient air of Taiwan during January 17th to 19th, 2014. The foreign air pollutants were mainly from long-distance transport of air pollutants of China being transported with a strong continental cold high. It was observed that PM10 and PM2.5 peaked as high as 182~588 μg/m3 and 95~165 μg/m3, respectively, in the ambient air of west side of Taiwan. They were about 2~3 folds higher than the usual concentrations of particulate matters in these seasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WRF-Chem" title="WRF-Chem">WRF-Chem</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20air%20quality" title=" ambient air quality"> ambient air quality</a> </p> <a href="https://publications.waset.org/abstracts/8518/deteriorating-ambient-air-quality-resulted-from-invasion-of-foreign-air-pollutants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pazourek">J. Pazourek</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20%C5%A0mejkal"> K. Šmejkal</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Koll%C3%A1r"> P. Kollár</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rajchard"> J. Rajchard</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20%C5%A0inko"> J. Šinko</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Balounov%C3%A1"> Z. Balounová</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Vlkov%C3%A1"> E. Vlková</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Salmonov%C3%A1"> H. Salmonová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Pectinatella magnifica</em> (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of <em>Pectinatella magnifica</em> (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of <em>Pectinatella magnifica</em>, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of <em>Pectinatella magnifica</em>. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by <em>Pectinatella magnifica</em>, and to understand the process of invasion, which can enable to control it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title="cyanobacteria">cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20water%20resources" title=" fresh water resources"> fresh water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=Pectinatella%20magnifica%20invasion" title=" Pectinatella magnifica invasion"> Pectinatella magnifica invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20monitoring" title=" toxicity monitoring"> toxicity monitoring</a> </p> <a href="https://publications.waset.org/abstracts/46862/invasion-of-pectinatella-magnifica-in-freshwater-resources-of-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Oncolytic Efficacy of Thymidine Kinase-Deleted Vaccinia Virus Strain Tiantan (oncoVV-TT) in Glioma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Nasim%20Mirbahari">Seyedeh Nasim Mirbahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Azad"> Taha Azad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Totonchi"> Mehdi Totonchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oncolytic viruses, which only replicate in tumor cells, are being extensively studied for their use in cancer therapy. A particular virus known as the vaccinia virus, a member of the poxvirus family, has demonstrated oncolytic abilities glioma. Treating Glioma with traditional methods such as chemotherapy and radiotherapy is quite challenging. Even though oncolytic viruses have shown immense potential in cancer treatment, their effectiveness in glioblastoma treatment is still low. Therefore, there is a need to improve and optimize immunotherapies for better results. In this study, we have designed oncoVV-TT, which can more effectively target tumor cells while minimizing replication in normal cells by replacing the thymidine kinase gene with a luc-p2a-GFP gene expression cassette. Human glioblastoma cell line U251 MG, rat glioblastoma cell line C6, and non-tumor cell line HFF were plated at 105 cells in a 12-well plates in 2 mL of DMEM-F2 medium with 10% FBS added to each well. Then incubated at 37°C. After 16 hours, the cells were treated with oncoVV-TT at an MOI of 0.01, 0.1 and left in the incubator for a further 24, 48, 72 and 96 hours. Viral replication assay, fluorescence imaging and viability tests, including trypan blue and crystal violet, were conducted to evaluate the cytotoxic effect of oncoVV-TT. The finding shows that oncoVV-TT had significantly higher cytotoxic activity and proliferation rates in tumor cells in a dose and time-dependent manner, with the strongest effect observed in U251 MG. To conclude, oncoVV-TT has the potential to be a promising oncolytic virus for cancer treatment, with a more cytotoxic effect in human glioblastoma cells versus rat glioma cells. To assess the effectiveness of vaccinia virus-mediated viral therapy, we have tested U251mg and C6 tumor cell lines taken from human and rat gliomas, respectively. The study evaluated oncoVV-TT's ability to replicate and lyse cells and analyzed the survival rates of the tested cell lines when treated with different doses of oncoVV-TT. Additionally, we compared the sensitivity of human and mouse glioma cell lines to the oncolytic vaccinia virus. All experiments regarding viruses were conducted under biosafety level 2. We engineered a Vaccinia-based oncolytic virus called oncoVV-TT to replicate specifically in tumor cells. To propagate the oncoVV-TT virus, HeLa cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 10 MOI virus was added. After 48 h, cells were harvested by scraping, and viruses were collected by 3 sequential freezing and thawing cycles followed by removal of cell debris by centrifugation (1500 rpm, 5 min). The supernatant was stored at −80 ◦C for the following experiments. To measure the replication of the virus in Hela, cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 5 MOI virus or equal dilution of PBS was added. At the treatment time of 0 h, 24 h, 48 h, 72 h and 96 h, the viral titers were determined under the fluorescence microscope (BZ-X700; Keyence, Osaka, Japan). Fluorescence intensity was quantified using the imagej software according to the manufacturer’s protocol. For the isolation of single-virus clones, HeLa cells seeded in six-well plates (5×105 cells/well). After 24 h (100% confluent), the cells were infected with a 10-fold dilution series of TianTan green fluorescent protein (GFP)virus and incubated for 4 h. To examine the cytotoxic effect of oncoVV-TT virus ofn U251mg and C6 cell, trypan blue and crystal violet assay was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oncolytic%20virus" title="oncolytic virus">oncolytic virus</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20therapy" title=" immune therapy"> immune therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=glioma" title=" glioma"> glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccinia%20virus" title=" vaccinia virus"> vaccinia virus</a> </p> <a href="https://publications.waset.org/abstracts/167640/oncolytic-efficacy-of-thymidine-kinase-deleted-vaccinia-virus-strain-tiantan-oncovv-tt-in-glioma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Ima">Fumihiro Ima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/157244/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fumihiro%20Imai">Fumihiro Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinichi%20Watanabe"> Shinichi Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shingo%20Maeda"> Shingo Maeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Haruna%20Imai"> Haruna Imai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Niimi"> Hiroki Niimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amides" title="amides">amides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20tumors" title=" brain tumors"> brain tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a> </p> <a href="https://publications.waset.org/abstracts/164452/clinical-applications-of-amide-proton-transfer-magnetic-resonance-imaging-detection-of-brain-tumor-proliferative-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Russian Invasion of Ukraine-An analysis of Coverage in Indian Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dr.Prabhat%20Dixit%20Dr.Sanjay%20Pandey">Dr.Prabhat Dixit Dr.Sanjay Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Russian invasion of Ukraine has hogged the limelight in both national and international media. It is expected that the news about the war, which had affected the entire world, especially its economy, will continue to dominate the coverage on TV and newspapers in the next few days, at least until the hostilities come to an end. Although the war still continues, and it is hard to predict its ending, its coverage by the Indian media has raised eyebrows, and it has been observed that the coverage lacks depth, authenticity and a majority of information was sought to be presented in a sensational manner only to attract more number of viewers. It is said that Truth is the first casualty of war. The media should, especially while airing or publishing news about the wars, exercise caution so as not to inflame the already volatile situation in the warring countries. It was also observed that there were differences in the facts and figures presented by different media outlets in the country about the war. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economy" title="economy">economy</a>, <a href="https://publications.waset.org/abstracts/search?q=media" title=" media"> media</a>, <a href="https://publications.waset.org/abstracts/search?q=russia" title=" russia"> russia</a>, <a href="https://publications.waset.org/abstracts/search?q=ukraine" title=" ukraine"> ukraine</a>, <a href="https://publications.waset.org/abstracts/search?q=war" title=" war"> war</a> </p> <a href="https://publications.waset.org/abstracts/151872/russian-invasion-of-ukraine-an-analysis-of-coverage-in-indian-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> In-Vivo Association of Multivalent 11 Zinc Fingers Transcriptional Factors CTCF and Boris to YB-1 in Multiforme Glioma-RGBM Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daruliza%20Kernain">Daruliza Kernain</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaharum%20Shamsuddin"> Shaharum Shamsuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=See%20Too%20Wei%20Cun"> See Too Wei Cun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CTCF is a unique, highly conserved and ubiquitously expressed 11 zinc finger (ZF) transcriptional factor with multiple target sites. It is able to bind to various target sequences to perform different regulatory roles including promoter activation or repression, creating hormone-responsive gene silencing element, and functional block of enhancer-promoter interactions. The binding of CTCF to the essential binding site is through the combination of different ZF domain. On the other hand, BORIS for brother of the regulator of imprinted sites, which expressed only in the testis and certain cancer cell line is homology to CTCF 11 ZF domains. Since both transcriptional factors share the same ZF domains hence there is a possibility for both to bind to the same target sequences. In this study, the interaction of these two proteins to multi-functional Y-box DNA/RNA-binding factor, YB-1 was determined. The protein-protein interaction between CTCF/YB-1 and BORIS/YB-1 were discovered by Co-immuno-precipitation (CO-IP) technique through reciprocal experiment from RGBM total cell lysate. The results showed that both CTCF and BORIS were able to interact with YB-1 in Glioma RGBM cell line. To the best of our knowledge, this is the first findings demonstrating the ability of BORIS and YB-1 to form a complex in vivo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immunoprecipitation" title="immunoprecipitation">immunoprecipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=CTCF%2FBORIS%2FYB-1" title=" CTCF/BORIS/YB-1"> CTCF/BORIS/YB-1</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title=" transcription factor"> transcription factor</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20medicine" title=" molecular medicine"> molecular medicine</a> </p> <a href="https://publications.waset.org/abstracts/7112/in-vivo-association-of-multivalent-11-zinc-fingers-transcriptional-factors-ctcf-and-boris-to-yb-1-in-multiforme-glioma-rgbm-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noora%20Al%20Muftah">Noora Al Muftah</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20Rawi"> Reda Rawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Thompson"> Richard Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Halima%20Bensmail"> Halima Bensmail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20network" title=" gene network"> gene network</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasso" title=" Lasso"> Lasso</a>, <a href="https://publications.waset.org/abstracts/search?q=penalized%20regression" title=" penalized regression"> penalized regression</a>, <a href="https://publications.waset.org/abstracts/search?q=P-values" title=" P-values"> P-values</a>, <a href="https://publications.waset.org/abstracts/search?q=unbiased%20estimator" title=" unbiased estimator"> unbiased estimator</a> </p> <a href="https://publications.waset.org/abstracts/39172/cell-line-screens-identify-biomarkers-of-drug-sensitivity-in-glioma-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> Akt: Isoform-Specific Regulation of Cellular Signaling in Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhumika%20Wadhwa">Bhumika Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fayaz%20Malik"> Fayaz Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The serine/threonine protein kinase B (PKB) also known as Akt, is one of the multifaceted kinase in human kinome, existing in three isoforms. Akt plays a vital role in phosphoinositide 3-kinase (PI3K) mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. The functional significance of an individual isoform of Akt is not redundant in cancer cell proliferation and metastasis instead Akt isoforms play distinct roles during metastasis; thereby regulating EMT. This study aims to determine isoform specific functions of Akt in cancer. The results obtained suggest that Akt1 restrict tumor invasion, whereas Akt2 promotes cell migration and invasion by various techniques like MTT, wound healing and invasion assay. Similarly, qRT-PCR also revealed that Akt3 has shown promising results in promoting cancer cell migration. Contrary to pro-oncogenic properties attributed to Akt, it is to be understood how various isoforms of Akt compensates each other in the regulation of common pathways during cancer progression and drug resistance. In conclusion, this study aims to target selective isoforms which is essential to inhibit cancer. However, the question now is whether, and how much, Akt inhibition will be tolerated in the clinic remains to be answered and the experiments will have to address the question of which combinations of newly devised Akt isoform specific inhibitors exert a favourable therapeutic effect in in vivo models of cancer to provide the therapeutic window with minimal toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akt%20isoforms" title="Akt isoforms">Akt isoforms</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=epithelial%20mesenchymal%20transition" title=" epithelial mesenchymal transition"> epithelial mesenchymal transition</a> </p> <a href="https://publications.waset.org/abstracts/54852/akt-isoform-specific-regulation-of-cellular-signaling-in-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Characterization of WNK2 Role on Glioma Cells Vesicular Traffic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viviane%20A.%20O.%20Silva">Viviane A. O. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20M.%20Costa"> Angela M. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Glaucia%20N.%20M.%20Hajj"> Glaucia N. M. Hajj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Preto"> Ana Preto</a>, <a href="https://publications.waset.org/abstracts/search?q=Aline%20Tansini"> Aline Tansini</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Roff%C3%A9"> Martin Roffé</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Jordan"> Peter Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20M.%20Reis"> Rui M. Reis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autophagy is a recycling and degradative system suggested to be a major cell death pathway in cancer cells. Autophagy pathway is interconnected with the endocytosis pathways sharing the same ultimate lysosomal destination. Lysosomes are crucial regulators of cell homeostasis, responsible to downregulate receptor signalling and turnover. It seems highly likely that derailed endocytosis can make major contributions to several hallmarks of cancer. WNK2, a member of the WNK (with-no-lysine [K]) subfamily of protein kinases, had been found downregulated by its promoter hypermethylation, and has been proposed to act as a specific tumour-suppressor gene in brain tumors. Although some contradictory studies indicated WNK2 as an autophagy modulator, its role in cancer cell death is largely unknown. There is also growing evidence for additional roles of WNK kinases in vesicular traffic. Aim: To evaluate the role of WNK2 in autophagy and endocytosis on glioma context. Methods: Wild-type (wt) A172 cells (WNK2 promoter-methylated), and A172 transfected either with an empty vector (Ev) or with a WNK2 expression vector, were used to assess the cellular basal capacities to promote autophagy, through western blot and flow-cytometry analysis. Additionally, we evaluated the effect of WNK2 on general endocytosis trafficking routes by immunofluorescence. Results: The re-expression of ectopic WNK2 did not interfere with autophagy-related protein light chain 3 (LC3-II) expression levels as well as did not promote mTOR signaling pathway alteration when compared with Ev or wt A172 cells. However, the restoration of WNK2 resulted in a marked increase (8 to 92,4%) of Acidic Vesicular Organelles formation (AVOs). Moreover, our results also suggest that WNK2 cells promotes delay in uptake and internalization rate of cholera toxin B and transferrin ligands. Conclusions: The restoration of WNK2 interferes in vesicular traffic during endocytosis pathway and increase AVOs formation. This results also suggest the role of WNK2 in growth factor receptor turnover related to cell growth and homeostasis and associates one more time, WNK2 silencing contribution in genesis of gliomas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autophagy" title="autophagy">autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=endocytosis" title=" endocytosis"> endocytosis</a>, <a href="https://publications.waset.org/abstracts/search?q=glioma" title=" glioma"> glioma</a>, <a href="https://publications.waset.org/abstracts/search?q=WNK2" title=" WNK2"> WNK2</a> </p> <a href="https://publications.waset.org/abstracts/64895/characterization-of-wnk2-role-on-glioma-cells-vesicular-traffic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Mathematical Modeling of Avascular Tumor Growth and Invasion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meitham%20Amereh">Meitham Amereh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Akbari"> Mohsen Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Nadler"> Ben Nadler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=invasion" title=" invasion"> invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20chip" title=" microfluidic chip"> microfluidic chip</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20spheroids" title=" tumor spheroids"> tumor spheroids</a> </p> <a href="https://publications.waset.org/abstracts/125134/mathematical-modeling-of-avascular-tumor-growth-and-invasion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> The Prevalence of Citrus Specific Nematode Tylenchulus semipenetrans Cobb 1913 on the Coast of the Black Sea in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.Tskitisvili">E.Tskitisvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jgenti"> L. Jgenti</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Eliava"> I. Eliava</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tskitishvili"> T. Tskitishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bagathuria"> N. Bagathuria</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gigolashvili"> M. Gigolashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fight against dangerous nematode diseases that have world economic importance requires accurate data about the prevalence of these pests. In the point of view of the International Convention on Biological Diversity, the identification of the plant invasion causing dangerous pathogen in the early stages of invasion on new territory is the most important part of the program, which aims to monitor the Bio-Agro Coenosis and Bio-Control. Citrus nematode-specific belongs to the pathogen species, which can cause epiphytotics particularly for large areas and cause irreparable damage to citrus plantations. This paper provides a brief tour of the spread of citrus nematodes on the Black Sea coast (Adjara and Abkhazia). Also the bio-ecological monitoring data to detect the potential sources of invasion for evaluating the current conditions of the citrus nematodes prevalence. Through 2006-2010, the material was gained by structural monitoring system during the citrus vegetation period on tangerines, lemon and oranges from nine points of the study area. Mature forms of Tylenchulus semipenetrans Cobb, 1913 were observed in almost all of the samples of the root system, the peak of larvae was observed in late spring and outumn. 92 forms of nematode has been detected in the rhizosphere belonging to 8 Orders: Areolaimida, Dorylaimida, Enoplida, Mononchida, Tylenshida, Monshysterida, Rhabditida, Aphelenchida, 23 families and 40 genera. 75 forms are identified as species. It is estimated the number of nematodes fauna and ecological groups. To detect possible sources of invasion we obtained additional materials in 2013-2014 from citrus plantations planted in 2011, where is planted tangerine trees introduced from Spain and Japan. The fauna of rhizosphere is identified and Tylenchulus semipenetrans Cobb, 1913 is not detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Citrus%20nematodes" title="Citrus nematodes">Citrus nematodes</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a>, <a href="https://publications.waset.org/abstracts/search?q=bioecological%20monitoring" title=" bioecological monitoring"> bioecological monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=epiphytotics" title=" epiphytotics "> epiphytotics </a> </p> <a href="https://publications.waset.org/abstracts/10079/the-prevalence-of-citrus-specific-nematode-tylenchulus-semipenetrans-cobb-1913-on-the-coast-of-the-black-sea-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> A Study of Predicting Judgments on Causes of Online Privacy Invasions: Based on U.S Judicial Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minjung%20Park">Minjung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangmi%20Chai"> Sangmi Chai</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoung%20Jun%20Lee"> Myoung Jun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since there are growing concerns on online privacy, enterprises could involve various personal privacy infringements cases resulting legal causations. For companies that are involving online business, it is important for them to pay extra attentions to protect users’ privacy. If firms can aware consequences from possible online privacy invasion cases, they can more actively prevent future online privacy infringements. This study attempts to predict the probability of ruling types caused by various invasion cases under U.S Personal Privacy Act. More specifically, this research explores online privacy invasion cases which was sentenced guilty to identify types of criminal punishments such as penalty, imprisonment, probation as well as compensation in civil cases. Based on the 853 U.S judicial cases ranged from January, 2000 to May, 2016, which related on data privacy, this research examines the relationship between personal information infringements cases and adjudications. Upon analysis results of 41,724 words extracted from 853 regal cases, this study examined online users’ privacy invasion cases to predict the probability of conviction for a firm as an offender in both of criminal and civil law. This research specifically examines that a cause of privacy infringements and a judgment type, whether it leads a civil or criminal liability, from U.S court. This study applies network text analysis (NTA) for data analysis, which is regarded as a useful method to discover embedded social trends within texts. According to our research results, certain online privacy infringement cases caused by online spamming and adware have a high possibility that firms are liable in the case. Our research results provide meaningful insights to academia as well as industry. First, our study is providing a new insight by applying Big Data analytics to legal cases so that it can predict the cause of invasions and legal consequences. Since there are few researches applying big data analytics in the domain of law, specifically in online privacy, this study suggests new area that future studies can explore. Secondly, this study reflects social influences, such as a development of privacy invasion technologies and changes of users’ level of awareness of online privacy on judicial cases analysis by adopting NTA method. Our research results indicate that firms need to improve technical and managerial systems to protect users’ online privacy to avoid negative legal consequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=network%20text%20analysis" title="network text analysis">network text analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20privacy%20invasions" title=" online privacy invasions"> online privacy invasions</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20information%20infringements" title=" personal information infringements"> personal information infringements</a>, <a href="https://publications.waset.org/abstracts/search?q=predicting%20judgements" title=" predicting judgements"> predicting judgements</a> </p> <a href="https://publications.waset.org/abstracts/56304/a-study-of-predicting-judgments-on-causes-of-online-privacy-invasions-based-on-us-judicial-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=glioma%20invasion&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10