CINXE.COM

Search results for: stochastic SIR model on graph

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: stochastic SIR model on graph</title> <meta name="description" content="Search results for: stochastic SIR model on graph"> <meta name="keywords" content="stochastic SIR model on graph"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="stochastic SIR model on graph" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="stochastic SIR model on graph"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17286</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: stochastic SIR model on graph</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17286</span> Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nileshkumar%20Vishnav">Nileshkumar Vishnav</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Tatu"> Aditya Tatu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signal%20processing" title="graph signal processing">graph signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20signal%20processing" title=" algebraic signal processing"> algebraic signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20similarity" title=" graph similarity"> graph similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=isospectral%20graphs" title=" isospectral graphs"> isospectral graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=nonuniform%20signal%20processing" title=" nonuniform signal processing"> nonuniform signal processing</a> </p> <a href="https://publications.waset.org/abstracts/59404/graph-similarity-algebraic-model-and-its-application-to-nonuniform-signal-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17285</span> Finding DEA Targets Using Multi-Objective Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Sharifi">Farzad Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raziyeh%20Shamsi"> Raziyeh Shamsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose molti-objective DEA-R model, because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduces the efficiency score), an efficient DMU is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other case, only the ratio of stochastic data may be available (e.g; the ratio of stochastic inputs to stochastic outputs). Thus, we provide multi objective DEA model without explicit outputs and prove that in-put oriented MOP DEA-R model in the invariable return to scale case can be replacing by MOP- DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model, yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA" title="DEA">DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=MOLP" title=" MOLP"> MOLP</a>, <a href="https://publications.waset.org/abstracts/search?q=STOCHASTIC" title=" STOCHASTIC"> STOCHASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=DEA-R" title=" DEA-R"> DEA-R</a> </p> <a href="https://publications.waset.org/abstracts/59723/finding-dea-targets-using-multi-objective-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17284</span> Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Shamsi">R. Shamsi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sharifi"> F. Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA-R" title="DEA-R">DEA-R</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20programming" title=" multi-objective programming"> multi-objective programming</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20data" title=" stochastic data"> stochastic data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/154613/finding-data-envelopment-analysis-targets-using-multi-objective-programming-in-dea-r-with-stochastic-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17283</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17282</span> A Graph-Based Retrieval Model for Passage Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junjie%20Zhong">Junjie Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Hong"> Kai Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang"> Lei Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title=" effectiveness"> effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20learning" title=" graph learning"> graph learning</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20model" title=" language model"> language model</a>, <a href="https://publications.waset.org/abstracts/search?q=passage%20retrieval" title=" passage retrieval"> passage retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=term-matching%20model" title=" term-matching model"> term-matching model</a> </p> <a href="https://publications.waset.org/abstracts/162229/a-graph-based-retrieval-model-for-passage-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17281</span> Survey Paper on Graph Coloring Problem and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prateek%20Chharia">Prateek Chharia</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswa%20Bhusan%20Ghosh"> Biswa Bhusan Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph coloring is one of the prominent concepts in graph coloring. It can be defined as a coloring of the various regions of the graph such that all the constraints are fulfilled. In this paper various graphs coloring approaches like greedy coloring, Heuristic search for maximum independent set and graph coloring using edge table is described. Graph coloring can be used in various real time applications like student time tabling generation, Sudoku as a graph coloring problem, GSM phone network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20coloring" title="graph coloring">graph coloring</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20coloring" title=" greedy coloring"> greedy coloring</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20search" title=" heuristic search"> heuristic search</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20table" title=" edge table"> edge table</a>, <a href="https://publications.waset.org/abstracts/search?q=sudoku%20as%20a%20graph%20coloring%20problem" title=" sudoku as a graph coloring problem"> sudoku as a graph coloring problem</a> </p> <a href="https://publications.waset.org/abstracts/19691/survey-paper-on-graph-coloring-problem-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17280</span> Speedup Breadth-First Search by Graph Ordering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiuyi%20Lyu">Qiuyi Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Gong"> Bin Gong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breadth-first%20search" title="breadth-first search">breadth-first search</a>, <a href="https://publications.waset.org/abstracts/search?q=BFS" title=" BFS"> BFS</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20ordering" title=" graph ordering"> graph ordering</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20algorithm" title=" graph algorithm"> graph algorithm</a> </p> <a href="https://publications.waset.org/abstracts/136790/speedup-breadth-first-search-by-graph-ordering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17279</span> A New Graph Theoretic Problem with Ample Practical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Hakan%20Karaata">Mehmet Hakan Karaata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle" title=" cycle"> cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20algorithm" title=" graph algorithm"> graph algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20structuring" title=" network structuring"> network structuring</a> </p> <a href="https://publications.waset.org/abstracts/67285/a-new-graph-theoretic-problem-with-ample-practical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17278</span> Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhifei%20Hu">Zhifei Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xia"> Feng Xia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20attention%20network" title="graph attention network">graph attention network</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20graph" title=" knowledge graph"> knowledge graph</a>, <a href="https://publications.waset.org/abstracts/search?q=recommendation" title=" recommendation"> recommendation</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20propagation" title=" information propagation"> information propagation</a> </p> <a href="https://publications.waset.org/abstracts/150710/multi-stream-graph-attention-network-for-recommendation-with-knowledge-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17277</span> Complete Tripartite Graphs with Spanning Maximal Planar Subgraphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Severino%20Gervacio">Severino Gervacio</a>, <a href="https://publications.waset.org/abstracts/search?q=Velimor%20Almonte"> Velimor Almonte</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Natalio"> Emmanuel Natalio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple graph is planar if it there is a way of drawing it in the plane without edge crossings. A planar graph which is not a proper spanning subgraph of another planar graph is a maximal planar graph. We prove that for complete tripartite graphs of order at most 9, the only ones that contain a spanning maximal planar subgraph are K1,1,1, K2,2,2, K2,3,3, and K3,3,3. The main result gives a necessary and sufficient condition for the complete tripartite graph Kx,y,z to contain a spanning maximal planar subgraph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complete%20tripartite%20graph" title="complete tripartite graph">complete tripartite graph</a>, <a href="https://publications.waset.org/abstracts/search?q=graph" title=" graph"> graph</a>, <a href="https://publications.waset.org/abstracts/search?q=maximal%20planar%20graph" title=" maximal planar graph"> maximal planar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=planar%20graph" title=" planar graph"> planar graph</a>, <a href="https://publications.waset.org/abstracts/search?q=subgraph" title=" subgraph"> subgraph</a> </p> <a href="https://publications.waset.org/abstracts/59157/complete-tripartite-graphs-with-spanning-maximal-planar-subgraphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17276</span> Identification of Wiener Model Using Iterative Schemes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikram%20Saini">Vikram Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20non-linearity" title="hard non-linearity">hard non-linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square" title=" least square"> least square</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20approximation%20gradient" title=" stochastic approximation gradient"> stochastic approximation gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Wiener%20model" title=" Wiener model"> Wiener model</a> </p> <a href="https://publications.waset.org/abstracts/70632/identification-of-wiener-model-using-iterative-schemes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17275</span> Efficient Filtering of Graph Based Data Using Graph Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nileshkumar%20Vaishnav">Nileshkumar Vaishnav</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Tatu"> Aditya Tatu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signal%20processing" title="graph signal processing">graph signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20partitioning" title=" graph partitioning"> graph partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20filtering%20on%20graphs" title=" inverse filtering on graphs"> inverse filtering on graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20signal%20processing" title=" algebraic signal processing"> algebraic signal processing</a> </p> <a href="https://publications.waset.org/abstracts/59397/efficient-filtering-of-graph-based-data-using-graph-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17274</span> Parameter Estimation for Contact Tracing in Graph-Based Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Okolie">Augustine Okolie</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20M%C3%BCller"> Johannes Müller</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjam%20Kretzchmar"> Mirjam Kretzchmar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph" title="stochastic SIR model on graph">stochastic SIR model on graph</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20tracing" title=" contact tracing"> contact tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=branching%20process" title=" branching process"> branching process</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20inference" title=" parameter inference"> parameter inference</a> </p> <a href="https://publications.waset.org/abstracts/167983/parameter-estimation-for-contact-tracing-in-graph-based-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17273</span> Explainable Graph Attention Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Pham">David Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongfeng%20Zhang"> Yongfeng Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explainable%20AI" title="explainable AI">explainable AI</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20attention%20network" title=" graph attention network"> graph attention network</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20neural%20network" title=" graph neural network"> graph neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=node%20classification" title=" node classification"> node classification</a> </p> <a href="https://publications.waset.org/abstracts/156796/explainable-graph-attention-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17272</span> Performance and Availability Analysis of 2N Redundancy Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yutae%20Lee">Yutae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the performance and availability of a redundancy model. The redundancy model is a form of resilience that ensures service availability in the event of component failure. This paper considers a 2N redundancy model. In the model there are at most one active service unit and at most one standby service unit. The active one is providing the service while the standby is prepared to take over the active role when the active fails. We design our analysis model using Stochastic Reward Nets, and then evaluate the performance and availability of 2N redundancy model using Stochastic Petri Net Package (SPNP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=availability" title="availability">availability</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20reward%20net" title=" stochastic reward net"> stochastic reward net</a>, <a href="https://publications.waset.org/abstracts/search?q=2N%20redundancy" title=" 2N redundancy"> 2N redundancy</a> </p> <a href="https://publications.waset.org/abstracts/40741/performance-and-availability-analysis-of-2n-redundancy-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17271</span> Stochastic Age-Structured Population Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many well-known age-structured population models are derived from the celebrated McKendrick-von Foerster equation (MFE), also called the biological conservation law. A similar technique is suggested for the stochastically perturbed MFE. This technique is shown to produce stochastic versions of the deterministic population models, which appear to be very different from those one can construct by simply appending additive stochasticity to deterministic equations. In particular, it is shown that stochastic Nicholson’s blowflies model should contain both additive and multiplicative stochastic noises. The suggested transformation technique is similar to that used in the deterministic case. The difference is hidden in the formulas for the exact solutions of the simplified boundary value problem for the stochastically perturbed MFE. The analysis is also based on the theory of stochastic delay differential equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problems" title="boundary value problems">boundary value problems</a>, <a href="https://publications.waset.org/abstracts/search?q=population%20models" title=" population models"> population models</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20delay%20differential%20equations" title=" stochastic delay differential equations"> stochastic delay differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20partial%20differential%20equation" title=" stochastic partial differential equation"> stochastic partial differential equation</a> </p> <a href="https://publications.waset.org/abstracts/138398/stochastic-age-structured-population-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17270</span> A Multivariate 4/2 Stochastic Covariance Model: Properties and Applications to Portfolio Decisions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuyang%20Cheng">Yuyang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20Escobar-Anel"> Marcos Escobar-Anel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a multivariate 4/2 stochastic covariance process generalizing the one-dimensional counterparts presented in Grasselli (2017). Our construction permits stochastic correlation not only among stocks but also among volatilities, also known as co-volatility movements, both driven by more convenient 4/2 stochastic structures. The parametrization is flexible enough to separate these types of correlation, permitting their individual study. Conditions for proper changes of measure and closed-form characteristic functions under risk-neutral and historical measures are provided, allowing for applications of the model to risk management and derivative pricing. We apply the model to an expected utility theory problem in incomplete markets. Our analysis leads to closed-form solutions for the optimal allocation and value function. Conditions are provided for well-defined solutions together with a verification theorem. Our numerical analysis highlights and separates the impact of key statistics on equity portfolio decisions, in particular, volatility, correlation, and co-volatility movements, with the latter being the least important in an incomplete market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20covariance%20process" title="stochastic covariance process">stochastic covariance process</a>, <a href="https://publications.waset.org/abstracts/search?q=4%2F2%20stochastic%20volatility%20model" title=" 4/2 stochastic volatility model"> 4/2 stochastic volatility model</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20co-volatility%20movements" title=" stochastic co-volatility movements"> stochastic co-volatility movements</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristic%20function" title=" characteristic function"> characteristic function</a>, <a href="https://publications.waset.org/abstracts/search?q=expected%20utility%20theory" title=" expected utility theory"> expected utility theory</a>, <a href="https://publications.waset.org/abstracts/search?q=veri%0Ccation%20theorem" title=" veri cation theorem"> veri cation theorem</a> </p> <a href="https://publications.waset.org/abstracts/153747/a-multivariate-42-stochastic-covariance-model-properties-and-applications-to-portfolio-decisions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17269</span> Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Telvari"> Abdolrasoul Telvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Babazadeh"> Hossein Babazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals&rsquo; independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R<sup>2</sup>). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modelling" title="time series modelling">time series modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20processes" title=" stochastic processes"> stochastic processes</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20model" title=" ARIMA model"> ARIMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20river" title=" Karkheh river"> Karkheh river</a> </p> <a href="https://publications.waset.org/abstracts/76660/flood-predicting-in-karkheh-river-basin-using-stochastic-arima-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17268</span> A Summary-Based Text Classification Model for Graph Attention Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Liu">Shuo Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20natural%20language%20processing" title="Chinese natural language processing">Chinese natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20classification" title=" text classification"> text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=abstract%20extraction" title=" abstract extraction"> abstract extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20attention%20network" title=" graph attention network"> graph attention network</a> </p> <a href="https://publications.waset.org/abstracts/158060/a-summary-based-text-classification-model-for-graph-attention-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17267</span> Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teh%20Raihana%20Nazirah%20Roslan">Teh Raihana Nazirah Roslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Zulaiha%20Ibrahim"> Siti Zulaiha Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Karim"> Sharmila Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black&ndash;Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cox-Ingersoll-Ross%20model" title="Cox-Ingersoll-Ross model">Cox-Ingersoll-Ross model</a>, <a href="https://publications.waset.org/abstracts/search?q=equity%20warrants" title=" equity warrants"> equity warrants</a>, <a href="https://publications.waset.org/abstracts/search?q=Heston%20model" title=" Heston model"> Heston model</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20models" title=" hybrid models"> hybrid models</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a> </p> <a href="https://publications.waset.org/abstracts/124157/hybrid-equity-warrants-pricing-formulation-under-stochastic-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17266</span> QoS-CBMG: A Model for e-Commerce Customer Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Ghavamipoor">Hoda Ghavamipoor</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alireza%20Hashemi%20Golpayegani"> S. Alireza Hashemi Golpayegani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=customer%20behavior%20model" title="customer behavior model">customer behavior model</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20commerce" title=" electronic commerce"> electronic commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20service" title=" quality of service"> quality of service</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20behavior%20model%20graph" title=" customer behavior model graph"> customer behavior model graph</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title=" process mining"> process mining</a> </p> <a href="https://publications.waset.org/abstracts/41945/qos-cbmg-a-model-for-e-commerce-customer-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17265</span> Weak Solutions Of Stochastic Fractional Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lev%20Idels">Lev Idels</a>, <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov"> Arcady Ponosov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stochastic fractional differential equations have recently attracted considerable attention, as they have been used to model real-world processes, which are subject to natural memory effects and measurement uncertainties. Compared to conventional hereditary differential equations, one of the advantages of fractional differential equations is related to more realistic geometric properties of their trajectories that do not intersect in the phase space. In this report, a Peano-like existence theorem for nonlinear stochastic fractional differential equations is proven under very general hypotheses. Several specific classes of equations are checked to satisfy these hypotheses, including delay equations driven by the fractional Brownian motion, stochastic fractional neutral equations and many others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delay%20equations" title="delay equations">delay equations</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20methods" title=" operator methods"> operator methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20noise" title=" stochastic noise"> stochastic noise</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20solutions" title=" weak solutions"> weak solutions</a> </p> <a href="https://publications.waset.org/abstracts/146592/weak-solutions-of-stochastic-fractional-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17264</span> Improvement a Lower Bound of Energy for Some Family of Graphs, Related to Determinant of Adjacency Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saieed%20%20Akbari">Saieed Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Bagheri"> Yousef Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hossein%20Ghodrati"> Amir Hossein Ghodrati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Saadat%20Akhtar"> Sima Saadat Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a simple graph with the vertex set V (G) and with the adjacency matrix A (G). The energy E (G) of G is defined to be the sum of the absolute values of all eigenvalues of A (G). Also let n and m be number of edges and vertices of the graph respectively. A regular graph is a graph where each vertex has the same number of neighbours. Given a graph G, its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. In this paper we show that for every regular graphs and also for every line graphs such that (G) 3 we have, E(G) 2nm + n 1. Also at the other part of the paper we prove that 2 (G) E(G) for an arbitrary graph G. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title="eigenvalues">eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20graphs" title=" line graphs"> line graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=matching%20number" title=" matching number"> matching number</a> </p> <a href="https://publications.waset.org/abstracts/99652/improvement-a-lower-bound-of-energy-for-some-family-of-graphs-related-to-determinant-of-adjacency-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17263</span> Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasmeen%20A.%20S.%20Essawy">Yasmeen A. S. Essawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Nassar"> Khaled Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20information%20modeling%20%28BIM%29" title="building information modeling (BIM)">building information modeling (BIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20graph%20data%20model%20%28EGDM%29" title=" elemental graph data model (EGDM)"> elemental graph data model (EGDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20and%20topological%20data%20models" title=" geometric and topological data models"> geometric and topological data models</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a> </p> <a href="https://publications.waset.org/abstracts/70542/elemental-graph-data-model-a-semantic-and-topological-representation-of-building-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17262</span> Numerical Simulation of Wishart Diffusion Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Naryongo">Raphael Naryongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20%20Ngare"> Philip Ngare</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20%20Waititu"> Anthony Waititu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility model <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=euler%20schemes" title="euler schemes">euler schemes</a>, <a href="https://publications.waset.org/abstracts/search?q=log-asset%20return" title=" log-asset return"> log-asset return</a>, <a href="https://publications.waset.org/abstracts/search?q=infinitesimal%20generator" title=" infinitesimal generator"> infinitesimal generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wishart%20diffusion%20affine%20processes" title=" wishart diffusion affine processes "> wishart diffusion affine processes </a> </p> <a href="https://publications.waset.org/abstracts/137631/numerical-simulation-of-wishart-diffusion-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17261</span> Efficiency Measurement of Turkish via the Stochastic Frontier Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeliz%20Mert%20Kantar">Yeliz Mert Kantar</a>, <a href="https://publications.waset.org/abstracts/search?q=I%CC%87smail%20Yeni%CC%87lmez"> İsmail Yeni̇lmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Arik"> Ibrahim Arik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the efficiency measurement of the top fifty Turkish Universities has been conducted. The top fifty Turkish Universities are listed by The Scientific and Technological Research Council of Turkey (TÜBITAK) according to the Entrepreneur and Innovative University Index every year. The index is calculated based on four components since 2018. Four components are scientific and technological research competency, intellectual property pool, cooperation and interaction, and economic and social contribution. The four components consist of twenty-three sub-components. The 2021 list announced in January 2022 is discussed in this study. Efficiency analysis have been carried out using the Stochastic Frontier Model. Statistical significance of the sub-components that make up the index with certain weights has been examined in terms of the efficiency measurement calculated through the Stochastic Frontier Model. The relationship between the efficiency ranking estimated based on the Stochastic Frontier Model and the Entrepreneur and Innovative University Index ranking is discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneur%20and%20innovative%20universities" title=" entrepreneur and innovative universities"> entrepreneur and innovative universities</a>, <a href="https://publications.waset.org/abstracts/search?q=turkish%20universities" title=" turkish universities"> turkish universities</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20frontier%20model" title=" stochastic frontier model"> stochastic frontier model</a>, <a href="https://publications.waset.org/abstracts/search?q=t%C3%BCbi%CC%87tak" title=" tübi̇tak"> tübi̇tak</a> </p> <a href="https://publications.waset.org/abstracts/155490/efficiency-measurement-of-turkish-via-the-stochastic-frontier-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17260</span> Characterising Stable Model by Extended Labelled Dependency Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asraful%20Islam">Asraful Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extended dependency graph (EDG) is a state-of-the-art isomorphic graph to represent normal logic programs (NLPs) that can characterize the consistency of NLPs by graph analysis. To construct the vertices and arcs of an EDG, additional renaming atoms and rules besides those the given program provides are used, resulting in higher space complexity compared to the corresponding traditional dependency graph (TDG). In this article, we propose an extended labeled dependency graph (ELDG) to represent an NLP that shares an equal number of nodes and arcs with TDG and prove that it is isomorphic to the domain program. The number of nodes and arcs used in the underlying dependency graphs are formulated to compare the space complexity. Results show that ELDG uses less memory to store nodes, arcs, and cycles compared to EDG. To exhibit the desirability of ELDG, firstly, the stable models of the kernel form of NLP are characterized by the admissible coloring of ELDG; secondly, a relation of the stable models of a kernel program with the handles of the minimal, odd cycles appearing in the corresponding ELDG has been established; thirdly, to our best knowledge, for the first time an inverse transformation from a dependency graph to the representing NLP w.r.t. ELDG has been defined that enables transferring analytical results from the graph to the program straightforwardly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=normal%20logic%20program" title="normal logic program">normal logic program</a>, <a href="https://publications.waset.org/abstracts/search?q=isomorphism%20of%20graph" title=" isomorphism of graph"> isomorphism of graph</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20labelled%20dependency%20graph" title=" extended labelled dependency graph"> extended labelled dependency graph</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20graph%20transforma-tion" title=" inverse graph transforma-tion"> inverse graph transforma-tion</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20colouring" title=" graph colouring"> graph colouring</a> </p> <a href="https://publications.waset.org/abstracts/137606/characterising-stable-model-by-extended-labelled-dependency-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17259</span> Metric Dimension on Line Graph of Honeycomb Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hussain">M. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Farooq"> Aqsa Farooq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a&minus;b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Resolving%20set" title="Resolving set">Resolving set</a>, <a href="https://publications.waset.org/abstracts/search?q=Metric%20dimension" title=" Metric dimension"> Metric dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=Honeycomb%20network" title=" Honeycomb network"> Honeycomb network</a>, <a href="https://publications.waset.org/abstracts/search?q=Line%20graph" title=" Line graph"> Line graph</a> </p> <a href="https://publications.waset.org/abstracts/101558/metric-dimension-on-line-graph-of-honeycomb-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17258</span> Gamification Using Stochastic Processes: Engage Children to Have Healthy Habits </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andre%20M.%20Carvalho">Andre M. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Sebastiao"> Pedro Sebastiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is based on a dissertation that intends to analyze and make a model, intelligently, algorithms based on stochastic processes of a gamification application applied to marketing. Gamification is used in our daily lives to engage us to perform certain actions in order to achieve goals and gain rewards. This strategy is an increasingly adopted way to encourage and retain customers through game elements. The application of gamification aims to encourage children between 6 and 10 years of age to have healthy habits and the purpose of serving as a model for use in marketing. This application was developed in unity; we implemented intelligent algorithms based on stochastic processes, web services to respond to all requests of the application, a back-office website to manage the application and the database. The behavioral analysis of the use of game elements and stochastic processes in children’s motivation was done. The application of algorithms based on stochastic processes in-game elements is very important to promote cooperation and to ensure fair and friendly competition between users which consequently stimulates the user’s interest and their involvement in the application and organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engage" title="engage">engage</a>, <a href="https://publications.waset.org/abstracts/search?q=games" title=" games"> games</a>, <a href="https://publications.waset.org/abstracts/search?q=gamification" title=" gamification"> gamification</a>, <a href="https://publications.waset.org/abstracts/search?q=randomness" title=" randomness"> randomness</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20processes" title=" stochastic processes"> stochastic processes</a> </p> <a href="https://publications.waset.org/abstracts/85625/gamification-using-stochastic-processes-engage-children-to-have-healthy-habits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17257</span> A Two Stage Stochastic Mathematical Model for the Tramp Ship Routing with Time Windows Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Jamili">Amin Jamili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the majority of international trade in goods is carried by sea, and especially by ships deployed in the industrial and tramp segments. This paper addresses routing the tramp ships and determining the schedules including the arrival times to the ports, berthing times at the ports, and the departure times in an operational planning level. In the operational planning level, the weather can be almost exactly forecasted, however in some routes some uncertainties may remain. In this paper, the voyaging times between some of the ports are considered to be uncertain. To that end, a two-stage stochastic mathematical model is proposed. Moreover, a case study is tested with the presented model. The computational results show that this mathematical model is promising and can represent acceptable solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=routing" title="routing">routing</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=tram%20ships" title=" tram ships"> tram ships</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20stage%20stochastic%20model" title=" two stage stochastic model"> two stage stochastic model</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/51110/a-two-stage-stochastic-mathematical-model-for-the-tramp-ship-routing-with-time-windows-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=576">576</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=577">577</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=stochastic%20SIR%20model%20on%20graph&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10