CINXE.COM

Search results for: peak rate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: peak rate</title> <meta name="description" content="Search results for: peak rate"> <meta name="keywords" content="peak rate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="peak rate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="peak rate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9225</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: peak rate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9225</span> Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Salim%20Reza">K. M. Salim Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin"> M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Cc%20Complex" title=" Fe-Cc Complex"> Fe-Cc Complex</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect"> pH effect</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title=" redox interaction"> redox interaction</a> </p> <a href="https://publications.waset.org/abstracts/19175/electrochemical-behavior-of-iron-iii-complexes-with-catechol-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9224</span> Electro-oxidation of Catechol in the Presence of Nicotinamide at Different pH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Motin">M. A. Motin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Aziz"> M. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hafiz%20Mia"> M. Hafiz Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasem"> M. A. Hasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The redox behavior of catechol in the presence of nicotinamide as nucleophiles has been studied in aqueous solution with various pH values and different concentration of nicotinamide using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry of catechol in buffer solution (3.00 < pH < 9.00) shows one anodic and corresponding cathodic peak which relates to the transformation of catechol to corresponding o-benzoquinone and vice versa within a quasi reversible two electron transfer process. Cyclic voltammogram of catechol in the presence of nicotinamide in buffer solution of pH 7, show one anodic peak in the first cycle of potential and on the reverse scan the corresponding cathodic peak slowly decreases and new peak is observed at less positive potential. In the second cycle of potential a new anodic peak is observed at less positive potential. This indicates that nicotinamide attached with catechol and formed adduct after first cycle of oxidation. The effect of pH of catechol in presence of nicotinamide was studied by varying pH from 3 to 11. The substitution reaction of catechol with nicotimamide is facilitated at pH 7. In buffer solution of higher pH (>9), the CV shows different pattern. The effect of concentration of nicotinamide was studied by 2mM to 100 mM. The maximum substitution reaction has been found for 50 mM of nicotinamide and of pH 7. The proportionality of the first scan anodic and cathodic peak currents with square root of scan rate suggests that the peak current of the species at each redox reaction is controlled by diffusion process. The current functions (1/v-1/2) of the anodic peak decreased with the increasing of scan rate demonstrated that the behavior of the substitution reaction is of ECE type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=redox%20interaction" title="redox interaction">redox interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=catechol" title=" catechol"> catechol</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotinamide" title=" nicotinamide"> nicotinamide</a>, <a href="https://publications.waset.org/abstracts/search?q=substituion%20reaction" title=" substituion reaction"> substituion reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20effect" title=" pH effect "> pH effect </a> </p> <a href="https://publications.waset.org/abstracts/19185/electro-oxidation-of-catechol-in-the-presence-of-nicotinamide-at-different-ph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9223</span> Distribution of Traffic Volume at Fuel Station during Peak Hour Period on Arterial Road</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surachai%20Ampawasuvan">Surachai Ampawasuvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Supornchai%20Utainarumol"> Supornchai Utainarumol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of fuel station’ customers, who drive on the major arterial road wants to use the stations to fill fuel to their vehicle during their journey to destinations. According to the survey of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, or questionnaires, it was found that most users prefer to use fuel stations on holiday rather than on working day. They also prefer to use fuel stations in the morning rather than in the evening. When comparing the ratio of the distribution pattern of traffic volume of the vehicle using fuel stations by video cameras, automatic counting tools, there is no significant difference. However, when comparing the ratio of peak hour (peak hour rate) of the results from questionnaires at 13 to 14 percent with the results obtained by using the methods of the Institute of Transportation Engineering (ITE), it is found that the value is similar. However, it is different from a survey by video camera and automatic traffic counting at 6 to 7 percent of about half. So, this study suggests that in order to forecast trip generation of vehicle using fuel stations on major arterial road which is mostly characterized by Though Traffic, it is recommended to use the value of half of peak hour rate, which would make the forecast for trips generation to be more precise and accurate and compatible to surrounding environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20rate" title="peak rate">peak rate</a>, <a href="https://publications.waset.org/abstracts/search?q=trips%20generation" title=" trips generation"> trips generation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20station" title=" fuel station"> fuel station</a>, <a href="https://publications.waset.org/abstracts/search?q=arterial%20road" title=" arterial road"> arterial road</a> </p> <a href="https://publications.waset.org/abstracts/54537/distribution-of-traffic-volume-at-fuel-station-during-peak-hour-period-on-arterial-road" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9222</span> Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar">Sanjeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nath"> S. K. Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble &reg; 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300&deg;C, 1150&deg;C, 1000&deg;C, 900&deg;C, 800&deg;C, heat energy input of 22KJ/cm and preheat temperatures of 30&deg;C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900&ordm;C. For parent steel, impact toughness value is 26.8J at -50&deg;C in transverse direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HAZ%20simulation" title="HAZ simulation">HAZ simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20temperature" title=" peak temperature"> peak temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ship%20hull%20steel" title=" ship hull steel"> ship hull steel</a>, <a href="https://publications.waset.org/abstracts/search?q=weldability" title=" weldability"> weldability</a> </p> <a href="https://publications.waset.org/abstracts/7465/studies-on-microstructure-and-mechanical-properties-of-simulated-heat-affected-zone-in-a-micro-alloyed-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9221</span> Limit State Evaluation of Bridge According to Peak Ground Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minho%20Kwon">Minho Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghee%20Lim"> Jeonghee Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeongseok%20Jeong"> Yeongseok Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongyoon%20Moon"> Jongyoon Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghoon%20Shin"> Donghoon Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiyoung%20Kim"> Kiyoung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allowable%20stress" title="allowable stress">allowable stress</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20state" title=" limit state"> limit state</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20ground%20acceleration" title=" peak ground acceleration"> peak ground acceleration</a> </p> <a href="https://publications.waset.org/abstracts/83050/limit-state-evaluation-of-bridge-according-to-peak-ground-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9220</span> Hydrology and Hydraulics Analysis of Aremenie Earthen Dam, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azazhu%20Wassie">Azazhu Wassie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study tried to analyze the impact of the hydrologic and hydraulic parameters (catchment area, rainfall intensity, and runoff coefficient) on the referenced study area. The study was conducted in June 2023. The Aremenie River Dam has 30 years of record, which is reasonably sufficient data. It is a matter of common experience that, due to the failure of an instrument or the absence of a gauged river, the rainfall record at quite a number of stations is incomplete. From the analysis, the 50-year return period design flood is 62.685 m³/s at 1.2 hr peak time. This implies that for this watershed, the peak flood rate per km² area of the watershed is about this value, which ensures that high rainfall in the area can generate a higher rate of runoff per km² of the generating catchment. The Aremenie Rivers carry a large amount of sediment along with water. These sediments are deposited in the reservoir upstream of the dam because of the reduction in velocity. Sediment reduces the available capacity of the reservoir with continuous sedimentation; the useful life of the reservoir goes on decreasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dam%20design" title="dam design">dam design</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20flood" title=" peak flood"> peak flood</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20capacity" title=" reservoir capacity"> reservoir capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/188045/hydrology-and-hydraulics-analysis-of-aremenie-earthen-dam-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9219</span> Statistical Model to Examine the Impact of the Inflation Rate and Real Interest Rate on the Bahrain Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Abo-Zaid">Ghada Abo-Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Oil is one of the most income source in Bahrain. Low oil price influence on the economy growth and the investment rate in Bahrain. For example, the economic growth was 3.7% in 2012, and it reduced to 2.9% in 2015. Investment rate was 9.8% in 2012, and it is reduced to be 5.9% and -12.1% in 2014 and 2015, respectively. The inflation rate is increased to the peak point in 2013 with 3.3 %. Objectives: The objectives here are to build statistical models to examine the effect of the interest rate inflation rate on the growth economy in Bahrain from 2000 to 2018. Methods: This study based on 18 years, and the multiple regression model is used for the analysis. All of the missing data are omitted from the analysis. Results: Regression model is used to examine the association between the Growth national product (GNP), the inflation rate, and real interest rate. We found that (i) Increase the real interest rate decrease the GNP. (ii) Increase the inflation rate does not effect on the growth economy in Bahrain since the average of the inflation rate was almost 2%, and this is considered as a low percentage. Conclusion: There is a positive impact of the real interest rate on the GNP in Bahrain. While the inflation rate does not show any negative influence on the GNP as the inflation rate was not large enough to effect negatively on the economy growth rate in Bahrain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20national%20%20product" title="growth national product">growth national product</a>, <a href="https://publications.waset.org/abstracts/search?q=egypt" title=" egypt"> egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=interest%20rate" title=" interest rate"> interest rate</a> </p> <a href="https://publications.waset.org/abstracts/137292/statistical-model-to-examine-the-impact-of-the-inflation-rate-and-real-interest-rate-on-the-bahrain-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9218</span> Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihad%20S.%20Daba">Jihad S. Daba</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Dubois"> J. P. Dubois</a>, <a href="https://publications.waset.org/abstracts/search?q=Yvette%20Antar"> Yvette Antar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooperative%20multipoint%20transmission" title="cooperative multipoint transmission">cooperative multipoint transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=ergodic%20capacity" title=" ergodic capacity"> ergodic capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20handoff" title=" hard handoff"> hard handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-diversity" title=" macro-diversity"> macro-diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-diversity" title=" micro-diversity"> micro-diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-input-multiple%20output%20systems" title=" multiple-input-multiple output systems"> multiple-input-multiple output systems</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20frequency%20division%20multiplexing" title=" orthogonal frequency division multiplexing"> orthogonal frequency division multiplexing</a> </p> <a href="https://publications.waset.org/abstracts/64999/peak-data-rate-enhancement-using-switched-micro-macro-diversity-in-cellular-multiple-input-multiple-output-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9217</span> Reduced Lung Volume: A Possible Cause of Stuttering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Arya">Shantanu Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Sakhuja"> Sachin Sakhuja</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunjan%20Mehta"> Gunjan Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Munjal"> Sanjay Munjal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stuttering may be defined as a speech disorder affecting the fluency domain of speech and characterized by covert features like word substitution, omittance and circumlocution and overt features like prolongation of sound, syllables and blocks etc. Many etiologies have been postulated to explain stuttering based on various experiments and research. Moreover, Breathlessness has also been reported by many individuals with stuttering for which breathing exercises are generally advised. However, no studies reporting objective evaluation of the pulmonary capacity and further objective assessment of the efficacy of breathing exercises have been conducted. Pulmonary Function Test which evaluates parameters like Forced Vital Capacity, Peak Expiratory Flow Rate, Forced expiratory flow Rate can be used to study the pulmonary behavior of individuals with stuttering. The study aimed: a) To identify speech motor & physiologic behaviours associated with stuttering by administering PFT. b) To recognize possible reasons for an association between speech motor behaviour & stuttering severity. In this regard, PFT tests were administered on individuals who reported signs and symptoms of stuttering and showed abnormal scores on Stuttering Severity Index. Parameters like Forced Vital Capacity, Forced Expiratory Volume, Peak Expiratory Flow Rate (L/min), Forced Expiratory Flow Rate (L/min) were evaluated and correlated with scores of Stuttering Severity Index. Results showed significant decrease in the parameters (lower than normal scores) in individuals with established stuttering. Strong correlation was also found between degree of stuttering and the degree of decrease in the pulmonary volumes. Thus, it is evident that fluent speech requires strong support of lung pressure and requisite volumes. Further research in demonstrating the efficacy of abdominal breathing exercises in this regard is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forced%20expiratory%20flow%20rate" title="forced expiratory flow rate">forced expiratory flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20expiratory%20volume" title=" forced expiratory volume"> forced expiratory volume</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20vital%20capacity" title=" forced vital capacity"> forced vital capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20expiratory%20flow%20rate" title=" peak expiratory flow rate"> peak expiratory flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=stuttering" title=" stuttering"> stuttering</a> </p> <a href="https://publications.waset.org/abstracts/52239/reduced-lung-volume-a-possible-cause-of-stuttering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9216</span> Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melby%20Chacko">Melby Chacko</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannath%20Nayak"> Jagannath Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=6061%20Al-SiC%20composite" title="6061 Al-SiC composite">6061 Al-SiC composite</a>, <a href="https://publications.waset.org/abstracts/search?q=aging%20curve" title=" aging curve"> aging curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Rockwell%20B%20hardness" title=" Rockwell B hardness"> Rockwell B hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=T4" title=" T4"> T4</a>, <a href="https://publications.waset.org/abstracts/search?q=T6%20treatments" title=" T6 treatments"> T6 treatments</a> </p> <a href="https://publications.waset.org/abstracts/7313/aging-behaviour-of-6061-al-15-vol-sic-composite-in-t4-and-t6-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9215</span> Simplified Measurement of Occupational Energy Expenditure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Wicks">J. Wicks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: To develop a simple methodology to allow collected heart rate (HR) data from inexpensive wearable devices to be expressed in a suitable format (METs) to quantitate occupational (and recreational) activity. Introduction: Assessment of occupational activity is commonly done by utilizing questionnaires in combination with prescribed MET levels of a vast range of previously measured activities. However for any individual the intensity of performing a specific activity can vary significantly. Ideally objective measurement of individual activity is preferred. Though there are a wide range of HR recording devices there is a distinct lack methodology to allow processing of collected data to quantitate energy expenditure (EE). The HR index equation expresses METs in relation to relative HR i.e. the ratio of activity HR to resting HR. The use of this equation provides a simple utility for objective measurement of EE. Methods: During a typical occupational work period of approximately 8 hours HR data was recorded using a Polar RS 400 wrist monitor. Recorded data was downloaded to a Windows PC and non HR data was stripped from the ASCII file using ‘Notepad’. The HR data was exported to a spread sheet program and sorted by HR range into a histogram format. Three HRs were determined, namely a resting HR (the HR delimiting the lowest 30 minutes of recorded data), a mean HR and a peak HR (the HR delimiting the highest 30 minutes of recorded data). HR indices were calculated (mean index equals mean HR/rest HR and peak index equals peak HR/rest HR) with mean and peak indices being converted to METs using the HR index equation. Conclusion: Inexpensive HR recording devices can be utilized to make reasonable estimates of occupational (or recreational) EE suitable for large scale demographic screening by utilizing the HR index equation. The intrinsic value of the HR index equation is that it is independent of factors that influence absolute HR, namely fitness, smoking and beta-blockade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20expenditure" title="energy expenditure">energy expenditure</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20histograms" title=" heart rate histograms"> heart rate histograms</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20index" title=" heart rate index"> heart rate index</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20activity" title=" occupational activity"> occupational activity</a> </p> <a href="https://publications.waset.org/abstracts/25848/simplified-measurement-of-occupational-energy-expenditure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9214</span> Assessment of Five Photoplethysmographic Methods for Estimating Heart Rate Variability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshay%20B.%20Pawar">Akshay B. Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Y.%20Parasnis"> Rohit Y. Parasnis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart Rate Variability (HRV) is a widely used indicator of the regulation between the autonomic nervous system (ANS) and the cardiovascular system. Besides being non-invasive, it also has the potential to predict mortality in cases involving critical injuries. The gold standard method for determining HRV is based on the analysis of RR interval time series extracted from ECG signals. However, because it is much more convenient to obtain photoplethysmogramic (PPG) signals as compared to ECG signals (which require the attachment of several electrodes to the body), many researchers have used pulse cycle intervals instead of RR intervals to estimate HRV. They have also compared this method with the gold standard technique. Though most of their observations indicate a strong correlation between the two methods, recent studies show that in healthy subjects, except for a few parameters, the pulse-based method cannot be a surrogate for the standard RR interval- based method. Moreover, the former tends to overestimate short-term variability in heart rate. This calls for improvements in or alternatives to the pulse-cycle interval method. In this study, besides the systolic peak-peak interval method (PP method) that has been studied several times, four recent PPG-based techniques, namely the first derivative peak-peak interval method (P1D method), the second derivative peak-peak interval method (P2D method), the valley-valley interval method (VV method) and the tangent-intersection interval method (TI method) were compared with the gold standard technique. ECG and PPG signals were obtained from 10 young and healthy adults (consisting of both males and females) seated in the armchair position. In order to de-noise these signals and eliminate baseline drift, they were passed through certain digital filters. After filtering, the following HRV parameters were computed from PPG using each of the five methods and also from ECG using the gold standard method: time domain parameters (SDNN, pNN50 and RMSSD), frequency domain parameters (Very low-frequency power (VLF), Low-frequency power (LF), High-frequency power (HF) and Total power or “TP”). Besides, Poincaré plots were also plotted and their SD1/SD2 ratios determined. The resulting sets of parameters were compared with those yielded by the standard method using measures of statistical correlation (correlation coefficient) as well as statistical agreement (Bland-Altman plots). From the viewpoint of correlation, our results show that the best PPG-based methods for the determination of most parameters and Poincaré plots are the P2D method (shows more than 93% correlation with the standard method) and the PP method (mean correlation: 88%) whereas the TI, VV and P1D methods perform poorly (<70% correlation in most cases). However, our evaluation of statistical agreement using Bland-Altman plots shows that none of the five techniques agrees satisfactorily well with the gold standard method as far as time-domain parameters are concerned. In conclusion, excellent statistical correlation implies that certain PPG-based methods provide a good amount of information on the pattern of heart rate variation, whereas poor statistical agreement implies that PPG cannot completely replace ECG in the determination of HRV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title="photoplethysmography">photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title=" heart rate variability"> heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation%20coefficient" title=" correlation coefficient"> correlation coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Bland-Altman%20plot" title=" Bland-Altman plot"> Bland-Altman plot</a> </p> <a href="https://publications.waset.org/abstracts/38739/assessment-of-five-photoplethysmographic-methods-for-estimating-heart-rate-variability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9213</span> Tuning of the Thermal Capacity of an Envelope for Peak Demand Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isha%20Rathore">Isha Rathore</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20Jain"> Peeyush Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Elangovan%20Rajasekar"> Elangovan Rajasekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal capacity of the envelope impacts the cooling and heating demand of a building and modulates the peak electricity demand. This paper presents the thermal capacity tuning of a building envelope to minimize peak electricity demand for space cooling. We consider a 40 m² residential testbed located in Hyderabad, India (Composite Climate). An EnergyPlus model is validated using real-time data. A Parametric simulation framework for thermal capacity tuning is created using the Honeybee plugin. Diffusivity, Thickness, layer position, orientation and fenestration size of the exterior envelope are parametrized considering a five-layered wall system. A total of 1824 parametric runs are performed and the optimum wall configuration leading to minimum peak cooling demand is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20capacity" title="thermal capacity">thermal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning" title=" tuning"> tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demand%20reduction" title=" peak demand reduction"> peak demand reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20analysis" title=" parametric analysis"> parametric analysis</a> </p> <a href="https://publications.waset.org/abstracts/143562/tuning-of-the-thermal-capacity-of-an-envelope-for-peak-demand-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9212</span> Video Heart Rate Measurement for the Detection of Trauma-Related Stress States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jarek%20Krajewski">Jarek Krajewski</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Daxberger"> David Daxberger</a>, <a href="https://publications.waset.org/abstracts/search?q=Luzi%20Beyer"> Luzi Beyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finding objective and non-intrusive measurements of emotional and psychopathological states (e.g., post-traumatic stress disorder, PTSD) is an important challenge. Thus, the proposed approach here uses Photoplethysmographic imaging (PPGI) applying facial RGB Cam videos to estimate heart rate levels. A pipeline for the signal processing of the raw image has been proposed containing different preprocessing approaches, e.g., Independent Component Analysis, Non-negative Matrix factorization, and various other artefact correction approaches. Under resting and constant light conditions, we reached a sensitivity of 84% for pulse peak detection. The results indicate that PPGI can be a suitable solution for providing heart rate data derived from these indirectly post-traumatic stress states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title="heart rate">heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=PTSD" title=" PTSD"> PTSD</a>, <a href="https://publications.waset.org/abstracts/search?q=PPGI" title=" PPGI"> PPGI</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=preprocessing" title=" preprocessing"> preprocessing</a> </p> <a href="https://publications.waset.org/abstracts/153938/video-heart-rate-measurement-for-the-detection-of-trauma-related-stress-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9211</span> Experimental Study on Different Load Operation and Rapid Load-change Characteristics of Pulverized Coal Combustion with Self-preheating Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongliang%20Ding">Hongliang Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziqu%20Ouyang"> Ziqu Ouyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the basic national conditions that the energy structure is dominated by coal, it is of great significance to realize deep and flexible peak shaving of boilers in pulverized coal power plants, and maximize the consumption of renewable energy in the power grid, to ensure China's energy security and scientifically achieve the goals of carbon peak and carbon neutrality. With the promising self-preheating combustion technology, which had the potential of broad-load regulation and rapid response to load changes, this study mainly investigated the different load operation and rapid load-change characteristics of pulverized coal combustion. Four effective load-stabilization bases were proposed according to preheating temperature, coal gas composition (calorific value), combustion temperature (spatial mean temperature and mean square temperature fluctuation coefficient), and flue gas emissions (CO and NOx concentrations), on the basis of which the load-change rates were calculated to assess the load response characteristics. Due to the improvement of the physicochemical properties of pulverized coal after preheating, stable ignition and combustion conditions could be obtained even at a low load of 25%, with a combustion efficiency of over 97.5%, and NOx emission reached the lowest at 50% load, with the concentration of 50.97 mg/Nm3 (@6%O2). Additionally, the load ramp-up stage displayed higher load-change rates than the load ramp-down stage, with maximum rates of 3.30 %/min and 3.01 %/min, respectively. Furthermore, the driving force formed by high step load was conducive to the increase of load-change rate. The rates based on the preheating indicator attained the highest value of 3.30 %/min, while the rates based on the combustion indicator peaked at 2.71 %/min. In comparison, the combustion indicator accurately described the system’s combustion state and load changes, whereas the preheating indicator was easier to acquire, with a higher load-change rate, hence the appropriate evaluation strategy should depend on the actual situation. This study verified a feasible method for deep and flexible peak shaving of coal-fired power units, further providing basic data and technical supports for future engineering applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20coal%20combustion" title="clean coal combustion">clean coal combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=load-change%20rate" title=" load-change rate"> load-change rate</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20shaving" title=" peak shaving"> peak shaving</a>, <a href="https://publications.waset.org/abstracts/search?q=self-preheating" title=" self-preheating"> self-preheating</a> </p> <a href="https://publications.waset.org/abstracts/164487/experimental-study-on-different-load-operation-and-rapid-load-change-characteristics-of-pulverized-coal-combustion-with-self-preheating-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9210</span> Capturing the Stress States in Video Conferences by Photoplethysmographic Pulse Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jarek%20Krajewski">Jarek Krajewski</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Daxberger"> David Daxberger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a stress detection method based on an RGB camera using heart rate detection, also known as Photoplethysmography Imaging (PPGI). This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. A stationary lab setting with simulated video conferences is chosen using constant light conditions and a sampling rate of 30 fps. The ground truth measurement of heart rate is conducted with a common PPG system. The proposed approach for pulse peak detection is based on a machine learning-based approach, applying brute force feature extraction for the prediction of heart rate pulses. The statistical analysis showed good agreement (correlation r = .79, p<0.05) between the reference heart rate system and the proposed method. Based on these findings, the proposed method could provide a reliable, low-cost, and contactless way of measuring HR parameters in daily-life environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title="heart rate">heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=PPGI" title=" PPGI"> PPGI</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=brute%20force%20feature%20extraction" title=" brute force feature extraction"> brute force feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/153939/capturing-the-stress-states-in-video-conferences-by-photoplethysmographic-pulse-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9209</span> Reduction of Peak Input Currents during Charge Pump Boosting in Monolithically Integrated High-Voltage Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Doutreloigne">Jan Doutreloigne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes two methods for the reduction of the peak input current during the boosting of Dickson charge pumps. Both methods are implemented in the fully integrated Dickson charge pumps of a high-voltage display driver chip for smart-card applications. Experimental results reveal good correspondence with Spice simulations and show a reduction of the peak input current by a factor of 6 during boosting <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-stable%20display%20driver" title="bi-stable display driver">bi-stable display driver</a>, <a href="https://publications.waset.org/abstracts/search?q=Dickson%20charge%20pump" title=" Dickson charge pump"> Dickson charge pump</a>, <a href="https://publications.waset.org/abstracts/search?q=high-voltage%20generator" title=" high-voltage generator"> high-voltage generator</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20current%20reduction" title=" peak current reduction"> peak current reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-pump%20boosting" title=" sub-pump boosting"> sub-pump boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20frequency%20boosting" title=" variable frequency boosting"> variable frequency boosting</a> </p> <a href="https://publications.waset.org/abstracts/34172/reduction-of-peak-input-currents-during-charge-pump-boosting-in-monolithically-integrated-high-voltage-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9208</span> Enhancement of Long Term Peak Demand Forecast in Peninsular Malaysia Using Hourly Load Profile </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazaitul%20Idya%20Hamzah">Nazaitul Idya Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Syafiq%20Mazli"> Muhammad Syafiq Mazli</a>, <a href="https://publications.waset.org/abstracts/search?q=Maszatul%20Akmar%20Mustafa"> Maszatul Akmar Mustafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The peak demand forecast is crucial to identify the future generation plant up needed in the long-term capacity planning analysis for Peninsular Malaysia as well as for the transmission and distribution network planning activities. Currently, peak demand forecast (in Mega Watt) is derived from the generation forecast by using load factor assumption. However, a forecast using this method has underperformed due to the structural changes in the economy, emerging trends and weather uncertainty. The dynamic changes of these drivers will result in many possible outcomes of peak demand for Peninsular Malaysia. This paper will look into the independent model of peak demand forecasting. The model begins with the selection of driver variables to capture long-term growth. This selection and construction of variables, which include econometric, emerging trend and energy variables, will have an impact on the peak forecast. The actual framework begins with the development of system energy and load shape forecast by using the system’s hourly data. The shape forecast represents the system shape assuming all embedded technology and use patterns to continue in the future. This is necessary to identify the movements in the peak hour or changes in the system load factor. The next step would be developing the peak forecast, which involves an iterative process to explore model structures and variables. The final step is combining the system energy, shape, and peak forecasts into the hourly system forecast then modifying it with the forecast adjustments. Forecast adjustments are among other sales forecasts for electric vehicles, solar and other adjustments. The framework will result in an hourly forecast that captures growth, peak usage and new technologies. The advantage of this approach as compared to the current methodology is that the peaks capture new technology impacts that change the load shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hourly%20load%20profile" title="hourly load profile">hourly load profile</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20forecasting" title=" load forecasting"> load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20term%20peak%20demand%20forecasting" title=" long term peak demand forecasting"> long term peak demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demand" title=" peak demand"> peak demand</a> </p> <a href="https://publications.waset.org/abstracts/116463/enhancement-of-long-term-peak-demand-forecast-in-peninsular-malaysia-using-hourly-load-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9207</span> Approximation Algorithms for Peak-Demand Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Jamal%20Saeed%20Almahmoud">Zaid Jamal Saeed Almahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20demand%20scheduling" title="peak demand scheduling">peak demand scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation%20algorithms" title=" approximation algorithms"> approximation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a> </p> <a href="https://publications.waset.org/abstracts/157964/approximation-algorithms-for-peak-demand-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9206</span> Peak Floor Response for Buildings with Flexible Base</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Roberto%20Fernandez-Sola">Luciano Roberto Fernandez-Sola</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Augusto%20Arredondo-Velez"> Cesar Augusto Arredondo-Velez</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Angel%20Jaimes-Tellez"> Miguel Angel Jaimes-Tellez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the modifications on peak acceleration, velocity and displacement profiles over the structure due to dynamic soil-structure interaction (DSSI). A shear beam model is used for the structure. Soil-foundation flexibility (inertial interaction) is considered by a set of springs and dashpots at the structure base. Kinematic interaction is considered using transfer functions. Impedance functions are computed using simplified expressions for rigid foundations. The research studies the influence of the slenderness ratio on the value of the peak floor response. It is shown that the modifications of peak floor responses are not the same for acceleration, velocity and displacement. This is opposite to the hypothesis used by methods included in several building codes. Results show that modifications produced by DSSI on different response quantities are not equal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20floor%20intensities" title="peak floor intensities">peak floor intensities</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20soil-structure%20interaction" title=" dynamic soil-structure interaction"> dynamic soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings%20with%20flexible%20base" title=" buildings with flexible base"> buildings with flexible base</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20and%20inertial%20interaction" title=" kinematic and inertial interaction"> kinematic and inertial interaction</a> </p> <a href="https://publications.waset.org/abstracts/65705/peak-floor-response-for-buildings-with-flexible-base" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9205</span> Load Forecast of the Peak Demand Based on Both the Peak Demand and Its Location</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qais%20H.%20Alsafasfeh">Qais H. Alsafasfeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model. The aim of this paper is to provide a forecast of the peak demand for the next 15 years for electrical distribution companies. The proposed methodology provides both the peak demand and its location for the next 15 years. This paper describes the Spatial Load Forecasting model used, the information provided by electrical distribution company in Jordan, the workflow followed, the parameters used and the assumptions made to run the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20forecast" title="load forecast">load forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20demand" title=" peak demand"> peak demand</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20load" title=" spatial load"> spatial load</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution" title=" electrical distribution"> electrical distribution</a> </p> <a href="https://publications.waset.org/abstracts/34628/load-forecast-of-the-peak-demand-based-on-both-the-peak-demand-and-its-location" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9204</span> A Photovoltaic Micro-Storage System for Residential Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alia%20Al%20Nuaimi">Alia Al Nuaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Al%20Aberi"> Ayesha Al Aberi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Al%20Marzouqi"> Faiza Al Marzouqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaikha%20Salem%20Ali%20Al%20Yahyaee"> Shaikha Salem Ali Al Yahyaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%20Hussein"> Ala Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a PV micro-storage system for residential applications is proposed. The term micro refers to the size of the PV storage system, which is in the range of few kilo-watts, compared to the grid size (~GWs). Usually, in a typical load profile of a residential unit, two peak demand periods exist: one at morning and the other at evening time. The morning peak can be partly covered by the PV energy directly, while the evening peak cannot be covered by the PV alone. Therefore, an energy storage system that stores solar energy during daytime and use this stored energy when the sun is absent is a must. A complete design procedure including theoretical analysis followed by simulation verification and economic feasibility evaluation is addressed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battery" title="battery">battery</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20shaving" title=" peak shaving"> peak shaving</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/43456/a-photovoltaic-micro-storage-system-for-residential-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9203</span> On Erosion-Corrosion Behavior of Carbon Steel in Oil Sands Slurry: Electrochemical Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Deyab">M. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Sabagh"> A. Al-Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Keera"> S. Keera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of carbon steel in oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion-corrosion" title="erosion-corrosion">erosion-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sands%20slurry" title=" oil sands slurry"> oil sands slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a> </p> <a href="https://publications.waset.org/abstracts/56992/on-erosion-corrosion-behavior-of-carbon-steel-in-oil-sands-slurry-electrochemical-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9202</span> Synergistic Erosion–Corrosion Behavior of Petroleum Pipelines at Various Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Deyab">M. A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Sabagh"> A. Al-Sabagh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Keera"> S. Keera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of flow velocity, sand concentration, sand size and temperature on erosion-corrosion of petroleum pipelines (carbon steel) in the oil sands slurry were studied by electrochemical polarization measurements. It was found that the anodic excursion spans of carbon steel in the oil sands slurry are characterized by the occurrence of a well-defined anodic peak, followed by a passive region. The data reveal that increasing flow velocity, sand concentration and temperature enhances the anodic peak current density (jAP) and shifts pitting potential (Epit) towards more negative values. The variation of sand particle size does not have apparent effect on polarization behavior of carbon steel. The ratios of the erosion rate to corrosion rate (E/C) were calculated and discussed. The ratio of erosion to corrosion rates E/C increased with increasing the flow velocity, sand concentration, sand size, and temperature indicating that an increasing slurry flow velocity, sand concentration, sand size and temperature resulted in an enhancement of the erosion effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion-corrosion" title="erosion-corrosion">erosion-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20sands%20slurry" title=" oil sands slurry"> oil sands slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization" title=" polarization"> polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/60523/synergistic-erosion-corrosion-behavior-of-petroleum-pipelines-at-various-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9201</span> Maximaxing the Usage of Solar Energy in an Area of Low Peak Sunlight Hours</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ohabuiro%20John%20Uwabunkeonye">Ohabuiro John Uwabunkeonye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Source of green energy is becoming a concern in developing countries where most energy source in use emits high level of carbon (IV) oxide which contributes to global warming. More so, even with the generation of energy from fossil fuel, the electricity supply is still very inadequate. Therefore, this paper examines different ways of designing and installing photovoltaic (PV) system in terms of optimal sizing of PV array and battery storage in an area of very low peak sunlight hours (PSH) and inadequate supply of electricity from utility companies. Different sample of Peak sunlight hour for selected areas in Nigeria are considered and the lowest of it all is taken. Some means of ensuring that the available solar energy is harnessed properly and converted into electrical energy are discussed for usage in such areas as mentioned above. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title="green energy">green energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuel" title=" fossil fuel"> fossil fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20sunlight%20hour" title=" peak sunlight hour"> peak sunlight hour</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a> </p> <a href="https://publications.waset.org/abstracts/28742/maximaxing-the-usage-of-solar-energy-in-an-area-of-low-peak-sunlight-hours" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">642</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9200</span> Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goutam%20Dubey">Goutam Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Dutta"> Varun Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20discharge%20machining" title="electric discharge machining">electric discharge machining</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM" title=" EDM"> EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20steel" title=" tool steel"> tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20rate" title=" tool wear rate"> tool wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20techniques" title=" optimization techniques"> optimization techniques</a> </p> <a href="https://publications.waset.org/abstracts/88859/optimization-of-process-parameters-for-rotary-electro-discharge-machining-using-en31-tool-steel-present-and-future-scope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9199</span> Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Lamichhane">Pradeep Lamichhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Pourali"> Nima Pourali</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Rebrov"> E. V. Rebrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Volker%20Hessel"> Volker Hessel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fixation" title="nitrogen fixation">nitrogen fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=fast-modulated" title=" fast-modulated"> fast-modulated</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-confined" title=" surface-confined"> surface-confined</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a> </p> <a href="https://publications.waset.org/abstracts/154873/fast-modulated-surface-confined-plasma-for-catalytic-nitrogen-fixation-and-energy-intensification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9198</span> Peak Shaving in Microgrids Using Hybrid Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Lond%C3%A1k">Juraj Londák</a>, <a href="https://publications.waset.org/abstracts/search?q=Radoslav%20Vargic"> Radoslav Vargic</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavol%20Podhradsk%C3%BD"> Pavol Podhradský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this contribution, we focus on the technical and economic aspects of using hybrid storage in microgrids for peak shaving. We perform a feasibility analysis of hybrid storage consisting of conventional supercapacitors and chemical batteries. We use multiple real-life consumption profiles from various industry-oriented microgrids. The primary purpose is to construct a digital twin model for reserved capacity simulation and prediction. The main objective is to find the equilibrium between technical innovations, acquisition costs and energy cost savings <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgrid" title="microgrid">microgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20shaving" title=" peak shaving"> peak shaving</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a> </p> <a href="https://publications.waset.org/abstracts/142428/peak-shaving-in-microgrids-using-hybrid-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9197</span> The Correlation of Physical Activity and Plantar Pressure in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lovro%20%C5%A0tefan">Lovro Štefan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The main purpose of the present study was to explore the correlations between physical activity and peak plantar pressure in dynamic mode. Methods: Participants were one hundred forty-six first-year university students (30.8% girls). Plantar pressure generated under each region of the foot (forefoot, midfoot, and heel) was measured by using Zebris dynamometric platform (Isny, Germany). The level of physical activity (PA) was calculated with the International Physical Activity questionnaire (IPAQ - short form). Results: In boys, forefoot peak plantar pressure was correlated with moderate PA (MPA; r=-0.21), vigorous PA (VPA; r=-0.18), and moderate-to-vigorous PA (MVPA; r=-0.28). No significant correlations with other foot regions (p>0.05) were observed. In girls, forefoot peak plantar pressure was correlated with MPA (r =-0.30), VPA (r=-0.39) and MVPA (r=-0.38). Also, heel peak pressure was significantly correlated with MPA (r=-0.33), while no significant correlations with VPA (r=0.05) and MVPA (r=-0.15) were observed. Conclusion: This study shows that different intensities of PA were mostly correlated with forefoot peak plantar pressure in both boys and girls. Therefore, strategies that reduce plantar pressure through a more active lifestyle should be implemented within the education system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pedobarography" title="pedobarography">pedobarography</a>, <a href="https://publications.waset.org/abstracts/search?q=youth" title=" youth"> youth</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=associations" title=" associations"> associations</a> </p> <a href="https://publications.waset.org/abstracts/158671/the-correlation-of-physical-activity-and-plantar-pressure-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9196</span> SIPINA Induction Graph Method for Seismic Risk Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Selma">B. Selma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SIPINA%20algorithm" title="SIPINA algorithm">SIPINA algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=seism" title=" seism"> seism</a>, <a href="https://publications.waset.org/abstracts/search?q=focal%20depth" title=" focal depth"> focal depth</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20ground%20acceleration" title=" peak ground acceleration"> peak ground acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a> </p> <a href="https://publications.waset.org/abstracts/51488/sipina-induction-graph-method-for-seismic-risk-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=307">307</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=308">308</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=peak%20rate&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10