CINXE.COM

Brahim MADANI - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Brahim MADANI - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="TvWxr3Wy_3KjMwenzEJvBg8Sr5zCpiyM8ZgPUepJ0uhogzwiTTYPeiGKw8nUxRjELy6mUv1zRsdiHbJWHDgvqg" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="brahim madani" /> <meta name="description" content="Brahim MADANI: 1 Following, 27 Research papers. Research interests: PEMFC, Electric Conductivity, and Multiagent Systems." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'c3e65371540394fa16a6b85de54095502b039e97'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14103,"monthly_visitors":"104 million","monthly_visitor_count":104775874,"monthly_visitor_count_in_millions":104,"user_count":280798942,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1737261489000); window.Aedu.timeDifference = new Date().getTime() - 1737261489000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-2efdc2c32b2f6169a3d23607195f9ede0feb7fd3889550edb0f47f1877a4b611.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-ece822dec0187e6a017e8791d6c228e932dc25ad90fb5c11987e8316edda69e6.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/BrahimMADANI3" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-63ec8be7eb7df39cf363c5dc6049fbc2ac3c2d13c6f7d7a4db205d47242fe352.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3","photo":"https://0.academia-photos.com/319290917/161779175/151514060/s65_brahim.madani.png","has_photo":true,"is_analytics_public":false,"interests":[{"id":126024,"name":"PEMFC","url":"https://www.academia.edu/Documents/in/PEMFC"},{"id":1202042,"name":"Electric Conductivity","url":"https://www.academia.edu/Documents/in/Electric_Conductivity"},{"id":2534,"name":"Multiagent Systems","url":"https://www.academia.edu/Documents/in/Multiagent_Systems"},{"id":20459,"name":"Smart Grid and Intelligent Micro Grid","url":"https://www.academia.edu/Documents/in/Smart_Grid_and_Intelligent_Micro_Grid"},{"id":1293,"name":"Service Oriented Computing","url":"https://www.academia.edu/Documents/in/Service_Oriented_Computing"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/BrahimMADANI3&quot;,&quot;location&quot;:&quot;/BrahimMADANI3&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BrahimMADANI3&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-d9acf64e-e0d2-4201-80ee-5dcf936d3fb7"></div> <div id="ProfileCheckPaperUpdate-react-component-d9acf64e-e0d2-4201-80ee-5dcf936d3fb7"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Brahim MADANI" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/319290917/161779175/151514060/s200_brahim.madani.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Brahim MADANI</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Brahim" data-follow-user-id="319290917" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="319290917"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">0</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><a href="/BrahimMADANI3/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://usask.academia.edu/JulitaVassileva"><img class="profile-avatar u-positionAbsolute" alt="Julita Vassileva" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/15666/5278/798880/s200_julita.vassileva.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://usask.academia.edu/JulitaVassileva">Julita Vassileva</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Saskatchewan</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://carleton-ca.academia.edu/dpleibovitz"><img class="profile-avatar u-positionAbsolute" alt="David Pierre Leibovitz" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/26128/78833/86073/s200_david.leibovitz.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://carleton-ca.academia.edu/dpleibovitz">David Pierre Leibovitz</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Carleton University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ksu.academia.edu/DavidSeamon"><img class="profile-avatar u-positionAbsolute" alt="David Seamon" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/93547/25922/29662134/s200_david.seamon.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ksu.academia.edu/DavidSeamon">David Seamon</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Kansas State University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://syr.academia.edu/LeeMcKnight"><img class="profile-avatar u-positionAbsolute" alt="Lee McKnight" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/291535/101370/109806594/s200_lee.mcknight.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://syr.academia.edu/LeeMcKnight">Lee McKnight</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Syracuse University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/DennisCurtin"><img class="profile-avatar u-positionAbsolute" alt="Dennis Curtin" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/394472/123555/143378/s200_dennis.curtin.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DennisCurtin">Dennis Curtin</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/ozturkzeynel"><img class="profile-avatar u-positionAbsolute" alt="zeynel ozturk" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/956536/352917/421068/s200_zeynel.ozturk.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/ozturkzeynel">zeynel ozturk</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://chonbuk.academia.edu/GanpurevAdilbish"><img class="profile-avatar u-positionAbsolute" alt="Ganpurev Adilbish" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/6360785/2860545/3340659/s200_ganpurev.adilbish.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://chonbuk.academia.edu/GanpurevAdilbish">Ganpurev Adilbish</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Chonbuk National University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://wsiabato.academia.edu/MartinMolina"><img class="profile-avatar u-positionAbsolute" alt="Martin Molina" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/31446163/9713583/10819513/s200_martin.molina.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://wsiabato.academia.edu/MartinMolina">Martin Molina</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Technical University of Madrid</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://fcup.academia.edu/AlvaroFigueira"><img class="profile-avatar u-positionAbsolute" alt="Álvaro Figueira, PhD" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/54913784/19484208/19396310/s200__lvaro.figueira.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://fcup.academia.edu/AlvaroFigueira">Álvaro Figueira, PhD</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Faculdade de Ciências da Universidade do Porto</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/DeepaMadan"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/DeepaMadan">Deepa Madan</a></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="319290917" href="https://www.academia.edu/Documents/in/PEMFC"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://independent.academia.edu/BrahimMADANI3&quot;,&quot;location&quot;:&quot;/BrahimMADANI3&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;independent.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/BrahimMADANI3&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;PEMFC&quot;]}" data-trace="false" data-dom-id="Pill-react-component-637a328c-1de8-4655-b23c-644f7203a86b"></div> <div id="Pill-react-component-637a328c-1de8-4655-b23c-644f7203a86b"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="319290917" href="https://www.academia.edu/Documents/in/Electric_Conductivity"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Electric Conductivity&quot;]}" data-trace="false" data-dom-id="Pill-react-component-1376a9db-53d7-4f16-b9d3-a7288257e299"></div> <div id="Pill-react-component-1376a9db-53d7-4f16-b9d3-a7288257e299"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="319290917" href="https://www.academia.edu/Documents/in/Multiagent_Systems"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Multiagent Systems&quot;]}" data-trace="false" data-dom-id="Pill-react-component-64693df6-a7ed-43de-88f6-8d17dec3ebff"></div> <div id="Pill-react-component-64693df6-a7ed-43de-88f6-8d17dec3ebff"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="319290917" href="https://www.academia.edu/Documents/in/Smart_Grid_and_Intelligent_Micro_Grid"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Smart Grid and Intelligent Micro Grid&quot;]}" data-trace="false" data-dom-id="Pill-react-component-fd86cf0c-740a-40fe-b565-dfc0daa0687f"></div> <div id="Pill-react-component-fd86cf0c-740a-40fe-b565-dfc0daa0687f"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="319290917" href="https://www.academia.edu/Documents/in/Service_Oriented_Computing"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Service Oriented Computing&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d3ff39f2-a71c-49f0-a89e-e335fe9807bf"></div> <div id="Pill-react-component-d3ff39f2-a71c-49f0-a89e-e335fe9807bf"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Brahim MADANI</h3></div><div class="js-work-strip profile--work_container" data-work-id="125782190"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782190/Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger"><img alt="Research paper thumbnail of Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782190/Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger">Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger</a></div><div class="wp-workCard_item"><span>World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering</span><span>, Dec 21, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782190"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782190"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782190; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782190]").text(description); $(".js-view-count[data-work-id=125782190]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782190; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782190']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782190, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782190]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782190,"title":"Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger","translated_title":"","metadata":{"publication_date":{"day":21,"month":12,"year":2015,"errors":{}},"publication_name":"World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782190/Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger","translated_internal_url":"","created_at":"2024-11-23T10:01:55.825-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":45751784,"url":"https://www.waset.org/abstracts/43857"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782188"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782188/Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel"><img alt="Research paper thumbnail of Experimental Study of the Boiling Heat Transfer in a Small Channel" class="work-thumbnail" src="https://attachments.academia-assets.com/119762868/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782188/Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel">Experimental Study of the Boiling Heat Transfer in a Small Channel</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tub...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tube with 9.52 mm outside diameter and 1 m length was conducted. The refrigerants tested were R22, R134a, R407C and R410A while vapour quality ranges from 0.1 to 0.9, mass flux 50, 250, 450 kg m À2 s À1 and heat flux of 5, 12.5, 20 kW m À2. The saturation temperature is 5°C. For the smooth tube, the average heat transfer coefficients of R134a, R407C and R410A are 110.9%, 78.0% and 125.2% of those of R22 in test conditions respectively. For the micro-fin tube, the average heat transfer coefficients of R22, R134a, R407C and R410A are 1.86, 1.80, 1.69 and 1.78 times higher than those of the smooth tube. The pressure drop of R22, R407C and R410A for the smooth tube is similar to each other while the pressure drop of R134a is 1.7 times higher. The average pressure drop of R22, R134a, R407C and R410A for the micro-fin tube is 1.42, 1.30, 1.45 and 1.40 times higher when compared with that for the smooth one. Considering the effect of heat transfer enhancement and pressure drop augment, the efficiency index g 1 which values the thermo-hydraulic performance at identical flow rate of R22, R134a, R407C and R410A in the micro-fin tube used is 1.31, 1.38, 1.17 and 1.27 respectively compared with the smooth tube.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e8edbbcc13cfa0b8b6367512f8e203c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762868,&quot;asset_id&quot;:125782188,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762868/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782188"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782188"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782188; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782188]").text(description); $(".js-view-count[data-work-id=125782188]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782188; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782188']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782188, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e8edbbcc13cfa0b8b6367512f8e203c" } } $('.js-work-strip[data-work-id=125782188]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782188,"title":"Experimental Study of the Boiling Heat Transfer in a Small Channel","translated_title":"","metadata":{"ai_abstract":"This paper presents an experimental study on boiling heat transfer in small channels, particularly focusing on micro-fin tubes. It discusses the factors affecting heat transfer coefficients, pressure drops, and the performance of various refrigerants including R22 and its alternatives. Results from multiple studies are reviewed to highlight the enhancements in heat transfer performance and the implications for applications in refrigeration systems.","grobid_abstract":"An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tube with 9.52 mm outside diameter and 1 m length was conducted. The refrigerants tested were R22, R134a, R407C and R410A while vapour quality ranges from 0.1 to 0.9, mass flux 50, 250, 450 kg m À2 s À1 and heat flux of 5, 12.5, 20 kW m À2. The saturation temperature is 5°C. For the smooth tube, the average heat transfer coefficients of R134a, R407C and R410A are 110.9%, 78.0% and 125.2% of those of R22 in test conditions respectively. For the micro-fin tube, the average heat transfer coefficients of R22, R134a, R407C and R410A are 1.86, 1.80, 1.69 and 1.78 times higher than those of the smooth tube. The pressure drop of R22, R407C and R410A for the smooth tube is similar to each other while the pressure drop of R134a is 1.7 times higher. The average pressure drop of R22, R134a, R407C and R410A for the micro-fin tube is 1.42, 1.30, 1.45 and 1.40 times higher when compared with that for the smooth one. Considering the effect of heat transfer enhancement and pressure drop augment, the efficiency index g 1 which values the thermo-hydraulic performance at identical flow rate of R22, R134a, R407C and R410A in the micro-fin tube used is 1.31, 1.38, 1.17 and 1.27 respectively compared with the smooth tube.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"grobid_abstract_attachment_id":119762868},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782188/Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel","translated_internal_url":"","created_at":"2024-11-23T10:01:50.333-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762868/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj.pdf","download_url":"https://www.academia.edu/attachments/119762868/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Study_of_the_Boiling_Heat_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762868/j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj-libre.pdf?1732388690=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Study_of_the_Boiling_Heat_T.pdf\u0026Expires=1737258297\u0026Signature=UYVigLzMVC2c952oqSSAnbG2C23x9ze~PI2HlhTQSDH11hOhUEMQnmdtdOu0H~3Syt5RGQSYPam3Z3m55NTqoVa0h4dChKMtQWsiaM-rena8S~uSDaHIm4GHWRJQNFqLT7pi~AKjn5dniH5gorv20QqSUV1UHE4f1EAtJzbovvQb1Cr2VLrxcKwsW786OGL5vLgDxBV6tWJrjF9uRA13HOEdlK46EWWLgmsz-LcahB~tvoFGKqbPwNmRRSQ3GzgEvqbydSyi9-BEI-00LnglOMcQaGzeWrA9jT-uKN43rssxfMfFh3RelV1CVcrftn~nFs6u3LkHCVuUDW~d~JJN4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tube with 9.52 mm outside diameter and 1 m length was conducted. The refrigerants tested were R22, R134a, R407C and R410A while vapour quality ranges from 0.1 to 0.9, mass flux 50, 250, 450 kg m À2 s À1 and heat flux of 5, 12.5, 20 kW m À2. The saturation temperature is 5°C. For the smooth tube, the average heat transfer coefficients of R134a, R407C and R410A are 110.9%, 78.0% and 125.2% of those of R22 in test conditions respectively. For the micro-fin tube, the average heat transfer coefficients of R22, R134a, R407C and R410A are 1.86, 1.80, 1.69 and 1.78 times higher than those of the smooth tube. The pressure drop of R22, R407C and R410A for the smooth tube is similar to each other while the pressure drop of R134a is 1.7 times higher. The average pressure drop of R22, R134a, R407C and R410A for the micro-fin tube is 1.42, 1.30, 1.45 and 1.40 times higher when compared with that for the smooth one. Considering the effect of heat transfer enhancement and pressure drop augment, the efficiency index g 1 which values the thermo-hydraulic performance at identical flow rate of R22, R134a, R407C and R410A in the micro-fin tube used is 1.31, 1.38, 1.17 and 1.27 respectively compared with the smooth tube.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762868/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj.pdf","download_url":"https://www.academia.edu/attachments/119762868/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Study_of_the_Boiling_Heat_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762868/j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj-libre.pdf?1732388690=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Study_of_the_Boiling_Heat_T.pdf\u0026Expires=1737258297\u0026Signature=UYVigLzMVC2c952oqSSAnbG2C23x9ze~PI2HlhTQSDH11hOhUEMQnmdtdOu0H~3Syt5RGQSYPam3Z3m55NTqoVa0h4dChKMtQWsiaM-rena8S~uSDaHIm4GHWRJQNFqLT7pi~AKjn5dniH5gorv20QqSUV1UHE4f1EAtJzbovvQb1Cr2VLrxcKwsW786OGL5vLgDxBV6tWJrjF9uRA13HOEdlK46EWWLgmsz-LcahB~tvoFGKqbPwNmRRSQ3GzgEvqbydSyi9-BEI-00LnglOMcQaGzeWrA9jT-uKN43rssxfMfFh3RelV1CVcrftn~nFs6u3LkHCVuUDW~d~JJN4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":45751783,"url":"https://doi.org/10.1615/tfesc1.mph.013053"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782186"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782186/Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium"><img alt="Research paper thumbnail of Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium" class="work-thumbnail" src="https://attachments.academia-assets.com/119762852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782186/Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium">Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium</a></div><div class="wp-workCard_item"><span>Mechanics &amp; Industry</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present work consists on convective heat transfer modeling in a plate heat exchanger filled w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present work consists on convective heat transfer modeling in a plate heat exchanger filled with metal foam under local thermal non-equilibrium (LTNE). The metal foam was inserted to fill completely the studied channel, which is crossed by a fluid. The modified Brinkman-Forchheimer extended Darcy model is used in the porous layer, while the macroscopic two-energy equation model is used for the thermal field. The channel walls are maintained at a constant temperature and the velocity at the inlet is supposed uniform. A dimensionless formulation is developed to perform a parametric study in terms of certain dimensionless variables, and solved by the finite volume method (FVM). The results include the effect of the interstitial heat transfer coefficient and the solid to fluid thermal conductivity of different type of metal foams. The results were used to estimate the influence of the convective and conductive contributions using open-celled metal foams with high porosity. It has been shown that such supports can bring a significant enhancement for the heat transfer.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="70ae9456e4c9ed66ee0868d6a624133e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762852,&quot;asset_id&quot;:125782186,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762852/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782186"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782186"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782186; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782186]").text(description); $(".js-view-count[data-work-id=125782186]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782186; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782186']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782186, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "70ae9456e4c9ed66ee0868d6a624133e" } } $('.js-work-strip[data-work-id=125782186]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782186,"title":"Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium","translated_title":"","metadata":{"publisher":"EDP Sciences","grobid_abstract":"The present work consists on convective heat transfer modeling in a plate heat exchanger filled with metal foam under local thermal non-equilibrium (LTNE). The metal foam was inserted to fill completely the studied channel, which is crossed by a fluid. The modified Brinkman-Forchheimer extended Darcy model is used in the porous layer, while the macroscopic two-energy equation model is used for the thermal field. The channel walls are maintained at a constant temperature and the velocity at the inlet is supposed uniform. A dimensionless formulation is developed to perform a parametric study in terms of certain dimensionless variables, and solved by the finite volume method (FVM). The results include the effect of the interstitial heat transfer coefficient and the solid to fluid thermal conductivity of different type of metal foams. The results were used to estimate the influence of the convective and conductive contributions using open-celled metal foams with high porosity. It has been shown that such supports can bring a significant enhancement for the heat transfer.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Mechanics \u0026 Industry","grobid_abstract_attachment_id":119762852},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782186/Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium","translated_internal_url":"","created_at":"2024-11-23T10:01:44.984-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762852/thumbnails/1.jpg","file_name":"mi140084.pdf","download_url":"https://www.academia.edu/attachments/119762852/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_investigation_of_convective_he.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762852/mi140084-libre.pdf?1732388697=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_investigation_of_convective_he.pdf\u0026Expires=1737258297\u0026Signature=Grk-HjZE71~JPNAcOdxn3iMREMVCwHw0emQX05bBCfZuujtieEyoEouvdno8WkvOx2Yv8y-SEMG6nsK2v5RRLOJTeWd7C4t2na9202WvI5B9v7ZcYTIXuFHaWdR3Qseok8J135WT~nFjIC9T5BU8K1TkqJCk02wMPmwfiLpryQKFmL-LpbaCQAXGe4Ke7x6dkd0haJYYhBvl~ygL8tfEBlWkyVPxmlbdpuDZ6ZwhZ3rrnd3VUaoSrVUcqqnotJMkzBBlnkD6KXZPZLSJ05UhleLxBXMU5WMjVW0qCWgKJDxCqzh8v5uHe38qFKVtQTyE3CgntSOP-gsQwwa9fGHPnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"The present work consists on convective heat transfer modeling in a plate heat exchanger filled with metal foam under local thermal non-equilibrium (LTNE). The metal foam was inserted to fill completely the studied channel, which is crossed by a fluid. The modified Brinkman-Forchheimer extended Darcy model is used in the porous layer, while the macroscopic two-energy equation model is used for the thermal field. The channel walls are maintained at a constant temperature and the velocity at the inlet is supposed uniform. A dimensionless formulation is developed to perform a parametric study in terms of certain dimensionless variables, and solved by the finite volume method (FVM). The results include the effect of the interstitial heat transfer coefficient and the solid to fluid thermal conductivity of different type of metal foams. The results were used to estimate the influence of the convective and conductive contributions using open-celled metal foams with high porosity. It has been shown that such supports can bring a significant enhancement for the heat transfer.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762852/thumbnails/1.jpg","file_name":"mi140084.pdf","download_url":"https://www.academia.edu/attachments/119762852/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_investigation_of_convective_he.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762852/mi140084-libre.pdf?1732388697=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_investigation_of_convective_he.pdf\u0026Expires=1737258297\u0026Signature=Grk-HjZE71~JPNAcOdxn3iMREMVCwHw0emQX05bBCfZuujtieEyoEouvdno8WkvOx2Yv8y-SEMG6nsK2v5RRLOJTeWd7C4t2na9202WvI5B9v7ZcYTIXuFHaWdR3Qseok8J135WT~nFjIC9T5BU8K1TkqJCk02wMPmwfiLpryQKFmL-LpbaCQAXGe4Ke7x6dkd0haJYYhBvl~ygL8tfEBlWkyVPxmlbdpuDZ6ZwhZ3rrnd3VUaoSrVUcqqnotJMkzBBlnkD6KXZPZLSJ05UhleLxBXMU5WMjVW0qCWgKJDxCqzh8v5uHe38qFKVtQTyE3CgntSOP-gsQwwa9fGHPnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119762851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762851/thumbnails/1.jpg","file_name":"mi140084.pdf","download_url":"https://www.academia.edu/attachments/119762851/download_file","bulk_download_file_name":"Numerical_investigation_of_convective_he.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762851/mi140084-libre.pdf?1732388690=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_investigation_of_convective_he.pdf\u0026Expires=1737258297\u0026Signature=HSZVk3h6v-5OiBjWAFKXGZFv1kvsi07qnZX~dBUjWiJNupFN7awdsY9y0UHLrjPC5REePpphBlvQXAkYG9C2PIiwot-jGOSWUHQ4fwvYythHRA4mvkLrS6xIq3tniymfRcQTC0qLU~0cRMmOV9pTTC-Df7AG-Vz0biWxjTIg4Dixv-bmGSURYsctYltf0288rYIiZfttX-qYNkOjdPFNjv1R1~l4rz~s8QQmagOFcMPuDzdUO~-zHVqREPqjuGfhZjQrH9Eyqe~sRY3HOt~qR5egPG6-T2L7to~Bp~N7yjrnAd6oQyhneu6w1ucWCsUYcdi9D9S2~cls7hgIog1s2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":119668,"name":"Thermal conduction in Nanomaterials","url":"https://www.academia.edu/Documents/in/Thermal_conduction_in_Nanomaterials"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":186189,"name":"Heat transfer coefficient","url":"https://www.academia.edu/Documents/in/Heat_transfer_coefficient"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":661889,"name":"Convective Heat Transfer","url":"https://www.academia.edu/Documents/in/Convective_Heat_Transfer"}],"urls":[{"id":45751781,"url":"https://www.mechanics-industry.org/articles/meca/pdf/2015/05/mi140084.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782182"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782182/Experimental_investigation_of_flow_boiling_in_narrow_channel"><img alt="Research paper thumbnail of Experimental investigation of flow boiling in narrow channel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782182/Experimental_investigation_of_flow_boiling_in_narrow_channel">Experimental investigation of flow boiling in narrow channel</a></div><div class="wp-workCard_item"><span>International Journal of Thermal Sciences</span><span>, Dec 1, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The flow boiling in narrow channel is investigated experimentally. The aim of the present work is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782182"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782182"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782182; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782182]").text(description); $(".js-view-count[data-work-id=125782182]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782182; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782182']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782182, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782182]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782182,"title":"Experimental investigation of flow boiling in narrow channel","translated_title":"","metadata":{"abstract":"The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.","publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":2015,"errors":{}},"publication_name":"International Journal of Thermal Sciences"},"translated_abstract":"The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.","internal_url":"https://www.academia.edu/125782182/Experimental_investigation_of_flow_boiling_in_narrow_channel","translated_internal_url":"","created_at":"2024-11-23T10:01:40.327-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_investigation_of_flow_boiling_in_narrow_channel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":186189,"name":"Heat transfer coefficient","url":"https://www.academia.edu/Documents/in/Heat_transfer_coefficient"},{"id":187812,"name":"Thermal Sciences","url":"https://www.academia.edu/Documents/in/Thermal_Sciences"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":498793,"name":"Boiling Heat Transfer Coefficient","url":"https://www.academia.edu/Documents/in/Boiling_Heat_Transfer_Coefficient"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":725275,"name":"Narrow channel","url":"https://www.academia.edu/Documents/in/Narrow_channel"},{"id":837269,"name":"Flow Patterns","url":"https://www.academia.edu/Documents/in/Flow_Patterns"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"},{"id":1444999,"name":"Nucleate Boiling","url":"https://www.academia.edu/Documents/in/Nucleate_Boiling"},{"id":2489916,"name":"Superheating","url":"https://www.academia.edu/Documents/in/Superheating"}],"urls":[{"id":45751778,"url":"https://doi.org/10.1016/j.ijthermalsci.2015.06.016"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782176"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782176/Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel"><img alt="Research paper thumbnail of Experimental study of an upward sub-cooled forced convection in a rectangular channel" class="work-thumbnail" src="https://attachments.academia-assets.com/119762867/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782176/Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel">Experimental study of an upward sub-cooled forced convection in a rectangular channel</a></div><div class="wp-workCard_item"><span>Heat and Mass Transfer</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ab2611f48b6357630f39140e5713073" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762867,&quot;asset_id&quot;:125782176,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762867/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782176"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782176"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782176; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782176]").text(description); $(".js-view-count[data-work-id=125782176]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782176; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782176']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782176, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ab2611f48b6357630f39140e5713073" } } $('.js-work-strip[data-work-id=125782176]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782176,"title":"Experimental study of an upward sub-cooled forced convection in a rectangular channel","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_abstract":"The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/ cm 2 . The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Heat and Mass Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782176/Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel","translated_internal_url":"","created_at":"2024-11-23T10:01:34.657-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762867,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762867/thumbnails/1.jpg","file_name":"s00231-015-1656-620241123-1-bl8jht.pdf","download_url":"https://www.academia.edu/attachments/119762867/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_study_of_an_upward_sub_cool.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762867/s00231-015-1656-620241123-1-bl8jht-libre.pdf?1732388701=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_study_of_an_upward_sub_cool.pdf\u0026Expires=1737258297\u0026Signature=ZTvbT0A7fw6ei3LZfD6AVjZDSNms9wBPBH0ZvzlMa-9OKJHNZpDhx38MvUeod4-aWgahijJR-uZfrgkhA6ezjWhNoPlaiRcGbFFPL3ZLfAtmAie-xfTuG0tBRYWliWJDl2nEMAcL7r0ERVOq-OJnL32JDafFF26RX-w80MJ9Mig5UYqv0o82nUJu1JPnOcIqZkzy9tLgOp~vrWUR3gHEe9UnTGU~D2-gtJs5E-Z9qX-Vcqk~LEGmjCARnrloNQfHydnZAmEg8mG0q-jJS-j3kaO41RY3MB5PYm9qYDKWUlHIMj4FYlu4ugljJJAZmLd8WAlV0bJj03LHtBP2yElh7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762867,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762867/thumbnails/1.jpg","file_name":"s00231-015-1656-620241123-1-bl8jht.pdf","download_url":"https://www.academia.edu/attachments/119762867/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_study_of_an_upward_sub_cool.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762867/s00231-015-1656-620241123-1-bl8jht-libre.pdf?1732388701=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_study_of_an_upward_sub_cool.pdf\u0026Expires=1737258297\u0026Signature=ZTvbT0A7fw6ei3LZfD6AVjZDSNms9wBPBH0ZvzlMa-9OKJHNZpDhx38MvUeod4-aWgahijJR-uZfrgkhA6ezjWhNoPlaiRcGbFFPL3ZLfAtmAie-xfTuG0tBRYWliWJDl2nEMAcL7r0ERVOq-OJnL32JDafFF26RX-w80MJ9Mig5UYqv0o82nUJu1JPnOcIqZkzy9tLgOp~vrWUR3gHEe9UnTGU~D2-gtJs5E-Z9qX-Vcqk~LEGmjCARnrloNQfHydnZAmEg8mG0q-jJS-j3kaO41RY3MB5PYm9qYDKWUlHIMj4FYlu4ugljJJAZmLd8WAlV0bJj03LHtBP2yElh7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":186189,"name":"Heat transfer coefficient","url":"https://www.academia.edu/Documents/in/Heat_transfer_coefficient"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"}],"urls":[{"id":45751776,"url":"http://link.springer.com/content/pdf/10.1007/s00231-015-1656-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782174"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782174/Intensification_des_transferts_de_chaleur_et_%C3%A9bullition_dans_les_mousses_m%C3%A9talliques_application_%C3%A0_la_r%C3%A9alisation_d_%C3%A9changeurs_compacts"><img alt="Research paper thumbnail of Intensification des transferts de chaleur et ébullition dans les mousses métalliques : application à la réalisation d’échangeurs compacts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782174/Intensification_des_transferts_de_chaleur_et_%C3%A9bullition_dans_les_mousses_m%C3%A9talliques_application_%C3%A0_la_r%C3%A9alisation_d_%C3%A9changeurs_compacts">Intensification des transferts de chaleur et ébullition dans les mousses métalliques : application à la réalisation d’échangeurs compacts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans cha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782174"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782174"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782174; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782174]").text(description); $(".js-view-count[data-work-id=125782174]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782174; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782174']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782174, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782174]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782174,"title":"Intensification des transferts de chaleur et ébullition dans les mousses métalliques : application à la réalisation d’échangeurs compacts","translated_title":"","metadata":{"abstract":"Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri..."},"translated_abstract":"Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri...","internal_url":"https://www.academia.edu/125782174/Intensification_des_transferts_de_chaleur_et_%C3%A9bullition_dans_les_mousses_m%C3%A9talliques_application_%C3%A0_la_r%C3%A9alisation_d_%C3%A9changeurs_compacts","translated_internal_url":"","created_at":"2024-11-23T10:01:31.113-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Intensification_des_transferts_de_chaleur_et_ébullition_dans_les_mousses_métalliques_application_à_la_réalisation_d_échangeurs_compacts","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","summary":"Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri...","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782171"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782171/Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws"><img alt="Research paper thumbnail of Multiphase flow in metallic foam: Experimental analysis of flow laws" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782171/Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws">Multiphase flow in metallic foam: Experimental analysis of flow laws</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">International audienc</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782171"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782171"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782171; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782171]").text(description); $(".js-view-count[data-work-id=125782171]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782171; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782171']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782171, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782171]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782171,"title":"Multiphase flow in metallic foam: Experimental analysis of flow laws","translated_title":"","metadata":{"abstract":"International audienc"},"translated_abstract":"International audienc","internal_url":"https://www.academia.edu/125782171/Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws","translated_internal_url":"","created_at":"2024-11-23T10:01:27.690-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws","translated_slug":"","page_count":null,"language":"cy","content_type":"Work","summary":"International audienc","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782115/Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss"><img alt="Research paper thumbnail of Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss" class="work-thumbnail" src="https://attachments.academia-assets.com/119762830/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782115/Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss">Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present work deals with the hydraulic characterization of two- phase flow with phase change i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4acda1693e386ce60d4e7ce32b690505" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762830,&quot;asset_id&quot;:125782115,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762830/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782115]").text(description); $(".js-view-count[data-work-id=125782115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782115, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4acda1693e386ce60d4e7ce32b690505" } } $('.js-work-strip[data-work-id=125782115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782115,"title":"Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss","translated_title":"","metadata":{"abstract":"The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...","internal_url":"https://www.academia.edu/125782115/Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss","translated_internal_url":"","created_at":"2024-11-23T09:59:27.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762830/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/119762830/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Boiling_in_Metallic_Foam_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762830/document-libre.pdf?1732388711=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Boiling_in_Metallic_Foam_Expe.pdf\u0026Expires=1737258298\u0026Signature=cHGDPb5KVP-4~7ox7k9xRkOCMlEuI7RIdKIfx2w62ojZUuDjXusGbJ1iudIja0k-zVxKuTrZv4kjoAVb8tgMt5QLu4CxEsQcAuF-4Slq~GA1JYpxoTkKpMlTZI2mlsv-If6wi9hfIluH0EyHhQ3IID71-pZEC9zizKPP0-~MVqA16Js8qDTFec4ANzo4q43hV0TNA9riRjCoNsF~W3U9KW4WhpNmj~EHV~u2hZR0qYx2Nro3vNRmTNa9N1EcH4zassbrWUw3lPOrqCpkdgTV0Vy66RtM~acrSOh0sezxSJOJ~~0t6FtghF2QgBDjxMEv1MZIO5YDqN38NADRAa9s3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762830/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/119762830/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Boiling_in_Metallic_Foam_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762830/document-libre.pdf?1732388711=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Boiling_in_Metallic_Foam_Expe.pdf\u0026Expires=1737258298\u0026Signature=cHGDPb5KVP-4~7ox7k9xRkOCMlEuI7RIdKIfx2w62ojZUuDjXusGbJ1iudIja0k-zVxKuTrZv4kjoAVb8tgMt5QLu4CxEsQcAuF-4Slq~GA1JYpxoTkKpMlTZI2mlsv-If6wi9hfIluH0EyHhQ3IID71-pZEC9zizKPP0-~MVqA16Js8qDTFec4ANzo4q43hV0TNA9riRjCoNsF~W3U9KW4WhpNmj~EHV~u2hZR0qYx2Nro3vNRmTNa9N1EcH4zassbrWUw3lPOrqCpkdgTV0Vy66RtM~acrSOh0sezxSJOJ~~0t6FtghF2QgBDjxMEv1MZIO5YDqN38NADRAa9s3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765975/Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation"><img alt="Research paper thumbnail of Experimental study of forced convection through various metallic foam samples: effect of effective thermal conductivity on Nusselt correlation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765975/Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation">Experimental study of forced convection through various metallic foam samples: effect of effective thermal conductivity on Nusselt correlation</a></div><div class="wp-workCard_item"><span>Journal of Thermal Analysis and Calorimetry</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765975]").text(description); $(".js-view-count[data-work-id=122765975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765975,"title":"Experimental study of forced convection through various metallic foam samples: effect of effective thermal conductivity on Nusselt correlation","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"Journal of Thermal Analysis and Calorimetry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765975/Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation","translated_internal_url":"","created_at":"2024-08-11T03:27:15.279-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":715244,"name":"Prandtl Number","url":"https://www.academia.edu/Documents/in/Prandtl_Number"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":2726782,"name":"Thermal Analysis and Calorimetry","url":"https://www.academia.edu/Documents/in/Thermal_Analysis_and_Calorimetry"}],"urls":[{"id":43935031,"url":"https://link.springer.com/content/pdf/10.1007/s10973-022-11779-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765974"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765974/Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production"><img alt="Research paper thumbnail of Comparison Between Methanol and Methane Steam Reforming Reactors for Hydrogen Production" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765974/Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production">Comparison Between Methanol and Methane Steam Reforming Reactors for Hydrogen Production</a></div><div class="wp-workCard_item"><span>Advances in Green Energies and Materials Technology</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765974"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765974"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765974; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765974]").text(description); $(".js-view-count[data-work-id=122765974]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765974; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765974']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765974, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765974]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765974,"title":"Comparison Between Methanol and Methane Steam Reforming Reactors for Hydrogen Production","translated_title":"","metadata":{"publisher":"Springer Singapore","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Advances in Green Energies and Materials Technology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765974/Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production","translated_internal_url":"","created_at":"2024-08-11T03:27:15.053-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":112334,"name":"Methanol","url":"https://www.academia.edu/Documents/in/Methanol"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":43935030,"url":"https://link.springer.com/content/pdf/10.1007/978-981-16-0378-5_55"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765973"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765973/Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production"><img alt="Research paper thumbnail of Effect of inter-catalytic layer spacing at wall-coated steam methane reformer surfaces on hydrogen production" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765973/Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production">Effect of inter-catalytic layer spacing at wall-coated steam methane reformer surfaces on hydrogen production</a></div><div class="wp-workCard_item"><span>2018 9th International Renewable Energy Congress (IREC)</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work deals with a numerical study on a wall-coated steam methane reformer improvement. The e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765973"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765973"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765973; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765973]").text(description); $(".js-view-count[data-work-id=122765973]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765973; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765973']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765973, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765973]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765973,"title":"Effect of inter-catalytic layer spacing at wall-coated steam methane reformer surfaces on hydrogen production","translated_title":"","metadata":{"abstract":"This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.","publisher":"2018 9th International Renewable Energy Congress (IREC)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"2018 9th International Renewable Energy Congress (IREC)"},"translated_abstract":"This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.","internal_url":"https://www.academia.edu/122765973/Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production","translated_internal_url":"","created_at":"2024-08-11T03:27:14.906-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765972"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765972/Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer"><img alt="Research paper thumbnail of Influence of Metal Foam Insert Within a Methanol Steam Reformer" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765972/Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer">Influence of Metal Foam Insert Within a Methanol Steam Reformer</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this work is to study the influence of the insertion of metallic foam in a methanol st...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765972"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765972"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765972; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765972]").text(description); $(".js-view-count[data-work-id=122765972]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765972; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765972']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765972, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765972]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765972,"title":"Influence of Metal Foam Insert Within a Methanol Steam Reformer","translated_title":"","metadata":{"abstract":"The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.","internal_url":"https://www.academia.edu/122765972/Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer","translated_internal_url":"","created_at":"2024-08-11T03:27:14.761-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":112334,"name":"Methanol","url":"https://www.academia.edu/Documents/in/Methanol"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765971"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765971/Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert"><img alt="Research paper thumbnail of Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765971/Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert">Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert</a></div><div class="wp-workCard_item"><span>International Journal of Hydrogen Energy</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765971"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765971"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765971; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765971]").text(description); $(".js-view-count[data-work-id=122765971]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765971; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765971']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765971, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765971]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765971,"title":"Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert","translated_title":"","metadata":{"abstract":"Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"International Journal of Hydrogen Energy"},"translated_abstract":"Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.","internal_url":"https://www.academia.edu/122765971/Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert","translated_internal_url":"","created_at":"2024-08-11T03:27:14.548-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":104345,"name":"Hydrogen Energy","url":"https://www.academia.edu/Documents/in/Hydrogen_Energy"},{"id":112334,"name":"Methanol","url":"https://www.academia.edu/Documents/in/Methanol"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935029,"url":"https://api.elsevier.com/content/article/PII:S0360319920348187?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765970/Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin"><img alt="Research paper thumbnail of Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765970/Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin">Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin</a></div><div class="wp-workCard_item"><span>International Journal of Thermal Sciences</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In this work, a microcellular model is developed to study the thermal behavior of a plat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765970]").text(description); $(".js-view-count[data-work-id=122765970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765970,"title":"Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin","translated_title":"","metadata":{"abstract":"Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Thermal Sciences"},"translated_abstract":"Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.","internal_url":"https://www.academia.edu/122765970/Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin","translated_internal_url":"","created_at":"2024-08-11T03:27:14.325-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":67493,"name":"Multiphysics","url":"https://www.academia.edu/Documents/in/Multiphysics"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":187812,"name":"Thermal Sciences","url":"https://www.academia.edu/Documents/in/Thermal_Sciences"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":771600,"name":"Porous Medium","url":"https://www.academia.edu/Documents/in/Porous_Medium"}],"urls":[{"id":43935028,"url":"https://api.elsevier.com/content/article/PII:S1290072919310865?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765969"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765969/Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams"><img alt="Research paper thumbnail of Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams" class="work-thumbnail" src="https://attachments.academia-assets.com/117362158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765969/Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams">Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Mass Transfer</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a60e9bef2189222f65a59c98eef75642" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362158,&quot;asset_id&quot;:122765969,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362158/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765969"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765969"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765969; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765969]").text(description); $(".js-view-count[data-work-id=122765969]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765969; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765969']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765969, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a60e9bef2189222f65a59c98eef75642" } } $('.js-work-strip[data-work-id=122765969]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765969,"title":"Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Heat and Mass Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765969/Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams","translated_internal_url":"","created_at":"2024-08-11T03:27:14.094-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362158/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2019.11916220240811-1-2bpl83.pdf","download_url":"https://www.academia.edu/attachments/117362158/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_characterization_of_a_heat_excha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362158/j.ijheatmasstransfer.2019.11916220240811-1-2bpl83-libre.pdf?1723372829=\u0026response-content-disposition=attachment%3B+filename%3DThermal_characterization_of_a_heat_excha.pdf\u0026Expires=1737258298\u0026Signature=M0qkUetIarVA9ffVUKN~a1pgByl-2WEpsqCgM8i3CTQ4lOIYnnVAnK-7xDvzK-pgePJV67k33nS2l-4ciK8DpMGr775I9d80kLu40yV-qogH-fdBFcbzN~k~WUmCz2NdiOqHST0rwkLQ8XcuEZiiUAwg8jk1rSLdZcLbXz0ug~eaHM0BJCXXRStuTn9clgxLOi1HeEeGM3oWpMjoHIpHSG36iJOXEa31B0wnWh3q15CLX4oo32tdEgT~BEPmK5QeGmz8xZu~9VKlV-P6NEDZdHeKfZAn23Bwg-68aSXGiqwiQuujsfl-aeoy~cEe0UJzdryS5plqyCc0PWNoAB3cBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362158/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2019.11916220240811-1-2bpl83.pdf","download_url":"https://www.academia.edu/attachments/117362158/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_characterization_of_a_heat_excha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362158/j.ijheatmasstransfer.2019.11916220240811-1-2bpl83-libre.pdf?1723372829=\u0026response-content-disposition=attachment%3B+filename%3DThermal_characterization_of_a_heat_excha.pdf\u0026Expires=1737258298\u0026Signature=M0qkUetIarVA9ffVUKN~a1pgByl-2WEpsqCgM8i3CTQ4lOIYnnVAnK-7xDvzK-pgePJV67k33nS2l-4ciK8DpMGr775I9d80kLu40yV-qogH-fdBFcbzN~k~WUmCz2NdiOqHST0rwkLQ8XcuEZiiUAwg8jk1rSLdZcLbXz0ug~eaHM0BJCXXRStuTn9clgxLOi1HeEeGM3oWpMjoHIpHSG36iJOXEa31B0wnWh3q15CLX4oo32tdEgT~BEPmK5QeGmz8xZu~9VKlV-P6NEDZdHeKfZAn23Bwg-68aSXGiqwiQuujsfl-aeoy~cEe0UJzdryS5plqyCc0PWNoAB3cBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":206381,"name":"Phase Change Material","url":"https://www.academia.edu/Documents/in/Phase_Change_Material"}],"urls":[{"id":43935027,"url":"https://api.elsevier.com/content/article/PII:S0017931019322185?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765968"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765968/Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling"><img alt="Research paper thumbnail of Impact of Ni-based catalyst patterning on hydrogen production from MSR: External steam reformer modelling" class="work-thumbnail" src="https://attachments.academia-assets.com/117362154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765968/Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling">Impact of Ni-based catalyst patterning on hydrogen production from MSR: External steam reformer modelling</a></div><div class="wp-workCard_item"><span>International Journal of Hydrogen Energy</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen production chain. In such devices, the catalyst which is generally nickel-based is coated on the walls, and the heat supply influences directly the fuel processing efficiency. In this work, two-dimensional CFD study is carried out to explore an enhancement on MSR thermal behavior. Two configurations in terms of catalyst coating are investigated. The first MSR configuration is equipped with continuous catalytic layer, while in the second, discrete catalyst layers separated by an inert gap are imposed. The effect of the catalyst patterning on the thermal and mass behavior of MSR is discussed. The results show that the MSR</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db5c9ac5ab8ea9844f306a40ba69affd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362154,&quot;asset_id&quot;:122765968,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362154/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765968"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765968"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765968; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765968]").text(description); $(".js-view-count[data-work-id=122765968]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765968; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765968']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765968, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db5c9ac5ab8ea9844f306a40ba69affd" } } $('.js-work-strip[data-work-id=122765968]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765968,"title":"Impact of Ni-based catalyst patterning on hydrogen production from MSR: External steam reformer modelling","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen production chain. In such devices, the catalyst which is generally nickel-based is coated on the walls, and the heat supply influences directly the fuel processing efficiency. In this work, two-dimensional CFD study is carried out to explore an enhancement on MSR thermal behavior. Two configurations in terms of catalyst coating are investigated. The first MSR configuration is equipped with continuous catalytic layer, while in the second, discrete catalyst layers separated by an inert gap are imposed. The effect of the catalyst patterning on the thermal and mass behavior of MSR is discussed. The results show that the MSR","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"International Journal of Hydrogen Energy","grobid_abstract_attachment_id":117362154},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765968/Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling","translated_internal_url":"","created_at":"2024-08-11T03:27:12.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362154/thumbnails/1.jpg","file_name":"S036031991833091X.pdf","download_url":"https://www.academia.edu/attachments/117362154/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Ni_based_catalyst_patterning_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362154/S036031991833091X-libre.pdf?1723372824=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Ni_based_catalyst_patterning_o.pdf\u0026Expires=1737258299\u0026Signature=eRPS4p-9Wn7IQqH7S5oOn00ckc0u4JV9F-9YmWsz~oVF0sjQXNlRcBshNphoOqeh5xYq0toy60qGHrYA6ZQjThIKH-6tht-4mDKxC2u~3FMzyl0vv-L5D8B6PYSKJHlucRf-tUrFu82Q4HeDVVB2FyusZXJAQthN0qjyj6cBaQCpjCpJjWUBPqRP5V2C3LjPuwwaArLSgyRLOspBu-J5OiV2I-T9MOHYgtBLeSIFqevf4AX2WSj1CFCk93IKjGrbML45PojjT-zqAufN9BQiJx8SHgJgeYtFxx18yI~EbB9i8zfQiIysueH-~uAPzj3lflMVJ0kyFgPT0UtsH6GgDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling","translated_slug":"","page_count":26,"language":"en","content_type":"Work","summary":"Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen production chain. In such devices, the catalyst which is generally nickel-based is coated on the walls, and the heat supply influences directly the fuel processing efficiency. In this work, two-dimensional CFD study is carried out to explore an enhancement on MSR thermal behavior. Two configurations in terms of catalyst coating are investigated. The first MSR configuration is equipped with continuous catalytic layer, while in the second, discrete catalyst layers separated by an inert gap are imposed. The effect of the catalyst patterning on the thermal and mass behavior of MSR is discussed. The results show that the MSR","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362154/thumbnails/1.jpg","file_name":"S036031991833091X.pdf","download_url":"https://www.academia.edu/attachments/117362154/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Ni_based_catalyst_patterning_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362154/S036031991833091X-libre.pdf?1723372824=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Ni_based_catalyst_patterning_o.pdf\u0026Expires=1737258299\u0026Signature=eRPS4p-9Wn7IQqH7S5oOn00ckc0u4JV9F-9YmWsz~oVF0sjQXNlRcBshNphoOqeh5xYq0toy60qGHrYA6ZQjThIKH-6tht-4mDKxC2u~3FMzyl0vv-L5D8B6PYSKJHlucRf-tUrFu82Q4HeDVVB2FyusZXJAQthN0qjyj6cBaQCpjCpJjWUBPqRP5V2C3LjPuwwaArLSgyRLOspBu-J5OiV2I-T9MOHYgtBLeSIFqevf4AX2WSj1CFCk93IKjGrbML45PojjT-zqAufN9BQiJx8SHgJgeYtFxx18yI~EbB9i8zfQiIysueH-~uAPzj3lflMVJ0kyFgPT0UtsH6GgDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":104345,"name":"Hydrogen Energy","url":"https://www.academia.edu/Documents/in/Hydrogen_Energy"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935026,"url":"https://api.elsevier.com/content/article/PII:S036031991833091X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765967"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765967/Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples"><img alt="Research paper thumbnail of Thermal and hydrodynamic performance of flow boiling through a heat exchanger filled with various metallic foam samples" class="work-thumbnail" src="https://attachments.academia-assets.com/117362157/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765967/Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples">Thermal and hydrodynamic performance of flow boiling through a heat exchanger filled with various metallic foam samples</a></div><div class="wp-workCard_item"><span>Chemical Engineering and Processing: Process Intensification</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using me...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using metallic foam.  The insertion of metallic foam extends the boiling zone.  The NiFeAlCr and Inconel metallic foam are not recommended for heat exchanger  The copper metallic foam moves forward the critical heat flux.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3622afbc39035b06c21fb1bf58a79f0e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362157,&quot;asset_id&quot;:122765967,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362157/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765967"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765967"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765967; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765967]").text(description); $(".js-view-count[data-work-id=122765967]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765967; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765967']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765967, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3622afbc39035b06c21fb1bf58a79f0e" } } $('.js-work-strip[data-work-id=122765967]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765967,"title":"Thermal and hydrodynamic performance of flow boiling through a heat exchanger filled with various metallic foam samples","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using metallic foam.  The insertion of metallic foam extends the boiling zone.  The NiFeAlCr and Inconel metallic foam are not recommended for heat exchanger  The copper metallic foam moves forward the critical heat flux.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Chemical Engineering and Processing: Process Intensification","grobid_abstract_attachment_id":117362157},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765967/Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples","translated_internal_url":"","created_at":"2024-08-11T03:27:12.509-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362157,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362157/thumbnails/1.jpg","file_name":"j.cep.2017.08.01420240811-1-jiwo77.pdf","download_url":"https://www.academia.edu/attachments/117362157/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_and_hydrodynamic_performance_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362157/j.cep.2017.08.01420240811-1-jiwo77-libre.pdf?1723372826=\u0026response-content-disposition=attachment%3B+filename%3DThermal_and_hydrodynamic_performance_of.pdf\u0026Expires=1737258299\u0026Signature=WJbcFycOqkav0Y4-XHx1ncIFT2sq~U07~1Y9O4lbpuFgARhObST4Rvkia28Aa~nHKLWR6gOHQz6SFhvrJx9xXSJMrYhGA8lcGiGFjxA3f1Sdzu3iv~yHc6WKEUWqMhTaHNEHVJCIvrbGoi6JeluyCcJJwdV8FeKCUHirqOcqFJkCUf~AEMp8seXqHzi1JRDxjQsHUS8Yrlp2nCOYu8ca0MbJIo05A9H777GcNA33v-TQpFAxzwexkYdsVS4~xuMf~ITdUKekOIZgNP~Lidz2REKJh5pY1yySegcEtwV0Mz0JVWkn1Dq0eUGCHvrQteEUCHnkFcWsa-IOLYC0k6IwnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using metallic foam.  The insertion of metallic foam extends the boiling zone.  The NiFeAlCr and Inconel metallic foam are not recommended for heat exchanger  The copper metallic foam moves forward the critical heat flux.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362157,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362157/thumbnails/1.jpg","file_name":"j.cep.2017.08.01420240811-1-jiwo77.pdf","download_url":"https://www.academia.edu/attachments/117362157/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_and_hydrodynamic_performance_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362157/j.cep.2017.08.01420240811-1-jiwo77-libre.pdf?1723372826=\u0026response-content-disposition=attachment%3B+filename%3DThermal_and_hydrodynamic_performance_of.pdf\u0026Expires=1737258299\u0026Signature=WJbcFycOqkav0Y4-XHx1ncIFT2sq~U07~1Y9O4lbpuFgARhObST4Rvkia28Aa~nHKLWR6gOHQz6SFhvrJx9xXSJMrYhGA8lcGiGFjxA3f1Sdzu3iv~yHc6WKEUWqMhTaHNEHVJCIvrbGoi6JeluyCcJJwdV8FeKCUHirqOcqFJkCUf~AEMp8seXqHzi1JRDxjQsHUS8Yrlp2nCOYu8ca0MbJIo05A9H777GcNA33v-TQpFAxzwexkYdsVS4~xuMf~ITdUKekOIZgNP~Lidz2REKJh5pY1yySegcEtwV0Mz0JVWkn1Dq0eUGCHvrQteEUCHnkFcWsa-IOLYC0k6IwnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":43935025,"url":"https://api.elsevier.com/content/article/PII:S0255270117303550?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765966"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765966/Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer"><img alt="Research paper thumbnail of Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer" class="work-thumbnail" src="https://attachments.academia-assets.com/117362159/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765966/Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer">Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer</a></div><div class="wp-workCard_item"><span>Heat and Mass Transfer</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="910351af265e381bb6a35ef675b1c5cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362159,&quot;asset_id&quot;:122765966,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362159/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765966"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765966"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765966; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765966]").text(description); $(".js-view-count[data-work-id=122765966]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765966; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765966']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765966, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "910351af265e381bb6a35ef675b1c5cd" } } $('.js-work-strip[data-work-id=122765966]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765966,"title":"Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Heat and Mass Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765966/Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer","translated_internal_url":"","created_at":"2024-08-11T03:27:12.256-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362159/thumbnails/1.jpg","file_name":"s00231-017-2131-320240811-1-30fez5.pdf","download_url":"https://www.academia.edu/attachments/117362159/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimation_of_transient_heat_flux_densit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362159/s00231-017-2131-320240811-1-30fez5-libre.pdf?1723372989=\u0026response-content-disposition=attachment%3B+filename%3DEstimation_of_transient_heat_flux_densit.pdf\u0026Expires=1737258299\u0026Signature=MTJIq04VAWqXoTR9uwpxPfdhAFI28CMPA~Z43TitOrc8Hw8HjqIT82KgXjwLuxi2eHxW65V-my2IMm~A90fVopxlmYEmmZkjXGN2ijFQMAefJ6~c-ovJ6d7e9g4ANtdFHWovD4DBKTcfwRLA0aaXTx~hu8GE~zIzPJL2RckCruSiAgag8zgyIXTmyMW6cqbkC~XKE-~YLhjHM5igvZJ2dDHWHiB08qYVf4nQkCoJd0E-RHbzlybmw8yOxTTYGcS5Xe5Z71o7GEKeQIgaicvaHRT9KDK3fhr79adszemb4RI5FwdiZPn9pAjJ7KA2sr-a1fJqqGagcD2kDK6NhZfxlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362159/thumbnails/1.jpg","file_name":"s00231-017-2131-320240811-1-30fez5.pdf","download_url":"https://www.academia.edu/attachments/117362159/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimation_of_transient_heat_flux_densit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362159/s00231-017-2131-320240811-1-30fez5-libre.pdf?1723372989=\u0026response-content-disposition=attachment%3B+filename%3DEstimation_of_transient_heat_flux_densit.pdf\u0026Expires=1737258299\u0026Signature=MTJIq04VAWqXoTR9uwpxPfdhAFI28CMPA~Z43TitOrc8Hw8HjqIT82KgXjwLuxi2eHxW65V-my2IMm~A90fVopxlmYEmmZkjXGN2ijFQMAefJ6~c-ovJ6d7e9g4ANtdFHWovD4DBKTcfwRLA0aaXTx~hu8GE~zIzPJL2RckCruSiAgag8zgyIXTmyMW6cqbkC~XKE-~YLhjHM5igvZJ2dDHWHiB08qYVf4nQkCoJd0E-RHbzlybmw8yOxTTYGcS5Xe5Z71o7GEKeQIgaicvaHRT9KDK3fhr79adszemb4RI5FwdiZPn9pAjJ7KA2sr-a1fJqqGagcD2kDK6NhZfxlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935024,"url":"http://link.springer.com/content/pdf/10.1007/s00231-017-2131-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765965"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765965/Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence"><img alt="Research paper thumbnail of Experimental hydrodynamic study of flow through metallic foams: Flow regime transitions and surface roughness influence" class="work-thumbnail" src="https://attachments.academia-assets.com/117362153/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765965/Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence">Experimental hydrodynamic study of flow through metallic foams: Flow regime transitions and surface roughness influence</a></div><div class="wp-workCard_item"><span>Mechanics of Materials</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="13161c5feebd6e810b7ec6335e083ef3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362153,&quot;asset_id&quot;:122765965,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362153/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765965"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765965"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765965; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765965]").text(description); $(".js-view-count[data-work-id=122765965]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765965; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765965']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765965, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "13161c5feebd6e810b7ec6335e083ef3" } } $('.js-work-strip[data-work-id=122765965]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765965,"title":"Experimental hydrodynamic study of flow through metallic foams: Flow regime transitions and surface roughness influence","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Mechanics of Materials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765965/Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence","translated_internal_url":"","created_at":"2024-08-11T03:27:11.998-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362153,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362153/thumbnails/1.jpg","file_name":"j.mechmat.2016.05.00720240811-1-to5d3d.pdf","download_url":"https://www.academia.edu/attachments/117362153/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_hydrodynamic_study_of_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362153/j.mechmat.2016.05.00720240811-1-to5d3d-libre.pdf?1723372828=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_hydrodynamic_study_of_flow.pdf\u0026Expires=1737258299\u0026Signature=Ufy6HBMEmN37oiQqCWettnxnvo5ZrgFoO6r6udOSLsZ-HGvaXgjlH7zgPBxMHQeHArzNbVAl0VcS2T5ZJ0vwYXzya9rbjvlKebovZPh8VfKpeUFXJj2PJaFxl70qqv4Upm58TN5gKwO8wlG1djZPxz0lurzyTxNoSeqrPmYTEmyyuQAFnXflFRJ3uvCUto5U0z-Cz8xgfvlfMPP~ppgPgllbYqfOoJ9LOxKh6ANaeecIvGh9ds75TVRaFvomTVIOcpwu0pyv11aKyfrxxhsw1PTWiCCFNukJiFIZWn6iuEbRZDD4Qwo2rhYwd8J21KlDaKU3ksrzgV2SQ7T8OMQ9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362153,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362153/thumbnails/1.jpg","file_name":"j.mechmat.2016.05.00720240811-1-to5d3d.pdf","download_url":"https://www.academia.edu/attachments/117362153/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_hydrodynamic_study_of_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362153/j.mechmat.2016.05.00720240811-1-to5d3d-libre.pdf?1723372828=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_hydrodynamic_study_of_flow.pdf\u0026Expires=1737258299\u0026Signature=Ufy6HBMEmN37oiQqCWettnxnvo5ZrgFoO6r6udOSLsZ-HGvaXgjlH7zgPBxMHQeHArzNbVAl0VcS2T5ZJ0vwYXzya9rbjvlKebovZPh8VfKpeUFXJj2PJaFxl70qqv4Upm58TN5gKwO8wlG1djZPxz0lurzyTxNoSeqrPmYTEmyyuQAFnXflFRJ3uvCUto5U0z-Cz8xgfvlfMPP~ppgPgllbYqfOoJ9LOxKh6ANaeecIvGh9ds75TVRaFvomTVIOcpwu0pyv11aKyfrxxhsw1PTWiCCFNukJiFIZWn6iuEbRZDD4Qwo2rhYwd8J21KlDaKU3ksrzgV2SQ7T8OMQ9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":32984,"name":"Mechanics of Materials","url":"https://www.academia.edu/Documents/in/Mechanics_of_Materials"},{"id":33296,"name":"Surface Roughness","url":"https://www.academia.edu/Documents/in/Surface_Roughness"},{"id":1342788,"name":"Surface Finish","url":"https://www.academia.edu/Documents/in/Surface_Finish"}],"urls":[{"id":43935023,"url":"https://api.elsevier.com/content/article/PII:S0167663616300503?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765964/Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances"><img alt="Research paper thumbnail of Numerical study on the effects of the macropatterned active surfaces on the wall-coated steam methane reformer performances" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765964/Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances">Numerical study on the effects of the macropatterned active surfaces on the wall-coated steam methane reformer performances</a></div><div class="wp-workCard_item"><span>International Journal of Hydrogen Energy</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper deals with a numerical study on the steam methane reforming reaction performa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765964]").text(description); $(".js-view-count[data-work-id=122765964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765964, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765964,"title":"Numerical study on the effects of the macropatterned active surfaces on the wall-coated steam methane reformer performances","translated_title":"","metadata":{"abstract":"Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"International Journal of Hydrogen Energy"},"translated_abstract":"Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.","internal_url":"https://www.academia.edu/122765964/Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances","translated_internal_url":"","created_at":"2024-08-11T03:27:11.768-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":104345,"name":"Hydrogen Energy","url":"https://www.academia.edu/Documents/in/Hydrogen_Energy"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935022,"url":"https://api.elsevier.com/content/article/PII:S036031991630684X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="19894699" id="papers"><div class="js-work-strip profile--work_container" data-work-id="125782190"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782190/Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger"><img alt="Research paper thumbnail of Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782190/Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger">Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger</a></div><div class="wp-workCard_item"><span>World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering</span><span>, Dec 21, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782190"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782190"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782190; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782190]").text(description); $(".js-view-count[data-work-id=125782190]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782190; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782190']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782190, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782190]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782190,"title":"Heat Transfer Enhancement Using Copper Metallic Foam during Convective Boiling in a Plate Heat Exchanger","translated_title":"","metadata":{"publication_date":{"day":21,"month":12,"year":2015,"errors":{}},"publication_name":"World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782190/Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger","translated_internal_url":"","created_at":"2024-11-23T10:01:55.825-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Heat_Transfer_Enhancement_Using_Copper_Metallic_Foam_during_Convective_Boiling_in_a_Plate_Heat_Exchanger","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":45751784,"url":"https://www.waset.org/abstracts/43857"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782188"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782188/Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel"><img alt="Research paper thumbnail of Experimental Study of the Boiling Heat Transfer in a Small Channel" class="work-thumbnail" src="https://attachments.academia-assets.com/119762868/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782188/Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel">Experimental Study of the Boiling Heat Transfer in a Small Channel</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tub...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tube with 9.52 mm outside diameter and 1 m length was conducted. The refrigerants tested were R22, R134a, R407C and R410A while vapour quality ranges from 0.1 to 0.9, mass flux 50, 250, 450 kg m À2 s À1 and heat flux of 5, 12.5, 20 kW m À2. The saturation temperature is 5°C. For the smooth tube, the average heat transfer coefficients of R134a, R407C and R410A are 110.9%, 78.0% and 125.2% of those of R22 in test conditions respectively. For the micro-fin tube, the average heat transfer coefficients of R22, R134a, R407C and R410A are 1.86, 1.80, 1.69 and 1.78 times higher than those of the smooth tube. The pressure drop of R22, R407C and R410A for the smooth tube is similar to each other while the pressure drop of R134a is 1.7 times higher. The average pressure drop of R22, R134a, R407C and R410A for the micro-fin tube is 1.42, 1.30, 1.45 and 1.40 times higher when compared with that for the smooth one. Considering the effect of heat transfer enhancement and pressure drop augment, the efficiency index g 1 which values the thermo-hydraulic performance at identical flow rate of R22, R134a, R407C and R410A in the micro-fin tube used is 1.31, 1.38, 1.17 and 1.27 respectively compared with the smooth tube.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9e8edbbcc13cfa0b8b6367512f8e203c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762868,&quot;asset_id&quot;:125782188,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762868/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782188"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782188"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782188; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782188]").text(description); $(".js-view-count[data-work-id=125782188]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782188; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782188']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782188, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9e8edbbcc13cfa0b8b6367512f8e203c" } } $('.js-work-strip[data-work-id=125782188]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782188,"title":"Experimental Study of the Boiling Heat Transfer in a Small Channel","translated_title":"","metadata":{"ai_abstract":"This paper presents an experimental study on boiling heat transfer in small channels, particularly focusing on micro-fin tubes. It discusses the factors affecting heat transfer coefficients, pressure drops, and the performance of various refrigerants including R22 and its alternatives. Results from multiple studies are reviewed to highlight the enhancements in heat transfer performance and the implications for applications in refrigeration systems.","grobid_abstract":"An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tube with 9.52 mm outside diameter and 1 m length was conducted. The refrigerants tested were R22, R134a, R407C and R410A while vapour quality ranges from 0.1 to 0.9, mass flux 50, 250, 450 kg m À2 s À1 and heat flux of 5, 12.5, 20 kW m À2. The saturation temperature is 5°C. For the smooth tube, the average heat transfer coefficients of R134a, R407C and R410A are 110.9%, 78.0% and 125.2% of those of R22 in test conditions respectively. For the micro-fin tube, the average heat transfer coefficients of R22, R134a, R407C and R410A are 1.86, 1.80, 1.69 and 1.78 times higher than those of the smooth tube. The pressure drop of R22, R407C and R410A for the smooth tube is similar to each other while the pressure drop of R134a is 1.7 times higher. The average pressure drop of R22, R134a, R407C and R410A for the micro-fin tube is 1.42, 1.30, 1.45 and 1.40 times higher when compared with that for the smooth one. Considering the effect of heat transfer enhancement and pressure drop augment, the efficiency index g 1 which values the thermo-hydraulic performance at identical flow rate of R22, R134a, R407C and R410A in the micro-fin tube used is 1.31, 1.38, 1.17 and 1.27 respectively compared with the smooth tube.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"grobid_abstract_attachment_id":119762868},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782188/Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel","translated_internal_url":"","created_at":"2024-11-23T10:01:50.333-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762868/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj.pdf","download_url":"https://www.academia.edu/attachments/119762868/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Study_of_the_Boiling_Heat_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762868/j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj-libre.pdf?1732388690=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Study_of_the_Boiling_Heat_T.pdf\u0026Expires=1737258297\u0026Signature=UYVigLzMVC2c952oqSSAnbG2C23x9ze~PI2HlhTQSDH11hOhUEMQnmdtdOu0H~3Syt5RGQSYPam3Z3m55NTqoVa0h4dChKMtQWsiaM-rena8S~uSDaHIm4GHWRJQNFqLT7pi~AKjn5dniH5gorv20QqSUV1UHE4f1EAtJzbovvQb1Cr2VLrxcKwsW786OGL5vLgDxBV6tWJrjF9uRA13HOEdlK46EWWLgmsz-LcahB~tvoFGKqbPwNmRRSQ3GzgEvqbydSyi9-BEI-00LnglOMcQaGzeWrA9jT-uKN43rssxfMfFh3RelV1CVcrftn~nFs6u3LkHCVuUDW~d~JJN4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_Study_of_the_Boiling_Heat_Transfer_in_a_Small_Channel","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"An experimental investigation of boiling characteristics in a horizontal smooth and micro-fin tube with 9.52 mm outside diameter and 1 m length was conducted. The refrigerants tested were R22, R134a, R407C and R410A while vapour quality ranges from 0.1 to 0.9, mass flux 50, 250, 450 kg m À2 s À1 and heat flux of 5, 12.5, 20 kW m À2. The saturation temperature is 5°C. For the smooth tube, the average heat transfer coefficients of R134a, R407C and R410A are 110.9%, 78.0% and 125.2% of those of R22 in test conditions respectively. For the micro-fin tube, the average heat transfer coefficients of R22, R134a, R407C and R410A are 1.86, 1.80, 1.69 and 1.78 times higher than those of the smooth tube. The pressure drop of R22, R407C and R410A for the smooth tube is similar to each other while the pressure drop of R134a is 1.7 times higher. The average pressure drop of R22, R134a, R407C and R410A for the micro-fin tube is 1.42, 1.30, 1.45 and 1.40 times higher when compared with that for the smooth one. Considering the effect of heat transfer enhancement and pressure drop augment, the efficiency index g 1 which values the thermo-hydraulic performance at identical flow rate of R22, R134a, R407C and R410A in the micro-fin tube used is 1.31, 1.38, 1.17 and 1.27 respectively compared with the smooth tube.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762868,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762868/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj.pdf","download_url":"https://www.academia.edu/attachments/119762868/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_Study_of_the_Boiling_Heat_T.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762868/j.ijheatmasstransfer.2016.03.02420241123-1-tbwxmj-libre.pdf?1732388690=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_Study_of_the_Boiling_Heat_T.pdf\u0026Expires=1737258297\u0026Signature=UYVigLzMVC2c952oqSSAnbG2C23x9ze~PI2HlhTQSDH11hOhUEMQnmdtdOu0H~3Syt5RGQSYPam3Z3m55NTqoVa0h4dChKMtQWsiaM-rena8S~uSDaHIm4GHWRJQNFqLT7pi~AKjn5dniH5gorv20QqSUV1UHE4f1EAtJzbovvQb1Cr2VLrxcKwsW786OGL5vLgDxBV6tWJrjF9uRA13HOEdlK46EWWLgmsz-LcahB~tvoFGKqbPwNmRRSQ3GzgEvqbydSyi9-BEI-00LnglOMcQaGzeWrA9jT-uKN43rssxfMfFh3RelV1CVcrftn~nFs6u3LkHCVuUDW~d~JJN4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":45751783,"url":"https://doi.org/10.1615/tfesc1.mph.013053"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782186"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782186/Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium"><img alt="Research paper thumbnail of Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium" class="work-thumbnail" src="https://attachments.academia-assets.com/119762852/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782186/Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium">Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium</a></div><div class="wp-workCard_item"><span>Mechanics &amp; Industry</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present work consists on convective heat transfer modeling in a plate heat exchanger filled w...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present work consists on convective heat transfer modeling in a plate heat exchanger filled with metal foam under local thermal non-equilibrium (LTNE). The metal foam was inserted to fill completely the studied channel, which is crossed by a fluid. The modified Brinkman-Forchheimer extended Darcy model is used in the porous layer, while the macroscopic two-energy equation model is used for the thermal field. The channel walls are maintained at a constant temperature and the velocity at the inlet is supposed uniform. A dimensionless formulation is developed to perform a parametric study in terms of certain dimensionless variables, and solved by the finite volume method (FVM). The results include the effect of the interstitial heat transfer coefficient and the solid to fluid thermal conductivity of different type of metal foams. The results were used to estimate the influence of the convective and conductive contributions using open-celled metal foams with high porosity. It has been shown that such supports can bring a significant enhancement for the heat transfer.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="70ae9456e4c9ed66ee0868d6a624133e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762852,&quot;asset_id&quot;:125782186,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762852/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782186"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782186"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782186; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782186]").text(description); $(".js-view-count[data-work-id=125782186]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782186; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782186']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782186, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "70ae9456e4c9ed66ee0868d6a624133e" } } $('.js-work-strip[data-work-id=125782186]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782186,"title":"Numerical investigation of convective heat transfer in a plane channel filled with metal foam under local thermal non-equilibrium","translated_title":"","metadata":{"publisher":"EDP Sciences","grobid_abstract":"The present work consists on convective heat transfer modeling in a plate heat exchanger filled with metal foam under local thermal non-equilibrium (LTNE). The metal foam was inserted to fill completely the studied channel, which is crossed by a fluid. The modified Brinkman-Forchheimer extended Darcy model is used in the porous layer, while the macroscopic two-energy equation model is used for the thermal field. The channel walls are maintained at a constant temperature and the velocity at the inlet is supposed uniform. A dimensionless formulation is developed to perform a parametric study in terms of certain dimensionless variables, and solved by the finite volume method (FVM). The results include the effect of the interstitial heat transfer coefficient and the solid to fluid thermal conductivity of different type of metal foams. The results were used to estimate the influence of the convective and conductive contributions using open-celled metal foams with high porosity. It has been shown that such supports can bring a significant enhancement for the heat transfer.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Mechanics \u0026 Industry","grobid_abstract_attachment_id":119762852},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782186/Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium","translated_internal_url":"","created_at":"2024-11-23T10:01:44.984-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762852/thumbnails/1.jpg","file_name":"mi140084.pdf","download_url":"https://www.academia.edu/attachments/119762852/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_investigation_of_convective_he.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762852/mi140084-libre.pdf?1732388697=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_investigation_of_convective_he.pdf\u0026Expires=1737258297\u0026Signature=Grk-HjZE71~JPNAcOdxn3iMREMVCwHw0emQX05bBCfZuujtieEyoEouvdno8WkvOx2Yv8y-SEMG6nsK2v5RRLOJTeWd7C4t2na9202WvI5B9v7ZcYTIXuFHaWdR3Qseok8J135WT~nFjIC9T5BU8K1TkqJCk02wMPmwfiLpryQKFmL-LpbaCQAXGe4Ke7x6dkd0haJYYhBvl~ygL8tfEBlWkyVPxmlbdpuDZ6ZwhZ3rrnd3VUaoSrVUcqqnotJMkzBBlnkD6KXZPZLSJ05UhleLxBXMU5WMjVW0qCWgKJDxCqzh8v5uHe38qFKVtQTyE3CgntSOP-gsQwwa9fGHPnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Numerical_investigation_of_convective_heat_transfer_in_a_plane_channel_filled_with_metal_foam_under_local_thermal_non_equilibrium","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"The present work consists on convective heat transfer modeling in a plate heat exchanger filled with metal foam under local thermal non-equilibrium (LTNE). The metal foam was inserted to fill completely the studied channel, which is crossed by a fluid. The modified Brinkman-Forchheimer extended Darcy model is used in the porous layer, while the macroscopic two-energy equation model is used for the thermal field. The channel walls are maintained at a constant temperature and the velocity at the inlet is supposed uniform. A dimensionless formulation is developed to perform a parametric study in terms of certain dimensionless variables, and solved by the finite volume method (FVM). The results include the effect of the interstitial heat transfer coefficient and the solid to fluid thermal conductivity of different type of metal foams. The results were used to estimate the influence of the convective and conductive contributions using open-celled metal foams with high porosity. It has been shown that such supports can bring a significant enhancement for the heat transfer.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762852,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762852/thumbnails/1.jpg","file_name":"mi140084.pdf","download_url":"https://www.academia.edu/attachments/119762852/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Numerical_investigation_of_convective_he.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762852/mi140084-libre.pdf?1732388697=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_investigation_of_convective_he.pdf\u0026Expires=1737258297\u0026Signature=Grk-HjZE71~JPNAcOdxn3iMREMVCwHw0emQX05bBCfZuujtieEyoEouvdno8WkvOx2Yv8y-SEMG6nsK2v5RRLOJTeWd7C4t2na9202WvI5B9v7ZcYTIXuFHaWdR3Qseok8J135WT~nFjIC9T5BU8K1TkqJCk02wMPmwfiLpryQKFmL-LpbaCQAXGe4Ke7x6dkd0haJYYhBvl~ygL8tfEBlWkyVPxmlbdpuDZ6ZwhZ3rrnd3VUaoSrVUcqqnotJMkzBBlnkD6KXZPZLSJ05UhleLxBXMU5WMjVW0qCWgKJDxCqzh8v5uHe38qFKVtQTyE3CgntSOP-gsQwwa9fGHPnw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":119762851,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762851/thumbnails/1.jpg","file_name":"mi140084.pdf","download_url":"https://www.academia.edu/attachments/119762851/download_file","bulk_download_file_name":"Numerical_investigation_of_convective_he.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762851/mi140084-libre.pdf?1732388690=\u0026response-content-disposition=attachment%3B+filename%3DNumerical_investigation_of_convective_he.pdf\u0026Expires=1737258297\u0026Signature=HSZVk3h6v-5OiBjWAFKXGZFv1kvsi07qnZX~dBUjWiJNupFN7awdsY9y0UHLrjPC5REePpphBlvQXAkYG9C2PIiwot-jGOSWUHQ4fwvYythHRA4mvkLrS6xIq3tniymfRcQTC0qLU~0cRMmOV9pTTC-Df7AG-Vz0biWxjTIg4Dixv-bmGSURYsctYltf0288rYIiZfttX-qYNkOjdPFNjv1R1~l4rz~s8QQmagOFcMPuDzdUO~-zHVqREPqjuGfhZjQrH9Eyqe~sRY3HOt~qR5egPG6-T2L7to~Bp~N7yjrnAd6oQyhneu6w1ucWCsUYcdi9D9S2~cls7hgIog1s2Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":119668,"name":"Thermal conduction in Nanomaterials","url":"https://www.academia.edu/Documents/in/Thermal_conduction_in_Nanomaterials"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":186189,"name":"Heat transfer coefficient","url":"https://www.academia.edu/Documents/in/Heat_transfer_coefficient"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":661889,"name":"Convective Heat Transfer","url":"https://www.academia.edu/Documents/in/Convective_Heat_Transfer"}],"urls":[{"id":45751781,"url":"https://www.mechanics-industry.org/articles/meca/pdf/2015/05/mi140084.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782182"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782182/Experimental_investigation_of_flow_boiling_in_narrow_channel"><img alt="Research paper thumbnail of Experimental investigation of flow boiling in narrow channel" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782182/Experimental_investigation_of_flow_boiling_in_narrow_channel">Experimental investigation of flow boiling in narrow channel</a></div><div class="wp-workCard_item"><span>International Journal of Thermal Sciences</span><span>, Dec 1, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The flow boiling in narrow channel is investigated experimentally. The aim of the present work is...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782182"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782182"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782182; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782182]").text(description); $(".js-view-count[data-work-id=125782182]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782182; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782182']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782182, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782182]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782182,"title":"Experimental investigation of flow boiling in narrow channel","translated_title":"","metadata":{"abstract":"The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.","publisher":"Elsevier BV","publication_date":{"day":1,"month":12,"year":2015,"errors":{}},"publication_name":"International Journal of Thermal Sciences"},"translated_abstract":"The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.","internal_url":"https://www.academia.edu/125782182/Experimental_investigation_of_flow_boiling_in_narrow_channel","translated_internal_url":"","created_at":"2024-11-23T10:01:40.327-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_investigation_of_flow_boiling_in_narrow_channel","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The flow boiling in narrow channel is investigated experimentally. The aim of the present work is to study the heat transfer phenomena. The working fluid is n-pentane which is chosen for its low boiling point (36 °C at atmospheric pressure). The independent variables are velocity in the range from 0.015 m/s to 0.06 m/s and boiling heat flux with values between 9 and 137 kW/m². The wall superheat and exit vapor quality are presented as dependent variables. The flow pattern was predicted based on temperature fluctuations. The experimental results are compared to those available in the literature (Shah, Gungor-Winterton and Jens correlations). A new correlation has been developed for the average heat transfer coefficient during flow boiling in a rectangular channel with validity in boiling heat flux from 9 to 137 kW/m² and Reynolds number between 380 and 1522.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":81504,"name":"Correlation","url":"https://www.academia.edu/Documents/in/Correlation"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":186189,"name":"Heat transfer coefficient","url":"https://www.academia.edu/Documents/in/Heat_transfer_coefficient"},{"id":187812,"name":"Thermal Sciences","url":"https://www.academia.edu/Documents/in/Thermal_Sciences"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":498793,"name":"Boiling Heat Transfer Coefficient","url":"https://www.academia.edu/Documents/in/Boiling_Heat_Transfer_Coefficient"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":725275,"name":"Narrow channel","url":"https://www.academia.edu/Documents/in/Narrow_channel"},{"id":837269,"name":"Flow Patterns","url":"https://www.academia.edu/Documents/in/Flow_Patterns"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"},{"id":1444999,"name":"Nucleate Boiling","url":"https://www.academia.edu/Documents/in/Nucleate_Boiling"},{"id":2489916,"name":"Superheating","url":"https://www.academia.edu/Documents/in/Superheating"}],"urls":[{"id":45751778,"url":"https://doi.org/10.1016/j.ijthermalsci.2015.06.016"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782176"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782176/Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel"><img alt="Research paper thumbnail of Experimental study of an upward sub-cooled forced convection in a rectangular channel" class="work-thumbnail" src="https://attachments.academia-assets.com/119762867/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782176/Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel">Experimental study of an upward sub-cooled forced convection in a rectangular channel</a></div><div class="wp-workCard_item"><span>Heat and Mass Transfer</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ab2611f48b6357630f39140e5713073" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762867,&quot;asset_id&quot;:125782176,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762867/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782176"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782176"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782176; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782176]").text(description); $(".js-view-count[data-work-id=125782176]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782176; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782176']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782176, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ab2611f48b6357630f39140e5713073" } } $('.js-work-strip[data-work-id=125782176]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782176,"title":"Experimental study of an upward sub-cooled forced convection in a rectangular channel","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_abstract":"The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/ cm 2 . The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Heat and Mass Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/125782176/Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel","translated_internal_url":"","created_at":"2024-11-23T10:01:34.657-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762867,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762867/thumbnails/1.jpg","file_name":"s00231-015-1656-620241123-1-bl8jht.pdf","download_url":"https://www.academia.edu/attachments/119762867/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_study_of_an_upward_sub_cool.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762867/s00231-015-1656-620241123-1-bl8jht-libre.pdf?1732388701=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_study_of_an_upward_sub_cool.pdf\u0026Expires=1737258297\u0026Signature=ZTvbT0A7fw6ei3LZfD6AVjZDSNms9wBPBH0ZvzlMa-9OKJHNZpDhx38MvUeod4-aWgahijJR-uZfrgkhA6ezjWhNoPlaiRcGbFFPL3ZLfAtmAie-xfTuG0tBRYWliWJDl2nEMAcL7r0ERVOq-OJnL32JDafFF26RX-w80MJ9Mig5UYqv0o82nUJu1JPnOcIqZkzy9tLgOp~vrWUR3gHEe9UnTGU~D2-gtJs5E-Z9qX-Vcqk~LEGmjCARnrloNQfHydnZAmEg8mG0q-jJS-j3kaO41RY3MB5PYm9qYDKWUlHIMj4FYlu4ugljJJAZmLd8WAlV0bJj03LHtBP2yElh7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_study_of_an_upward_sub_cooled_forced_convection_in_a_rectangular_channel","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762867,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762867/thumbnails/1.jpg","file_name":"s00231-015-1656-620241123-1-bl8jht.pdf","download_url":"https://www.academia.edu/attachments/119762867/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_study_of_an_upward_sub_cool.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762867/s00231-015-1656-620241123-1-bl8jht-libre.pdf?1732388701=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_study_of_an_upward_sub_cool.pdf\u0026Expires=1737258297\u0026Signature=ZTvbT0A7fw6ei3LZfD6AVjZDSNms9wBPBH0ZvzlMa-9OKJHNZpDhx38MvUeod4-aWgahijJR-uZfrgkhA6ezjWhNoPlaiRcGbFFPL3ZLfAtmAie-xfTuG0tBRYWliWJDl2nEMAcL7r0ERVOq-OJnL32JDafFF26RX-w80MJ9Mig5UYqv0o82nUJu1JPnOcIqZkzy9tLgOp~vrWUR3gHEe9UnTGU~D2-gtJs5E-Z9qX-Vcqk~LEGmjCARnrloNQfHydnZAmEg8mG0q-jJS-j3kaO41RY3MB5PYm9qYDKWUlHIMj4FYlu4ugljJJAZmLd8WAlV0bJj03LHtBP2yElh7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":139576,"name":"Plate Heat Exchanger","url":"https://www.academia.edu/Documents/in/Plate_Heat_Exchanger"},{"id":186189,"name":"Heat transfer coefficient","url":"https://www.academia.edu/Documents/in/Heat_transfer_coefficient"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":1008960,"name":"Reynolds Number","url":"https://www.academia.edu/Documents/in/Reynolds_Number"}],"urls":[{"id":45751776,"url":"http://link.springer.com/content/pdf/10.1007/s00231-015-1656-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782174"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782174/Intensification_des_transferts_de_chaleur_et_%C3%A9bullition_dans_les_mousses_m%C3%A9talliques_application_%C3%A0_la_r%C3%A9alisation_d_%C3%A9changeurs_compacts"><img alt="Research paper thumbnail of Intensification des transferts de chaleur et ébullition dans les mousses métalliques : application à la réalisation d’échangeurs compacts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782174/Intensification_des_transferts_de_chaleur_et_%C3%A9bullition_dans_les_mousses_m%C3%A9talliques_application_%C3%A0_la_r%C3%A9alisation_d_%C3%A9changeurs_compacts">Intensification des transferts de chaleur et ébullition dans les mousses métalliques : application à la réalisation d’échangeurs compacts</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans cha...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782174"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782174"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782174; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782174]").text(description); $(".js-view-count[data-work-id=125782174]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782174; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782174']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782174, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782174]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782174,"title":"Intensification des transferts de chaleur et ébullition dans les mousses métalliques : application à la réalisation d’échangeurs compacts","translated_title":"","metadata":{"abstract":"Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri..."},"translated_abstract":"Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri...","internal_url":"https://www.academia.edu/125782174/Intensification_des_transferts_de_chaleur_et_%C3%A9bullition_dans_les_mousses_m%C3%A9talliques_application_%C3%A0_la_r%C3%A9alisation_d_%C3%A9changeurs_compacts","translated_internal_url":"","created_at":"2024-11-23T10:01:31.113-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Intensification_des_transferts_de_chaleur_et_ébullition_dans_les_mousses_métalliques_application_à_la_réalisation_d_échangeurs_compacts","translated_slug":"","page_count":null,"language":"fr","content_type":"Work","summary":"Nous présentons une étude expérimentale des écoulements et transferts de chaleur avec et sans changement de phase du liquide dans une mousse de cuivre. Cette étude rentre dans le cadre du développement d’un échangeur pour le reformage du méthanol. L’objectif est une meilleure compréhension des mécanismes de transferts avec changement de phase dans ces milieux à texture cellulaire ouverte de forte porosité. Le dispositif expérimental permet d’assurer le contrôle précis des paramètres opératoires (débit, température d’entrée, flux de chauffe) et l’acquisition simultanée des mesures (températures, pressions, débits, titre de l’écoulement). La matrice solide de dimensions 10x50x200 mm insérée dans la veine d’essai est constituée d’une mousse de cuivre avec les caractéristiques suivantes : porosité 95 %, densité linéique de pores 36 PPI, diamètre des brins db= 178 m et diamètre des pores dp= 745 m. Nous avons déterminé ces caractéristiques géométriques par analyse d’images. Cette matri...","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782171"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/125782171/Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws"><img alt="Research paper thumbnail of Multiphase flow in metallic foam: Experimental analysis of flow laws" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/125782171/Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws">Multiphase flow in metallic foam: Experimental analysis of flow laws</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">International audienc</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782171"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782171"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782171; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782171]").text(description); $(".js-view-count[data-work-id=125782171]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782171; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782171']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782171, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=125782171]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782171,"title":"Multiphase flow in metallic foam: Experimental analysis of flow laws","translated_title":"","metadata":{"abstract":"International audienc"},"translated_abstract":"International audienc","internal_url":"https://www.academia.edu/125782171/Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws","translated_internal_url":"","created_at":"2024-11-23T10:01:27.690-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Multiphase_flow_in_metallic_foam_Experimental_analysis_of_flow_laws","translated_slug":"","page_count":null,"language":"cy","content_type":"Work","summary":"International audienc","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="125782115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/125782115/Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss"><img alt="Research paper thumbnail of Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss" class="work-thumbnail" src="https://attachments.academia-assets.com/119762830/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/125782115/Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss">Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present work deals with the hydraulic characterization of two- phase flow with phase change i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4acda1693e386ce60d4e7ce32b690505" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:119762830,&quot;asset_id&quot;:125782115,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/119762830/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="125782115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="125782115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 125782115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=125782115]").text(description); $(".js-view-count[data-work-id=125782115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 125782115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='125782115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 125782115, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4acda1693e386ce60d4e7ce32b690505" } } $('.js-work-strip[data-work-id=125782115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":125782115,"title":"Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss","translated_title":"","metadata":{"abstract":"The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...","publication_date":{"day":null,"month":null,"year":2010,"errors":{}}},"translated_abstract":"The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...","internal_url":"https://www.academia.edu/125782115/Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss","translated_internal_url":"","created_at":"2024-11-23T09:59:27.019-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":119762830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762830/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/119762830/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Boiling_in_Metallic_Foam_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762830/document-libre.pdf?1732388711=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Boiling_in_Metallic_Foam_Expe.pdf\u0026Expires=1737258298\u0026Signature=cHGDPb5KVP-4~7ox7k9xRkOCMlEuI7RIdKIfx2w62ojZUuDjXusGbJ1iudIja0k-zVxKuTrZv4kjoAVb8tgMt5QLu4CxEsQcAuF-4Slq~GA1JYpxoTkKpMlTZI2mlsv-If6wi9hfIluH0EyHhQ3IID71-pZEC9zizKPP0-~MVqA16Js8qDTFec4ANzo4q43hV0TNA9riRjCoNsF~W3U9KW4WhpNmj~EHV~u2hZR0qYx2Nro3vNRmTNa9N1EcH4zassbrWUw3lPOrqCpkdgTV0Vy66RtM~acrSOh0sezxSJOJ~~0t6FtghF2QgBDjxMEv1MZIO5YDqN38NADRAa9s3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Convective_Boiling_in_Metallic_Foam_Experimental_Analysis_of_the_Pressure_Loss","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"The present work deals with the hydraulic characterization of two- phase flow with phase change in a channel filled with metallic foam. We pro- vide a general presentation of metallic foams including morphological character- istics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m 2 s, while the heating power in the test section ranges from 0 to 35 W/cm 2 . The effect of fluid acceleration on the pressure profiles is demonstrated in the convective boil- ing regime. The measured pressure profiles are used to locate the thermodynamic zones inside the test channel. Then, the evolution of the pressure drop versus mass velocity is established and comp...","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":119762830,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/119762830/thumbnails/1.jpg","file_name":"document.pdf","download_url":"https://www.academia.edu/attachments/119762830/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Convective_Boiling_in_Metallic_Foam_Expe.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/119762830/document-libre.pdf?1732388711=\u0026response-content-disposition=attachment%3B+filename%3DConvective_Boiling_in_Metallic_Foam_Expe.pdf\u0026Expires=1737258298\u0026Signature=cHGDPb5KVP-4~7ox7k9xRkOCMlEuI7RIdKIfx2w62ojZUuDjXusGbJ1iudIja0k-zVxKuTrZv4kjoAVb8tgMt5QLu4CxEsQcAuF-4Slq~GA1JYpxoTkKpMlTZI2mlsv-If6wi9hfIluH0EyHhQ3IID71-pZEC9zizKPP0-~MVqA16Js8qDTFec4ANzo4q43hV0TNA9riRjCoNsF~W3U9KW4WhpNmj~EHV~u2hZR0qYx2Nro3vNRmTNa9N1EcH4zassbrWUw3lPOrqCpkdgTV0Vy66RtM~acrSOh0sezxSJOJ~~0t6FtghF2QgBDjxMEv1MZIO5YDqN38NADRAa9s3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":1327,"name":"Convection","url":"https://www.academia.edu/Documents/in/Convection"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765975/Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation"><img alt="Research paper thumbnail of Experimental study of forced convection through various metallic foam samples: effect of effective thermal conductivity on Nusselt correlation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765975/Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation">Experimental study of forced convection through various metallic foam samples: effect of effective thermal conductivity on Nusselt correlation</a></div><div class="wp-workCard_item"><span>Journal of Thermal Analysis and Calorimetry</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765975]").text(description); $(".js-view-count[data-work-id=122765975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765975,"title":"Experimental study of forced convection through various metallic foam samples: effect of effective thermal conductivity on Nusselt correlation","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"Journal of Thermal Analysis and Calorimetry"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765975/Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation","translated_internal_url":"","created_at":"2024-08-11T03:27:15.279-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Experimental_study_of_forced_convection_through_various_metallic_foam_samples_effect_of_effective_thermal_conductivity_on_Nusselt_correlation","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":698667,"name":"Nusselt Number","url":"https://www.academia.edu/Documents/in/Nusselt_Number"},{"id":715244,"name":"Prandtl Number","url":"https://www.academia.edu/Documents/in/Prandtl_Number"},{"id":890685,"name":"Forced Convection","url":"https://www.academia.edu/Documents/in/Forced_Convection"},{"id":2726782,"name":"Thermal Analysis and Calorimetry","url":"https://www.academia.edu/Documents/in/Thermal_Analysis_and_Calorimetry"}],"urls":[{"id":43935031,"url":"https://link.springer.com/content/pdf/10.1007/s10973-022-11779-6.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765974"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765974/Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production"><img alt="Research paper thumbnail of Comparison Between Methanol and Methane Steam Reforming Reactors for Hydrogen Production" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765974/Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production">Comparison Between Methanol and Methane Steam Reforming Reactors for Hydrogen Production</a></div><div class="wp-workCard_item"><span>Advances in Green Energies and Materials Technology</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765974"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765974"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765974; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765974]").text(description); $(".js-view-count[data-work-id=122765974]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765974; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765974']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765974, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765974]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765974,"title":"Comparison Between Methanol and Methane Steam Reforming Reactors for Hydrogen Production","translated_title":"","metadata":{"publisher":"Springer Singapore","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Advances in Green Energies and Materials Technology"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765974/Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production","translated_internal_url":"","created_at":"2024-08-11T03:27:15.053-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Comparison_Between_Methanol_and_Methane_Steam_Reforming_Reactors_for_Hydrogen_Production","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":112334,"name":"Methanol","url":"https://www.academia.edu/Documents/in/Methanol"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"},{"id":3647879,"name":"Springer Ebooks","url":"https://www.academia.edu/Documents/in/Springer_Ebooks"}],"urls":[{"id":43935030,"url":"https://link.springer.com/content/pdf/10.1007/978-981-16-0378-5_55"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765973"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765973/Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production"><img alt="Research paper thumbnail of Effect of inter-catalytic layer spacing at wall-coated steam methane reformer surfaces on hydrogen production" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765973/Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production">Effect of inter-catalytic layer spacing at wall-coated steam methane reformer surfaces on hydrogen production</a></div><div class="wp-workCard_item"><span>2018 9th International Renewable Energy Congress (IREC)</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work deals with a numerical study on a wall-coated steam methane reformer improvement. The e...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765973"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765973"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765973; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765973]").text(description); $(".js-view-count[data-work-id=122765973]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765973; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765973']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765973, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765973]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765973,"title":"Effect of inter-catalytic layer spacing at wall-coated steam methane reformer surfaces on hydrogen production","translated_title":"","metadata":{"abstract":"This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.","publisher":"2018 9th International Renewable Energy Congress (IREC)","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"2018 9th International Renewable Energy Congress (IREC)"},"translated_abstract":"This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.","internal_url":"https://www.academia.edu/122765973/Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production","translated_internal_url":"","created_at":"2024-08-11T03:27:14.906-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effect_of_inter_catalytic_layer_spacing_at_wall_coated_steam_methane_reformer_surfaces_on_hydrogen_production","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"This work deals with a numerical study on a wall-coated steam methane reformer improvement. The effect of the catalytic layers configuration on the methane conversion is analyzed. Two configurations of the catalyst region are compared. A catalytic region with parallel continuous layers, impregnated on both upper and lower walls, against a catalyst region endowed with an inter-catalytic layer spacing. The involved transport phenomena are governed by momentum, energy and species equations. The Navier-Stokes equations are employed in the mixture phase. The obtained results show that the utilization of discrete catalytic layers allows avoiding the cold zones on the catalytic region and enhancing the methane conversion of the wall-coated steam methane reformer.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765972"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765972/Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer"><img alt="Research paper thumbnail of Influence of Metal Foam Insert Within a Methanol Steam Reformer" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765972/Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer">Influence of Metal Foam Insert Within a Methanol Steam Reformer</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The aim of this work is to study the influence of the insertion of metallic foam in a methanol st...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765972"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765972"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765972; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765972]").text(description); $(".js-view-count[data-work-id=122765972]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765972; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765972']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765972, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765972]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765972,"title":"Influence of Metal Foam Insert Within a Methanol Steam Reformer","translated_title":"","metadata":{"abstract":"The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}}},"translated_abstract":"The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.","internal_url":"https://www.academia.edu/122765972/Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer","translated_internal_url":"","created_at":"2024-08-11T03:27:14.761-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Influence_of_Metal_Foam_Insert_Within_a_Methanol_Steam_Reformer","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"The aim of this work is to study the influence of the insertion of metallic foam in a methanol steam reforming reactor for the production of hydrogen. This work is focused on two configurations: a reactor with and without metal foam. This is a numerical study carried out under Fluent-Ansys software. Temperature and species profiles within the reactor are given. The results show that the metal foam insert improves the efficiency of the reactor by 16%.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":112334,"name":"Methanol","url":"https://www.academia.edu/Documents/in/Methanol"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765971"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765971/Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert"><img alt="Research paper thumbnail of Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765971/Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert">Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert</a></div><div class="wp-workCard_item"><span>International Journal of Hydrogen Energy</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765971"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765971"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765971; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765971]").text(description); $(".js-view-count[data-work-id=122765971]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765971; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765971']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765971, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765971]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765971,"title":"Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert","translated_title":"","metadata":{"abstract":"Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"International Journal of Hydrogen Energy"},"translated_abstract":"Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.","internal_url":"https://www.academia.edu/122765971/Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert","translated_internal_url":"","created_at":"2024-08-11T03:27:14.548-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Intensification_of_hydrogen_production_from_methanol_steam_reforming_by_catalyst_segmentation_and_metallic_foam_insert","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper is a numerical study about the catalyst morphology CuO/ZnO/Al2O3 effects on the hydrogen production from methanol steam reforming, for proton exchange membrane fuel cells (PMEFC). The study is focused on the influences of the metal foam insert, catalyst layer segmentation, and metal foam as catalyst support on the reactor performance: hydrogen yield and methanol conversion. According to the carried simulations, it is found that these configurations improve the reformer performances compared to the continuous catalyst layer configuration. The insertion of metal foam increases the efficiency of up to 75.41% at 525 K. Also, at this reaction temperature, the segmentation of the catalyst layer in similar parts increases the reformer efficiency by 2.11%, 4.23%, 6.77%, and 8.6% for 2, 4, 8, and 16 identical parts, respectively. As well as, the metal foam as catalyst support is more efficient compared to the other configurations, the efficiency is equal to 64% at T = 495 k.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":104345,"name":"Hydrogen Energy","url":"https://www.academia.edu/Documents/in/Hydrogen_Energy"},{"id":112334,"name":"Methanol","url":"https://www.academia.edu/Documents/in/Methanol"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935029,"url":"https://api.elsevier.com/content/article/PII:S0360319920348187?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765970/Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin"><img alt="Research paper thumbnail of Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765970/Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin">Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin</a></div><div class="wp-workCard_item"><span>International Journal of Thermal Sciences</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract In this work, a microcellular model is developed to study the thermal behavior of a plat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765970]").text(description); $(".js-view-count[data-work-id=122765970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765970,"title":"Investigation of heat transfer improvement at idealized microcellular scale for metal foam incorporated with paraffin","translated_title":"","metadata":{"abstract":"Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Thermal Sciences"},"translated_abstract":"Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.","internal_url":"https://www.academia.edu/122765970/Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin","translated_internal_url":"","created_at":"2024-08-11T03:27:14.325-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigation_of_heat_transfer_improvement_at_idealized_microcellular_scale_for_metal_foam_incorporated_with_paraffin","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract In this work, a microcellular model is developed to study the thermal behavior of a plate constituted of paraffin impregnated in metal foam. A three-dimensional model is considered using the finite elements method (FEM) with a body centered cubic (BCC) shape as a geometric configuration. COMSOL Multiphysics software is used to build the geometry and to conduct the calculation. The effects of porosity on the effective thermal conductivity, as well as on the thermal management performance of the composite plate are investigated. The model is calibrated using experimental data obtained in-situ. The results are found in good agreement with the experimental data from the literature. The decrease in the porosity results in an increase in the effective thermal conductivity of the metal foam, which makes the heat diffusion in the composite material faster than that in pure paraffin. Due to the contact surface between the metal foam and paraffin which is large in this case, it is found that a small pore diameter uniforms well the melting front and the temperature inside the composite.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":12147,"name":"Finite element method","url":"https://www.academia.edu/Documents/in/Finite_element_method"},{"id":67493,"name":"Multiphysics","url":"https://www.academia.edu/Documents/in/Multiphysics"},{"id":68315,"name":"Porosity","url":"https://www.academia.edu/Documents/in/Porosity"},{"id":169323,"name":"Composite Material","url":"https://www.academia.edu/Documents/in/Composite_Material"},{"id":187812,"name":"Thermal Sciences","url":"https://www.academia.edu/Documents/in/Thermal_Sciences"},{"id":246758,"name":"Thermal Conductivity","url":"https://www.academia.edu/Documents/in/Thermal_Conductivity"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":771600,"name":"Porous Medium","url":"https://www.academia.edu/Documents/in/Porous_Medium"}],"urls":[{"id":43935028,"url":"https://api.elsevier.com/content/article/PII:S1290072919310865?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765969"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765969/Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams"><img alt="Research paper thumbnail of Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams" class="work-thumbnail" src="https://attachments.academia-assets.com/117362158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765969/Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams">Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams</a></div><div class="wp-workCard_item"><span>International Journal of Heat and Mass Transfer</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a60e9bef2189222f65a59c98eef75642" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362158,&quot;asset_id&quot;:122765969,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362158/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765969"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765969"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765969; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765969]").text(description); $(".js-view-count[data-work-id=122765969]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765969; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765969']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765969, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a60e9bef2189222f65a59c98eef75642" } } $('.js-work-strip[data-work-id=122765969]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765969,"title":"Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Heat and Mass Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765969/Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams","translated_internal_url":"","created_at":"2024-08-11T03:27:14.094-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362158/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2019.11916220240811-1-2bpl83.pdf","download_url":"https://www.academia.edu/attachments/117362158/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_characterization_of_a_heat_excha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362158/j.ijheatmasstransfer.2019.11916220240811-1-2bpl83-libre.pdf?1723372829=\u0026response-content-disposition=attachment%3B+filename%3DThermal_characterization_of_a_heat_excha.pdf\u0026Expires=1737258298\u0026Signature=M0qkUetIarVA9ffVUKN~a1pgByl-2WEpsqCgM8i3CTQ4lOIYnnVAnK-7xDvzK-pgePJV67k33nS2l-4ciK8DpMGr775I9d80kLu40yV-qogH-fdBFcbzN~k~WUmCz2NdiOqHST0rwkLQ8XcuEZiiUAwg8jk1rSLdZcLbXz0ug~eaHM0BJCXXRStuTn9clgxLOi1HeEeGM3oWpMjoHIpHSG36iJOXEa31B0wnWh3q15CLX4oo32tdEgT~BEPmK5QeGmz8xZu~9VKlV-P6NEDZdHeKfZAn23Bwg-68aSXGiqwiQuujsfl-aeoy~cEe0UJzdryS5plqyCc0PWNoAB3cBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_characterization_of_a_heat_exchanger_equipped_with_a_combined_material_of_phase_change_material_and_metallic_foams","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362158/thumbnails/1.jpg","file_name":"j.ijheatmasstransfer.2019.11916220240811-1-2bpl83.pdf","download_url":"https://www.academia.edu/attachments/117362158/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_characterization_of_a_heat_excha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362158/j.ijheatmasstransfer.2019.11916220240811-1-2bpl83-libre.pdf?1723372829=\u0026response-content-disposition=attachment%3B+filename%3DThermal_characterization_of_a_heat_excha.pdf\u0026Expires=1737258298\u0026Signature=M0qkUetIarVA9ffVUKN~a1pgByl-2WEpsqCgM8i3CTQ4lOIYnnVAnK-7xDvzK-pgePJV67k33nS2l-4ciK8DpMGr775I9d80kLu40yV-qogH-fdBFcbzN~k~WUmCz2NdiOqHST0rwkLQ8XcuEZiiUAwg8jk1rSLdZcLbXz0ug~eaHM0BJCXXRStuTn9clgxLOi1HeEeGM3oWpMjoHIpHSG36iJOXEa31B0wnWh3q15CLX4oo32tdEgT~BEPmK5QeGmz8xZu~9VKlV-P6NEDZdHeKfZAn23Bwg-68aSXGiqwiQuujsfl-aeoy~cEe0UJzdryS5plqyCc0PWNoAB3cBw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":206381,"name":"Phase Change Material","url":"https://www.academia.edu/Documents/in/Phase_Change_Material"}],"urls":[{"id":43935027,"url":"https://api.elsevier.com/content/article/PII:S0017931019322185?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765968"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765968/Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling"><img alt="Research paper thumbnail of Impact of Ni-based catalyst patterning on hydrogen production from MSR: External steam reformer modelling" class="work-thumbnail" src="https://attachments.academia-assets.com/117362154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765968/Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling">Impact of Ni-based catalyst patterning on hydrogen production from MSR: External steam reformer modelling</a></div><div class="wp-workCard_item"><span>International Journal of Hydrogen Energy</span><span>, 2018</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen production chain. In such devices, the catalyst which is generally nickel-based is coated on the walls, and the heat supply influences directly the fuel processing efficiency. In this work, two-dimensional CFD study is carried out to explore an enhancement on MSR thermal behavior. Two configurations in terms of catalyst coating are investigated. The first MSR configuration is equipped with continuous catalytic layer, while in the second, discrete catalyst layers separated by an inert gap are imposed. The effect of the catalyst patterning on the thermal and mass behavior of MSR is discussed. The results show that the MSR</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="db5c9ac5ab8ea9844f306a40ba69affd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362154,&quot;asset_id&quot;:122765968,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362154/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765968"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765968"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765968; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765968]").text(description); $(".js-view-count[data-work-id=122765968]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765968; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765968']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765968, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "db5c9ac5ab8ea9844f306a40ba69affd" } } $('.js-work-strip[data-work-id=122765968]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765968,"title":"Impact of Ni-based catalyst patterning on hydrogen production from MSR: External steam reformer modelling","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen production chain. In such devices, the catalyst which is generally nickel-based is coated on the walls, and the heat supply influences directly the fuel processing efficiency. In this work, two-dimensional CFD study is carried out to explore an enhancement on MSR thermal behavior. Two configurations in terms of catalyst coating are investigated. The first MSR configuration is equipped with continuous catalytic layer, while in the second, discrete catalyst layers separated by an inert gap are imposed. The effect of the catalyst patterning on the thermal and mass behavior of MSR is discussed. The results show that the MSR","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"International Journal of Hydrogen Energy","grobid_abstract_attachment_id":117362154},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765968/Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling","translated_internal_url":"","created_at":"2024-08-11T03:27:12.875-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362154/thumbnails/1.jpg","file_name":"S036031991833091X.pdf","download_url":"https://www.academia.edu/attachments/117362154/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Ni_based_catalyst_patterning_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362154/S036031991833091X-libre.pdf?1723372824=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Ni_based_catalyst_patterning_o.pdf\u0026Expires=1737258299\u0026Signature=eRPS4p-9Wn7IQqH7S5oOn00ckc0u4JV9F-9YmWsz~oVF0sjQXNlRcBshNphoOqeh5xYq0toy60qGHrYA6ZQjThIKH-6tht-4mDKxC2u~3FMzyl0vv-L5D8B6PYSKJHlucRf-tUrFu82Q4HeDVVB2FyusZXJAQthN0qjyj6cBaQCpjCpJjWUBPqRP5V2C3LjPuwwaArLSgyRLOspBu-J5OiV2I-T9MOHYgtBLeSIFqevf4AX2WSj1CFCk93IKjGrbML45PojjT-zqAufN9BQiJx8SHgJgeYtFxx18yI~EbB9i8zfQiIysueH-~uAPzj3lflMVJ0kyFgPT0UtsH6GgDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Impact_of_Ni_based_catalyst_patterning_on_hydrogen_production_from_MSR_External_steam_reformer_modelling","translated_slug":"","page_count":26,"language":"en","content_type":"Work","summary":"Wall-coated Methane Steam Reformers (MSR) are commonly used as fuel processing in the hydrogen production chain. In such devices, the catalyst which is generally nickel-based is coated on the walls, and the heat supply influences directly the fuel processing efficiency. In this work, two-dimensional CFD study is carried out to explore an enhancement on MSR thermal behavior. Two configurations in terms of catalyst coating are investigated. The first MSR configuration is equipped with continuous catalytic layer, while in the second, discrete catalyst layers separated by an inert gap are imposed. The effect of the catalyst patterning on the thermal and mass behavior of MSR is discussed. The results show that the MSR","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362154/thumbnails/1.jpg","file_name":"S036031991833091X.pdf","download_url":"https://www.academia.edu/attachments/117362154/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Impact_of_Ni_based_catalyst_patterning_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362154/S036031991833091X-libre.pdf?1723372824=\u0026response-content-disposition=attachment%3B+filename%3DImpact_of_Ni_based_catalyst_patterning_o.pdf\u0026Expires=1737258299\u0026Signature=eRPS4p-9Wn7IQqH7S5oOn00ckc0u4JV9F-9YmWsz~oVF0sjQXNlRcBshNphoOqeh5xYq0toy60qGHrYA6ZQjThIKH-6tht-4mDKxC2u~3FMzyl0vv-L5D8B6PYSKJHlucRf-tUrFu82Q4HeDVVB2FyusZXJAQthN0qjyj6cBaQCpjCpJjWUBPqRP5V2C3LjPuwwaArLSgyRLOspBu-J5OiV2I-T9MOHYgtBLeSIFqevf4AX2WSj1CFCk93IKjGrbML45PojjT-zqAufN9BQiJx8SHgJgeYtFxx18yI~EbB9i8zfQiIysueH-~uAPzj3lflMVJ0kyFgPT0UtsH6GgDA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":104345,"name":"Hydrogen Energy","url":"https://www.academia.edu/Documents/in/Hydrogen_Energy"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935026,"url":"https://api.elsevier.com/content/article/PII:S036031991833091X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765967"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765967/Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples"><img alt="Research paper thumbnail of Thermal and hydrodynamic performance of flow boiling through a heat exchanger filled with various metallic foam samples" class="work-thumbnail" src="https://attachments.academia-assets.com/117362157/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765967/Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples">Thermal and hydrodynamic performance of flow boiling through a heat exchanger filled with various metallic foam samples</a></div><div class="wp-workCard_item"><span>Chemical Engineering and Processing: Process Intensification</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using me...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using metallic foam.  The insertion of metallic foam extends the boiling zone.  The NiFeAlCr and Inconel metallic foam are not recommended for heat exchanger  The copper metallic foam moves forward the critical heat flux.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3622afbc39035b06c21fb1bf58a79f0e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362157,&quot;asset_id&quot;:122765967,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362157/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765967"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765967"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765967; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765967]").text(description); $(".js-view-count[data-work-id=122765967]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765967; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765967']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765967, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3622afbc39035b06c21fb1bf58a79f0e" } } $('.js-work-strip[data-work-id=122765967]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765967,"title":"Thermal and hydrodynamic performance of flow boiling through a heat exchanger filled with various metallic foam samples","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using metallic foam.  The insertion of metallic foam extends the boiling zone.  The NiFeAlCr and Inconel metallic foam are not recommended for heat exchanger  The copper metallic foam moves forward the critical heat flux.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Chemical Engineering and Processing: Process Intensification","grobid_abstract_attachment_id":117362157},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765967/Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples","translated_internal_url":"","created_at":"2024-08-11T03:27:12.509-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362157,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362157/thumbnails/1.jpg","file_name":"j.cep.2017.08.01420240811-1-jiwo77.pdf","download_url":"https://www.academia.edu/attachments/117362157/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_and_hydrodynamic_performance_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362157/j.cep.2017.08.01420240811-1-jiwo77-libre.pdf?1723372826=\u0026response-content-disposition=attachment%3B+filename%3DThermal_and_hydrodynamic_performance_of.pdf\u0026Expires=1737258299\u0026Signature=WJbcFycOqkav0Y4-XHx1ncIFT2sq~U07~1Y9O4lbpuFgARhObST4Rvkia28Aa~nHKLWR6gOHQz6SFhvrJx9xXSJMrYhGA8lcGiGFjxA3f1Sdzu3iv~yHc6WKEUWqMhTaHNEHVJCIvrbGoi6JeluyCcJJwdV8FeKCUHirqOcqFJkCUf~AEMp8seXqHzi1JRDxjQsHUS8Yrlp2nCOYu8ca0MbJIo05A9H777GcNA33v-TQpFAxzwexkYdsVS4~xuMf~ITdUKekOIZgNP~Lidz2REKJh5pY1yySegcEtwV0Mz0JVWkn1Dq0eUGCHvrQteEUCHnkFcWsa-IOLYC0k6IwnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Thermal_and_hydrodynamic_performance_of_flow_boiling_through_a_heat_exchanger_filled_with_various_metallic_foam_samples","translated_slug":"","page_count":24,"language":"en","content_type":"Work","summary":"Highlights:  The heat transfer is enhanced with factor varying between 1.3 and 3 copper using metallic foam.  The insertion of metallic foam extends the boiling zone.  The NiFeAlCr and Inconel metallic foam are not recommended for heat exchanger  The copper metallic foam moves forward the critical heat flux.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362157,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362157/thumbnails/1.jpg","file_name":"j.cep.2017.08.01420240811-1-jiwo77.pdf","download_url":"https://www.academia.edu/attachments/117362157/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Thermal_and_hydrodynamic_performance_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362157/j.cep.2017.08.01420240811-1-jiwo77-libre.pdf?1723372826=\u0026response-content-disposition=attachment%3B+filename%3DThermal_and_hydrodynamic_performance_of.pdf\u0026Expires=1737258299\u0026Signature=WJbcFycOqkav0Y4-XHx1ncIFT2sq~U07~1Y9O4lbpuFgARhObST4Rvkia28Aa~nHKLWR6gOHQz6SFhvrJx9xXSJMrYhGA8lcGiGFjxA3f1Sdzu3iv~yHc6WKEUWqMhTaHNEHVJCIvrbGoi6JeluyCcJJwdV8FeKCUHirqOcqFJkCUf~AEMp8seXqHzi1JRDxjQsHUS8Yrlp2nCOYu8ca0MbJIo05A9H777GcNA33v-TQpFAxzwexkYdsVS4~xuMf~ITdUKekOIZgNP~Lidz2REKJh5pY1yySegcEtwV0Mz0JVWkn1Dq0eUGCHvrQteEUCHnkFcWsa-IOLYC0k6IwnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":426001,"name":"Metal Foam","url":"https://www.academia.edu/Documents/in/Metal_Foam"},{"id":972442,"name":"Boiling","url":"https://www.academia.edu/Documents/in/Boiling"}],"urls":[{"id":43935025,"url":"https://api.elsevier.com/content/article/PII:S0255270117303550?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765966"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765966/Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer"><img alt="Research paper thumbnail of Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer" class="work-thumbnail" src="https://attachments.academia-assets.com/117362159/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765966/Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer">Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer</a></div><div class="wp-workCard_item"><span>Heat and Mass Transfer</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="910351af265e381bb6a35ef675b1c5cd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362159,&quot;asset_id&quot;:122765966,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362159/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765966"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765966"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765966; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765966]").text(description); $(".js-view-count[data-work-id=122765966]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765966; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765966']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765966, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "910351af265e381bb6a35ef675b1c5cd" } } $('.js-work-strip[data-work-id=122765966]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765966,"title":"Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Heat and Mass Transfer"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765966/Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer","translated_internal_url":"","created_at":"2024-08-11T03:27:12.256-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362159/thumbnails/1.jpg","file_name":"s00231-017-2131-320240811-1-30fez5.pdf","download_url":"https://www.academia.edu/attachments/117362159/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimation_of_transient_heat_flux_densit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362159/s00231-017-2131-320240811-1-30fez5-libre.pdf?1723372989=\u0026response-content-disposition=attachment%3B+filename%3DEstimation_of_transient_heat_flux_densit.pdf\u0026Expires=1737258299\u0026Signature=MTJIq04VAWqXoTR9uwpxPfdhAFI28CMPA~Z43TitOrc8Hw8HjqIT82KgXjwLuxi2eHxW65V-my2IMm~A90fVopxlmYEmmZkjXGN2ijFQMAefJ6~c-ovJ6d7e9g4ANtdFHWovD4DBKTcfwRLA0aaXTx~hu8GE~zIzPJL2RckCruSiAgag8zgyIXTmyMW6cqbkC~XKE-~YLhjHM5igvZJ2dDHWHiB08qYVf4nQkCoJd0E-RHbzlybmw8yOxTTYGcS5Xe5Z71o7GEKeQIgaicvaHRT9KDK3fhr79adszemb4RI5FwdiZPn9pAjJ7KA2sr-a1fJqqGagcD2kDK6NhZfxlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Estimation_of_transient_heat_flux_density_during_the_heat_supply_of_a_catalytic_wall_steam_methane_reformer","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362159/thumbnails/1.jpg","file_name":"s00231-017-2131-320240811-1-30fez5.pdf","download_url":"https://www.academia.edu/attachments/117362159/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Estimation_of_transient_heat_flux_densit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362159/s00231-017-2131-320240811-1-30fez5-libre.pdf?1723372989=\u0026response-content-disposition=attachment%3B+filename%3DEstimation_of_transient_heat_flux_densit.pdf\u0026Expires=1737258299\u0026Signature=MTJIq04VAWqXoTR9uwpxPfdhAFI28CMPA~Z43TitOrc8Hw8HjqIT82KgXjwLuxi2eHxW65V-my2IMm~A90fVopxlmYEmmZkjXGN2ijFQMAefJ6~c-ovJ6d7e9g4ANtdFHWovD4DBKTcfwRLA0aaXTx~hu8GE~zIzPJL2RckCruSiAgag8zgyIXTmyMW6cqbkC~XKE-~YLhjHM5igvZJ2dDHWHiB08qYVf4nQkCoJd0E-RHbzlybmw8yOxTTYGcS5Xe5Z71o7GEKeQIgaicvaHRT9KDK3fhr79adszemb4RI5FwdiZPn9pAjJ7KA2sr-a1fJqqGagcD2kDK6NhZfxlA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":33661,"name":"Heat and Mass Transfer","url":"https://www.academia.edu/Documents/in/Heat_and_Mass_Transfer"},{"id":201306,"name":"Heat Flux","url":"https://www.academia.edu/Documents/in/Heat_Flux"},{"id":554780,"name":"Interdisciplinary Engineering","url":"https://www.academia.edu/Documents/in/Interdisciplinary_Engineering"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935024,"url":"http://link.springer.com/content/pdf/10.1007/s00231-017-2131-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765965"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/122765965/Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence"><img alt="Research paper thumbnail of Experimental hydrodynamic study of flow through metallic foams: Flow regime transitions and surface roughness influence" class="work-thumbnail" src="https://attachments.academia-assets.com/117362153/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/122765965/Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence">Experimental hydrodynamic study of flow through metallic foams: Flow regime transitions and surface roughness influence</a></div><div class="wp-workCard_item"><span>Mechanics of Materials</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="13161c5feebd6e810b7ec6335e083ef3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:117362153,&quot;asset_id&quot;:122765965,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/117362153/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765965"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765965"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765965; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765965]").text(description); $(".js-view-count[data-work-id=122765965]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765965; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765965']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765965, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "13161c5feebd6e810b7ec6335e083ef3" } } $('.js-work-strip[data-work-id=122765965]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765965,"title":"Experimental hydrodynamic study of flow through metallic foams: Flow regime transitions and surface roughness influence","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Mechanics of Materials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/122765965/Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence","translated_internal_url":"","created_at":"2024-08-11T03:27:11.998-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":117362153,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362153/thumbnails/1.jpg","file_name":"j.mechmat.2016.05.00720240811-1-to5d3d.pdf","download_url":"https://www.academia.edu/attachments/117362153/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_hydrodynamic_study_of_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362153/j.mechmat.2016.05.00720240811-1-to5d3d-libre.pdf?1723372828=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_hydrodynamic_study_of_flow.pdf\u0026Expires=1737258299\u0026Signature=Ufy6HBMEmN37oiQqCWettnxnvo5ZrgFoO6r6udOSLsZ-HGvaXgjlH7zgPBxMHQeHArzNbVAl0VcS2T5ZJ0vwYXzya9rbjvlKebovZPh8VfKpeUFXJj2PJaFxl70qqv4Upm58TN5gKwO8wlG1djZPxz0lurzyTxNoSeqrPmYTEmyyuQAFnXflFRJ3uvCUto5U0z-Cz8xgfvlfMPP~ppgPgllbYqfOoJ9LOxKh6ANaeecIvGh9ds75TVRaFvomTVIOcpwu0pyv11aKyfrxxhsw1PTWiCCFNukJiFIZWn6iuEbRZDD4Qwo2rhYwd8J21KlDaKU3ksrzgV2SQ7T8OMQ9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Experimental_hydrodynamic_study_of_flow_through_metallic_foams_Flow_regime_transitions_and_surface_roughness_influence","translated_slug":"","page_count":23,"language":"en","content_type":"Work","summary":null,"owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[{"id":117362153,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117362153/thumbnails/1.jpg","file_name":"j.mechmat.2016.05.00720240811-1-to5d3d.pdf","download_url":"https://www.academia.edu/attachments/117362153/download_file?st=MTczNzI2MTQ4OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Experimental_hydrodynamic_study_of_flow.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117362153/j.mechmat.2016.05.00720240811-1-to5d3d-libre.pdf?1723372828=\u0026response-content-disposition=attachment%3B+filename%3DExperimental_hydrodynamic_study_of_flow.pdf\u0026Expires=1737258299\u0026Signature=Ufy6HBMEmN37oiQqCWettnxnvo5ZrgFoO6r6udOSLsZ-HGvaXgjlH7zgPBxMHQeHArzNbVAl0VcS2T5ZJ0vwYXzya9rbjvlKebovZPh8VfKpeUFXJj2PJaFxl70qqv4Upm58TN5gKwO8wlG1djZPxz0lurzyTxNoSeqrPmYTEmyyuQAFnXflFRJ3uvCUto5U0z-Cz8xgfvlfMPP~ppgPgllbYqfOoJ9LOxKh6ANaeecIvGh9ds75TVRaFvomTVIOcpwu0pyv11aKyfrxxhsw1PTWiCCFNukJiFIZWn6iuEbRZDD4Qwo2rhYwd8J21KlDaKU3ksrzgV2SQ7T8OMQ9Zw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":512,"name":"Mechanics","url":"https://www.academia.edu/Documents/in/Mechanics"},{"id":32984,"name":"Mechanics of Materials","url":"https://www.academia.edu/Documents/in/Mechanics_of_Materials"},{"id":33296,"name":"Surface Roughness","url":"https://www.academia.edu/Documents/in/Surface_Roughness"},{"id":1342788,"name":"Surface Finish","url":"https://www.academia.edu/Documents/in/Surface_Finish"}],"urls":[{"id":43935023,"url":"https://api.elsevier.com/content/article/PII:S0167663616300503?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="122765964"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/122765964/Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances"><img alt="Research paper thumbnail of Numerical study on the effects of the macropatterned active surfaces on the wall-coated steam methane reformer performances" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/122765964/Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances">Numerical study on the effects of the macropatterned active surfaces on the wall-coated steam methane reformer performances</a></div><div class="wp-workCard_item"><span>International Journal of Hydrogen Energy</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract This paper deals with a numerical study on the steam methane reforming reaction performa...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="122765964"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="122765964"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 122765964; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=122765964]").text(description); $(".js-view-count[data-work-id=122765964]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 122765964; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='122765964']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 122765964, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=122765964]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":122765964,"title":"Numerical study on the effects of the macropatterned active surfaces on the wall-coated steam methane reformer performances","translated_title":"","metadata":{"abstract":"Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"International Journal of Hydrogen Energy"},"translated_abstract":"Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.","internal_url":"https://www.academia.edu/122765964/Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances","translated_internal_url":"","created_at":"2024-08-11T03:27:11.768-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":319290917,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_study_on_the_effects_of_the_macropatterned_active_surfaces_on_the_wall_coated_steam_methane_reformer_performances","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Abstract This paper deals with a numerical study on the steam methane reforming reaction performances into a wall-coated steam methane reformer (WC-SMR), intended to produce hydrogen. In this work a new catalytic pattern, purporting to enhance the WC-SMR efficiency, is proposed. A comparison study is made between the new inter-catalytic layers pattern and a conventional one with a continuous catalytic layer pattern. Both WC-SMR models operate at similar conditions and at the same design parameters, except the catalytic zone length which is monitored by taking into account the inter-catalytic layers spacing or not. Our results show that, by adopting a catalytic surface with an inter-catalytic spacing, the methane conversion could be enhanced and thus the hydrogen production is intensified.","owner":{"id":319290917,"first_name":"Brahim","middle_initials":null,"last_name":"MADANI","page_name":"BrahimMADANI3","domain_name":"independent","created_at":"2024-07-17T14:24:49.437-07:00","display_name":"Brahim MADANI","url":"https://independent.academia.edu/BrahimMADANI3"},"attachments":[],"research_interests":[{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":3771,"name":"Hydrogen","url":"https://www.academia.edu/Documents/in/Hydrogen"},{"id":4749,"name":"Catalysis","url":"https://www.academia.edu/Documents/in/Catalysis"},{"id":104345,"name":"Hydrogen Energy","url":"https://www.academia.edu/Documents/in/Hydrogen_Energy"},{"id":146245,"name":"Hydrogen Production","url":"https://www.academia.edu/Documents/in/Hydrogen_Production"},{"id":156347,"name":"Methane","url":"https://www.academia.edu/Documents/in/Methane"},{"id":260118,"name":"CHEMICAL SCIENCES","url":"https://www.academia.edu/Documents/in/CHEMICAL_SCIENCES"},{"id":1407115,"name":"Steam Reforming","url":"https://www.academia.edu/Documents/in/Steam_Reforming"}],"urls":[{"id":43935022,"url":"https://api.elsevier.com/content/article/PII:S036031991630684X?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "212333cc428c0f7d30b2c109a56d1fe2823c1732a7981d8d3d621d3e4ebb0d4a", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="1hBzvbfZtNG_jhPMmv4TYai0C5TSPN8B3MX2wgCPfIHwZv4wj11E2T0316KCeWSjiIgCWu3ptUpPQEvF9v6Bww" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/BrahimMADANI3" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="RCibXMdJM9pOJ9MXOPKtATwO_ReQBWfw-DgCGhMJ1j5iXhbR_83D0syeF3kgddrDHDL02a_QDbtrvb8d5XgrfA" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10