CINXE.COM

Search results for: radiative transfer

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: radiative transfer</title> <meta name="description" content="Search results for: radiative transfer"> <meta name="keywords" content="radiative transfer"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="radiative transfer" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="radiative transfer"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2876</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: radiative transfer</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2876</span> Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asadollah%20Bahrami">Asadollah Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20radiative%20entropy%20generation" title="spectral radiative entropy generation">spectral radiative entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-gray%20medium" title=" non-gray medium"> non-gray medium</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20k%28CK%29%20model" title=" correlated k(CK) model"> correlated k(CK) model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a> </p> <a href="https://publications.waset.org/abstracts/169050/analysis-of-spectral-radiative-entropy-generation-in-a-non-gray-participating-medium-with-heat-source-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2875</span> On the Influence of Thermal Radiation Upon Heat Transfer Characteristics of a Porous Media Under Local Thermal Non-Equilibrium Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Mahmoudi">Yasser Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Karimi"> Nader Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates numerically the effect of thermal radiation from the solid phase on the rate of heat transfer inside a porous medium. Forced convection heat transfer process within a pipe filled with a porous media is considered. The Darcy-Brinkman-Forchheimer model is utilized to represent the fluid transport within the porous medium. A local thermal non-equilibrium (LTNE), two-equation model is used to represent the energy transport for the solid and fluid phases. The radiative heat transfer equation is solved by discrete ordinate method (DOM) to compute the radiative heat flux in the porous medium. Two primary approaches (models A and B) are used to represent the boundary conditions for constant wall heat flux. The effects of radiative heat transfer on the Nusselt numbers of the two phases are examined by comparing the results obtained by the application of models A and B. The fluid Nusselt numbers calculated by the application of models A and B show that the Nusselt number obtained by model A for the radiative case is higher than those predicted for the non-radiative case. However, for model B the fluid Nusselt numbers obtained for the radiative and non-radiative cases are similar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title="porous media">porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20thermal%20non-equilibrium" title=" local thermal non-equilibrium"> local thermal non-equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20heat%20transfer" title=" forced convection heat transfer"> forced convection heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Discrete%20Ordinate%20Method%20%28DOM%29" title=" Discrete Ordinate Method (DOM)"> Discrete Ordinate Method (DOM)</a> </p> <a href="https://publications.waset.org/abstracts/7823/on-the-influence-of-thermal-radiation-upon-heat-transfer-characteristics-of-a-porous-media-under-local-thermal-non-equilibrium-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2874</span> Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raoudha%20Chaabane">Raoudha Chaabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Faouzi%20Askri"> Faouzi Askri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sassi%20Ben%20Nasrallah"> Sassi Ben Nasrallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=LBM" title=" LBM"> LBM</a>, <a href="https://publications.waset.org/abstracts/search?q=CVFEM-%20radiation%20coupled%20with%20convection" title=" CVFEM- radiation coupled with convection"> CVFEM- radiation coupled with convection</a> </p> <a href="https://publications.waset.org/abstracts/16709/numerical-simulation-of-rayleigh-benard-convection-and-radiation-heat-transfer-in-two-dimensional-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2873</span> Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashok">A. Ashok</a>, <a href="https://publications.waset.org/abstracts/search?q=K.Satapathy"> K.Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Prerana%20Nashine"> B. Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiative%20heat%20transfer" title=" transient radiative heat transfer "> transient radiative heat transfer </a> </p> <a href="https://publications.waset.org/abstracts/9579/conduction-accompanied-with-transient-radiative-heat-transfer-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2872</span> Solving Transient Conduction and Radiation using Finite Volume Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20K.%20Satapathy">Ashok K. Satapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Prerana%20Nashine"> Prerana Nashine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiative heat transfer in participating medium was anticipated using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient energy equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participating%20media" title="participating media">participating media</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20coupled%20with%20conduction" title=" radiation coupled with conduction"> radiation coupled with conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/6346/solving-transient-conduction-and-radiation-using-finite-volume-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2871</span> The Climate Impact Due to Clouds and Selected Greenhouse Gases by Short Wave Upwelling Radiative Flux within Spectral Range of Space-Orbiting Argus1000 Micro-Spectrometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Siddiqui">Rehan Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Brendan%20Quine"> Brendan Quine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Radiance Enhancement (RE) and integrated absorption technique is applied to develop a synthetic model to determine the enhancement in radiance due to cloud scene and Shortwave upwelling Radiances (SHupR) by O2, H2O, CO2 and CH4. This new model is used to estimate the magnitude variation for RE and SHupR over spectral range of 900 nm to 1700 nm by varying surface altitude, mixing ratios and surface reflectivity. In this work, we employ satellite real observation of space orbiting Argus 1000 especially for O2, H2O, CO2 and CH4 together with synthetic model by using line by line GENSPECT radiative transfer model. All the radiative transfer simulations have been performed by varying over a different range of percentages of water vapor contents and carbon dioxide with the fixed concentration oxygen and methane. We calculate and compare both the synthetic and real measured observed data set of different week per pass of Argus flight. Results are found to be comparable for both approaches, after allowing for the differences with the real and synthetic technique. The methodology based on RE and SHupR of the space spectral data can be promising for the instant and reliable classification of the cloud scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiance%20enhancement" title="radiance enhancement">radiance enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20transfer" title=" radiative transfer"> radiative transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=shortwave%20upwelling%20radiative%20flux" title=" shortwave upwelling radiative flux"> shortwave upwelling radiative flux</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20reflectivity" title=" cloud reflectivity"> cloud reflectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a> </p> <a href="https://publications.waset.org/abstracts/38435/the-climate-impact-due-to-clouds-and-selected-greenhouse-gases-by-short-wave-upwelling-radiative-flux-within-spectral-range-of-space-orbiting-argus1000-micro-spectrometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2870</span> On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reheating%20furnace" title="reheating furnace">reheating furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slab" title=" steel slab"> steel slab</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title=" radiative heat transfer"> radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=WSGGM" title=" WSGGM"> WSGGM</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/8145/on-the-thermal-behavior-of-the-slab-in-a-reheating-furnace-with-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2869</span> On the Blocked-off Finite-Volume Radiation Solutions in a Two-Dimensional Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blocked-off formulations for the analysis of radiative heat transfer are formulated and examined in order to find the solutions in a two-dimensional complex enclosure. The final discretization equations using the step scheme for spatial differencing practice are proposed with the additional source term to incorporate the blocked-off procedure. After introducing the implementation for inactive region into the general discretization equation, three different problems are examined to find the performance of the solution methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title="radiative heat transfer">radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Volume%20Method%20%28FVM%29" title=" Finite Volume Method (FVM)"> Finite Volume Method (FVM)</a>, <a href="https://publications.waset.org/abstracts/search?q=blocked-off%20solution%20procedure" title=" blocked-off solution procedure"> blocked-off solution procedure</a>, <a href="https://publications.waset.org/abstracts/search?q=body-fitted%20coordinate" title=" body-fitted coordinate"> body-fitted coordinate</a> </p> <a href="https://publications.waset.org/abstracts/19872/on-the-blocked-off-finite-volume-radiation-solutions-in-a-two-dimensional-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2868</span> Modeling of Conjugate Heat Transfer including Radiation in a Kerosene/Air Certification Burner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lancelot%20Boulet">Lancelot Boulet</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Benard"> Pierre Benard</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghislain%20Lartigue"> Ghislain Lartigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Moureau"> Vincent Moureau</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Chauvet"> Nicolas Chauvet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheddia%20Didorally"> Sheddia Didorally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> International aeronautic standards demand a fire certification for engines that demonstrate their resistance. This demonstration relies on tests performed with prototype engines in the late stages of the development. Hardest tests require to place a kerosene standardized flame in front of the engine casing during a given time with imposed temperature and heat flux. The purpose of this work is to provide a better characterization of a kerosene/air certification burner in order to minimize the risks of test failure. A first Large-Eddy Simulation (LES) study of the certification burner permitted to model and simulate this burner, including both adiabatic and Conjugate Heat Transfer (CHT) computations. Carried out on unstructured grids with 40 million tetrahedral cells, using the finite-volume YALES2 code, spray combustion, forced convection on walls and conduction in the solid parts of the burner were coupled to achieve a detailed description of heat transfer. It highlighted the fact that conduction inside the solid has a real impact on the flame topology and the combustion regime. However, in the absence of radiative heat transfer, unrealistic temperature of the equipment was obtained. The aim of the present study is to include the radiative heat transfer in order to reach the same temperature given by experimental measurements. First, various test-cases are conducted to validate the coupling between the different heat solvers. Then, adiabatic case, CHT case, as well as CHT including radiative transfer are studied and compared. The LES model is finally applied to investigate the heat transfer in a flame impaction configuration. The aim is to progress on fire test modeling so as to reach a good confidence level as far as success of the certification test is concerned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title="conjugate heat transfer">conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance%20test" title=" fire resistance test"> fire resistance test</a>, <a href="https://publications.waset.org/abstracts/search?q=large-eddy%20simulation" title=" large-eddy simulation"> large-eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20transfer" title=" radiative transfer"> radiative transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20combustion" title=" turbulent combustion"> turbulent combustion</a> </p> <a href="https://publications.waset.org/abstracts/82930/modeling-of-conjugate-heat-transfer-including-radiation-in-a-keroseneair-certification-burner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2867</span> Effect of External Radiative Heat Flux on Combustion Characteristics of Rigid Polyurethane Foam under Piloted-Ignition and Radiative Auto-Ignition Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Jia%20He">Jia-Jia He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Jiang"> Lin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hua%20Sun"> Jin-Hua Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rigid polyurethane foam (RPU) has been extensively applied in building insulation system, yet with high flammability for being easily ignited by high temperature spark or radiative heat flux from other flaming materials or surrounding building facade. Using a cone calorimeter by Fire Testing Technology and thermal couple tree, this study systematically investigated the effect of radiative heat flux on the ignition time and characteristic temperature distribution during RPU combustion under different heat fluxes gradient (12, 15, 20, 25, 30, 35, 40, 45, and 50 kW/m²) with spark ignition/ignition by radiation. The ignition time decreases proportionally with increase of external heat flux, meanwhile increasing the external heat flux raises the peak heat release rate and impresses on the vertical temperature distribution greatly. The critical ignition heat flux is found to be 15 and 25 kW/m² for spark ignition and radiative ignition, respectively. Based on previous experienced ignition formula, a methodology to predict ignition times in both modes has been developed theoretically. By analyzing the heat transfer mechanism around the sample surroundings, both radiation from cone calorimeter and convection flow are considered and calculated theoretically. The experimental ignition times agree well with the theoretical ones in both radiative and convective conditions; however, the observed critical ignition heat flux is higher than the calculated one under piloted-ignition mode because the heat loss process, especially in lower heat flux radiation, is not considered in this developed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title="rigid polyurethane foam">rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title=" cone calorimeter"> cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20time" title=" ignition time"> ignition time</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20heat%20flux" title=" external heat flux"> external heat flux</a> </p> <a href="https://publications.waset.org/abstracts/77115/effect-of-external-radiative-heat-flux-on-combustion-characteristics-of-rigid-polyurethane-foam-under-piloted-ignition-and-radiative-auto-ignition-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2866</span> ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sireetorn%20Kuharat">Sireetorn Kuharat</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Beg"> Anwar Beg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20convection" title="thermal convection">thermal convection</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title=" radiative heat transfer"> radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20collector" title=" solar collector"> solar collector</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a> </p> <a href="https://publications.waset.org/abstracts/96802/ansys-fluent-simulation-of-natural-convection-and-radiation-in-a-solar-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2865</span> Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Srivastava">Shreya Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagnik%20Dey"> Sagnik Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20radiative%20forcing%20%28ARF%29" title="aerosol radiative forcing (ARF)">aerosol radiative forcing (ARF)</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20composition" title=" aerosol composition"> aerosol composition</a>, <a href="https://publications.waset.org/abstracts/search?q=MISR" title=" MISR"> MISR</a>, <a href="https://publications.waset.org/abstracts/search?q=CERES" title=" CERES"> CERES</a>, <a href="https://publications.waset.org/abstracts/search?q=SBDART" title=" SBDART"> SBDART</a> </p> <a href="https://publications.waset.org/abstracts/182412/aerosol-direct-radiative-forcing-over-the-indian-subcontinent-a-comparative-analysis-from-the-satellite-observation-and-radiative-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2864</span> Photoluminescence and Energy Transfer Studies of Dy3+ Ions Doped Lithium Lead Alumino Borate Glasses for W-LED and Laser Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Deopa">Nisha Deopa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Rao"> A. S. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium Lead Alumino Borate (LiPbAlB) glasses doped with different Dy3+ ions concentration were synthesized to investigate their viability in solid state lighting (SSL) technology by melt quenching techniques. From the absorption spectra, bonding parameters (ð) were investigated to study the nature of bonding between Dy3+ ions and its surrounding ligands. Judd-Ofelt (J-O) intensity parameters (Ω = 2, 4, 6), estimated from the experimental oscillator strengths (fex) of the absorption spectral features were used to evaluate the radiative parameters of different transition levels. From the decay curves, experimental lifetime (τex) were measured and coupled with the radiative lifetime to evaluate the quantum efficiency of the as-prepared glasses. As Dy3+ ions concentration increases, decay profile changes from exponential to non-exponential through energy transfer mechanism (ETM) in turn decreasing experimental lifetime. In order to investigate the nature of ETM, non-exponential decay curves were fitted to Inkuti–Hirayama (I-H) model which further confirms dipole-dipole interaction. Among all the emission transition, 4F9/2  6H15/2 transition (483 nm) is best suitable for lasing potentialities. By exciting titled glasses in n-UV to blue regions, CIE chromaticity coordinates and Correlated Color Temperature (CCT) were calculated to understand their capability in cool white light generation. From the evaluated radiative parameters, CIE co-ordinates, quantum efficiency and confocal images it was observed that glass B (0.5 mol%) is a potential candidate for developing w-LEDs and lasers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title="energy transfer">energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=glasses" title=" glasses"> glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=J-O%20parameters" title=" J-O parameters"> J-O parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/68473/photoluminescence-and-energy-transfer-studies-of-dy3-ions-doped-lithium-lead-alumino-borate-glasses-for-w-led-and-laser-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2863</span> Impact of Unusual Dust Event on Regional Climate in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Taneja">Kanika Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Soni"> V. K. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Kafeel%20Ahmad"> Kafeel Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamshad%20Ahmad"> Shamshad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20properties" title="aerosol optical properties">aerosol optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20storm" title=" dust storm"> dust storm</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20transfer%20model" title=" radiative transfer model"> radiative transfer model</a>, <a href="https://publications.waset.org/abstracts/search?q=sky%20radiometer" title=" sky radiometer"> sky radiometer</a> </p> <a href="https://publications.waset.org/abstracts/30683/impact-of-unusual-dust-event-on-regional-climate-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2862</span> On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashiru%20Abdullahi">Bashiru Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isah%20Bala%20Yabo"> Isah Bala Yabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Yakubu%20Seini"> Ibrahim Yakubu Seini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20channel" title=" porous channel"> porous channel</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20condition" title=" convective boundary condition"> convective boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/151318/on-a-transient-magnetohydrodynamics-heat-transfer-within-radiative-porous-channel-due-to-convective-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2861</span> Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guanhua%20Zhou">Guanhua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongqi%20Ma"> Zhongqi Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20sensitivity%20analysis" title="global sensitivity analysis">global sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20transfer%20model" title=" radiative transfer model"> radiative transfer model</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20aquatic%20vegetation" title=" submerged aquatic vegetation"> submerged aquatic vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation%20indices" title=" vegetation indices"> vegetation indices</a> </p> <a href="https://publications.waset.org/abstracts/75775/construction-of-submerged-aquatic-vegetation-index-through-global-sensitivity-analysis-of-radiative-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2860</span> Effects of Variable Viscosity on Radiative MHD Flow in a Porous Medium Between Twovertical Wavy Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Disu">A. B. Disu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dada"> M. S. Dada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate two dimensional heat transfer of a free convective-radiative MHD (Magneto-hydrodynamics) flow with temperature dependent viscosity and heat source of a viscous incompressible fluid in a porous medium between two vertical wavy walls. The fluid viscosity is assumed to vary as an exponential function of temperature. The flow is assumed to consist of a mean part and a perturbed part. The perturbed quantities were expressed in terms of complex exponential series of plane wave equation. The resultant differential equations were solved by Differential Transform Method (DTM). The numerical computations were presented graphically to show the salient features of the fluid flow and heat transfer characteristics. The skin friction and Nusselt number were also analyzed for various governing parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20transform%20method" title="differential transform method">differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20free%20convection" title=" MHD free convection"> MHD free convection</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20dimensional%20radiation" title=" two dimensional radiation"> two dimensional radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20wavy%20walls" title=" two wavy walls"> two wavy walls</a> </p> <a href="https://publications.waset.org/abstracts/27813/effects-of-variable-viscosity-on-radiative-mhd-flow-in-a-porous-medium-between-twovertical-wavy-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2859</span> Radiative Reactions Analysis at the Range of Astrophysical Energies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar">A. Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of the elastic scattering of protons on <sup>10</sup>B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V<sub>0</sub>) and proton energy (E<sub>p</sub>) has been obtained. Also, surface imaginary potential W<sub>D</sub> is proportional to the proton energy (E<sub>p</sub>) in the range 0.400 and 17 MeV. The radiative reaction <sup>10</sup>B(p,&gamma;)<sup>11</sup>C has been analyzed using potential model. A comparison between <sup>10</sup>B(p,&gamma;)<sup>11</sup>C and <sup>6</sup>Li(p,&gamma;)<sup>7</sup>Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction <sup>7</sup>Li(p,&gamma;)<sup>8</sup>Be has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering%20of%20protons%20on%2010B%20nuclei" title="elastic scattering of protons on 10B nuclei">elastic scattering of protons on 10B nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20potential%20parameters" title=" optical potential parameters"> optical potential parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20model" title=" potential model"> potential model</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20reaction" title=" radiative reaction"> radiative reaction</a> </p> <a href="https://publications.waset.org/abstracts/88571/radiative-reactions-analysis-at-the-range-of-astrophysical-energies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2858</span> Methane versus Carbon Dioxide Mitigation Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20J.%20Severinsky">Alexander J. Severinsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Allen%20L.%20Sessoms"> Allen L. Sessoms</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric carbon dioxide (CO₂) has dominated the discussion about the causes of climate change. This is a reflection of the time horizon that has become the norm adopted by the IPCC as the planning horizon. Recently, it has become clear that a 100-year time horizon is much too long, and yet almost all mitigation efforts, including those in the near-term horizon of 30 years, are geared toward it. In this paper, we show that, for a 30-year time horizon, methane (CH₄) is the greenhouse gas whose radiative forcing exceeds that of CO₂. In our analysis, we used radiative forcing of greenhouse gases in the atmosphere since they directly affect the temperature rise on Earth. In 2019, the radiative forcing of methane was ~2.5 W/m² and that of carbon dioxide ~2.1 W/m². Under a business-as-usual (BAU) scenario until 2050, such forcing would be ~2.8 W/m² and ~3.1 W/m², respectively. There is a substantial spread in the data for anthropogenic and natural methane emissions as well as CH₄ leakages from production to consumption. We estimated the minimum and maximum effects of the reduction of these leakages. Such action may reduce the annual radiative forcing of all CH₄ emissions by between ~15% and ~30%. This translates into a reduction of the RF by 2050 from ~2.8 W/m² to ~2.5 W/m² in the case of the minimum effect and to ~2.15 W/m² in the case of the maximum. Under the BAU, we found that the RF of CO₂ would increase from ~2.1 W/m² nowadays to ~3.1 W/m² by 2050. We assumed a reduction of 50% of anthropogenic emission linearly over the next 30 years. That would reduce radiative forcing from ~3.1 W/m² to ~2.9 W/m². In the case of ‘net zero,’ the other 50% of reduction of only anthropogenic emissions would be limited to either from sources of emissions or directly from the atmosphere. The total reduction would be from ~3.1 to ~2.7, or ~0.4 W/m². To achieve the same radiative forcing as in the scenario of maximum reduction of methane leakages of ~2.15 W/m², then an additional reduction of radiative forcing of CO₂ would be approximately 2.7 -2.15=0.55 W/m². This is a much larger value than in expectations from ‘net zero’. In total, one needs to remove from the atmosphere ~660 GT to match the maximum reduction of current methane leakages and ~270 GT to achieve ‘net zero.’ This amounts to over 900 GT in total. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20leakages" title="methane leakages">methane leakages</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20radiative%20forcing" title=" methane radiative forcing"> methane radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20mitigation" title=" methane mitigation"> methane mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20net%20zero" title=" methane net zero"> methane net zero</a> </p> <a href="https://publications.waset.org/abstracts/136614/methane-versus-carbon-dioxide-mitigation-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2857</span> Impact of Modifying the Surface Materials on the Radiative Heat Transfer Phenomenon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arkadiusz%20Urz%C4%99dowski">Arkadiusz Urzędowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorota%20W%C3%B3jcicka-Migasiuk"> Dorota Wójcicka-Migasiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Sachajdak"> Andrzej Sachajdak</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Pa%C5%9Bnikowska-%C5%81ukaszuk"> Magdalena Paśnikowska-Łukaszuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the impact of climate changes and inevitability to reduce greenhouse gases, the need to use low-carbon and sustainable construction has increased. In this work, it is investigated how texture of the surface building materials and radiative heat transfer phenomenon in flat multilayer can be correlated. Attempts to test the surface emissivity are taken however, the trustworthiness of measurement results remains a concern since sensor size and thickness are common problems. This paper presents an experimental method to studies surface emissivity with use self constructed thermal sensors and thermal imaging technique. The surface of building materials was modified by mechanical and chemical treatment affecting the reduction of the emissivity. For testing the shaping surface of materials and mapping its three-dimensional structure, scanning profilometry were used in a laboratory. By comparing the results of laboratory tests and performed analysis of 3D computer fluid dynamics software, it can be shown that a change in the surface coverage of materials affects the heat transport by radiation between layers. Motivated by recent advancements in variational inference, this publication evaluates the potential use a dedicated data processing approach, and properly constructed temperature sensors, the influence of the surface emissivity on the phenomenon of radiation and heat transport in the entire partition can be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20emissivity" title=" surface emissivity"> surface emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/160549/impact-of-modifying-the-surface-materials-on-the-radiative-heat-transfer-phenomenon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2856</span> Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Utkarsh%20A.%20Mishra">Utkarsh A. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Bansal"> Ankit Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20transfer" title="radiative heat transfer">radiative heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20Method" title=" Monte Carlo Method"> Monte Carlo Method</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-random%20numbers" title=" pseudo-random numbers"> pseudo-random numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20discrepancy%20sequences" title=" low discrepancy sequences"> low discrepancy sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a> </p> <a href="https://publications.waset.org/abstracts/111711/quasi-photon-monte-carlo-on-radiative-heat-transfer-an-importance-sampling-and-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2855</span> TiO2/PDMS Coating With Minimum Solar Absorption Loss for Passive Daytime Radiative Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhrigu%20Rishi%20Mishra">Bhrigu Rishi Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreerag%20Sundaram"> Sreerag Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Nithin%20Jo%20Varghese"> Nithin Jo Varghese</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthik%20Sasihithlu"> Karthik Sasihithlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have designed a TiO2/PDMS coating with 94% solar reflection, 96% IR emission, and 81.8 W/m2 cooling power for passive daytime radiative cooling using Kubelka Munk theory and CST microwave studio. To reduce solar absorption loss in 0.3-0.39 m wavelength region, a TiO2 thin film on top of the coating is used. Simulation using Ansys Lumerical shows that for a 20 m thick TiO2/PDMS coating, a TiO2 thin film of 84 nm increases the coating's reflectivity by 11% in the solar region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20daytime%20radiative%20cooling" title="passive daytime radiative cooling">passive daytime radiative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=disordered%20metamaterial" title=" disordered metamaterial"> disordered metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=Kudelka%20Munk%20theory" title=" Kudelka Munk theory"> Kudelka Munk theory</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20reflectivity" title=" solar reflectivity"> solar reflectivity</a> </p> <a href="https://publications.waset.org/abstracts/146810/tio2pdms-coating-with-minimum-solar-absorption-loss-for-passive-daytime-radiative-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2854</span> Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Patidar">Shashank Patidar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar"> Sumit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Srivastava"> Atul Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Suneet%20Singh"> Suneet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title="lattice Boltzmann method">lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20radiation%20transfer%20equation" title=" transient radiation transfer equation"> transient radiation transfer equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20phase%20lag%20model" title=" dual phase lag model "> dual phase lag model </a> </p> <a href="https://publications.waset.org/abstracts/17369/numerical-investigation-of-heat-transfer-in-laser-irradiated-biological-samplebased-on-dual-phase-lag-heat-conduction-model-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2853</span> Influence of Mass Flow Rate on Forced Convective Heat Transfer through a Nanofluid Filled Direct Absorption Solar Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salma%20Parvin">Salma Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Alim"> M. A. Alim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The convective and radiative heat transfer performance and entropy generation on forced convection through a direct absorption solar collector (DASC) is investigated numerically. Four different fluids, including Cu-water nanofluid, Al<sub>2</sub>O<sub>3</sub>-waternanofluid, TiO<sub>2</sub>-waternanofluid, and pure water are used as the working fluid. Entropy production has been taken into account in addition to the collector efficiency and heat transfer enhancement. Penalty finite element method with Galerkin&rsquo;s weighted residual technique is used to solve the governing non-linear partial differential equations. Numerical simulations are performed for the variation of mass flow rate. The outcomes are presented in the form of isotherms, average output temperature, the average Nusselt number, collector efficiency, average entropy generation, and Bejan number. The results present that the rate of heat transfer and collector efficiency enhance significantly for raising the values of <em>m</em> up to a certain range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DASC" title="DASC">DASC</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flow%20rate" title=" mass flow rate"> mass flow rate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/66116/influence-of-mass-flow-rate-on-forced-convective-heat-transfer-through-a-nanofluid-filled-direct-absorption-solar-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2852</span> Seasonal Variability of Aerosol Optical Properties and Their Radiative Effects over Indo-Gangetic Plain in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanika%20Taneja">Kanika Taneja</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Soni"> V. K. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Attri"> S. D. Attri</a>, <a href="https://publications.waset.org/abstracts/search?q=Kafeel%20Ahmad"> Kafeel Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamshad%20Ahmad"> Shamshad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerosols represent an important component of earth-atmosphere system and have a profound impact on the global and regional climate. With the growing population and urbanization, the aerosol load in the atmosphere over the Indian region is found to be increasing. Several studies have reported that the aerosol optical depth over the northern part of India is higher as compared to the southern part. The northern India along the Indo-Gangetic plain is often influenced with dust transported from the Thar Desert in northwestern India and from Arabian Peninsula during the pre-monsoon season. Seasonal variations in aerosol optical and radiative properties were examined using data retrieved from ground based multi-wavelength Prede Sun/sky radiometer (POM-02) over Delhi, Rohtak, Jodhpur and Varanasi for the period April 2011-April 2013. These stations are part of the Skynet-India network of India Meteorological Department. The Sun/sky radiometer (POM-02) has advantage over other instruments that it can be calibrated on-site. These aerosol optical properties retrieved from skyradiometer observations are further used to analyze the Direct Aerosol Radiative Forcing (DARF) over the study locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20properties" title="aerosol optical properties">aerosol optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=indo-%20gangetic%20plain" title=" indo- gangetic plain"> indo- gangetic plain</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20forcing" title=" radiative forcing"> radiative forcing</a>, <a href="https://publications.waset.org/abstracts/search?q=sky%20radiometer" title=" sky radiometer"> sky radiometer</a> </p> <a href="https://publications.waset.org/abstracts/26748/seasonal-variability-of-aerosol-optical-properties-and-their-radiative-effects-over-indo-gangetic-plain-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2851</span> Influence of Thermal Radiation on MHD Micropolar Fluid Flow, Heat and Mass Transfer over Vertical Flat Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alouaoui%20%20Redha">Alouaoui Redha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Samira"> Ferhat Samira</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouaziz%20Mohamed%20Najib"> Bouaziz Mohamed Najib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and local Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD" title="MHD">MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluid" title=" micropolar fluid"> micropolar fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer" title=" boundary layer"> boundary layer</a> </p> <a href="https://publications.waset.org/abstracts/39803/influence-of-thermal-radiation-on-mhd-micropolar-fluid-flow-heat-and-mass-transfer-over-vertical-flat-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2850</span> Coupling Heat Transfer by Natural Convection and Thermal Radiation in a Storage Tank of LNG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Hariti">R. Hariti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saighi"> M. Saighi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saidani-Scott"> H. Saidani-Scott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical simulation of natural convection double diffusion, coupled with thermal radiation in unsteady laminar regime in a storage tank is carried out. The storage tank contains a liquefied natural gas (LNG) in its gaseous phase. Fluent, a commercial CFD package, based on the numerical finite volume method, is used to simulate the flow. The radiative transfer equation is solved using the discrete coordinate method. This numerical simulation is used to determine the temperature profiles, stream function, velocity vectors and variation of the heat flux density for unsteady laminar natural convection. Furthermore, the influence of thermal radiation on the heat transfer has been investigated and the results obtained were compared to those found in the literature. Good agreement between the results obtained by the numerical method and those taken on site for the temperature values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tank" title="tank">tank</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefied%20natural%20gas" title=" liquefied natural gas"> liquefied natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/15574/coupling-heat-transfer-by-natural-convection-and-thermal-radiation-in-a-storage-tank-of-lng" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2849</span> Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20J.%20Severinsky">Alexander J. Severinsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth&#39;s surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author&rsquo;s skepticism that current changes cannot be explained by a &quot;~1 <sup>o</sup>C&quot; global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within &plusmn; 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m<sup>2</sup> on average over the Earth&rsquo;s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m<sup>2</sup>. In 2018, these radiative forces heated the atmosphere by approximately 5.1 <sup>o</sup>C, which will create a thermal equilibrium average ground surface temperature increase of 4.6 <sup>o</sup>C to 4.8 <sup>o</sup>C by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m<sup>2</sup> causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 <sup>o</sup>C, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 <sup>o</sup>C increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force" title="greenhouse radiative force">greenhouse radiative force</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20air%20temperature" title=" greenhouse air temperature"> greenhouse air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20thermodynamics" title=" greenhouse thermodynamics"> greenhouse thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20historical" title=" greenhouse historical"> greenhouse historical</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force%20on%20ice" title=" greenhouse radiative force on ice"> greenhouse radiative force on ice</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force%20on%20plants" title=" greenhouse radiative force on plants"> greenhouse radiative force on plants</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20radiative%20force%20in%20air" title=" greenhouse radiative force in air"> greenhouse radiative force in air</a> </p> <a href="https://publications.waset.org/abstracts/128167/greenhouse-gasses-effect-on-atmospheric-temperature-increase-and-the-observable-effects-on-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2848</span> Numerical Assessment of Fire Characteristics with Bodies Engulfed in Hydrocarbon Pool Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siva%20Kumar%20Bathina">Siva Kumar Bathina</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudheer%20Siddapureddy"> Sudheer Siddapureddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fires accident becomes even worse when the hazardous equipment like reactors or radioactive waste packages are engulfed in fire. In this work, large-eddy numerical fire simulations are performed using fire dynamic simulator to predict the thermal behavior of such bodies engulfed in hydrocarbon pool fires. A radiatively dominated 0.3 m circular burner with n-heptane as the fuel is considered in this work. The fire numerical simulation results without anybody inside the fire are validated with the reported experimental data. The comparison is in good agreement for different flame properties like predicted mass burning rate, flame height, time-averaged center-line temperature, time-averaged center-line velocity, puffing frequency, the irradiance at the surroundings, and the radiative heat feedback to the pool surface. Cask of different sizes is simulated with SS304L material. The results are independent of the material of the cask simulated as the adiabatic surface temperature concept is employed in this study. It is observed that the mass burning rate increases with the blockage ratio (3% ≤ B ≤ 32%). However, the change in this increment is reduced at higher blockage ratios (B > 14%). This is because the radiative heat feedback to the fuel surface is not only from the flame but also from the cask volume. As B increases, the volume of the cask increases and thereby increases the radiative contribution to the fuel surface. The radiative heat feedback in the case of the cask engulfed in the fire is increased by 2.5% to 31% compared to the fire without cask. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20surface%20temperature" title="adiabatic surface temperature">adiabatic surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20accidents" title=" fire accidents"> fire accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20dynamic%20simulator" title=" fire dynamic simulator"> fire dynamic simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20heat%20feedback" title=" radiative heat feedback"> radiative heat feedback</a> </p> <a href="https://publications.waset.org/abstracts/115684/numerical-assessment-of-fire-characteristics-with-bodies-engulfed-in-hydrocarbon-pool-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2847</span> Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Beg">Anwar Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Sireetorn%20Kuharat"> Sireetorn Kuharat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mehmood"> Rashid Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabil%20Tabassum"> Rabil Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisam%20Babaie"> Meisam Babaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-orthogonal%20stagnation-point%20heat%20transfer" title="non-orthogonal stagnation-point heat transfer">non-orthogonal stagnation-point heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20nano-polymer%20coating" title=" solar nano-polymer coating"> solar nano-polymer coating</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20numerical%20quadrature" title=" MATLAB numerical quadrature"> MATLAB numerical quadrature</a>, <a href="https://publications.waset.org/abstracts/search?q=Variational%20Iterative%20Method%20%28VIM%29" title=" Variational Iterative Method (VIM)"> Variational Iterative Method (VIM)</a> </p> <a href="https://publications.waset.org/abstracts/96804/oblique-radiative-solar-nano-polymer-gel-coating-heat-transfer-and-slip-flow-manufacturing-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=95">95</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=96">96</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=radiative%20transfer&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10