CINXE.COM
Search results for: Zhuo Jing-Schmidt
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Zhuo Jing-Schmidt</title> <meta name="description" content="Search results for: Zhuo Jing-Schmidt"> <meta name="keywords" content="Zhuo Jing-Schmidt"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Zhuo Jing-Schmidt" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Zhuo Jing-Schmidt"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Zhuo Jing-Schmidt</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Template-Assisted Synthesis of IrO2 Nanopores Membrane Electrode Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo-Xin%20Lu">Zhuo-Xin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Shi"> Yan Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Feng%20Yan"> Chang-Feng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Huang"> Ying Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Gan"> Yuan Gan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhi-Da%20Wang"> Zhi-Da Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With TiO2 nanotube arrays (TNTA) as template, a IrO2 nanopores membrane electrode assembly (MEA) was synthesized by a novel depositi-assemble-etch strategy. By analysing the morphology of IrO2/TNTA and cyclic voltammetry (CV) curve at different deposition cycles, we proposed a reasonable scheme for the process of IrO2 electrodeposition on TNTA. The current density of IrO2/TNTA at 1.5V vs RHE reaches 5.12mA/cm2 after 55 cycles deposition, which shows promising performance for its high OER activity after template removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=IrO2%20nanopores" title=" IrO2 nanopores"> IrO2 nanopores</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA" title=" MEA"> MEA</a>, <a href="https://publications.waset.org/abstracts/search?q=OER" title=" OER"> OER</a> </p> <a href="https://publications.waset.org/abstracts/46915/template-assisted-synthesis-of-iro2-nanopores-membrane-electrode-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> A Study on Waste Management Policy in Minamata City Kumamoto Prefecture Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiannan%20Zhuo">Qiannan Zhuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanglin%20Yan"> Wanglin Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minamata City and its citizens have been suffered from Minamata Disease, one of the worst environmental problems in Japan, since 1956. To mitigate the bad images brought by Minamata Disease, Minamata City has started a series of environmental friendly activities from 60 years ago. Garbage separation is the very beginning one. It has been already done for more than 20 years since Minamata citizens started to separate their garbage into more than 20 categories. In this research, the author evaluated the effectiveness of the waste management policy in Minamata city by analyzing the recycle rate and the landfill amount., and also pointed out the problems brought by it through the qualitative survey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minamata%20City" title="Minamata City">Minamata City</a>, <a href="https://publications.waset.org/abstracts/search?q=households%20waste" title=" households waste"> households waste</a>, <a href="https://publications.waset.org/abstracts/search?q=garbage%20separation" title=" garbage separation"> garbage separation</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle%20reduce%20reuse" title=" recycle reduce reuse"> recycle reduce reuse</a> </p> <a href="https://publications.waset.org/abstracts/60487/a-study-on-waste-management-policy-in-minamata-city-kumamoto-prefecture-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Practice of Applying MIDI Technology to Train Creative Teaching Skills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhuo">Yang Zhuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the integration of MIDI technology as one of the important digital technologies in music teaching, from the perspective of teaching practice, into the process of cultivating students' teaching skills. At the same time, the framework elements of the learning environment for music education students are divided into four aspects: digital technology supported learning space, new knowledge learning, teaching methods, and teaching evaluation. In teaching activities, more attention should be paid to students' subjectivity and interaction between them so as to enhance their emotional experience in teaching practice simulation. In the process of independent exploration and cooperative interaction, problems should be discovered and solved, and basic knowledge of music and teaching methods should be exercised in practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=music%20education" title="music education">music education</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20technology" title=" educational technology"> educational technology</a>, <a href="https://publications.waset.org/abstracts/search?q=MIDI" title=" MIDI"> MIDI</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20training" title=" teacher training"> teacher training</a> </p> <a href="https://publications.waset.org/abstracts/167874/practice-of-applying-midi-technology-to-train-creative-teaching-skills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> A Comparison of YOLO Family for Apple Detection and Counting in Orchards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanqing%20Li">Yuanqing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyi%20Lei"> Changyi Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaopeng%20Xue"> Zhaopeng Xue</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Zheng"> Zhuo Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanbo%20Long"> Yanbo Long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20object%20detection" title="agricultural object detection">agricultural object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision"> machine vision</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLO%20family" title=" YOLO family"> YOLO family</a> </p> <a href="https://publications.waset.org/abstracts/134964/a-comparison-of-yolo-family-for-apple-detection-and-counting-in-orchards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei-Bo%20Hua">Wei-Bo Hua</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Zheng"> Zhuo Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Dong%20Guo"> Xiao-Dong Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben-He%20Zhong"> Ben-He Zhong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~ 0.04) series cathode materials were synthesized by a carbonate co-precipitation method, followed by a high temperature calcination process. The influence of Al substitution on the microstructure and electrochemical performances of the prepared materials was investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test. The results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered hexagonal "α" -NaFeO2 structure. Although the discharge capacity of Al-doped samples decreases as x increases, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a promising material for “green” vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title="lithium ion battery">lithium ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20co-precipitation" title=" carbonate co-precipitation"> carbonate co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20properties" title=" electrochemical properties"> electrochemical properties</a> </p> <a href="https://publications.waset.org/abstracts/43058/microstructure-and-electrochemical-properties-of-lini13co13mn13-xalxo2-cathode-material-for-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Theater Metaphor in Event Quantification: A Corpus Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Jing-Schmidt">Zhuo Jing-Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Lang"> Jun Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numeral classifiers are common in Asian languages. Research on numeral classifiers primarily focuses on noun classifiers that quantify and individuate nominal referents. There is a scarcity of research on event quantification using verb classifiers. This study aims to understand the semantic and conceptual basis of event quantification in Chinese. From a usage-based Construction Grammar perspective, this study presents a corpus analysis of event quantification in Chinese. Drawing on a large balanced corpus of contemporary Chinese, we analyze 667 NOUN col-lexemes totaling 31136 tokens of a productive numeral classifier construction in Chinese. Using collostructional analysis of the collexemes, the results show that the construction quantifies and classifies dramatic events using a theater-based conceptual metaphor. We argue that the usage patterns reflect the cultural entrenchment of theater as in Chinese conceptualization and the construal of theatricality in linguistic expression. The study has implications for cognitive semantics and construction grammar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=event%20quantification" title="event quantification">event quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=corpus" title=" corpus"> corpus</a>, <a href="https://publications.waset.org/abstracts/search?q=metaphor" title=" metaphor"> metaphor</a> </p> <a href="https://publications.waset.org/abstracts/171981/theater-metaphor-in-event-quantification-a-corpus-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rui-Xiong%20Han">Rui-Xiong Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Ge"> Rui Ge</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Peng%20Li"> Shao-Peng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Bian"> Lin Bian</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Rui%20Sun"> Liang-Rui Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Jing%20Sang"> Min-Jing Sang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Ye"> Rui Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Ping%20Liu"> Ya-Ping Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang-Zhen%20Zhang"> Xiang-Zhen Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie-Hao%20Zhang"> Jie-Hao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Zhang"> Zhuo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Qing%20Zhang"> Jian-Qing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao-Fu%20Xu"> Miao-Fu Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C-ADS" title="C-ADS">C-ADS</a>, <a href="https://publications.waset.org/abstracts/search?q=cryomodule" title=" cryomodule"> cryomodule</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20simulation" title=" thermal simulation"> thermal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20heat%20load" title=" static heat load"> static heat load</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20heat%20load" title=" dynamic heat load"> dynamic heat load</a> </p> <a href="https://publications.waset.org/abstracts/75463/design-and-thermal-simulation-analysis-of-the-chinese-accelerator-driven-sub-critical-system-injector-i-cryomodule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Improvement of Mechanical Properties of Saline Soils by Fly Ash: Effect of Freeze-Thaw Cycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Cheng">Zhuo Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaohang%20Cui"> Gaohang Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zheng"> Yang Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiqiang-Pan"> Zhiqiang-Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To explore the effect of freeze-thaw cycles on saline soil mechanical properties of fly ash, this study examined the influence of different numbers of freezing and thawing cycles, fly ash content, and moisture content of saline soil in unconfined compression tests and triaxial shear tests. With increased fly ash content, the internal friction angle, cohesion, unconfined compressive strength, and shear strength of the improved soil increased at first and then decreased. Using the Desk-Expert 8.0 software and based on significance analysis theory, the number of freeze-thaw cycles, fly ash content, water content, and the interactions between various factors on the mechanical properties of saline soil were studied. The results showed that the number of freeze-thaw cycles had a significant effect on the mechanical properties of saline soil, while the fly ash content had a weakly significant effect. At the same time, interaction between the number of freeze-thaw cycles and the water content had a significant effect on the unconfined compressive strength and the cohesion of saline soil, and the interaction between fly ash content and the number of freeze-thaw cycles only had a significant effect on the unconfined compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20soil" title=" saline soil"> saline soil</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonally%20frozen%20area" title=" seasonally frozen area"> seasonally frozen area</a>, <a href="https://publications.waset.org/abstracts/search?q=significance%20analysis" title=" significance analysis"> significance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20analysis" title=" qualitative analysis"> qualitative analysis</a> </p> <a href="https://publications.waset.org/abstracts/136606/improvement-of-mechanical-properties-of-saline-soils-by-fly-ash-effect-of-freeze-thaw-cycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Price Compensation Mechanism with Unmet Demand for Public-Private Partnership Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Feng">Zhuo Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Gao"> Ying Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Public-private partnership (PPP), as an innovative way to provide infrastructures by the private sector, is being widely used throughout the world. Compared with the traditional mode, PPP emerges largely for merits of relieving public budget constraint and improving infrastructure supply efficiency by involving private funds. However, PPP projects are characterized by large scale, high investment, long payback period, and long concession period. These characteristics make PPP projects full of risks. One of the most important risks faced by the private sector is demand risk because many factors affect the real demand. If the real demand is far lower than the forecasting demand, the private sector will be got into big trouble because operating revenue is the main means for the private sector to recoup the investment and obtain profit. Therefore, it is important to study how the government compensates the private sector when the demand risk occurs in order to achieve Pareto-improvement. This research focuses on price compensation mechanism, an ex-post compensation mechanism, and analyzes, by mathematical modeling, the impact of price compensation mechanism on payoff of the private sector and consumer surplus for PPP toll road projects. This research first investigates whether or not price compensation mechanisms can obtain Pareto-improvement and, if so, then explores boundary conditions for this mechanism. The research results show that price compensation mechanism can realize Pareto-improvement under certain conditions. Especially, to make the price compensation mechanism accomplish Pareto-improvement, renegotiation costs of the government and the private sector should be lower than a certain threshold which is determined by marginal operating cost and distortionary cost of the tax. In addition, the compensation percentage should match with the price cut of the private investor when demand drops. This research aims to provide theoretical support for the government when determining compensation scope under the price compensation mechanism. Moreover, some policy implications can also be drawn from the analysis for better risk-sharing and sustainability of PPP projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title="infrastructure">infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20compensation%20mechanism" title=" price compensation mechanism"> price compensation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=public-private%20partnership" title=" public-private partnership"> public-private partnership</a>, <a href="https://publications.waset.org/abstracts/search?q=renegotiation" title=" renegotiation"> renegotiation</a> </p> <a href="https://publications.waset.org/abstracts/93123/price-compensation-mechanism-with-unmet-demand-for-public-private-partnership-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianglu%20Tang">Xianglu Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxue%20Jiang"> Zhenxue Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Li"> Zhuo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title="heterogeneity">heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20unit" title=" homogeneous unit"> homogeneous unit</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale" title=" multiscale"> multiscale</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a> </p> <a href="https://publications.waset.org/abstracts/24081/multiscale-analysis-of-shale-heterogeneity-in-silurian-longmaxi-formation-from-south-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benbiao%20Song">Benbiao Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Gao"> Yan Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Liu"> Zhuo Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluvial%20facies" title="fluvial facies">fluvial facies</a>, <a href="https://publications.waset.org/abstracts/search?q=geostatistics" title=" geostatistics"> geostatistics</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20trend" title=" geological trend"> geological trend</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20strategy" title=" modeling strategy"> modeling strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20accuracy" title=" modeling accuracy"> modeling accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=variogram" title=" variogram"> variogram</a> </p> <a href="https://publications.waset.org/abstracts/55514/factors-impacting-geostatistical-modeling-accuracy-and-modeling-strategy-of-fluvial-facies-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Factors Controlling Marine Shale Porosity: A Case Study between Lower Cambrian and Lower Silurian of Upper Yangtze Area, South China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li">Xin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenxue%20Jiang"> Zhenxue Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Li"> Zhuo Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, shale gas is trapped within shale systems with low porosity and ultralow permeability as free and adsorbing states. Its production is controlled by properties, in terms of occurrence phases, gas contents, and percolation characteristics. These properties are all influenced by porous features. In this paper, porosity differences of marine shales were explored between Lower Cambrian shale and Lower Silurian shale of Sichuan Basin, South China. Both the two shales were marine shales with abundant oil-prone kerogen and rich siliceous minerals. Whereas Lower Cambrian shale (3.56% Ro) possessed a higher thermal degree than that of Lower Silurian shale (2.31% Ro). Samples were measured by a combination of organic-chemistry geology measurement, organic matter (OM) isolation, X-ray diffraction (XRD), N2 adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). Lower Cambrian shale presented relatively low pore properties, with averaging 0.008ml/g pore volume (PV), averaging 7.99m²/g pore surface area (PSA) and averaging 5.94nm average pore diameter (APD). Lower Silurian shale showed as relatively high pore properties, with averaging 0.015ml/g PV, averaging 10.53m²/g PSA and averaging 18.60nm APD. Additionally, fractal analysis indicated that the two shales presented discrepant pore morphologies, mainly caused by differences in the combination of pore types between the two shales. More specifically, OM-hosted pores with pin-hole shape and dissolved pores with dead-end openings were the main types in Lower Cambrian shale, while OM-hosted pore with a cellular structure was the main type in Lower Silurian shale. Moreover, porous characteristics of isolated OM suggested that OM of Lower Silurian shale was more capable than that of Lower Cambrian shale in the aspect of pore contribution. PV of isolated OM in Lower Silurian shale was almost 6.6 times higher than that in Lower Cambrian shale, and PSA of isolated OM in Lower Silurian shale was almost 4.3 times higher than that in Lower Cambrian shale. However, no apparent differences existed among samples with various matrix compositions. At late diagenetic or metamorphic epoch, extensive diagenesis overprints the effects of minerals on pore properties and OM plays the dominant role in pore developments. Hence, differences of porous features between the two marine shales highlight the effect of diagenetic degree on OM-hosted pore development. Consequently, distinctive pore characteristics may be caused by the different degrees of diagenetic evolution, even with similar matrix basics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20shale" title="marine shale">marine shale</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20Cambrian" title=" lower Cambrian"> lower Cambrian</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20Silurian" title=" lower Silurian"> lower Silurian</a>, <a href="https://publications.waset.org/abstracts/search?q=om%20isolation" title=" om isolation"> om isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=pore%20properties" title=" pore properties"> pore properties</a>, <a href="https://publications.waset.org/abstracts/search?q=om-hosted%20pore" title=" om-hosted pore"> om-hosted pore</a> </p> <a href="https://publications.waset.org/abstracts/112139/factors-controlling-marine-shale-porosity-a-case-study-between-lower-cambrian-and-lower-silurian-of-upper-yangtze-area-south-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20Bredel">Markus Bredel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sindhu%20Nair"> Sindhu Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoa%20Q.%20Trummell"> Hoa Q. Trummell</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajani%20Rajbhandari"> Rajani Rajbhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20D.%20Willey"> Christopher D. Willey</a>, <a href="https://publications.waset.org/abstracts/search?q=Lewis%20Z.%20Shi"> Lewis Z. Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Zhang"> Zhuo Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20J.%20Placzek"> William J. Placzek</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20A.%20Bonner"> James A. Bonner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=head%20and%20neck%20cancer" title="head and neck cancer">head and neck cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=EGFR%20mutation" title=" EGFR mutation"> EGFR mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cetuximab" title=" cetuximab"> cetuximab</a> </p> <a href="https://publications.waset.org/abstracts/168641/novel-egfr-ectodomain-mutations-and-resistance-to-anti-egfr-and-radiation-therapy-in-hn-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Temporal Implications of Spatial Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuo%20Job%20Chen">Zhuo Job Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Nute"> Kevin Nute</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work reported examines potential linkages between spatial and temporal prospects, and more specifically, between variations in the spatial depth and foreground obstruction of window views, and observers’ sense of connection to the future. It was found that external views from indoor spaces were strongly associated with a sense of the future, that partially obstructing such a view with foreground objects significantly reduced its association with the future, and replacing it with a pictorial representation of the same scene (with no real actual depth) removed most of its temporal association. A lesser change in the spatial depth of the view, however, had no apparent effect on association with the future. While the role of spatial depth has still to be confirmed, the results suggest that spatial prospects directly affect temporal ones. The word “prospect” typifies the overlapping of the spatial and temporal in most human languages. It originated in classical times as a purely spatial term, but in the 16th century took on the additional temporal implication of an imagined view ahead, of the future. The psychological notion of prospection, then, has its distant origins in a spatial analogue. While it is not yet proven that space directly structures our processing of time at a physiological level, it is generally agreed that it commonly does so conceptually. The mental representation of possible futures has been a central part of human survival as a species (Boyer, 2008; Suddendorf & Corballis, 2007). A sense of the future seems critical not only practically, but also psychologically. It has been suggested, for example, that lack of a positive image of the future may be an important contributing cause of depression (Beck, 1974; Seligman, 2016). Most people in the developed world now spend more than 90% of their lives indoors. So any direct link between external views and temporal prospects could have important implications for both human well-being and building design. We found that the ability to see what lies in front of us spatially was strongly associated with a sense of what lies ahead temporally. Partial obstruction of a view was found to significantly reduce that sense connection to the future. Replacing a view with a flat pictorial representation of the same scene removed almost all of its connection with the future, but changing the spatial depth of a real view appeared to have no significant effect. While foreground obstructions were found to reduce subjects’ sense of connection to the future, they increased their sense of refuge and security. Consistent with Prospect and Refuge theory, an ideal environment, then, would seem to be one in which we can “see without being seen” (Lorenz, 1952), specifically one that conceals us frontally from others, without restricting our own view. It is suggested that these optimal conditions might be translated architecturally as screens, the apertures of which are large enough for a building occupant to see through unobstructed from close by, but small enough to conceal them from the view of someone looking from a distance outside. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foreground%20obstructions" title="foreground obstructions">foreground obstructions</a>, <a href="https://publications.waset.org/abstracts/search?q=prospection" title=" prospection"> prospection</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20depth" title=" spatial depth"> spatial depth</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20views" title=" window views"> window views</a> </p> <a href="https://publications.waset.org/abstracts/134779/the-temporal-implications-of-spatial-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>