CINXE.COM

KerasTuner

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/keras_tuner/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: KerasTuner"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: KerasTuner"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>KerasTuner</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-link" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-link active" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparameter Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> <a class="nav-link" href="/keras_cv/" role="tab" aria-selected="">KerasCV: Computer Vision Workflows</a> <a class="nav-link" href="/keras_nlp/" role="tab" aria-selected="">KerasNLP: Natural Language Workflows</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> KerasTuner </div> <div class='k-content'> <h1 id="kerastuner">KerasTuner</h1> <p><a class="github-button" href="https://github.com/keras-team/keras-tuner" data-size="large" data-show-count="true" aria-label="Star keras-team/keras-tuner on GitHub">Star</a></p> <p>KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search algorithms.</p> <hr /> <h2 id="quick-links">Quick links</h2> <ul> <li><a href="/guides/keras_tuner/getting_started/">Getting started with KerasTuner</a></li> <li><a href="/guides/keras_tuner/">KerasTuner developer guides</a></li> <li><a href="/api/keras_tuner/">KerasTuner API reference</a></li> <li><a href="https://github.com/keras-team/keras-tuner">KerasTuner on GitHub</a></li> </ul> <hr /> <h2 id="installation">Installation</h2> <p>Install the latest release:</p> <div class="codehilite"><pre><span></span><code>pip install keras-tuner --upgrade </code></pre></div> <p>You can also check out other versions in our <a href="https://github.com/keras-team/keras-tuner">GitHub repository</a>.</p> <hr /> <h2 id="quick-introduction">Quick introduction</h2> <p>Import KerasTuner and TensorFlow:</p> <div class="codehilite"><pre><span></span><code><span class="kn">import</span> <span class="nn">keras_tuner</span> <span class="kn">import</span> <span class="nn">keras</span> </code></pre></div> <p>Write a function that creates and returns a Keras model. Use the <code>hp</code> argument to define the hyperparameters during model creation.</p> <div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">build_model</span><span class="p">(</span><span class="n">hp</span><span class="p">):</span> <span class="n">model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">()</span> <span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span> <span class="n">hp</span><span class="o">.</span><span class="n">Choice</span><span class="p">(</span><span class="s1">&#39;units&#39;</span><span class="p">,</span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">32</span><span class="p">]),</span> <span class="n">activation</span><span class="o">=</span><span class="s1">&#39;relu&#39;</span><span class="p">))</span> <span class="n">model</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s1">&#39;relu&#39;</span><span class="p">))</span> <span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">loss</span><span class="o">=</span><span class="s1">&#39;mse&#39;</span><span class="p">)</span> <span class="k">return</span> <span class="n">model</span> </code></pre></div> <p>Initialize a tuner (here, <code>RandomSearch</code>). We use <code>objective</code> to specify the objective to select the best models, and we use <code>max_trials</code> to specify the number of different models to try.</p> <div class="codehilite"><pre><span></span><code><span class="n">tuner</span> <span class="o">=</span> <span class="n">keras_tuner</span><span class="o">.</span><span class="n">RandomSearch</span><span class="p">(</span> <span class="n">build_model</span><span class="p">,</span> <span class="n">objective</span><span class="o">=</span><span class="s1">&#39;val_loss&#39;</span><span class="p">,</span> <span class="n">max_trials</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span> </code></pre></div> <p>Start the search and get the best model:</p> <div class="codehilite"><pre><span></span><code><span class="n">tuner</span><span class="o">.</span><span class="n">search</span><span class="p">(</span><span class="n">x_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">validation_data</span><span class="o">=</span><span class="p">(</span><span class="n">x_val</span><span class="p">,</span> <span class="n">y_val</span><span class="p">))</span> <span class="n">best_model</span> <span class="o">=</span> <span class="n">tuner</span><span class="o">.</span><span class="n">get_best_models</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span> </code></pre></div> <p>To learn more about KerasTuner, check out <a href="https://keras.io/guides/keras_tuner/getting_started/">this starter guide</a>.</p> <hr /> <h2 id="citing-kerastuner">Citing KerasTuner</h2> <p>If KerasTuner helps your research, we appreciate your citations. Here is the BibTeX entry:</p> <div class="codehilite"><pre><span></span><code><span class="nc">@misc</span><span class="p">{</span><span class="nl">omalley2019kerastuner</span><span class="p">,</span> <span class="w"> </span><span class="na">title</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{KerasTuner}</span><span class="p">,</span> <span class="w"> </span><span class="na">author</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{O&#39;Malley, Tom and Bursztein, Elie and Long, James and Chollet, Fran\c{c}ois and Jin, Haifeng and Invernizzi, Luca and others}</span><span class="p">,</span> <span class="w"> </span><span class="na">year</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="m">2019</span><span class="p">,</span> <span class="w"> </span><span class="na">howpublished</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">{\url{https://github.com/keras-team/keras-tuner}}</span> <span class="p">}</span> </code></pre></div> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#kerastuner'>KerasTuner</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#quick-links'>Quick links</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#installation'>Installation</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#quick-introduction'>Quick introduction</a> </div> <div class='k-outline-depth-2'> ◆ <a href='#citing-kerastuner'>Citing KerasTuner</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>

Pages: 1 2 3 4 5 6 7 8 9 10