CINXE.COM
Search results for: 6-DOF robots
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: 6-DOF robots</title> <meta name="description" content="Search results for: 6-DOF robots"> <meta name="keywords" content="6-DOF robots"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="6-DOF robots" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="6-DOF robots"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 305</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: 6-DOF robots</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Predictive Output Feedback Linearization for Safe Control of Collaborative Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliasghar%20Arab">Aliasghar Arab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous robots interacting with humans, as safety-critical nonlinear control systems, are complex closed-loop cyber-physical dynamical machines. Keeping these intelligent yet complicated systems safe and smooth during their operations is challenging. The aim of the safe predictive output feedback linearization control synthesis is to design a novel controller for smooth trajectory following while unsafe situations must be avoided. The controller design should obtain a linearized output for smoothness and invariance to a safety subset. Inspired by finite-horizon nonlinear model predictive control, the problem is formulated as constrained nonlinear dynamic programming. The safety constraints can be defined as control barrier functions. Avoiding unsafe maneuvers and performing smooth motions increases the predictability of the robot’s movement for humans when robots and people are working together. Our results demonstrate the proposed output linearization method obeys the safety constraints and, compared to existing safety-guaranteed methods, is smoother and performs better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotics" title="robotics">robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20robots" title=" collaborative robots"> collaborative robots</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robots" title=" autonomous robots"> autonomous robots</a> </p> <a href="https://publications.waset.org/abstracts/152151/predictive-output-feedback-linearization-for-safe-control-of-collaborative-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> A Conceptualization of the Relationship between Frontline Service Robots and Humans in Service Encounters and the Effect on Well-Being</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Berg">D. Berg</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hartley"> N. Hartley</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Nasr"> L. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a conceptual model of human-robot interaction within service encounters and the effect on the well-being of both consumers and service providers. In this paper, service providers are those employees who work alongside frontline service robots. The significance of this paper lies in the knowledge created which outlines how frontline service robots can be effectively utilized in service encounters for the benefit of organizations and society as a whole. As this paper is conceptual in nature, the main methodologies employed are theoretical, namely problematization and theory building. The significance of this paper is underpinned by the shift of service robots from manufacturing plants and factory floors to consumer-facing service environments. This service environment places robots in direct contact with frontline employees and consumers creating a hybrid workplace where humans work alongside service robots. This change from back-end to front-end roles may have implications not only on the physical environment, servicescape, design, and strategy of service offerings and encounters but also on the human parties of the service encounter itself. Questions such as ‘how are frontline service robots impacting and changing the service encounter?’ and ‘what effect are such changes having on the well-being of the human actors in a service encounter?’ spring to mind. These questions form the research question of this paper. To truly understand social service robots, an interdisciplinary perspective is required. Besides understanding the function, system, design or mechanics of a service robot, it is also necessary to understand human-robot interaction. However not simply human-robot interaction, but particularly what happens when such robots are placed in commercial settings and when human-robot interaction becomes consumer-robot interaction and employee-robot interaction? A service robot in this paper is characterized by two main factors; its social characteristics and the consumer-facing environment within which it operates. The conceptual framework presented in this paper contributes to interdisciplinary discussions surrounding social robotics, service, and technology’s impact on consumer and service provider well-being, and hopes that such knowledge will help improve services, as well as the prosperity and well-being of society. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frontline%20service%20robots" title="frontline service robots">frontline service robots</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot%20interaction" title=" human-robot interaction"> human-robot interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20encounters" title=" service encounters"> service encounters</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being" title=" well-being"> well-being</a> </p> <a href="https://publications.waset.org/abstracts/90756/a-conceptualization-of-the-relationship-between-frontline-service-robots-and-humans-in-service-encounters-and-the-effect-on-well-being" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> Creative Applications for Socially Assistive Robots to Support Mental Health: A Patient-Centered Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Kornmaaler%20Hansen">Andreas Kornmaaler Hansen</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Gomez%20Cubero"> Carlos Gomez Cubero</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Jochum"> Elizabeth Jochum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of the arts in therapy and rehabilitation is well established, and there is growing recognition of the value of the arts for improving health and well-being across diverse populations. Combining arts with socially assistive robots is a relatively under-explored research area. This paper presents the results of a feasibility study conducted within an existing arts and health program to scope the possibility of combining visual arts with socially assistive robots to promote mental health and well-being. Using a participatory research design with participant-led perspectives, we present the results of our feasibility study with a collaborative drawing robot among an adult population with mild to severe mental illness. We identify key methodological challenges and advantages of working with participatory and human-centered approaches. Based on the results of three pilot workshops with participants and lay health workers, we outline suggestions for authentic engagement with real stakeholders toward the development of socially assistive robots in community health contexts. Working closely with a patient population at all levels of the research process is key for developing tools and interventions that center patient experience and priorities while minimizing the risks of alienating patients and communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arts%20and%20health" title="arts and health">arts and health</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20art" title=" visual art"> visual art</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20promotion" title=" health promotion"> health promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20robots" title=" collaborative robots"> collaborative robots</a>, <a href="https://publications.waset.org/abstracts/search?q=creativity" title=" creativity"> creativity</a>, <a href="https://publications.waset.org/abstracts/search?q=socially%20assistive%20robots" title=" socially assistive robots"> socially assistive robots</a> </p> <a href="https://publications.waset.org/abstracts/177950/creative-applications-for-socially-assistive-robots-to-support-mental-health-a-patient-centered-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Emotions Evoked by Robots - Comparison of Older Adults and Students </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Lehmann">Stephanie Lehmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Ruf"> Esther Ruf</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabina%20Misoch"> Sabina Misoch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Due to demographic change and shortage of skilled nursing staff, assistive robots are built to support older adults at home and nursing staff in care institutions. When assistive robots facilitate tasks that are usually performed by humans, user acceptance is essential. Even though they are an important aspect of acceptance, emotions towards different assistive robots and different situations of robot-use have so far not been examined in detail. The appearance of assistive robots can trigger emotions that affect their acceptance. Acceptance of robots is assumed to be greater when they look more human-like; however, too much human similarity can be counterproductive. Regarding different groups, it is assumed that older adults have a more negative attitude towards robots than younger adults. Within the framework of a simulated robot study, the aim was to investigate emotions of older adults compared to students towards robots with different appearances and in different situations and so contribute to a deeper view of the emotions influencing acceptance. Methods: In a questionnaire study, vignettes were used to assess emotions toward robots in different situations and of different appearance. The vignettes were composed of two situations (service and care) shown by video and four pictures of robots varying in human similarity (machine-like to android). The combination of the vignettes was randomly distributed to the participants. One hundred forty-two older adults and 35 bachelor students of nursing participated. They filled out a questionnaire that surveyed 30 positive and 30 negative emotions. For each group, older adults and students, a sum score of “positive emotions” and a sum score of “negative emotions” was calculated. Mean value, standard deviation, or n for sample size and % for frequencies, according to the scale level, were calculated. For differences in the scores of positive and negative emotions for different situations, t-tests were calculated. Results: Overall, older adults reported significantly more positive emotions than students towards robots in general. Students reported significantly more negative emotions than older adults. Regarding the two different situations, the results were similar for the care situation, with older adults reporting more positive emotions than students and less negative emotions than students. In the service situation, older adults reported significantly more positive emotions; negative emotions did not differ significantly from the students. Regarding the appearance of the robot, there were no significant differences in emotions reported towards the machine-like, the mechanical-human-like and the human-like appearance. Regarding the android robot, students reported significantly more negative emotions than older adults. Conclusion: There were differences in the emotions reported by older adults compared to students. Older adults reported more positive emotions, and students reported more negative emotions towards robots in different situations and with different appearances. It can be assumed that older adults have a different attitude towards the use of robots than younger people, especially young adults in the health sector. Therefore, the use of robots in the service or care sector should not be rejected rashly based on the attitudes of younger persons, without considering the attitudes of older adults equally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotions" title="emotions">emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=robots" title=" robots"> robots</a>, <a href="https://publications.waset.org/abstracts/search?q=seniors" title=" seniors"> seniors</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/114688/emotions-evoked-by-robots-comparison-of-older-adults-and-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> Integration of Internet-Accessible Resources in the Field of Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Madhevan">B. Madhevan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sakkaravarthi"> R. Sakkaravarthi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Diya"> R. Diya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number and variety of mobile robot applications are increasing day by day, both in an industry and in our daily lives. First developed as a tool, nowadays mobile robots can be integrated as an entity in Internet-accessible resources. The present work is organized around four potential resources such as cloud computing, Internet of things, Big data analysis and Co-simulation. Further, the focus relies on integrating, analyzing and discussing the need for integrating Internet-accessible resources and the challenges deriving from such integration, and how these issues have been tackled. Hence, the research work investigates the concepts of the Internet-accessible resources from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database systems. IaR is a world-wide network of interconnected objects, can be considered an evolutionary process in mobile robots. IaR constitutes an integral part of future Internet with data analysis, consisting of both physical and virtual things. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet-accessible%20resources" title="internet-accessible resources">internet-accessible resources</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data%20analysis" title=" big data analysis"> big data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title=" mobile robot"> mobile robot</a> </p> <a href="https://publications.waset.org/abstracts/50385/integration-of-internet-accessible-resources-in-the-field-of-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> The Use of Robots for Children and Young People on the Autism Spectrum: A Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athanasia%20Kouroupa">Athanasia Kouroupa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Existing research highlights the effect of employing robots in sessions with children and young people on the autism spectrum to develop and practice skills important to independent and functional living. The systematic review aimed to explore the way robots has been used with children and young people on the autism spectrum and the effect of using robots as a therapeutic interface. An electronic bibliographic database search using a combination of expressions was conducted. Data were extracted in relation to robot types, session characteristics, and outcomes and analysed using narrative synthesis. Forty studies were selected in the review. Humanoid robots were predominantly used to practice a range of social and communication skills. On average, children and young people on the autism spectrum had five sessions, twice a week, for approximately half an hour. Having sessions with a robot was commonly equal to or more effective than 'traditional' interventions delivered by a human therapist or having no therapy. The review reported encouraging outcomes to practice and develop a range of skills with children and young people on the autism spectrum. These findings suggest that some form of intervention is favourable over no intervention. However, there is little evidence for the relative effectiveness of the robot-based intervention as an innovative alternative option. Many of the studies had methodological weaknesses that make them vulnerable to bias. There is a need for further research that adheres to strict scientific methods making direct comparisons between different treatment options. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=robots" title=" robots"> robots</a>, <a href="https://publications.waset.org/abstracts/search?q=outcomes" title=" outcomes"> outcomes</a> </p> <a href="https://publications.waset.org/abstracts/137012/the-use-of-robots-for-children-and-young-people-on-the-autism-spectrum-a-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Efficient Control of Some Dynamic States of Wheeled Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boguslaw%20Schreyer">Boguslaw Schreyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some types of wheeled robots it is important to secure starting acceleration and deceleration maxima while at the same time maintaining transversal stability. In this paper torque distribution between the front and rear wheels as well as the timing of torque application have been calculated. Both secure an optimum traction coefficient. This paper also identifies required input signals to a control unit, which controls the torque values and timing. Using a three dimensional, two mass model of a robot developed by the author a computer simulation was performed confirming the calculations presented in this paper. These calculations were also implemented and confirmed during military robot testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robot%20dynamics" title="robot dynamics">robot dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20distribution" title=" torque distribution"> torque distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20coefficient" title=" traction coefficient"> traction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20robots" title=" wheeled robots"> wheeled robots</a> </p> <a href="https://publications.waset.org/abstracts/69730/efficient-control-of-some-dynamic-states-of-wheeled-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Tabu Random Algorithm for Guiding Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Worrall">Kevin Worrall</a>, <a href="https://publications.waset.org/abstracts/search?q=Euan%20McGookin"> Euan McGookin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of optimization algorithms is common across a large number of diverse fields. This work presents the use of a hybrid optimization algorithm applied to a mobile robot tasked with carrying out a search of an unknown environment. The algorithm is then applied to the multiple robots case, which results in a reduction in the time taken to carry out the search. The hybrid algorithm is a Random Search Algorithm fused with a Tabu mechanism. The work shows that the algorithm locates the desired points in a quicker time than a brute force search. The Tabu Random algorithm is shown to work within a simulated environment using a validated mathematical model. The simulation was run using three different environments with varying numbers of targets. As an algorithm, the Tabu Random is small, clear and can be implemented with minimal resources. The power of the algorithm is the speed at which it locates points of interest and the robustness to the number of robots involved. The number of robots can vary with no changes to the algorithm resulting in a flexible algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20and%20rescue" title=" search and rescue"> search and rescue</a> </p> <a href="https://publications.waset.org/abstracts/92647/tabu-random-algorithm-for-guiding-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> On Enabling Miner Self-Rescue with In-Mine Robots using Real-Time Object Detection with Thermal Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyrus%20Addy">Cyrus Addy</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Sriram%20Siddhardh%20Nadendla"> Venkata Sriram Siddhardh Nadendla</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwame%20Awuah-Offei"> Kwame Awuah-Offei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface robots in modern underground mine rescue operations suffer from several limitations in enabling a prompt self-rescue. Therefore, the possibility of designing and deploying in-mine robots to expedite miner self-rescue can have a transformative impact on miner safety. These in-mine robots for miner self-rescue can be envisioned to carry out diverse tasks such as object detection, autonomous navigation, and payload delivery. Specifically, this paper investigates the challenges in the design of object detection algorithms for in-mine robots using thermal images, especially to detect people in real-time. A total of 125 thermal images were collected in the Missouri S&T Experimental Mine with the help of student volunteers using the FLIR TG 297 infrared camera, which were pre-processed into training and validation datasets with 100 and 25 images, respectively. Three state-of-the-art, pre-trained real-time object detection models, namely YOLOv5, YOLO-FIRI, and YOLOv8, were considered and re-trained using transfer learning techniques on the training dataset. On the validation dataset, the re-trained YOLOv8 outperforms the re-trained versions of both YOLOv5, and YOLO-FIRI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miner%20self-rescue" title="miner self-rescue">miner self-rescue</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mine" title=" underground mine"> underground mine</a>, <a href="https://publications.waset.org/abstracts/search?q=YOLO" title=" YOLO"> YOLO</a> </p> <a href="https://publications.waset.org/abstracts/174124/on-enabling-miner-self-rescue-with-in-mine-robots-using-real-time-object-detection-with-thermal-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> External Store Safe Separation Evaluation Process Implementing CFD and MIL-HDBK-1763</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thien%20Bach%20Nguyen">Thien Bach Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nhu-Van%20Nguyen"> Nhu-Van Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Phi-Minh%20Nguyen"> Phi-Minh Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Minh%20Hien%20Dao"> Minh Hien Dao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The external store safe separation evaluation process implementing CFD and MIL-HDBK-1763 is proposed to support the evaluation and compliance of the external store safe separation with the extensive using CFD and the criteria from MIL-HDBK-1763. The criteria of safe separation are researched and investigated for the various standards and handbooks such as MIL-HDBK-1763, MIL-HDBK-244A, AGARD-AG-202 and AGARD-AG-300 to acquire the appropriate and tailored values and limits for the typical applications of external carriages and aircraft fighters. The CFD and 6DOF simulations are extensively used in ANSYS 2023 R1 Software for verification and validation of moving unstructured meshes and solvers by calibrating the position, aerodynamic forces and moments of the existing air-to-ground missile models. The verified CFD and 6DoF simulation separation process is applied and implemented for the investigation of the typical munition separation phenomena and compliance with the tailored requirements of MIL-HDBK-1763. The prediction of munition trajectory parameters under aircraft aerodynamics interference and specified rack unit consideration after munition separation is provided and complied with the tailored requirements to support the safe separation evaluation of improved and newly external store munition before the flight test performed. The proposed process demonstrates the effectiveness and reliability in providing the understanding of the complicated store separation and the reduction of flight test sorties during the improved and new munition development projects by extensively using the CFD and tailoring the existing standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20store%20separation" title="external store separation">external store separation</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL-HDBK-1763" title=" MIL-HDBK-1763"> MIL-HDBK-1763</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20meshes" title=" moving meshes"> moving meshes</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20test%20data" title=" flight test data"> flight test data</a>, <a href="https://publications.waset.org/abstracts/search?q=munition." title=" munition."> munition.</a> </p> <a href="https://publications.waset.org/abstracts/192199/external-store-safe-separation-evaluation-process-implementing-cfd-and-mil-hdbk-1763" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Robots for City Life: Design Guidelines and Strategy Recommendations for Introducing Robots in Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshay%20Rege">Akshay Rege</a>, <a href="https://publications.waset.org/abstracts/search?q=Lara%20Gomaa"> Lara Gomaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneesh%20Kumar%20Verma"> Maneesh Kumar Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sem%20Carree"> Sem Carree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to articulate design strategies and recommendations for introducing robots into the city life of people based on experiments conducted with robots and semi-autonomous systems in three cities in the Netherlands. This research was carried out by the Spot robotics team of Impact Lab housed within YES!Delft, a start-up accelerator located in Delft, The Netherlands. The premise of this research is to inform the development of the ‘region of the future’ by the Municipality of Rotterdam-Den Haag (MRDH). The paper starts by reporting the desktop research carried out to find and develop multiple use cases for robots to support humans in various activities. Further, the paper reports the user research carried out by crowdsourcing responses collected in public spaces of Rotterdam-Den Haag region and on the internet. Furthermore, based on the knowledge gathered in the initial research, practical experiments were carried out using robots and semi-autonomous systems in order to test and validate our initial research. These experiments were conducted in three cities in the Netherlands which were Rotterdam, The Hague, and Delft. Custom sensor box, Drone, and Boston Dynamics' Spot robot were used to conduct these experiments. Out of thirty use cases, five were tested with experiments which were skyscraper emergency evacuation, human transportation and security, bike lane delivery, mobility tracking, and robot drama. The learnings from these experiments provided us with insights into human-robot interaction and symbiosis in cities which can be used to introduce robots in cities to support human activities, ultimately enabling the transitioning from a human only city life towards a blended one where robots can play a role. Based on these understandings, we formulated design guidelines and strategy recommendations for incorporating robots in the Rotterdam-Den Haag’s region of the future. Lastly, we discuss how our insights in the Rotterdam-Den Haag region can inspire and inform the incorporation of robots in different cities of the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20life" title="city life">city life</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20guidelines" title=" design guidelines"> design guidelines</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot%20Interaction" title=" human-robot Interaction"> human-robot Interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20use%20cases" title=" robot use cases"> robot use cases</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20experiments" title=" robotic experiments"> robotic experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy%20recommendations" title=" strategy recommendations"> strategy recommendations</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20research" title=" user research"> user research</a> </p> <a href="https://publications.waset.org/abstracts/160182/robots-for-city-life-design-guidelines-and-strategy-recommendations-for-introducing-robots-in-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucy%20Jackson">Lucy Jackson</a>, <a href="https://publications.waset.org/abstracts/search?q=Celyn%20Walters"> Celyn Walters</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Eckersley"> Steve Eckersley</a>, <a href="https://publications.waset.org/abstracts/search?q=Mini%20Rai"> Mini Rai</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Hadfield"> Simon Hadfield</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20robots" title="space robots">space robots</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20design" title=" automated design"> automated design</a>, <a href="https://publications.waset.org/abstracts/search?q=on-orbit%20operations" title=" on-orbit operations"> on-orbit operations</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20design" title=" hardware design"> hardware design</a> </p> <a href="https://publications.waset.org/abstracts/150830/ta-dah-task-driven-automated-hardware-design-of-free-flying-space-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> The Formulation of Inference Fuzzy System as a Valuation Subsidiary Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Abdolkarimi">Zahra Abdolkarimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naser%20Zouri"> Naser Zouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. There is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title="particle swarm optimization">particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos%20theory" title=" chaos theory"> chaos theory</a>, <a href="https://publications.waset.org/abstracts/search?q=inference%20fuzzy%20system" title=" inference fuzzy system"> inference fuzzy system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20environment%20rational%20fuzzy%20system" title=" simulation environment rational fuzzy system"> simulation environment rational fuzzy system</a>, <a href="https://publications.waset.org/abstracts/search?q=mamdani%20and%20assilian" title=" mamdani and assilian"> mamdani and assilian</a>, <a href="https://publications.waset.org/abstracts/search?q=deffuzify" title=" deffuzify"> deffuzify</a> </p> <a href="https://publications.waset.org/abstracts/37232/the-formulation-of-inference-fuzzy-system-as-a-valuation-subsidiary-based-particle-swarm-optimization-for-solves-the-issue-of-decision-making-in-middle-size-soccer-robot-league" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Social Assistive Robots, Reframing the Human Robotics Interaction Benchmark of Social Success</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Espingardeiro">Antonio Espingardeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is likely that robots will cross the boundaries of industry into households over the next decades. With demographic challenges worldwide, the future ageing populations will require the introduction of assistive technologies capable of providing, care, human dignity and quality of life through the aging process. Robotics technology has a high potential for being used in the areas of social and healthcare by promoting a wide range of activities such as entertainment, companionship, supervision or cognitive and physical assistance. However, such close Human Robotics Interactions (HRIs) encompass a rich set of ethical scenarios that need to be addressed before Socially Assistive Robots (SARs) reach the global markets. Such interactions with robots may seem a worthy goal for many technical/financial reasons but inevitably require close attention to the ethical dimensions of such interactions. This article investigates the current HRI benchmark of social success. It revises it according to the ethical principles of beneficence, non-maleficence and justice aligned with social care ethos. An extension of such benchmark is proposed based on an empirical study of HRIs with elderly groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HRI" title="HRI">HRI</a>, <a href="https://publications.waset.org/abstracts/search?q=SARs" title=" SARs"> SARs</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20success" title=" social success"> social success</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmark" title=" benchmark"> benchmark</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20care" title=" elderly care"> elderly care</a> </p> <a href="https://publications.waset.org/abstracts/21110/social-assistive-robots-reframing-the-human-robotics-interaction-benchmark-of-social-success" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guanqiao%20Wang">Guanqiao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20plastering%20robot" title="indoor plastering robot">indoor plastering robot</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20positioning" title=" precise positioning"> precise positioning</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20laser" title=" line laser"> line laser</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a> </p> <a href="https://publications.waset.org/abstracts/147620/accurate-positioning-method-of-indoor-plastering-robot-based-on-line-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Automated Testing of Workshop Robot Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arne%20Hitzmann">Arne Hitzmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Wentscher"> Philipp Wentscher</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Gabel"> Alexander Gabel</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinhard%20Gerndt"> Reinhard Gerndt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supervisory%20control" title="supervisory control">supervisory control</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a>, <a href="https://publications.waset.org/abstracts/search?q=markers" title=" markers"> markers</a>, <a href="https://publications.waset.org/abstracts/search?q=mono%20vision" title=" mono vision"> mono vision</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a> </p> <a href="https://publications.waset.org/abstracts/8364/automated-testing-of-workshop-robot-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Comparison Between PID and PD Controllers for 4 Cable-Based Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Inel">Fouad Inel</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Khochemane"> Lakhdar Khochemane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: the first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-IntegratedDerivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modeling" title="dynamic modeling">dynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20modeling" title=" geometric modeling"> geometric modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop" title=" open loop"> open loop</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20cable-based%20robots" title=" parallel cable-based robots"> parallel cable-based robots</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%2FPD%20controllers" title=" PID/PD controllers "> PID/PD controllers </a> </p> <a href="https://publications.waset.org/abstracts/24470/comparison-between-pid-and-pd-controllers-for-4-cable-based-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Uncovering Underwater Communication for Multi-Robot Applications via CORSICA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niels%20Grataloup">Niels Grataloup</a>, <a href="https://publications.waset.org/abstracts/search?q=Micael%20S.%20Couceiro"> Micael S. Couceiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Manousos%20Valyrakis"> Manousos Valyrakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Escudero"> Javier Escudero</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20A.%20Vargas"> Patricia A. Vargas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper benchmarks the possible underwater communication technologies that can be integrated into a swarm of underwater robots by proposing an underwater robot simulator named CORSICA (Cross platfORm wireleSs communICation simulator). Underwater exploration relies increasingly on the use of mobile robots, called Autonomous Underwater Vehicles (AUVs). These robots are able to reach goals in harsh underwater environments without resorting to human divers. The introduction of swarm robotics in these scenarios would facilitate the accomplishment of complex tasks with lower costs. However, swarm robotics requires implementation of communication systems to be operational and have a non-deterministic behaviour. Inter-robot communication is one of the key challenges in swarm robotics, especially in underwater scenarios, as communication must cope with severe restrictions and perturbations. This paper starts by presenting a list of the underwater propagation models of acoustic and electromagnetic waves, it also reviews existing transmitters embedded in current robots and simulators. It then proposes CORSICA, which allows validating the choices in terms of protocol and communication strategies, whether they are robot-robot or human-robot interactions. This paper finishes with a presentation of possible integration according to the literature review, and the potential to get CORSICA at an industrial level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underwater%20simulator" title="underwater simulator">underwater simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=robot-robot%20underwater%20communication" title=" robot-robot underwater communication"> robot-robot underwater communication</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20robotics" title=" swarm robotics"> swarm robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=transceiver%20and%20communication%20models" title=" transceiver and communication models"> transceiver and communication models</a> </p> <a href="https://publications.waset.org/abstracts/43591/uncovering-underwater-communication-for-multi-robot-applications-via-corsica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Comparison Performance between PID and PD Controllers for 3 and 4 Cable-Based Robots </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouad.%20Inel">Fouad. Inel</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar.%20Khochemane"> Lakhdar. Khochemane </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a comparative response specification performance between two controllers of three and four cable based robots for various applications. The main objective of this work is: The first is to use the direct and inverse geometric model to study and simulate the end effector position of the robot with three and four cables. A graphical user interface has been implemented in order to visualizing the position of the robot. Secondly, we present the determination of static and dynamic tensions and lengths of cables required to flow different trajectories. At the end, we study the response of our systems in closed loop with a Proportional-Integrated Derivative (PID) and Proportional-Integrated (PD) controllers then this last are compared the results of the same examples using MATLAB/Simulink; we found that the PID method gives the better performance, such as rapidly speed response, settling time, compared to PD controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20cable-based%20robots" title="parallel cable-based robots">parallel cable-based robots</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20modeling" title=" geometric modeling"> geometric modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modeling" title=" dynamic modeling"> dynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20loop" title=" open loop"> open loop</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%2FPD%20controllers" title=" PID/PD controllers"> PID/PD controllers</a> </p> <a href="https://publications.waset.org/abstracts/13689/comparison-performance-between-pid-and-pd-controllers-for-3-and-4-cable-based-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Implementation of Inference Fuzzy System as a Valuation Subsidiary is Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Abdolkarimi">Zahra Abdolkarimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naser%20Zouri"> Naser Zouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, there is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Additionally, robotics system recommended RoboCup factor as a provider of some standardization and testing method in case of computer discussion widely. The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. In addition, decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidently. Consequences, shows method of our discussion is the best way for Particle Swarm Optimization and Fuzzy system compare to other decision of robotics algorithmic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title="PSO algorithm">PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=inference%20fuzzy%20system" title=" inference fuzzy system"> inference fuzzy system</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos%20theory" title=" chaos theory"> chaos theory</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer%20robot%20league" title=" soccer robot league"> soccer robot league</a> </p> <a href="https://publications.waset.org/abstracts/26409/implementation-of-inference-fuzzy-system-as-a-valuation-subsidiary-is-based-particle-swarm-optimization-for-solves-the-issue-of-decision-making-in-middle-size-soccer-robot-league" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Empirical Investigation of Gender Differences in Information Processing Style, Tinkering, and Self-Efficacy for Robot Tele-Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dilruba%20Showkat">Dilruba Showkat</a>, <a href="https://publications.waset.org/abstracts/search?q=Cindy%20Grimm"> Cindy Grimm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As robots become more ubiquitous, it is significant for us to understand how different groups of people respond to possible ways of interacting with the robot. In this study, we focused on gender differences while users were tele-operating a humanoid robot that was physically co-located with them. We investigated three factors during the human-robot interaction (1) information processing strategy (2) self-efficacy and (3) tinkering or exploratory behavior. The experimental results show that the information on how to use the robot was processed comprehensively by the female participants whereas males processed them selectively (p < 0.001). Males were more confident when using the robot than females (p = 0.0002). Males tinkered more with the robot than females (p = 0.0021). We found that tinkering was positively correlated (p = 0.0068) with task success and negatively correlated (p = 0.0032) with task completion time. Tinkering might have resulted in greater task success and lower task completion time for males. Findings from this research can be used for making design decisions for robots and open new research directions. Our results show the importance of accounting for gender differences when developing interfaces for interacting with robots and open new research directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=humanoid%20robots" title="humanoid robots">humanoid robots</a>, <a href="https://publications.waset.org/abstracts/search?q=tele-operation" title=" tele-operation"> tele-operation</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20differences" title=" gender differences"> gender differences</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot%20interaction" title=" human-robot interaction"> human-robot interaction</a> </p> <a href="https://publications.waset.org/abstracts/87918/empirical-investigation-of-gender-differences-in-information-processing-style-tinkering-and-self-efficacy-for-robot-tele-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Development of a Three-Dimensional-Flywheel Robotic System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Chun%20Hsiao">Chung-Chun Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Kai"> Yu-Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ting"> Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai-Yuan%20Liu"> Kai-Yuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pang-Wei%20Yen"> Pang-Wei Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Ying%20Tu"> Jia-Ying Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gyro" title="gyro">gyro</a>, <a href="https://publications.waset.org/abstracts/search?q=gimbal" title=" gimbal"> gimbal</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrange%20equation" title=" lagrange equation"> lagrange equation</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20robots" title=" spherical robots"> spherical robots</a> </p> <a href="https://publications.waset.org/abstracts/30461/development-of-a-three-dimensional-flywheel-robotic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Santano%20Guill%C3%A9n">Silvia Santano Guillén</a>, <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Lo%20Iacono"> Luigi Lo Iacono</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Meder"> Christian Meder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affective%20computing" title="affective computing">affective computing</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title=" emotion recognition"> emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=humanoid%20robot" title=" humanoid robot"> humanoid robot</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot-interaction%20%28HRI%29" title=" human-robot-interaction (HRI)"> human-robot-interaction (HRI)</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20robots" title=" social robots"> social robots</a> </p> <a href="https://publications.waset.org/abstracts/78467/affective-robots-evaluation-of-automatic-emotion-recognition-approaches-on-a-humanoid-robot-towards-emotionally-intelligent-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Unified Coordinate System Approach for Swarm Search Algorithms in Global Information Deficit Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Dey">Rohit Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sailendra%20Karra"> Sailendra Karra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at solving the problem of multi-target searching in a Global Positioning System (GPS) denied environment using swarm robots with limited sensing and communication abilities. Typically, existing swarm-based search algorithms rely on the presence of a global coordinate system (vis-à-vis, GPS) that is shared by the entire swarm which, in turn, limits its application in a real-world scenario. This can be attributed to the fact that robots in a swarm need to share information among themselves regarding their location and signal from targets to decide their future course of action but this information is only meaningful when they all share the same coordinate frame. The paper addresses this very issue by eliminating any dependency of a search algorithm on the need of a predetermined global coordinate frame by the unification of the relative coordinate of individual robots when within the communication range, therefore, making the system more robust in real scenarios. Our algorithm assumes that all the robots in the swarm are equipped with range and bearing sensors and have limited sensing range and communication abilities. Initially, every robot maintains their relative coordinate frame and follow Levy walk random exploration until they come in range with other robots. When two or more robots are within communication range, they share sensor information and their location w.r.t. their coordinate frames based on which we unify their coordinate frames. Now they can share information about the areas that were already explored, information about the surroundings, and target signal from their location to make decisions about their future movement based on the search algorithm. During the process of exploration, there can be several small groups of robots having their own coordinate systems but eventually, it is expected for all the robots to be under one global coordinate frame where they can communicate information on the exploration area following swarm search techniques. Using the proposed method, swarm-based search algorithms can work in a real-world scenario without GPS and any initial information about the size and shape of the environment. Initial simulation results show that running our modified-Particle Swarm Optimization (PSO) without global information we can still achieve the desired results that are comparable to basic PSO working with GPS. In the full paper, we plan on doing the comparison study between different strategies to unify the coordinate system and to implement them on other bio-inspired algorithms, to work in GPS denied environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-inspired%20search%20algorithms" title="bio-inspired search algorithms">bio-inspired search algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized%20control" title=" decentralized control"> decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20denied%20environment" title=" GPS denied environment"> GPS denied environment</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20robotics" title=" swarm robotics"> swarm robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20searching" title=" target searching"> target searching</a>, <a href="https://publications.waset.org/abstracts/search?q=unifying%20coordinate%20systems" title=" unifying coordinate systems"> unifying coordinate systems</a> </p> <a href="https://publications.waset.org/abstracts/128283/unified-coordinate-system-approach-for-swarm-search-algorithms-in-global-information-deficit-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20Romansky">Brian Romansky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM" title=" BIM"> BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=ROI." title=" ROI."> ROI.</a> </p> <a href="https://publications.waset.org/abstracts/166420/application-of-bim-model-data-to-estimate-roi-for-robots-and-automation-in-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Limit-Cycles Method for the Navigation and Avoidance of Any Form of Obstacles for Mobile Robots in Cluttered Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Boufera">F. Boufera</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Debbat"> F. Debbat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with an approach based on limit-cycles method for the problem of obstacle avoidance of mobile robots in unknown environments for any form of obstacles. The purpose of this approach is the improvement of limit-cycles method in order to obtain safe and flexible navigation. The proposed algorithm has been successfully tested in different configuration on simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=avoidance%20of%20obstacles" title=" avoidance of obstacles"> avoidance of obstacles</a>, <a href="https://publications.waset.org/abstracts/search?q=limit-cycles%20method" title=" limit-cycles method"> limit-cycles method</a> </p> <a href="https://publications.waset.org/abstracts/21940/limit-cycles-method-for-the-navigation-and-avoidance-of-any-form-of-obstacles-for-mobile-robots-in-cluttered-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> A Three-modal Authentication Method for Industrial Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luo%20Jiaoyang">Luo Jiaoyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Hongyang"> Yu Hongyang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multimodal" title="multimodal">multimodal</a>, <a href="https://publications.waset.org/abstracts/search?q=kinect" title=" kinect"> kinect</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20image" title=" distance image"> distance image</a> </p> <a href="https://publications.waset.org/abstracts/163879/a-three-modal-authentication-method-for-industrial-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Humans Trust Building in Robots with the Help of Explanations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misbah%20Javaid">Misbah Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Estivill-Castro"> Vladimir Estivill-Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Rene%20Hexel"> Rene Hexel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explanation%20interface" title="explanation interface">explanation interface</a>, <a href="https://publications.waset.org/abstracts/search?q=adversaries" title=" adversaries"> adversaries</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20observability" title=" partial observability"> partial observability</a>, <a href="https://publications.waset.org/abstracts/search?q=trust%20building" title=" trust building"> trust building</a> </p> <a href="https://publications.waset.org/abstracts/94554/humans-trust-building-in-robots-with-the-help-of-explanations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> A Robotic “Puppet Master” Application to ASD Therapeutic Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Sakka">Sophie Sakka</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9nald%20Gaboriau"> Rénald Gaboriau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a preliminary work aimed at setting a therapeutic support for autistic teenagers using three humanoid robots NAO shared by ASD (Autism Spectrum Disorder) subjects. The studied population had attended successfully a first year program, and were observed with a second year program using the robots. This paper focuses on the content and the effects of the second year program. The approach is based on a master puppet concept: the subjects program the robots, and use them as an extension for communication. Twenty sessions were organized, alternating ten preparatory sessions and ten robotics programming sessions. During the preparatory sessions, the subjects write a story to be played by the robots. During the robot programming sessions, the subjects program the motions to be realized to make the robot tell the story. The program was concluded by a public performance. The experiment involves five ASD teenagers aged 12-15, who had all attended the first year robotics training. As a result, a progress in voluntary and organized communication skills of the five subjects was observed, leading to improvements in social organization, focus, voluntary communication, programming, reading and writing abilities. The changes observed in the subjects general behavior took place in a short time, and could be observed from one robotics session to the next one. The approach allowed the subjects to draw the limits of their body with respect to the environment, and therefore helped them confronting the world with less anxiety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20support" title=" therapeutic support"> therapeutic support</a>, <a href="https://publications.waset.org/abstracts/search?q=rob%27autism" title=" rob'autism"> rob'autism</a> </p> <a href="https://publications.waset.org/abstracts/71124/a-robotic-puppet-master-application-to-asd-therapeutic-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Flocking Swarm of Robots Using Artificial Innate Immune System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneeb%20Ahmad">Muneeb Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza"> Ali Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational method inspired by the immune system (IS) is presented, leveraging its shared characteristics of robustness, fault tolerance, scalability, and adaptability with swarm intelligence. This method aims to showcase flocking behaviors in a swarm of robots (SR). The innate part of the IS offers a variety of reactive and probabilistic cell functions alongside its self-regulation mechanism which have been translated to enable swarming behaviors. Although, the research is specially focused on flocking behaviors in a variety of simulated environments using e-puck robots in a physics-based simulator (CoppeliaSim); the artificial innate immune system (AIIS) can exhibit other swarm behaviors as well. The effectiveness of the immuno-inspired approach has been established with extensive experimentations, for scalability and adaptability, using standard swarm benchmarks as well as the immunological regulatory functions (i.e., Dendritic Cells’ Maturity and Inflammation). The AIIS-based approach has proved to be a scalable and adaptive solution for emulating the flocking behavior of SR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20innate%20immune%20system" title="artificial innate immune system">artificial innate immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=flocking%20swarm" title=" flocking swarm"> flocking swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20system" title=" immune system"> immune system</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence" title=" swarm intelligence"> swarm intelligence</a> </p> <a href="https://publications.waset.org/abstracts/168936/flocking-swarm-of-robots-using-artificial-innate-immune-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=6-DOF%20robots&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>