CINXE.COM

weak complicial set (Rev #21) in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> weak complicial set (Rev #21) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> weak complicial set (Rev #21) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/16437/#Item_2" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='higher_category_theory'>Higher category theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/higher+category+theory'>higher category theory</a></strong></p> <ul> <li><a class='existingWikiWord' href='/nlab/show/category+theory'>category theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a></li> </ul> <h2 id='basic_concepts'>Basic concepts</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/k-morphism'>k-morphism</a>, <a class='existingWikiWord' href='/nlab/show/coherence+law'>coherence</a></li> <li><a class='existingWikiWord' href='/nlab/show/looping'>looping and delooping</a></li> <li><a class='existingWikiWord' href='/nlab/show/stabilization'>looping and suspension</a></li> </ul> <h2 id='basic_theorems'>Basic theorems</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</li> <li><a class='existingWikiWord' href='/nlab/show/delooping+hypothesis'>delooping hypothesis</a>-theorem</li> <li><a class='existingWikiWord' href='/nlab/show/periodic+table'>periodic table</a></li> <li><a class='existingWikiWord' href='/nlab/show/stabilization+hypothesis'>stabilization hypothesis</a>-theorem</li> <li><a class='existingWikiWord' href='/michaelshulman/show/exactness+hypothesis' title='michaelshulman'>exactness hypothesis</a></li> <li><a class='existingWikiWord' href='/nlab/show/holographic+principle+of+higher+category+theory'>holographic principle</a></li> </ul> <h2 id='applications'>Applications</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/applications+of+%28higher%29+category+theory'>applications of (higher) category theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/higher+category+theory+and+physics'>higher category theory and physics</a></li> </ul> <h2 id='models'>Models</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/%28n%2Cr%29-category'>(n,r)-category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/Theta-space'>Theta-space</a></li> <li><a class='existingWikiWord' href='/nlab/show/infinity-category'>∞-category</a>/<a class='existingWikiWord' href='/nlab/show/infinity-category'>∞-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2Cn%29-category'>(∞,n)-category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/n-fold+complete+Segal+space'>n-fold complete Segal space</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C2%29-category'>(∞,2)-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/quasi-category'>quasi-category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/algebraic+quasi-category'>algebraic quasi-category</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/simplicially+enriched+category'>simplicially enriched category</a></li> <li><a class='existingWikiWord' href='/nlab/show/complete+Segal+space'>complete Segal space</a></li> <li><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C0%29-category'>(∞,0)-category</a>/<a class='existingWikiWord' href='/nlab/show/infinity-groupoid'>∞-groupoid</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complex</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/algebraic+Kan+complex'>algebraic Kan complex</a></li> <li><a class='existingWikiWord' href='/nlab/show/simplicial+T-complex'>simplicial T-complex</a></li> </ul> </li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/n-category'>n-category</a> = (n,n)-category <ul> <li><a class='existingWikiWord' href='/nlab/show/2-category'>2-category</a>, <a class='existingWikiWord' href='/nlab/show/%282%2C1%29-category'>(2,1)-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/1-category'>1-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/0-category'>0-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/%28-1%29-category'>(-1)-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/%28-2%29-category'>(-2)-category</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/n-poset'>n-poset</a> = <a class='existingWikiWord' href='/nlab/show/n-poset'>(n-1,n)-category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/partial+order'>poset</a> = <a class='existingWikiWord' href='/nlab/show/%280%2C1%29-category'>(0,1)-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/2-poset'>2-poset</a> = <a class='existingWikiWord' href='/nlab/show/2-poset'>(1,2)-category</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/n-groupoid'>n-groupoid</a> = (n,0)-category <ul> <li><a class='existingWikiWord' href='/nlab/show/2-groupoid'>2-groupoid</a>, <a class='existingWikiWord' href='/nlab/show/3-groupoid'>3-groupoid</a></li> </ul> </li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/vertical+categorification'>categorification</a>/<a class='existingWikiWord' href='/nlab/show/decategorification'>decategorification</a></li> <li><a class='existingWikiWord' href='/nlab/show/geometric+definition+of+higher+categories'>geometric definition of higher category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complex</a></li> <li><a class='existingWikiWord' href='/nlab/show/quasi-category'>quasi-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/simplicial+model+for+weak+omega-categories'>simplicial model for weak ∞-categories</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/complicial+set'>complicial set</a></li> <li><a class='existingWikiWord' href='/nlab/show/weak+complicial+set'>weak complicial set</a></li> </ul> </li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/algebraic+definition+of+higher+categories'>algebraic definition of higher category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/bicategory'>bicategory</a></li> <li><a class='existingWikiWord' href='/nlab/show/bigroupoid'>bigroupoid</a></li> <li><a class='existingWikiWord' href='/nlab/show/tricategory'>tricategory</a></li> <li><a class='existingWikiWord' href='/nlab/show/tetracategory'>tetracategory</a></li> <li><a class='existingWikiWord' href='/nlab/show/strict+omega-category'>strict ∞-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/Batanin+omega-category'>Batanin ∞-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/Trimble+n-category'>Trimble ∞-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/Grothendieck-Maltsiniotis+infinity-category'>Grothendieck-Maltsiniotis ∞-categories</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable homotopy theory</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/symmetric+monoidal+category'>symmetric monoidal category</a></li> <li><a class='existingWikiWord' href='/nlab/show/symmetric+monoidal+%28infinity%2C1%29-category'>symmetric monoidal (∞,1)-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/stable+%28infinity%2C1%29-category'>stable (∞,1)-category</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/dg-category'>dg-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/A-infinity-category'>A-∞ category</a></li> <li><a class='existingWikiWord' href='/nlab/show/triangulated+category'>triangulated category</a></li> </ul> </li> </ul> </li> </ul> <h2 id='morphisms'>Morphisms</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/k-morphism'>k-morphism</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/2-morphism'>2-morphism</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/transfor'>transfor</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a></li> <li><a class='existingWikiWord' href='/nlab/show/modification'>modification</a></li> </ul> </li> </ul> <h2 id='functors'>Functors</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/functor'>functor</a></li> <li><a class='existingWikiWord' href='/nlab/show/2-functor'>2-functor</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/pseudofunctor'>pseudofunctor</a></li> <li><a class='existingWikiWord' href='/nlab/show/lax+functor'>lax functor</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-functor'>(∞,1)-functor</a></li> </ul> <h2 id='universal_constructions'>Universal constructions</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/2-limit'>2-limit</a></li> <li><a class='existingWikiWord' href='/nlab/show/adjoint+%28infinity%2C1%29-functor'>(∞,1)-adjunction</a></li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-Kan+extension'>(∞,1)-Kan extension</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/%28%E2%88%9E%2C1%29-limit'>(∞,1)-limit</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-Grothendieck+construction'>(∞,1)-Grothendieck construction</a></li> </ul> <h2 id='extra_properties_and_structure'>Extra properties and structure</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/cosmic+cube'>cosmic cube</a> <ul> <li><a class='existingWikiWord' href='/nlab/show/k-tuply+monoidal+n-category'>k-tuply monoidal n-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/strict+omega-category'>strict ∞-category</a>, <a class='existingWikiWord' href='/nlab/show/strict+omega-groupoid'>strict ∞-groupoid</a></li> </ul> </li> <li><a class='existingWikiWord' href='/nlab/show/stable+%28infinity%2C1%29-category'>stable (∞,1)-category</a></li> <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-topos'>(∞,1)-topos</a></li> </ul> <h2 id='1categorical_presentations'>1-categorical presentations</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></li> <li><a class='existingWikiWord' href='/nlab/show/model+category'>model category theory</a></li> <li><a class='existingWikiWord' href='/nlab/show/enriched+category+theory'>enriched category theory</a></li> </ul> </div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#model_structure'>Model structure</a></li><li><a href='#examples'>Examples</a></li><li><a href='#references'>References</a></li></ul></div> <h2 id='idea'>Idea</h2> <p>Weak complicial sets are <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> with <a class='existingWikiWord' href='/nlab/show/stuff%2C+structure%2C+property'>extra structure</a> that are closely related to the <a class='existingWikiWord' href='/nlab/show/omega-nerve'>∞-nerve</a>s of weak <a class='existingWikiWord' href='/nlab/show/infinity-category'>∞-categories</a>.</p> <p>The goal of characterizing such nerves, without an <em>a priori</em> definition of “weak <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-category” to start from, is called <a class='existingWikiWord' href='/nlab/show/simplicial+weak+omega-category'>simplicial weak ∞-category</a> theory. It is expected that the (nerves of) weak <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-categories will be weak complicial sets satisfying an extra “saturation” condition ensuring that “every <a class='existingWikiWord' href='/nlab/show/equivalence'>equivalence</a> is <a class='existingWikiWord' href='/nlab/show/thin+element'>thin</a>.” General weak complicial sets can be regarded as “presentations” of weak <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-categories.</p> <p>Weak complicial sets are a joint generalization of</p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/strict+omega-category'>strict ∞-categories</a>;</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complexes</a>;</p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/quasi-category'>quasi-categories</a>.</p> </li> </ul> <h2 id='definition'>Definition</h2> <div class='num_defn'> <h6 id='definition_2'>Definition</h6> <p>Let</p> <ul> <li> <p><math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta^k[n]</annotation></semantics></math> be the <a class='existingWikiWord' href='/nlab/show/stratified+simplicial+set'>stratified simplicial set</a> whose underlying simplicial set is the <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/simplex'>simplex</a> <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta[n]</annotation></semantics></math>, and whose marked cells are precisely those simplices <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>r</mi><mo stretchy='false'>]</mo><mo>→</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[r] \to [n]</annotation></semantics></math> that contain <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy='false'>}</mo><mo>∩</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\{k-1, k, k+1\} \cap [n]</annotation></semantics></math>;</p> </li> <li> <p><math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Λ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Lambda^k[n]</annotation></semantics></math> be the stratified simplicial set whose underlying simplicial set is the <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/horn'>horn</a> of <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta[n]</annotation></semantics></math>, with marked cells those that are marked in <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta^k[n]</annotation></semantics></math>;</p> </li> <li> <p><math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Λ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>′</mo></mrow><annotation encoding='application/x-tex'>\Lambda^k[n]&#39;</annotation></semantics></math> be obtained from <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta^k[n]</annotation></semantics></math> by making the <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(k-1)</annotation></semantics></math>st <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(n-1)</annotation></semantics></math>-face and the <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(k+1)</annotation></semantics></math>st <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(n-1)</annotation></semantics></math> face thin;</p> </li> <li> <p><math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>″</mo></mrow><annotation encoding='application/x-tex'>\Delta^k[n]&#39;&#39;</annotation></semantics></math> be obtained from <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta^k[n]</annotation></semantics></math> by making all <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(n-1)</annotation></semantics></math>-faces thin.</p> </li> </ul> <p>An <strong>elementary anodyne extension</strong> in <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Strat</mi></mrow><annotation encoding='application/x-tex'>Strat</annotation></semantics></math>, the category <a class='existingWikiWord' href='/nlab/show/stratified+simplicial+set'>stratified simplicial sets</a> is</p> <ul> <li>a <strong>complicial horn extension</strong> <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Λ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>↪</mo><mrow><msub><mo>⊂</mo> <mi>r</mi></msub></mrow></mover><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Lambda^k[n] \stackrel{\subset_r}{\hookrightarrow} \Delta^k[n]</annotation></semantics></math></li> </ul> <p>or</p> <ul> <li>a <strong>complicial thinness extension</strong> <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Λ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>′</mo><mover><mo>↪</mo><mrow><msub><mo>⊂</mo> <mi>e</mi></msub></mrow></mover><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>″</mo></mrow><annotation encoding='application/x-tex'>\Lambda^k[n]&#39; \stackrel{\subset_e}{\hookrightarrow} \Delta^k[n]&#39;&#39;</annotation></semantics></math></li> </ul> <p>for <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mi>⋯</mi></mrow><annotation encoding='application/x-tex'>n = 1,2, \cdots</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>k \in [n]</annotation></semantics></math>.</p> </div> <div class='num_defn'> <h6 id='definition_3'>Definition</h6> <p>A <a class='existingWikiWord' href='/nlab/show/stratified+simplicial+set'>stratified simplicial set</a> is a <strong>weak complicial set</strong> if it has the <a class='existingWikiWord' href='/nlab/show/lift'>right lifting property</a> with respect to all</p> <p><math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Λ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>↪</mo><mrow><msub><mo>⊂</mo> <mi>r</mi></msub></mrow></mover><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Lambda^k[n] \stackrel{\subset_r}{\hookrightarrow} \Delta^k[n]</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Λ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>′</mo><mover><mo>↪</mo><mrow><msub><mo>⊂</mo> <mi>e</mi></msub></mrow></mover><msup><mi>Δ</mi> <mi>k</mi></msup><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>″</mo></mrow><annotation encoding='application/x-tex'>\Lambda^k[n]&#39; \stackrel{\subset_e}{\hookrightarrow} \Delta^k[n]&#39;&#39;</annotation></semantics></math></p> <p>A <a class='existingWikiWord' href='/nlab/show/complicial+set'>complicial set</a> is a weak complicial set in which such liftings are unique.</p> </div> <h2 id='model_structure'>Model structure</h2> <p>There is a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structure that presents the <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(infinity,1)-category</a> of weak complicial sets, hence that of weak <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-categories. See</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/model+structure+for+weak+complicial+sets'>model structure for weak complicial sets</a>.</li> </ul> <h2 id='examples'>Examples</h2> <ul> <li> <p>For <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/strict+omega-category'>strict ∞-category</a> and <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math> its <a class='existingWikiWord' href='/nlab/show/oriental'>∞-nerve</a>, the <em>Roberts stratification</em> which regards each identity morphism as a thin cell makes <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math> a strict <a class='existingWikiWord' href='/nlab/show/complicial+set'>complicial set</a>, hence a weak complicial set. This example is not “saturated.”</p> </li> <li> <p>There is also the <a class='existingWikiWord' href='/nlab/show/stratified+simplicial+set'>stratification</a> of <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math> which regards each <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-equivalence morphism as a thin cell. <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math> with this stratification is a weak complicial set (example 17 of <a href='http://arxiv.org/abs/math/0604414'>Ver06</a>). This should be the “saturation” of the previous example, and exhibits the inclusion of strict <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-categories into weak ones.</p> </li> <li> <p>A simplicial set is a weak complicial set when equipped with its maximal <a class='existingWikiWord' href='/nlab/show/stratified+simplicial+set'>stratification</a> (every simplex of dimension <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>&gt;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\gt 0</annotation></semantics></math> is thin) if and only if it is a <a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complex</a>. This example is, of course, saturated, and is viewed as embedding <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-groupoids into <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-categories.</p> </li> <li> <p>A simplicial set is a <a class='existingWikiWord' href='/nlab/show/quasi-category'>quasi-category</a> if and only if it is a weak complicial set when equipped with the stratification in which every simplex of dimension <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>&gt;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\gt 1</annotation></semantics></math> is thin, and only degenerate 1-simplices are thin. This example is not saturated; in its saturation the thin 1-simplices are the internal equivalences in a quasi-category (equivalently, those that become isomorphisms in its <a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a>). It presents the embedding of <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>categories</a> into weak <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-categories.</p> <p>Note that 1-simplex equivalences in a quasi-category are automatically preserved by simplicial maps between quasi-categories; this is why <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>QCat</mi></mrow><annotation encoding='application/x-tex'>QCat</annotation></semantics></math> can “correctly” be regarded as a full subcategory of <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>sSet</annotation></semantics></math>. This is not true at higher levels; for instance not every simplicial map between nerves of strict <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-categories necessarily preserves <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math>-equivalence morphisms.</p> </li> </ul> <h2 id='references'>References</h2> <p>The definition of weak complicial sets is definition 14, page 9 of</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/Dominic+Verity'>Dominic Verity</a>, <em>Weak complicial sets Part I: Basic homotopy theory</em> (<a href='http://arxiv.org/abs/math/0604414'>arXiv</a>)</li> </ul> <p>Further developments are in</p> <ul> <li>Dominic Verity, <em>Weak complicial sets Part II: Nerves of complicial Gray-categories</em> (<a href='http://arxiv.org/abs/math/0604416'>arXiv</a>)</li> </ul> <p>A <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structure on <a class='existingWikiWord' href='/nlab/show/stratified+simplicial+set'>stratified simplicial sets</a> modelling <a class='existingWikiWord' href='/nlab/show/%28infinity%2Cn%29-category'>$(\infty,n)$-categories</a> in the guise of <a class='existingWikiWord' href='/nlab/show/weak+complicial+set'>$n$-complicial sets</a>:</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/Viktoriya+Ozornova'>Viktoriya Ozornova</a>, <a class='existingWikiWord' href='/nlab/show/Martina+Rovelli'>Martina Rovelli</a>, <em>Model structures for (∞,n)-categories on (pre)stratified simplicial sets and prestratified simplicial spaces</em>, Algebr. Geom. Topol. <strong>20</strong> (2020) 1543-1600 [[arxiv:1809.10621](https://arxiv.org/abs/1809.10621), <a href='https://doi.org/10.2140/agt.2020.20.1543'>doi:10.2140/agt.2020.20.1543</a>]</li> </ul> <p>A <a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>Quillen adjunction</a> relating <a class='existingWikiWord' href='/nlab/show/weak+complicial+set'>$n$-complicial sets</a> to <a class='existingWikiWord' href='/nlab/show/n-fold+complete+Segal+space'>$n$-fold complete Segal spaces</a>:</p> <ul> <li><a class='existingWikiWord' href='/nlab/show/Viktoriya+Ozornova'>Viktoriya Ozornova</a>, <a class='existingWikiWord' href='/nlab/show/Martina+Rovelli'>Martina Rovelli</a>, <em>A Quillen adjunction between globular and complicial approaches to <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,n)</annotation></semantics></math>-categories</em>, Advances in Mathematics <strong>421</strong> (2023) 108980 [[doi:10.1016/j.aim.2023.108980](https://doi.org/10.1016/j.aim.2023.108980), <a href='https://arxiv.org/abs/2206.02689'>arXiv:2206.02689</a>]</li> </ul> <p>Review:</p> <ul> <li id='Rovelli2023'><a class='existingWikiWord' href='/nlab/show/Martina+Rovelli'>Martina Rovelli</a>, <em><math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-Complicial sets as a model for <math class='maruku-mathml' display='inline' id='mathml_b32ae67993ef865281c4b2372144e972a7015e3b_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,n)</annotation></semantics></math>-categories</em>, <a href='Center+for+Quantum+and+Topological+Systems#RovelliMay2023'>talk at</a> <em><a class='existingWikiWord' href='/nlab/show/Center+for+Quantum+and+Topological+Systems'>CQTS</a></em> (2023) [[web](Center+for+Quantum+and+Topological+Systems#RovelliMay2023), video: <a href='https://www.youtube.com/watch?v=T9Bg1AdaKv8'>YT</a>]</li> </ul> <p> </p> <p> </p> </div> <!-- Revision --> <div class="revisedby"> <p> Revision on September 13, 2023 at 18:57:26 by <a href="/nlab/author/Paolo+Sarti" style="color: #005c19">Paolo Sarti</a> See the <a href="/nlab/history/weak+complicial+set" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="https://nforum.ncatlab.org/discussion/16437/#Item_2">Discuss</a><span class="backintime"><a href="/nlab/show/weak+complicial+set" accesskey="F" class="navlinkbackintime" id="to_next_revision" rel="nofollow">Next revision</a> (to current)</span><span class="backintime"><a href="/nlab/revision/weak+complicial+set/20" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a> (20 more)</span><a href="/nlab/show/weak+complicial+set" class="navlink" id="to_current_revision">Current version of page</a><a href="/nlab/revision/diff/weak+complicial+set/21" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/weak+complicial+set" accesskey="S" class="navlink" id="history" rel="nofollow">History (21 revisions)</a><a href="/nlab/rollback/weak+complicial+set?rev=21" class="navlink" id="rollback" rel="nofollow">Rollback</a> <a href="/nlab/revision/weak+complicial+set/21/cite" style="color: black">Cite</a> <a href="/nlab/source/weak+complicial+set/21" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10