CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–26 of 26 results for author: <span class="mathjax">Vogt, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Vogt%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Vogt, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Vogt%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Vogt, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09468">arXiv:2411.09468</a> <span> [<a href="https://arxiv.org/pdf/2411.09468">pdf</a>, <a href="https://arxiv.org/format/2411.09468">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Harnessing Machine Learning for Single-Shot Measurement of Free Electron Laser Pulse Power </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Korten%2C+T">Till Korten</a>, <a href="/search/physics?searchtype=author&query=Rybnikov%2C+V">Vladimir Rybnikov</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a>, <a href="/search/physics?searchtype=author&query=Roensch-Schulenburg%2C+J">Juliane Roensch-Schulenburg</a>, <a href="/search/physics?searchtype=author&query=Steinbach%2C+P">Peter Steinbach</a>, <a href="/search/physics?searchtype=author&query=Mirian%2C+N">Najmeh Mirian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09468v2-abstract-short" style="display: inline;"> Electron beam accelerators are essential in many scientific and technological fields. Their operation relies heavily on the stability and precision of the electron beam. Traditional diagnostic techniques encounter difficulties in addressing the complex and dynamic nature of electron beams. Particularly in the context of free-electron lasers (FELs), it is fundamentally impossible to measure the las… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09468v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09468v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09468v2-abstract-full" style="display: none;"> Electron beam accelerators are essential in many scientific and technological fields. Their operation relies heavily on the stability and precision of the electron beam. Traditional diagnostic techniques encounter difficulties in addressing the complex and dynamic nature of electron beams. Particularly in the context of free-electron lasers (FELs), it is fundamentally impossible to measure the lasing-on and lasingoff electron power profiles for a single electron bunch. This is a crucial hurdle in the exact reconstruction of the photon pulse profile. To overcome this hurdle, we developed a machine learning model that predicts the temporal power profile of the electron bunch in the lasing-off regime using machine parameters that can be obtained when lasing is on. The model was statistically validated and showed superior predictions compared to the state-of-the-art batch calibrations. The work we present here is a critical element for a virtual pulse reconstruction diagnostic (VPRD) tool designed to reconstruct the power profile of individual photon pulses without requiring repeated measurements in the lasing-off regime. This promises to significantly enhance the diagnostic capabilities in FELs at large. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09468v2-abstract-full').style.display = 'none'; document.getElementById('2411.09468v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures, Machine Learning and the Physical Sciences Workshop, NeurIPS 2024 https://neurips.cc/virtual/2024/100009</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00789">arXiv:2410.00789</a> <span> [<a href="https://arxiv.org/pdf/2410.00789">pdf</a>, <a href="https://arxiv.org/format/2410.00789">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> SRF programs towards High-Q/High-G cavities in IJCLab </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Miyazaki%2C+A">Akira Miyazaki</a>, <a href="/search/physics?searchtype=author&query=Fouaidy%2C+M">Mohammed Fouaidy</a>, <a href="/search/physics?searchtype=author&query=Gandolfo%2C+N">Nicolas Gandolfo</a>, <a href="/search/physics?searchtype=author&query=Longuevergne%2C+D">David Longuevergne</a>, <a href="/search/physics?searchtype=author&query=Olry%2C+G">Guillaume Olry</a>, <a href="/search/physics?searchtype=author&query=Vannson%2C+M">Mael Vannson</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+L+M">L锚 My Vogt</a>, <a href="/search/physics?searchtype=author&query=Baudrier%2C+M">Matthieu Baudrier</a>, <a href="/search/physics?searchtype=author&query=Cenni%2C+E">Enrico Cenni</a>, <a href="/search/physics?searchtype=author&query=Eoz%C3%A9nou%2C+F">Fabien Eoz茅nou</a>, <a href="/search/physics?searchtype=author&query=Jullien%2C+G">Gr茅goire Jullien</a>, <a href="/search/physics?searchtype=author&query=Maurice%2C+L">Luc Maurice</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00789v2-abstract-short" style="display: inline;"> IJCLab has been leading the development and deployment of low-$尾$ Superconducting Radio Frequency (SRF) cavities for proton and heavy ion accelerators. We are launching an electron accelerator project for sustainable Energy Recovery Linac (iSAS/PERLE) with state-of-the-art SRF cavities at 800~MHz. Our proposal includes advanced heat treatment of such cavities to reach an excellent quality factor o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00789v2-abstract-full').style.display = 'inline'; document.getElementById('2410.00789v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00789v2-abstract-full" style="display: none;"> IJCLab has been leading the development and deployment of low-$尾$ Superconducting Radio Frequency (SRF) cavities for proton and heavy ion accelerators. We are launching an electron accelerator project for sustainable Energy Recovery Linac (iSAS/PERLE) with state-of-the-art SRF cavities at 800~MHz. Our proposal includes advanced heat treatment of such cavities to reach an excellent quality factor of $3\times 10^{10}$ at $22$~MV/m. In this paper, we overview the status of this activity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00789v2-abstract-full').style.display = 'none'; document.getElementById('2410.00789v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to LCWS2024 proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04030">arXiv:2404.04030</a> <span> [<a href="https://arxiv.org/pdf/2404.04030">pdf</a>, <a href="https://arxiv.org/format/2404.04030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450253">10.1051/0004-6361/202450253 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of magnetospheric conditions on the morphology of Jupiter's UV main auroral emission, as observed by Juno-UVS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Head%2C+L+A">L. A. Head</a>, <a href="/search/physics?searchtype=author&query=Grodent%2C+D">D. Grodent</a>, <a href="/search/physics?searchtype=author&query=Bonfond%2C+B">B. Bonfond</a>, <a href="/search/physics?searchtype=author&query=Moirano%2C+A">A. Moirano</a>, <a href="/search/physics?searchtype=author&query=Benmahi%2C+B">B. Benmahi</a>, <a href="/search/physics?searchtype=author&query=Sicorello%2C+G">G. Sicorello</a>, <a href="/search/physics?searchtype=author&query=G%C3%A9rard%2C+J">J-C G茅rard</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M+F">M. F. Vogt</a>, <a href="/search/physics?searchtype=author&query=Hue%2C+V">V. Hue</a>, <a href="/search/physics?searchtype=author&query=Greathouse%2C+T">T. Greathouse</a>, <a href="/search/physics?searchtype=author&query=Gladstone%2C+G+R">G. R. Gladstone</a>, <a href="/search/physics?searchtype=author&query=Yao%2C+Z">Z. Yao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04030v2-abstract-short" style="display: inline;"> Auroral emissions are a reflection of magnetospheric processes, and, at Jupiter, it is not entirely certain how the morphology of the UV main emission (ME) varies with magnetospheric compression or the strength of the central current sheet. This work leverages the observations from Juno-UVS to link ME variability with magnetospheric states. Novel arc-detection techniques are used to determine new… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04030v2-abstract-full').style.display = 'inline'; document.getElementById('2404.04030v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04030v2-abstract-full" style="display: none;"> Auroral emissions are a reflection of magnetospheric processes, and, at Jupiter, it is not entirely certain how the morphology of the UV main emission (ME) varies with magnetospheric compression or the strength of the central current sheet. This work leverages the observations from Juno-UVS to link ME variability with magnetospheric states. Novel arc-detection techniques are used to determine new reference ovals for the ME from perijoves 1 through 54, in both hemispheres, and analyse how the size and shape of the ME vary compared to this reference oval. The morphology and brightness of the ME vary in local time: the dawn-side ME is typically expanded and the dusk-side ME typically contracted compared to the reference oval, and the dusk-side ME being typically twice as bright as the dawn-side ME. Both the northern and southern ME, and the day-side and night-side ME, expand and contract from their reference ovals synchronously, which indicates that the variable size of the ME is caused by a process occurring throughout the jovian magnetosphere. The poleward latitudinal shift of the auroral footprint of Ganymede correlates with the poleward motion of the ME, whereas a similar relation is not present for the footprint of Io. Additionally, the expansion of the ME correlates well with an increase in magnetodisc current. These two results suggest that a changing current-sheet magnetic field is partially responsible for the variable size of the ME. Finally, magnetospheric compression is linked to a global ME contraction and brightening, though this brightening occurs predominantly in the day-side ME. This observation, and the observation that the dusk-side ME is typically brighter than the dawn-side ME, stands in contrast to the modelled and observed behaviour of field-aligned currents and thus weakens the theoretical link between field-aligned currents and the generation of the auroral ME. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04030v2-abstract-full').style.display = 'none'; document.getElementById('2404.04030v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 688, A205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03131">arXiv:2403.03131</a> <span> [<a href="https://arxiv.org/pdf/2403.03131">pdf</a>, <a href="https://arxiv.org/ps/2403.03131">ps</a>, <a href="https://arxiv.org/format/2403.03131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Jovian sodium nebula and Io plasma torus S$^+$ and brightnesses 2017 -- 2023: insights into volcanic vs. sublimation supply </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Morgenthaler%2C+J+P">Jeffrey P. Morgenthaler</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+C+A">Carl A. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M+F">Marissa F. Vogt</a>, <a href="/search/physics?searchtype=author&query=Schneider%2C+N+M">Nicholas M. Schneider</a>, <a href="/search/physics?searchtype=author&query=Marconi%2C+M">Max Marconi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03131v1-abstract-short" style="display: inline;"> We present first results derived from the largest collection of contemporaneously recorded Jovian sodium nebula and Io plasma torus (IPT) in [S II] 673.1 nm images assembled to date. The data were recorded by the Planetary Science Institute's Io Input/Output observatory (IoIO) and provide important context to Io geologic and atmospheric studies as well as the Juno mission and supporting observatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03131v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03131v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03131v1-abstract-full" style="display: none;"> We present first results derived from the largest collection of contemporaneously recorded Jovian sodium nebula and Io plasma torus (IPT) in [S II] 673.1 nm images assembled to date. The data were recorded by the Planetary Science Institute's Io Input/Output observatory (IoIO) and provide important context to Io geologic and atmospheric studies as well as the Juno mission and supporting observations. Enhancements in the observed emission are common, typically lasting 1 -- 3 months, such that the average flux of material from Io is determined by the enhancements, not any quiescent state. The enhancements are not seen at periodicities associated with modulation in solar insolation of Io's surface, thus physical process(es) other than insolation-driven sublimation must ultimately drive the bulk of Io's atmospheric escape. We suggest that geologic activity, likely involving volcanic plumes, drives escape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03131v1-abstract-full').style.display = 'none'; document.getElementById('2403.03131v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 4 figures, submitted to Journal of Geophysical Research (Space Physics)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.05045">arXiv:2106.05045</a> <span> [<a href="https://arxiv.org/pdf/2106.05045">pdf</a>, <a href="https://arxiv.org/format/2106.05045">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1680">10.1093/mnras/stab1680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for Saturn's X-rays during a rare Jupiter Magnetotail Crossing using Chandra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Weigt%2C+D+M">D. M. Weigt</a>, <a href="/search/physics?searchtype=author&query=Dunn%2C+W+R">W. R. Dunn</a>, <a href="/search/physics?searchtype=author&query=Jackman%2C+C+M">C. M. Jackman</a>, <a href="/search/physics?searchtype=author&query=Kraft%2C+R">R. Kraft</a>, <a href="/search/physics?searchtype=author&query=Branduardi-Raymont%2C+G">G. Branduardi-Raymont</a>, <a href="/search/physics?searchtype=author&query=Nichols%2C+J+D">J. D. Nichols</a>, <a href="/search/physics?searchtype=author&query=Wibisono%2C+A+D">A. D. Wibisono</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M+F">M. F. Vogt</a>, <a href="/search/physics?searchtype=author&query=Gladstone%2C+G+R">G. R. Gladstone</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.05045v1-abstract-short" style="display: inline;"> Every 19 years, Saturn passes through Jupiter's 'flapping' magnetotail. Here, we report Chandra X-ray observations of Saturn planned to coincide with this rare planetary alignment and to analyse Saturn's magnetospheric response when transitioning to this unique parameter space. We analyse three Director's Discretionary Time (DDT) observations from the High Resolution Camera (HRC-I) on-board Chandr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05045v1-abstract-full').style.display = 'inline'; document.getElementById('2106.05045v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.05045v1-abstract-full" style="display: none;"> Every 19 years, Saturn passes through Jupiter's 'flapping' magnetotail. Here, we report Chandra X-ray observations of Saturn planned to coincide with this rare planetary alignment and to analyse Saturn's magnetospheric response when transitioning to this unique parameter space. We analyse three Director's Discretionary Time (DDT) observations from the High Resolution Camera (HRC-I) on-board Chandra, taken on November 19, 21 and 23 2020 with the aim to find auroral and/or disk emissions. We infer the conditions in the kronian system by looking at coincident soft X-ray solar flux data from the Geostationary Operational Environmental Satellite (GOES) and Hubble Space Telescope (HST) observations of Saturn's ultraviolet (UV) auroral emissions. The large Saturn-Sun-Earth angle during this time would mean that most flares from the Earth-facing side of the Sun would not have impacted Saturn. We find no significant detection of Saturn's disk or auroral emissions in any of our observations. We calculate the 3$蟽$ upper band energy flux of Saturn during this time to be 0.9 - 3.04 $\times$ 10$^{14}$ erg cm$^{-2}$ s$^{-1}$ which agrees with fluxes found from previous modelled spectra of the disk emissions. We conclude by discussing the implications of this non-detection and how it is imperative that the next fleet of X-ray telescope (such as Athena and the Lynx mission concept) continue to observe Saturn with their improved spatial and spectral resolution and very enhanced sensitivity to help us finally solve the mysteries behind Saturn's apparently elusive X-ray aurora. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.05045v1-abstract-full').style.display = 'none'; document.getElementById('2106.05045v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03959">arXiv:2105.03959</a> <span> [<a href="https://arxiv.org/pdf/2105.03959">pdf</a>, <a href="https://arxiv.org/format/2105.03959">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165771">10.1016/j.nima.2021.165771 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation tolerant, thin, passive CMOS sensors read out with the RD53A chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dieter%2C+Y">Yannick Dieter</a>, <a href="/search/physics?searchtype=author&query=Daas%2C+M">Michael Daas</a>, <a href="/search/physics?searchtype=author&query=Dingfelder%2C+J">Jochen Dingfelder</a>, <a href="/search/physics?searchtype=author&query=Hemperek%2C+T">Tomasz Hemperek</a>, <a href="/search/physics?searchtype=author&query=H%C3%BCgging%2C+F">Fabian H眉gging</a>, <a href="/search/physics?searchtype=author&query=Janssen%2C+J">Jens Janssen</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%BCger%2C+H">Hans Kr眉ger</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+D">David-Leon Pohl</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Marco Vogt</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianyang Wang</a>, <a href="/search/physics?searchtype=author&query=Wermes%2C+N">Norbert Wermes</a>, <a href="/search/physics?searchtype=author&query=Wolf%2C+P">Pascal Wolf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03959v1-abstract-short" style="display: inline;"> The radiation hardness of passive CMOS pixel sensors fabricated in 150 nm LFoundry technology is investigated. CMOS process lines are especially of interest for large-scale silicon detectors as they offer high production throughput at comparatively low cost. Moreover, several features like poly-silicon resistors, MIM-capacitors and several metal layers are available which can help enhance the sens… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03959v1-abstract-full').style.display = 'inline'; document.getElementById('2105.03959v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03959v1-abstract-full" style="display: none;"> The radiation hardness of passive CMOS pixel sensors fabricated in 150 nm LFoundry technology is investigated. CMOS process lines are especially of interest for large-scale silicon detectors as they offer high production throughput at comparatively low cost. Moreover, several features like poly-silicon resistors, MIM-capacitors and several metal layers are available which can help enhance the sensor design. The performance of a 100 $\mathrm渭$m thin passive CMOS sensor with a pixel pitch of 50 $\mathrm渭$m at different irradiation levels, 5 $\times$ 10$^{15}$n$_{\mathrm{eq}}$cm$^{-2}$ and 1 $\times$ 10$^{16}$n$_{\mathrm{eq}}$cm$^{-2}$, is presented. The sensor was bump-bonded and read out using the RD53A readout chip. After the highest fluence a hit-detection efficiency larger than 99% is measured for minimum ionising particles. The measured equivalent noise charge is comparable to conventional planar pixel sensors. Passive CMOS sensors are thus an attractive option for silicon detectors operating in radiation harsh environments like the upgrades for the LHC experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03959v1-abstract-full').style.display = 'none'; document.getElementById('2105.03959v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.11225">arXiv:2005.11225</a> <span> [<a href="https://arxiv.org/pdf/2005.11225">pdf</a>, <a href="https://arxiv.org/format/2005.11225">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164721">10.1016/j.nima.2020.164721 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BDAQ53, a versatile pixel detector readout and test system for the ATLAS and CMS HL-LHC upgrades </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Daas%2C+M">Michael Daas</a>, <a href="/search/physics?searchtype=author&query=Dieter%2C+Y">Yannick Dieter</a>, <a href="/search/physics?searchtype=author&query=Dingfelder%2C+J">Jochen Dingfelder</a>, <a href="/search/physics?searchtype=author&query=Frohne%2C+M">Markus Frohne</a>, <a href="/search/physics?searchtype=author&query=Giakoustidis%2C+G">Georgios Giakoustidis</a>, <a href="/search/physics?searchtype=author&query=Hemperek%2C+T">Tomasz Hemperek</a>, <a href="/search/physics?searchtype=author&query=Hinterkeuser%2C+F">Florian Hinterkeuser</a>, <a href="/search/physics?searchtype=author&query=H%C3%BCgging%2C+F">Fabian H眉gging</a>, <a href="/search/physics?searchtype=author&query=Janssen%2C+J">Jens Janssen</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%BCger%2C+H">Hans Kr眉ger</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+D">David-Leon Pohl</a>, <a href="/search/physics?searchtype=author&query=Rymaszewski%2C+P">Piotr Rymaszewski</a>, <a href="/search/physics?searchtype=author&query=Standke%2C+M">Mark Standke</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+T">Tianyang Wang</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Marco Vogt</a>, <a href="/search/physics?searchtype=author&query=Wermes%2C+N">Norbert Wermes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.11225v3-abstract-short" style="display: inline;"> BDAQ53 is a readout system and verification framework for hybrid pixel detector readout chips of the RD53 family. These chips are designed for the upgrade of the inner tracking detectors of the ATLAS and CMS experiments. BDAQ53 is used in applications where versatility and rapid customization are required, such as in laboratory testing environments, test beam campaigns, and permanent setups for qu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11225v3-abstract-full').style.display = 'inline'; document.getElementById('2005.11225v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.11225v3-abstract-full" style="display: none;"> BDAQ53 is a readout system and verification framework for hybrid pixel detector readout chips of the RD53 family. These chips are designed for the upgrade of the inner tracking detectors of the ATLAS and CMS experiments. BDAQ53 is used in applications where versatility and rapid customization are required, such as in laboratory testing environments, test beam campaigns, and permanent setups for quality control measurements. It consists of custom and commercial hardware, a Python-based software framework, and FPGA firmware. BDAQ53 is developed as open source software with both software and firmware being hosted in a public repository. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.11225v3-abstract-full').style.display = 'none'; document.getElementById('2005.11225v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06090">arXiv:1911.06090</a> <span> [<a href="https://arxiv.org/pdf/1911.06090">pdf</a>, <a href="https://arxiv.org/format/1911.06090">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-66220-5">10.1038/s41598-020-66220-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temporal X-ray Reconstruction using Temporal and Spectral Measurements at LCLS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Christie%2C+F">Florian Christie</a>, <a href="/search/physics?searchtype=author&query=Lutman%2C+A+A">Alberto Andrea Lutman</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Yuantao Ding</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhirong Huang</a>, <a href="/search/physics?searchtype=author&query=Jhalani%2C+V+A">Vatsal A. Jhalani</a>, <a href="/search/physics?searchtype=author&query=Krzywinski%2C+J">Jacek Krzywinski</a>, <a href="/search/physics?searchtype=author&query=Maxwell%2C+T+J">Timothy John Maxwell</a>, <a href="/search/physics?searchtype=author&query=Ratner%2C+D">Daniel Ratner</a>, <a href="/search/physics?searchtype=author&query=R%C3%B6nsch-Schulenburg%2C+J">Juliane R枚nsch-Schulenburg</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06090v2-abstract-short" style="display: inline;"> Transverse deflecting structures (TDS) are widely used in accelerator physics to measure the longitudinal density of particle bunches. When used in combination with a dispersive section, the whole longitudinal phase space density can be imaged. At the Linac Coherent Light Source (LCLS), the installation of such a device downstream of the undulators enables the reconstruction of the X-ray temporal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06090v2-abstract-full').style.display = 'inline'; document.getElementById('1911.06090v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06090v2-abstract-full" style="display: none;"> Transverse deflecting structures (TDS) are widely used in accelerator physics to measure the longitudinal density of particle bunches. When used in combination with a dispersive section, the whole longitudinal phase space density can be imaged. At the Linac Coherent Light Source (LCLS), the installation of such a device downstream of the undulators enables the reconstruction of the X-ray temporal intensity profile by comparing longitudinal phase space distributions with lasing on and lasing off. However, the resolution of this TDS is limited to around 1 fs rms (root mean square), and therefore, it is not possible to resolve single self-amplified spontaneous emission (SASE) spikes within one X-ray photon pulse. By combining the power spectrum from a high resolution photon spectrometer and the temporal structure from the TDS, the overall resolution is enhanced, thus allowing the observation of temporal, single SASE spikes. The combined data from the spectrometer and the TDS is analyzed using an iterative algorithm to obtain the actual intensity profile. In this paper, we present some improvements to the reconstruction algorithm as well as real data taken at LCLS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06090v2-abstract-full').style.display = 'none'; document.getElementById('1911.06090v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 19-198 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 10, 9799 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.08010">arXiv:1903.08010</a> <span> [<a href="https://arxiv.org/pdf/1903.08010">pdf</a>, <a href="https://arxiv.org/format/1903.08010">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/05/C05018">10.1088/1748-0221/14/05/C05018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiation-induced Effects on Data Integrity and Link Stability of the RD53A Pixel Readout Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vogt%2C+M">M. Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.08010v3-abstract-short" style="display: inline;"> The phase-2 upgrade of the LHC will require novel pixel readout chips, which deliver hit information at drastically increased data rates and tolerate unprecedented radiation levels. The large-scale prototype chip RD53A has been designed by the RD53 collaboration and manufactured in a 65 nm CMOS process, suitable for the innermost layers of both the ATLAS and the CMS experiment. In order to verify… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08010v3-abstract-full').style.display = 'inline'; document.getElementById('1903.08010v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.08010v3-abstract-full" style="display: none;"> The phase-2 upgrade of the LHC will require novel pixel readout chips, which deliver hit information at drastically increased data rates and tolerate unprecedented radiation levels. The large-scale prototype chip RD53A has been designed by the RD53 collaboration and manufactured in a 65 nm CMOS process, suitable for the innermost layers of both the ATLAS and the CMS experiment. In order to verify the radiation hardness design goal of 500 Mrad total ionizing dose, RD53A has been irradiated using X-rays. The radiation effects on the performance of the data link, reset circuit and the clock generation have been investigated. Furthermore, the operating margins in terms of supply voltage and frequency have been analyzed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.08010v3-abstract-full').style.display = 'none'; document.getElementById('1903.08010v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.00844">arXiv:1803.00844</a> <span> [<a href="https://arxiv.org/pdf/1803.00844">pdf</a>, <a href="https://arxiv.org/format/1803.00844">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/05/T05008">10.1088/1748-0221/13/05/T05008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Production and Integration of the ATLAS Insertable B-Layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbott%2C+B">B. Abbott</a>, <a href="/search/physics?searchtype=author&query=Albert%2C+J">J. Albert</a>, <a href="/search/physics?searchtype=author&query=Alberti%2C+F">F. Alberti</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+M">M. Alex</a>, <a href="/search/physics?searchtype=author&query=Alimonti%2C+G">G. Alimonti</a>, <a href="/search/physics?searchtype=author&query=Alkire%2C+S">S. Alkire</a>, <a href="/search/physics?searchtype=author&query=Allport%2C+P">P. Allport</a>, <a href="/search/physics?searchtype=author&query=Altenheiner%2C+S">S. Altenheiner</a>, <a href="/search/physics?searchtype=author&query=Ancu%2C+L">L. Ancu</a>, <a href="/search/physics?searchtype=author&query=Anderssen%2C+E">E. Anderssen</a>, <a href="/search/physics?searchtype=author&query=Andreani%2C+A">A. Andreani</a>, <a href="/search/physics?searchtype=author&query=Andreazza%2C+A">A. Andreazza</a>, <a href="/search/physics?searchtype=author&query=Axen%2C+B">B. Axen</a>, <a href="/search/physics?searchtype=author&query=Arguin%2C+J">J. Arguin</a>, <a href="/search/physics?searchtype=author&query=Backhaus%2C+M">M. Backhaus</a>, <a href="/search/physics?searchtype=author&query=Balbi%2C+G">G. Balbi</a>, <a href="/search/physics?searchtype=author&query=Ballansat%2C+J">J. Ballansat</a>, <a href="/search/physics?searchtype=author&query=Barbero%2C+M">M. Barbero</a>, <a href="/search/physics?searchtype=author&query=Barbier%2C+G">G. Barbier</a>, <a href="/search/physics?searchtype=author&query=Bassalat%2C+A">A. Bassalat</a>, <a href="/search/physics?searchtype=author&query=Bates%2C+R">R. Bates</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+P">P. Baudin</a>, <a href="/search/physics?searchtype=author&query=Battaglia%2C+M">M. Battaglia</a>, <a href="/search/physics?searchtype=author&query=Beau%2C+T">T. Beau</a>, <a href="/search/physics?searchtype=author&query=Beccherle%2C+R">R. Beccherle</a> , et al. (352 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.00844v3-abstract-short" style="display: inline;"> During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00844v3-abstract-full').style.display = 'inline'; document.getElementById('1803.00844v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.00844v3-abstract-full" style="display: none;"> During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.00844v3-abstract-full').style.display = 'none'; document.getElementById('1803.00844v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">90 pages in total. Author list: ATLAS IBL Collaboration, starting page 2. 69 figures, 20 tables. Published in Journal of Instrumentation. All figures available at: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/PIX-2018-001</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation JINST 13 T05008 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.03212">arXiv:1711.03212</a> <span> [<a href="https://arxiv.org/pdf/1711.03212">pdf</a>, <a href="https://arxiv.org/format/1711.03212">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22323/1.313.0084">10.22323/1.313.0084 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization and Verification Environment for the RD53A Pixel Readout Chip in 65 nm CMOS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Marco Vogt</a>, <a href="/search/physics?searchtype=author&query=Kr%C3%BCger%2C+H">Hans Kr眉ger</a>, <a href="/search/physics?searchtype=author&query=Hemperek%2C+T">Tomasz Hemperek</a>, <a href="/search/physics?searchtype=author&query=Janssen%2C+J">Jens Janssen</a>, <a href="/search/physics?searchtype=author&query=Pohl%2C+D+L">David Leon Pohl</a>, <a href="/search/physics?searchtype=author&query=Daas%2C+M">Michael Daas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.03212v3-abstract-short" style="display: inline;"> The RD53 collaboration is currently designing a large scale prototype pixel readout chip in 65 nm CMOS technology for the phase 2 upgrades at the HL-LHC. The RD53A chip will be available by the end of the year 2017 and will be extensively tested to confirm if the circuit and the architecture make a solid foundation for the final pixel readout chips for the experiments at the HL-LHC. A test and dat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03212v3-abstract-full').style.display = 'inline'; document.getElementById('1711.03212v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.03212v3-abstract-full" style="display: none;"> The RD53 collaboration is currently designing a large scale prototype pixel readout chip in 65 nm CMOS technology for the phase 2 upgrades at the HL-LHC. The RD53A chip will be available by the end of the year 2017 and will be extensively tested to confirm if the circuit and the architecture make a solid foundation for the final pixel readout chips for the experiments at the HL-LHC. A test and data acquisition system for the RD53A chip is currently under development to perform single-chip and multi-chip module measurements. In addition, the verification of the RD53A design is performed in a dedicated simulation environment. The concept and the implementation of the test and data acquisition system and the simulation environment, which are based on a modular data acquisition and system testing framework, are presented in this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.03212v3-abstract-full').style.display = 'none'; document.getElementById('1711.03212v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.06658">arXiv:1604.06658</a> <span> [<a href="https://arxiv.org/pdf/1604.06658">pdf</a>, <a href="https://arxiv.org/ps/1604.06658">ps</a>, <a href="https://arxiv.org/format/1604.06658">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevAccelBeams.20.042802">10.1103/PhysRevAccelBeams.20.042802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Confining continuous manipulations of accelerator beamline optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Amstutz%2C+P">Philipp Amstutz</a>, <a href="/search/physics?searchtype=author&query=Ackermann%2C+S">Sven Ackermann</a>, <a href="/search/physics?searchtype=author&query=B%C3%B6dewadt%2C+J">J枚rn B枚dewadt</a>, <a href="/search/physics?searchtype=author&query=Lechner%2C+C">Christoph Lechner</a>, <a href="/search/physics?searchtype=author&query=Plath%2C+T">Tim Plath</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.06658v1-abstract-short" style="display: inline;"> Altering the optics in one section of a linear accelerator beamline will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beamline element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beamline section withou… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06658v1-abstract-full').style.display = 'inline'; document.getElementById('1604.06658v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.06658v1-abstract-full" style="display: none;"> Altering the optics in one section of a linear accelerator beamline will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beamline element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beamline section without disturbing any other parts of the machine. Such a local optics manipulation can be achieved by adjusting a number of additional corrector magnets that restore the initial optics after the manipulated section. In that case, the effect of the manipulation is confined in the region between the manipulated and the correcting beamline elements. Introducing a manipulation continuously, while the machine is operating, therefore requires continuous correction functions to be applied to the correcting quadrupole magnets. In this paper we present an analytic approach to calculate such continuous correction functions for six quadrupole magnets by means of a homotopy method. Besides a detailed derivation of the method, we present its application to an algebraic example, as well as its implementation at the seeding experiment sFLASH at the free-electron laser FLASH located at DESY in Hamburg. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.06658v1-abstract-full').style.display = 'none'; document.getElementById('1604.06658v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, to be submitted to PRAB</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 16-071 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Accel. Beams 20, 042802 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.07963">arXiv:1510.07963</a> <span> [<a href="https://arxiv.org/pdf/1510.07963">pdf</a>, <a href="https://arxiv.org/ps/1510.07963">ps</a>, <a href="https://arxiv.org/format/1510.07963">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> The uniqueness of the invariant polarisation-tensor field for spin-1 particles in storage rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barber%2C+D+P">D. P. Barber</a>, <a href="/search/physics?searchtype=author&query=Kling%2C+A">A. Kling</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">M. Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.07963v1-abstract-short" style="display: inline;"> We argue that the invariant tensor field introduced in [1] is unique under the condition that the invariant spin field is unique, and thereby complete that part of the discussion in that paper. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.07963v1-abstract-full" style="display: none;"> We argue that the invariant tensor field introduced in [1] is unique under the condition that the invariant spin field is unique, and thereby complete that part of the discussion in that paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.07963v1-abstract-full').style.display = 'none'; document.getElementById('1510.07963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 15-192 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.04150">arXiv:1502.04150</a> <span> [<a href="https://arxiv.org/pdf/1502.04150">pdf</a>, <a href="https://arxiv.org/ps/1502.04150">ps</a>, <a href="https://arxiv.org/format/1502.04150">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.114.204801">10.1103/PhysRevLett.114.204801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Wakefields and Resonances in Coherent Synchrotron Radiation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Billinghurst%2C+B+E">B. E. Billinghurst</a>, <a href="/search/physics?searchtype=author&query=Bergstrom%2C+J+C">J. C. Bergstrom</a>, <a href="/search/physics?searchtype=author&query=Baribeau%2C+C">C. Baribeau</a>, <a href="/search/physics?searchtype=author&query=Batten%2C+T">T. Batten</a>, <a href="/search/physics?searchtype=author&query=Dallin%2C+L">L. Dallin</a>, <a href="/search/physics?searchtype=author&query=May%2C+T+E">T. E. May</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+J+M">J. M. Vogt</a>, <a href="/search/physics?searchtype=author&query=Wurtz%2C+W+A">W. A. Wurtz</a>, <a href="/search/physics?searchtype=author&query=Warnock%2C+R">R. Warnock</a>, <a href="/search/physics?searchtype=author&query=Bizzozero%2C+D+A">D. A. Bizzozero</a>, <a href="/search/physics?searchtype=author&query=Kramer%2C+S">S. Kramer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.04150v2-abstract-short" style="display: inline;"> We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wavenumber intervals of $0.074 ~\textrm{cm}^{-1}$, and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04150v2-abstract-full').style.display = 'inline'; document.getElementById('1502.04150v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.04150v2-abstract-full" style="display: none;"> We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wavenumber intervals of $0.074 ~\textrm{cm}^{-1}$, and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by RF diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multi-bend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.04150v2-abstract-full').style.display = 'none'; document.getElementById('1502.04150v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures. Differs from first posting by correction of typo and inclusion of responses to referee's questions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.00538">arXiv:1502.00538</a> <span> [<a href="https://arxiv.org/pdf/1502.00538">pdf</a>, <a href="https://arxiv.org/ps/1502.00538">ps</a>, <a href="https://arxiv.org/format/1502.00538">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S2010194516600983">10.1142/S2010194516600983 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An Informal Summary of a New Formalism for Classifying Spin-Orbit Systems Using Tools Distilled from the Theory of Bundles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Heinemann%2C+K">Klaus Heinemann</a>, <a href="/search/physics?searchtype=author&query=Barber%2C+D+P">Desmond P. Barber</a>, <a href="/search/physics?searchtype=author&query=Ellison%2C+J+A">James A. Ellison</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.00538v1-abstract-short" style="display: inline;"> We give an informal summary of ongoing work which uses tools distilled from the theory of fibre bundles to classify and connect invariant fields associated with spin motion in storage rings. We mention four major theorems. One ties invariant fields with the notion of normal form, the second allows comparison of different invariant fields and the two others tie the existence of invariant fields to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00538v1-abstract-full').style.display = 'inline'; document.getElementById('1502.00538v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.00538v1-abstract-full" style="display: none;"> We give an informal summary of ongoing work which uses tools distilled from the theory of fibre bundles to classify and connect invariant fields associated with spin motion in storage rings. We mention four major theorems. One ties invariant fields with the notion of normal form, the second allows comparison of different invariant fields and the two others tie the existence of invariant fields to the existence of certain invariant sets. We explain how the theorems apply to the spin dynamics of spin-$1/2$ and spin-$1$ particles. Our approach elegantly unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics and suggests an avenue for addressing the question of the existence of the invariant spin field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.00538v1-abstract-full').style.display = 'none'; document.getElementById('1502.00538v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Based on a presentation at Spin2014, The 21st International Symposium on Spin Physics, Beijing, China, October 2014. To be published in the International Journal of Modern Physics, Conference Series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1501.02747">arXiv:1501.02747</a> <span> [<a href="https://arxiv.org/pdf/1501.02747">pdf</a>, <a href="https://arxiv.org/ps/1501.02747">ps</a>, <a href="https://arxiv.org/format/1501.02747">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> A detailed and unified treatment of spin-orbit systems using tools distilled from the theory of bundles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Heinemann%2C+K">Klaus Heinemann</a>, <a href="/search/physics?searchtype=author&query=Barber%2C+D+P">Desmond P. Barber</a>, <a href="/search/physics?searchtype=author&query=Ellison%2C+J+A">James A. Ellison</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1501.02747v1-abstract-short" style="display: inline;"> We return to our study \cite{BEH} of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in \cite{BEH}, we now employ a discrete-time formalism, beginning with the $\rm{Poincar\acute{e}}$ maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02747v1-abstract-full').style.display = 'inline'; document.getElementById('1501.02747v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1501.02747v1-abstract-full" style="display: none;"> We return to our study \cite{BEH} of invariant spin fields and spin tunes for polarized beams in storage rings but in contrast to the continuous-time treatment in \cite{BEH}, we now employ a discrete-time formalism, beginning with the $\rm{Poincar\acute{e}}$ maps of the continuous time formalism. We then substantially extend our toolset and generalize the notions of invariant spin field and invariant frame field. We revisit some old theorems and prove several theorems believed to be new. In particular we study two transformation rules, one of them known and the other new, where the former turns out to be an $SO(3)$-gauge transformation rule. We then apply the theory to the dynamics of spin-$1/2$ and spin-$1$ particle bunches and their density matrix functions, describing semiclassically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. As in \cite{BEH}, the particle motion is integrable but we now allow for nonlinear particle motion on each torus. Since this work is inspired by notions from the theory of bundles, we also provide insight into the underlying bundle-theoretic aspects of the well-established concepts of invariant spin field, spin tune and invariant frame field. Since we neglect, as is usual, the Stern-Gerlach force, the underlying principal bundle is of product formso that we can present the theory in a fashion which does not use bundle theory. Nevertheless we occasionally mention the bundle-theoretic meaningof our concepts and we also mention the similarities with the geometrical approach to Yang-Mills Theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1501.02747v1-abstract-full').style.display = 'none'; document.getElementById('1501.02747v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.4373">arXiv:1409.4373</a> <span> [<a href="https://arxiv.org/pdf/1409.4373">pdf</a>, <a href="https://arxiv.org/ps/1409.4373">ps</a>, <a href="https://arxiv.org/format/1409.4373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> A New and Unifying Approach to Spin Dynamics and Beam Polarization in Storage Rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Heinemann%2C+K">Klaus Heinemann</a>, <a href="/search/physics?searchtype=author&query=Ellison%2C+J+A">James A. Ellison</a>, <a href="/search/physics?searchtype=author&query=Barber%2C+D+P">Desmond P. Barber</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.4373v2-abstract-short" style="display: inline;"> With this paper we extend our studies [1] on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.4373v2-abstract-full').style.display = 'inline'; document.getElementById('1409.4373v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.4373v2-abstract-full" style="display: none;"> With this paper we extend our studies [1] on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.4373v2-abstract-full').style.display = 'none'; document.getElementById('1409.4373v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1303.5797">arXiv:1303.5797</a> <span> [<a href="https://arxiv.org/pdf/1303.5797">pdf</a>, <a href="https://arxiv.org/ps/1303.5797">ps</a>, <a href="https://arxiv.org/format/1303.5797">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Analysis and ODEs">math.CA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevSTAB.16.090702">10.1103/PhysRevSTAB.16.090702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Planar undulator motion excited by a fixed traveling wave: Quasiperiodic Averaging, normal forms and the FEL Pendulum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ellison%2C+J+A">James A. Ellison</a>, <a href="/search/physics?searchtype=author&query=Heinemann%2C+K">Klaus Heinemann</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a>, <a href="/search/physics?searchtype=author&query=Gooden%2C+M">Matthew Gooden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1303.5797v1-abstract-short" style="display: inline;"> We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray Free Electron Laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wavelength of the traveling wave varies. By scalings and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.5797v1-abstract-full').style.display = 'inline'; document.getElementById('1303.5797v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1303.5797v1-abstract-full" style="display: none;"> We present a mathematical analysis of planar motion of energetic electrons moving through a planar dipole undulator, excited by a fixed planar polarized plane wave Maxwell field in the X-Ray Free Electron Laser (FEL) regime. Our starting point is the 6D Lorentz system, which allows planar motions, and we examine this dynamical system as the wavelength of the traveling wave varies. By scalings and transformations the 6D system is reduced, without approximation, to a 2D system in a form for a rigorous asymptotic analysis using the Method of Averaging (MoA), a long time perturbation theory. The two dependent variables are a scaled energy deviation and a generalization of the so-called ponderomotive phase. As the wavelength varies the system passes through resonant and nonresonant (NR) zones and we develop NR and near-to-resonant (NtoR) normal form approximations. For a special initial condition and on resonance, the NtoR normal form reduces to the well-known FEL pendulum system. We then state and prove NR and NtoR first-order averaging theorems which give near optimal error bounds for the MoA approximations. The proofs are novel in that they do not use a near identity transformation and they use a system of differential inequalities. The NR case is an example of quasiperiodic averaging where the small divisor problem enters in the simplest possible way. To our knowledge the planar problem has not been analyzed with the generality we aspire to here nor has the standard FEL pendulum system been derived with associated error bounds as we do here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1303.5797v1-abstract-full').style.display = 'none'; document.getElementById('1303.5797v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to peer reviewed journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1109.1413">arXiv:1109.1413</a> <span> [<a href="https://arxiv.org/pdf/1109.1413">pdf</a>, <a href="https://arxiv.org/ps/1109.1413">ps</a>, <a href="https://arxiv.org/format/1109.1413">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.108.034801">10.1103/PhysRevLett.108.034801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation and Characterization of Electron Bunches with Ramped Current Profiles in a Dual-Frequency Superconducting Linear Accelerator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Piot%2C+P">P. Piot</a>, <a href="/search/physics?searchtype=author&query=Behrens%2C+C">C. Behrens</a>, <a href="/search/physics?searchtype=author&query=Gerth%2C+C">C. Gerth</a>, <a href="/search/physics?searchtype=author&query=Dohlus%2C+M">M. Dohlus</a>, <a href="/search/physics?searchtype=author&query=Lemery%2C+F">F. Lemery</a>, <a href="/search/physics?searchtype=author&query=Mihalcea%2C+D">D. Mihalcea</a>, <a href="/search/physics?searchtype=author&query=Stoltz%2C+P">P. Stoltz</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">M. Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1109.1413v1-abstract-short" style="display: inline;"> We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced $\sim 700$-MeV bunches have peak currents of the order of a kilo-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.1413v1-abstract-full').style.display = 'inline'; document.getElementById('1109.1413v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1109.1413v1-abstract-full" style="display: none;"> We report on the successful experimental generation of electron bunches with ramped current profiles. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a superconducing radiofrequency linear accelerator operating at two frequencies and a current-enhancing dispersive section. The produced $\sim 700$-MeV bunches have peak currents of the order of a kilo-Amp猫re. Data taken for various accelerator settings demonstrate the versatility of the method and in particular its ability to produce current profiles that have a quasi-linear dependency on the longitudinal (temporal) coordinate. The measured bunch parameters are shown, via numerical simulations, to produce gigavolt-per-meter peak accelerating electric fields with transformer ratios larger than 2 in dielectric-lined waveguides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1109.1413v1-abstract-full').style.display = 'none'; document.getElementById('1109.1413v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY TESLA-FEL 2011-02, Fermilab PUB-0339-APC </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 108, 034801 (2012) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0612194">arXiv:physics/0612194</a> <span> [<a href="https://arxiv.org/pdf/physics/0612194">pdf</a>, <a href="https://arxiv.org/ps/physics/0612194">ps</a>, <a href="https://arxiv.org/format/physics/0612194">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/8/11/296">10.1088/1367-2630/8/11/296 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin motion at and near orbital resonance in storage rings with Siberian Snakes. Part I: at orbital resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barber%2C+D+P">D. P. Barber</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">M. Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0612194v1-abstract-short" style="display: inline;"> Here, and in a sequel, we invoke the invariant spin field to provide an in--depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarisation at and near so--called snake resonances in proton stora… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0612194v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0612194v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0612194v1-abstract-full" style="display: none;"> Here, and in a sequel, we invoke the invariant spin field to provide an in--depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarisation at and near so--called snake resonances in proton storage rings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0612194v1-abstract-full').style.display = 'none'; document.getElementById('physics/0612194v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY preprint DESY 06-220 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NewJ.Phys.8:296,2006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0611238">arXiv:physics/0611238</a> <span> [<a href="https://arxiv.org/pdf/physics/0611238">pdf</a>, <a href="https://arxiv.org/ps/physics/0611238">ps</a>, <a href="https://arxiv.org/format/physics/0611238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/9/2/032">10.1088/1367-2630/9/2/032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A New Model for the Collective Beam-Beam Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ellison%2C+J+A">J. A. Ellison</a>, <a href="/search/physics?searchtype=author&query=Sobol%2C+A+V">A. V. Sobol</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">M Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0611238v1-abstract-short" style="display: inline;"> The Collective Beam-Beam interaction is studied in the framework of maps with a ``kick-lattice'' model in the 4-D phase space of the transverse motion. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0611238v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0611238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0611238v1-abstract-full" style="display: none;"> The Collective Beam-Beam interaction is studied in the framework of maps with a ``kick-lattice'' model in the 4-D phase space of the transverse motion. A novel approach to the classical method of averaging is used to derive an approximate map which is equivalent to a flow within the averaging approximation. The flow equation is a continuous-time Vlasov equation which we call the averaged Vlasov equation, the new model of this paper. The power of this approach is evidenced by the fact that the averaged Vlasov equation has exact equilibria and the associated linearized equations have uncoupled azimuthal Fourier modes. The equation for the Fourier modes leads to a Fredholm integral equation of the third kind and the setting is ready-made for the development of a weakly nonlinear theory to study the coupling of the pi and sigma modes. The pi and sigma eigenmodes are calculated from the third kind integral equation. These results are compared with the kick-lattice model using our weighted macroparticle tracking code and a newly developed, density tracking, parallel, Perron-Frobenius code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0611238v1-abstract-full').style.display = 'none'; document.getElementById('physics/0611238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to New Journal of Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY preprint DESY 06-162 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NewJ.Phys.9:32,2007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0502121">arXiv:physics/0502121</a> <span> [<a href="https://arxiv.org/pdf/physics/0502121">pdf</a>, <a href="https://arxiv.org/ps/physics/0502121">ps</a>, <a href="https://arxiv.org/format/physics/0502121">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Spin tune in the single resonance model with a pair of Siberian Snakes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barber%2C+D+P">D. P. Barber</a>, <a href="/search/physics?searchtype=author&query=Jaganathan%2C+R">R. Jaganathan</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">M. Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0502121v1-abstract-short" style="display: inline;"> Snake ``resonances'' are classified in terms of the invariant spin field and the amplitude dependent spin tune. Exactly at snake ``resonance'' there is no continuous invariant spin field at most orbital amplitudes. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0502121v1-abstract-full" style="display: none;"> Snake ``resonances'' are classified in terms of the invariant spin field and the amplitude dependent spin tune. Exactly at snake ``resonance'' there is no continuous invariant spin field at most orbital amplitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0502121v1-abstract-full').style.display = 'none'; document.getElementById('physics/0502121v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures. Extended version of a paper for the 15th International Spin Physics Symposium, Brookhaven National Laboratory, U.S.A., 2002</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0405108">arXiv:physics/0405108</a> <span> [<a href="https://arxiv.org/pdf/physics/0405108">pdf</a>, <a href="https://arxiv.org/ps/physics/0405108">ps</a>, <a href="https://arxiv.org/format/physics/0405108">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.70.056501">10.1103/PhysRevE.70.056501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strength of Higher-Order Spin-Orbit Resonances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hoffstaetter%2C+G+H">Georg H. Hoffstaetter</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0405108v1-abstract-short" style="display: inline;"> When polarized particles are accelerated in a synchrotron, the spin precession can be periodically driven by Fourier components of the electromagnetic fields through which the particles travel. This leads to resonant perturbations when the spin-precession frequency is close to a linear combination of the orbital frequencies. When such resonance conditions are crossed, partial depolarization or s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405108v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0405108v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0405108v1-abstract-full" style="display: none;"> When polarized particles are accelerated in a synchrotron, the spin precession can be periodically driven by Fourier components of the electromagnetic fields through which the particles travel. This leads to resonant perturbations when the spin-precession frequency is close to a linear combination of the orbital frequencies. When such resonance conditions are crossed, partial depolarization or spin flip can occur. The amount of polarization that survives after resonance crossing is a function of the resonance strength and the crossing speed. This function is commonly called the Froissart-Stora formula. It is very useful for predicting the amount of polarization after an acceleration cycle of a synchrotron or for computing the required speed of the acceleration cycle to maintain a required amount of polarization. However, the resonance strength could in general only be computed for first-order resonances and for synchrotron sidebands. When Siberian Snakes adjust the spin tune to be 1/2, as is required for high energy accelerators, first-order resonances do not appear and higher-order resonances become dominant. Here we will introduce the strength of a higher-order spin-orbit resonance, and also present an efficient method of computing it. Several tracking examples will show that the so computed resonance strength can indeed be used in the Froissart-Stora formula. HERA-p is used for these examples which demonstrate that our results are very relevant for existing accelerators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0405108v1-abstract-full').style.display = 'none'; document.getElementById('physics/0405108v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. E70 (2004) 056501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0311058">arXiv:physics/0311058</a> <span> [<a href="https://arxiv.org/pdf/physics/0311058">pdf</a>, <a href="https://arxiv.org/ps/physics/0311058">ps</a>, <a href="https://arxiv.org/format/physics/0311058">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Dynamical Systems">math.DS</span> </div> </div> <p class="title is-5 mathjax"> First-Order Averaging Principles for Maps with Applications to Beam Dynamics in Particle Accelerators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dumas%2C+S">Scott Dumas</a>, <a href="/search/physics?searchtype=author&query=Ellison%2C+J+A">James A. Ellison</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Mathias Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0311058v1-abstract-short" style="display: inline;"> For slowly evolving, discrete-time-dependent systems of difference equations (iterated maps), we believe the simplest means of demonstrating the validity of the averaging method at first order is by way of a lemma that we call Besjes' inequality. In this paper, we develop the Besjes inequality for identity maps with perturbations that are (i) at low-order resonance (periodic with short period) a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0311058v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0311058v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0311058v1-abstract-full" style="display: none;"> For slowly evolving, discrete-time-dependent systems of difference equations (iterated maps), we believe the simplest means of demonstrating the validity of the averaging method at first order is by way of a lemma that we call Besjes' inequality. In this paper, we develop the Besjes inequality for identity maps with perturbations that are (i) at low-order resonance (periodic with short period) and (ii) far from low-order resonance in the discrete time. We use these inequalities to prove corresponding first-order averaging principles, together with a principle of adiabatic invariance on extended timescales; and we generalize and apply these mathematical results to model problems in accelerator beam dynamics, and to the Henon map. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0311058v1-abstract-full').style.display = 'none'; document.getElementById('physics/0311058v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to SIAM Journal of Dynamical Systems</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 03-16 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/9901042">arXiv:physics/9901042</a> <span> [<a href="https://arxiv.org/pdf/physics/9901042">pdf</a>, <a href="https://arxiv.org/ps/physics/9901042">ps</a>, <a href="https://arxiv.org/format/physics/9901042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> III. The Permissible Equilibrium Polarisation Distribution in a Stored Proton Beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Barber%2C+D+P">D. P. Barber</a>, <a href="/search/physics?searchtype=author&query=Heinemann%2C+K">K. Heinemann</a>, <a href="/search/physics?searchtype=author&query=Hoffstaetter%2C+G+H">G. H. Hoffstaetter</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">M. Vogt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/9901042v1-abstract-short" style="display: inline;"> We illustrate the use of the invariant spin field for describing permissible equilibrium spin distributions in high energy spin polarised proton beams.} </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/9901042v1-abstract-full" style="display: none;"> We illustrate the use of the invariant spin field for describing permissible equilibrium spin distributions in high energy spin polarised proton beams.} <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9901042v1-abstract-full').style.display = 'none'; document.getElementById('physics/9901042v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 1999; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 1999. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages with 2 embedded figures. Latex. Paper 3 of a set of 5. others are physics/9901038 physics/9901041 physics/9901043 physics/9901044</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 98-096C </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/astro-ph/9807185">arXiv:astro-ph/9807185</a> <span> [<a href="https://arxiv.org/pdf/astro-ph/9807185">pdf</a>, <a href="https://arxiv.org/ps/astro-ph/9807185">ps</a>, <a href="https://arxiv.org/format/astro-ph/9807185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics">astro-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chaotic Dynamics">nlin.CD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.60.054601">10.1103/PhysRevC.60.054601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chaotic scattering on surfaces and collisional damping of collective modes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Morawetz%2C+K">Klaus Morawetz</a>, <a href="/search/physics?searchtype=author&query=Vogt%2C+M">Michael Vogt</a>, <a href="/search/physics?searchtype=author&query=Fuhrmann%2C+U">Uwe Fuhrmann</a>, <a href="/search/physics?searchtype=author&query=Lipavsk%C3%BD%2C+P">Pavel Lipavsk媒</a>, <a href="/search/physics?searchtype=author&query=%C5%A0pi%C4%8Dka%2C+V">V谩clav 艩pi膷ka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="astro-ph/9807185v4-abstract-short" style="display: inline;"> The damping of hot giant dipole resonances is investigated. The contribution of surface scattering is compared with the contribution from interparticle collisions. A unified response function is presented which includes surface damping as well as collisional damping. The surface damping enters the response via the Lyapunov exponent and the collisional damping via the relaxation time. The former… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/9807185v4-abstract-full').style.display = 'inline'; document.getElementById('astro-ph/9807185v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="astro-ph/9807185v4-abstract-full" style="display: none;"> The damping of hot giant dipole resonances is investigated. The contribution of surface scattering is compared with the contribution from interparticle collisions. A unified response function is presented which includes surface damping as well as collisional damping. The surface damping enters the response via the Lyapunov exponent and the collisional damping via the relaxation time. The former is calculated for different shape deformations of quadrupole and octupole type. The surface as well as the collisional contribution each reproduce almost the experimental value, therefore we propose a proper weighting between both contributions related to their relative occurrence due to collision frequencies between particles and of particles with the surface. We find that for low and high temperatures the collisional contribution dominates whereas the surface damping is dominant around the temperatures $\sqrt{3}/2蟺$ of the centroid energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('astro-ph/9807185v4-abstract-full').style.display = 'none'; document.getElementById('astro-ph/9807185v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 1999; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">PRC sub</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev. C60 (1999) 054601 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>