CINXE.COM
split exact sequence in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> split exact sequence in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> split exact sequence </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/4142/#Item_6" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="homological_algebra">Homological algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homological+algebra">homological algebra</a></strong></p> <p>(also <a class="existingWikiWord" href="/nlab/show/nonabelian+homological+algebra">nonabelian homological algebra</a>)</p> <p><em><a class="existingWikiWord" href="/schreiber/show/Introduction+to+Homological+Algebra">Introduction</a></em></p> <p><strong>Context</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+and+abelian+categories">additive and abelian categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Ab-enriched+category">Ab-enriched category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-additive+category">pre-additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/additive+category">additive category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pre-abelian+category">pre-abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+category">Grothendieck category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaves">abelian sheaves</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/semi-abelian+category">semi-abelian category</a></p> </li> </ul> <p><strong>Basic definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/kernel">kernel</a>, <a class="existingWikiWord" href="/nlab/show/cokernel">cokernel</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex">complex</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential">differential</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homology">homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+chain+complexes">category of chain complexes</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+complex">chain complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+map">chain map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homotopy">chain homotopy</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/chain+homology+and+cohomology">chain homology and cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-isomorphism">quasi-isomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homological+resolution">homological resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">simplicial homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+homology">generalized homology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+sequence">exact sequence</a>,</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/long+exact+sequence">long exact sequence</a>, <a class="existingWikiWord" href="/nlab/show/split+exact+sequence">split exact sequence</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+object">injective object</a>, <a class="existingWikiWord" href="/nlab/show/projective+object">projective object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+resolution">injective resolution</a>, <a class="existingWikiWord" href="/nlab/show/projective+resolution">projective resolution</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/flat+resolution">flat resolution</a></p> </li> </ul> </li> </ul> <p><strong>Stable homotopy theory notions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+category">derived category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/triangulated+category">triangulated category</a>, <a class="existingWikiWord" href="/nlab/show/enhanced+triangulated+category">enhanced triangulated category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+model+category">stable model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pretriangulated+dg-category">pretriangulated dg-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E-category">A-∞-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+chain+complexes">(∞,1)-category of chain complexes</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+functor">derived functor</a>, <a class="existingWikiWord" href="/nlab/show/derived+functor+in+homological+algebra">derived functor in homological algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Tor">Tor</a>, <a class="existingWikiWord" href="/nlab/show/Ext">Ext</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+limit">homotopy limit</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+colimit">homotopy colimit</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lim%5E1+and+Milnor+sequences">lim^1 and Milnor sequences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fr-code">fr-code</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> </li> </ul> <p><strong>Constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/double+complex">double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Koszul-Tate+resolution">Koszul-Tate resolution</a>, <a class="existingWikiWord" href="/nlab/show/BRST-BV+complex">BRST-BV complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence">spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+filtered+complex">spectral sequence of a filtered complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/spectral+sequence+of+a+double+complex">spectral sequence of a double complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+spectral+sequence">Grothendieck spectral sequence</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Leray+spectral+sequence">Leray spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Serre+spectral+sequence">Serre spectral sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hochschild-Serre+spectral+sequence">Hochschild-Serre spectral sequence</a></p> </li> </ul> </li> </ul> </li> </ul> <p><strong>Lemmas</strong></p> <p><a class="existingWikiWord" href="/nlab/show/diagram+chasing">diagram chasing</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/3x3+lemma">3x3 lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/four+lemma">four lemma</a>, <a class="existingWikiWord" href="/nlab/show/five+lemma">five lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/snake+lemma">snake lemma</a>, <a class="existingWikiWord" href="/nlab/show/connecting+homomorphism">connecting homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/horseshoe+lemma">horseshoe lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Baer%27s+criterion">Baer's criterion</a></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/Schanuel%27s+lemma">Schanuel's lemma</a></p> <p><strong>Homology theories</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/singular+homology">singular homology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cyclic+homology">cyclic homology</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Dold-Kan+correspondence">Dold-Kan correspondence</a> / <a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal</a>, <a class="existingWikiWord" href="/nlab/show/operadic+Dold-Kan+correspondence">operadic</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Moore+complex">Moore complex</a>, <a class="existingWikiWord" href="/nlab/show/Alexander-Whitney+map">Alexander-Whitney map</a>, <a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+map">Eilenberg-Zilber map</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Eilenberg-Zilber+theorem">Eilenberg-Zilber theorem</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/cochain+on+a+simplicial+set">cochain on a simplicial set</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/universal+coefficient+theorem">universal coefficient theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K%C3%BCnneth+theorem">Künneth theorem</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#Definition'>Definition</a></li> <ul> <li><a href='#InAbelianCategory'>In an abelian category</a></li> <li><a href='#in_a_semiabelian_category'>In a semi-abelian category</a></li> </ul> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#RelationToChainHomotopy'>Relation to chain homotopy</a></li> <li><a href='#OfVectorSpaces'>Of free modules and vector spaces</a></li> <li><a href='#InvolvingInjectiveObjects'>Involving injective/projective objects</a></li> </ul> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="Definition">Definition</h2> <h3 id="InAbelianCategory">In an abelian category</h3> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math> be an <a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a>.</p> <div class="num_defn" id="SplitnessInAbelianCategory"> <h6 id="definition_2">Definition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><mi>A</mi><mover><mo>→</mo><mi>i</mi></mover><mi>B</mi><mover><mo>→</mo><mi>p</mi></mover><mi>C</mi><mo>→</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">0\to A \stackrel{i}{\to} B \stackrel{p}{\to} C\to 0</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi></mrow><annotation encoding="application/x-tex">\mathcal{A}</annotation></semantics></math> is called <strong>split</strong> if either of the following equivalent conditions hold</p> <ol> <li> <p>There exists a <a class="existingWikiWord" href="/nlab/show/section">section</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>, hence a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo lspace="verythinmathspace">:</mo><mi>C</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">s \colon C\to B</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo>∘</mo><mi>s</mi><mo>=</mo><msub><mi>id</mi> <mi>C</mi></msub></mrow><annotation encoding="application/x-tex">p \circ s = id_C</annotation></semantics></math>.</p> </li> <li> <p>There exists a <a class="existingWikiWord" href="/nlab/show/retract">retract</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math>, hence a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo lspace="verythinmathspace">:</mo><mi>B</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">r \colon B\to A</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo>∘</mo><mi>i</mi><mo>=</mo><msub><mi>id</mi> <mi>A</mi></msub></mrow><annotation encoding="application/x-tex">r \circ i = id_A</annotation></semantics></math>.</p> </li> <li> <p>There exists an <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphism</a> of sequences with the sequence</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><mi>A</mi><mo>→</mo><mi>A</mi><mo>⊕</mo><mi>C</mi><mo>→</mo><mi>C</mi><mo>→</mo><mn>0</mn></mrow><annotation encoding="application/x-tex"> 0\to A\to A\oplus C\to C\to 0 </annotation></semantics></math></div> <p>given by the <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a> and its canonical injection/projection morphisms.</p> </li> </ol> </div> <div class="num_lemma" id="SplittingLemma"> <h6 id="lemma">Lemma</h6> <p><strong>(splitting lemma)</strong></p> <p>The three conditions in def. <a class="maruku-ref" href="#SplitnessInAbelianCategory"></a> are indeed <a class="existingWikiWord" href="/nlab/show/equivalence">equivalent</a>.</p> </div> <p>(e.g. <a href="#Hatcher02">Hatcher (2002)</a>, p. 147)</p> <div class="proof"> <h6 id="proof">Proof</h6> <p>It is clear that the third condition implies the first two: take the section/retract to be given by the canonical injection/projection maps that come with a <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a>.</p> <p>Conversely, suppose we have a retract <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo lspace="verythinmathspace">:</mo><mi>B</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">r \colon B \to A</annotation></semantics></math> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">i \colon A \to B</annotation></semantics></math>. Write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo lspace="verythinmathspace">:</mo><mi>B</mi><mover><mo>→</mo><mi>r</mi></mover><mi>A</mi><mover><mo>→</mo><mi>i</mi></mover><mi>B</mi></mrow><annotation encoding="application/x-tex">P \colon B \stackrel{r}{\to} A \stackrel{i}{\to} B</annotation></semantics></math> for the corresponding <a class="existingWikiWord" href="/nlab/show/idempotent">idempotent</a>.</p> <p>Then every element <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>∈</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">b \in B</annotation></semantics></math> can be decomposed as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>=</mo><mo stretchy="false">(</mo><mi>b</mi><mo>−</mo><mi>P</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>+</mo><mi>P</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b = (b - P(b)) + P(b)</annotation></semantics></math> hence with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>−</mo><mi>P</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>ker</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b - P(b) \in ker(r)</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mo>∈</mo><mi>im</mi><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(b) \in im(i)</annotation></semantics></math>. Moreover this decomposition is unique since if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>b</mi><mo>=</mo><mi>i</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">b = i(a)</annotation></semantics></math> while at the same time <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>r</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">r(b) = 0</annotation></semantics></math> then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>=</mo><mi>r</mi><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding="application/x-tex">0 = r(i(a)) = a</annotation></semantics></math>. This shows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>≃</mo><mi>im</mi><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo><mo>⊕</mo><mi>ker</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B \simeq im(i) \oplus ker(r)</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/direct+sum">direct sum</a> and that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">i \colon A \to B</annotation></semantics></math> is the canonical inclusion of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>im</mi><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">im(i)</annotation></semantics></math>. By exactness it then follows that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ker</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>≃</mo><mi>im</mi><mo stretchy="false">(</mo><mi>p</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">ker(r) \simeq im(p)</annotation></semantics></math> and hence that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>≃</mo><mi>A</mi><mo>⊕</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">B \simeq A \oplus C</annotation></semantics></math> with the canonical inclusion and projection.</p> <p>The implication that the second condition also implies the third is formally dual to this argument.</p> </div> <h3 id="in_a_semiabelian_category">In a semi-abelian category</h3> <p>There is a nonabelian analog of split exact sequences in <a class="existingWikiWord" href="/nlab/show/semiabelian+categories">semiabelian categories</a>. See there.</p> <h2 id="properties">Properties</h2> <h3 id="RelationToChainHomotopy">Relation to chain homotopy</h3> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/long+exact+sequence">long exact sequence</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mo>•</mo></msub></mrow><annotation encoding="application/x-tex">C_\bullet</annotation></semantics></math> is <em>split exact</em> precisely if the <a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalence">weak homotopy equivalence</a> from the 0-chain complex, namely the <a class="existingWikiWord" href="/nlab/show/quasi-isomorphism">quasi-isomorphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><msub><mi>C</mi> <mo>•</mo></msub></mrow><annotation encoding="application/x-tex">0 \to C_\bullet</annotation></semantics></math> is actually a <a class="existingWikiWord" href="/nlab/show/chain+homotopy">chain homotopy</a> <a class="existingWikiWord" href="/nlab/show/homotopy+equivalence">equivalence</a>, in that the <a class="existingWikiWord" href="/nlab/show/identity">identity</a> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>C</mi> <mo>•</mo></msub></mrow><annotation encoding="application/x-tex">C_\bullet</annotation></semantics></math> has a <a class="existingWikiWord" href="/nlab/show/null+homotopy">null homotopy</a>.</p> </div> <h3 id="OfVectorSpaces">Of free modules and vector spaces</h3> <p>Assuming the <a class="existingWikiWord" href="/nlab/show/axiom+of+choice">axiom of choice</a>:</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/exact+sequence">exact sequence</a> of <a class="existingWikiWord" href="/nlab/show/free+abelian+groups">free abelian groups</a> is split.</p> </div> <div class="num_prop"> <h6 id="proposition_3">Proposition</h6> <p>Every exact sequence of <a class="existingWikiWord" href="/nlab/show/free+modules">free modules</a> which is <a class="existingWikiWord" href="/nlab/show/bounded-below+chain+complex">bounded below</a> is split.</p> </div> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/field">field</a> and denote by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒜</mi><mo>≔</mo><mi>k</mi></mrow><annotation encoding="application/x-tex">\mathcal{A} \coloneqq k</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/Vect">Vect</a> the <a class="existingWikiWord" href="/nlab/show/category">category</a> of <a class="existingWikiWord" href="/nlab/show/vector+spaces">vector spaces</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>.</p> <div class="num_cor" id="SESOfVectorSpacesSplits"> <h6 id="corollary">Corollary</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a> of vector spaces is split.</p> </div> <p>(Essentially by the <a class="existingWikiWord" href="/nlab/show/basis+theorem">basis theorem</a>, for exposition see for instance <a href="https://unapologetic.wordpress.com/2008/06/26/exact-sequences-split">here</a>.)</p> <h3 id="InvolvingInjectiveObjects">Involving injective/projective objects</h3> <div class="num_lemma"> <h6 id="lemma_2">Lemma</h6> <p>If in a <a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>→</mo><mi>A</mi><mo>→</mo><mi>B</mi><mo>→</mo><mi>C</mi><mo>→</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">0 \to A \to B \to C \to 0</annotation></semantics></math> in an <a class="existingWikiWord" href="/nlab/show/abelian+category">abelian category</a> the first object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is an <a class="existingWikiWord" href="/nlab/show/injective+object">injective object</a> or the last object is a <a class="existingWikiWord" href="/nlab/show/projective+object">projective object</a> then the sequence is split exact.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>Consider the first case. The other is formally dual.</p> <p>By the properties of a <a class="existingWikiWord" href="/nlab/show/short+exact+sequence">short exact sequence</a> the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">A \to B</annotation></semantics></math> here is a <a class="existingWikiWord" href="/nlab/show/monomorphism">monomorphism</a>. By definition of <a class="existingWikiWord" href="/nlab/show/injective+object">injective object</a>, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is injective then it has the <a class="existingWikiWord" href="/nlab/show/right+lifting+property">right lifting property</a> against <a class="existingWikiWord" href="/nlab/show/monomorphisms">monomorphisms</a> and so there is a morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi><mo>:</mo><mi>B</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">q : B \to A</annotation></semantics></math> that makes the following <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> <a class="existingWikiWord" href="/nlab/show/commuting+diagram">commute</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>A</mi></mtd> <mtd><mover><mo>→</mo><mrow><msub><mi>id</mi> <mi>A</mi></msub></mrow></mover></mtd> <mtd><mi>A</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><msub><mo>↗</mo> <mi>q</mi></msub></mtd></mtr> <mtr><mtd><mi>B</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ A &\stackrel{id_A}{\to}& A \\ \downarrow & \nearrow_{q} \\ B } \,. </annotation></semantics></math></div> <p>Hence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/retract">retract</a> as in def. <a class="maruku-ref" href="#SplitnessInAbelianCategory"></a>.</p> </div> <h2 id="references">References</h2> <p>For instance</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Charles+Weibel">Charles Weibel</a>, Section 1.4 of: <em><a class="existingWikiWord" href="/nlab/show/An+Introduction+to+Homological+Algebra">An Introduction to Homological Algebra</a></em> (1994)</p> </li> <li id="Hatcher02"> <p><a class="existingWikiWord" href="/nlab/show/Allen+Hatcher">Allen Hatcher</a>, pp. 147 of: <em>Algebraic Topology</em>, Cambridge University Press (2002) [<a href="https://www.cambridge.org/gb/academic/subjects/mathematics/geometry-and-topology/algebraic-topology-1?format=PB&isbn=9780521795401">ISBN:9780521795401</a>, <a href="https://pi.math.cornell.edu/~hatcher/AT/ATpage.html">webpage</a>]</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on April 23, 2023 at 09:35:45. See the <a href="/nlab/history/split+exact+sequence" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/split+exact+sequence" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/4142/#Item_6">Discuss</a><span class="backintime"><a href="/nlab/revision/split+exact+sequence/17" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/split+exact+sequence" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/split+exact+sequence" accesskey="S" class="navlink" id="history" rel="nofollow">History (17 revisions)</a> <a href="/nlab/show/split+exact+sequence/cite" style="color: black">Cite</a> <a href="/nlab/print/split+exact+sequence" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/split+exact+sequence" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>