CINXE.COM
Search results for: functionalization
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: functionalization</title> <meta name="description" content="Search results for: functionalization"> <meta name="keywords" content="functionalization"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="functionalization" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="functionalization"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 153</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: functionalization</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Covalent Functionalization of Graphene Oxide with Aliphatic Polyisocyanate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Changizi">E. Changizi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghasemi"> E. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ramezanzadeh"> B. Ramezanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavian"> M. Mahdavian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the graphene oxide was functionalized with polyisocyanate (piGO). The functionalization was carried out at 45⁰C for 24 hrs under nitrogen atmosphere. The X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA) were utilized in order to evaluate the GO functionalization. The GO and piGO stability were then investigated in polar and nonpolar solvents. Results obtained showed that polyisocyanate was successfully grafted on the surface of graphen oxide sheets through covalent bonds formation. The surface nature of the graphen oxide was changed into the hydrophobic after functionalization. Moreover, the graphen oxide sheets interlayer distance increased after modification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphen%20oxide" title="graphen oxide">graphen oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=polyisocyanate" title=" polyisocyanate"> polyisocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR "> FTIR </a> </p> <a href="https://publications.waset.org/abstracts/11430/covalent-functionalization-of-graphene-oxide-with-aliphatic-polyisocyanate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Rh(III)-Catalyzed Cross-Coupling Reaction of 8-Methylquinolines with Maleimides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangil%20Han">Sangil Han</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Su%20Kim"> In Su Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition-metal-catalyzed C–H bond activation and its subsequent functionalization has been one of the most attractive topics in organic synthesis because of its remarkable potential for atom economy and environmental sustainability. In this addition, a variety of C(sp2)–H functionalization has been developed under metal catalysis in the past decade. Recently, much attention has been moved towards the C(sp3)–H functionalization events, which continue to be a challenging issue. In this area, directing group assisted sp3 C–H functionalization has been explored by use of amides, carboxylic acids, oximes, N-heterocycles, and etc. In particular, 8-methylquinolines have been found as good substrates for sp3 C–H functionalization due to its ability to form cyclometalated complexes. Succinimides have been recognized as privileged structural cores found in a number of bioactive natural products, pharmaceuticals, and functional materials. Furthermore, the reduced derivatives such as pyrrolidines and γ-lactams have been also found in a large number of pharmaceutical relevant molecules, thus making them one of the most important and promising compounds. We herein describe the first C(sp3)–H activation of 8-methylquinolines and subsequent functionalization with maleimides to afford various succinimide derivatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%28sp3%29%E2%80%93H%20activation" title="C(sp3)–H activation">C(sp3)–H activation</a>, <a href="https://publications.waset.org/abstracts/search?q=8-methylquinolines" title=" 8-methylquinolines"> 8-methylquinolines</a>, <a href="https://publications.waset.org/abstracts/search?q=maleimides" title=" maleimides"> maleimides</a>, <a href="https://publications.waset.org/abstracts/search?q=succinimides" title=" succinimides"> succinimides</a> </p> <a href="https://publications.waset.org/abstracts/58548/rhiii-catalyzed-cross-coupling-reaction-of-8-methylquinolines-with-maleimides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Surface Functionalization of Chemical Vapor Deposition Grown Graphene Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashanta%20Dhoj%20Adhikari">Prashanta Dhoj Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the introduction of the active surface functionalization group on chemical vapor deposition (CVD) grown graphene film by wet deposition method. The activity of surface functionalized group was tested with surface modified carbon nanotubes (CNTs) and found that both materials were amalgamated by chemical bonding. The introduction of functional group on the graphene film surface and its vigorous role to bind CNTs with the present technique could provide an efficient, novel route to device fabrication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapor%20deposition" title="chemical vapor deposition">chemical vapor deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20film" title=" graphene film"> graphene film</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20functionalization" title=" surface functionalization"> surface functionalization</a> </p> <a href="https://publications.waset.org/abstracts/23138/surface-functionalization-of-chemical-vapor-deposition-grown-graphene-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haythem%20Barrak">Haythem Barrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetan%20Laroche"> Gaetan Laroche</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20M%E2%80%99nif"> Adel M’nif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hichem%20Hamzaoui"> Ahmed Hichem Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionalization" title="functionalization">functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=APTES" title=" APTES"> APTES</a>, <a href="https://publications.waset.org/abstracts/search?q=caract%C3%A9risation" title=" caractérisation"> caractérisation</a> </p> <a href="https://publications.waset.org/abstracts/19409/easy-method-of-synthesis-and-functionalzation-of-zno-nanoparticules-with-3-aminopropylthrimethoxysilane-aptes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew%20Tefery">Temesgen Geremew Tefery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/190956/functionalization-of-nanomaterials-for-bio-sensing-applications-current-progress-and-future-prospective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Functionalized Nanoparticles as Sorbents for Removal of Toxic Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerina%20Majeed">Jerina Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayshree%20Ramkumar"> Jayshree Ramkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chandramouleeswaran"> S. Chandramouleeswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Tyagi"> A. K. Tyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of various toxic species from aqueous streams is of great importance. Sorption is one of the important remediation procedures as it involves the use of cheap and easily available materials. Also the advantage of regeneration of the sorbent involves the possibility of using novel sorbents. Nanosorbents are very important as the removal is based on the surface phenomena and this is greatly affected by surface charge and area. Functionalization has been very important to bring about the removal of metal ions with greater selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mercury" title="mercury">mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=thiol%20functionalization" title=" thiol functionalization"> thiol functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20NPs" title=" ZnO NPs "> ZnO NPs </a> </p> <a href="https://publications.waset.org/abstracts/10832/functionalized-nanoparticles-as-sorbents-for-removal-of-toxic-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukul%20R.%20Gupta">Mukul R. Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20%20Gandhi"> Rajkumar Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajitha%20%20Sachan"> Rajitha Sachan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20K.%20Khare"> Naveen K. Khare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KDN" title="KDN">KDN</a>, <a href="https://publications.waset.org/abstracts/search?q=stereoselective%20glycosylation" title=" stereoselective glycosylation"> stereoselective glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-catalytic%20functionalization" title=" dual-catalytic functionalization"> dual-catalytic functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=Wittig%20reaction" title=" Wittig reaction"> Wittig reaction</a> </p> <a href="https://publications.waset.org/abstracts/136145/stereoselective-glycosylation-and-functionalization-of-unbiased-site-of-sweet-system-via-dual-catalytic-transition-metal-systemswittig-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Boron Nitride Nanoparticle Enhanced Prepreg Composite Laminates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiong%20Tian">Qiong Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Lifeng%20Zhang"> Lifeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Demei%20Yu"> Demei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20D.%20Kelkar"> Ajit D. Kelkar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low specific weight and high strength is the basic requirement for aerospace materials. Fiber-reinforced epoxy resin composites are attractive materials for this purpose. Boron nitride nanoparticles (BNNPs) have good radiation shielding capacity, which is very important to aerospace materials. Herein a processing route for an advanced hybrid composite material is demonstrated by introducing dispersed BNNPs in standard prepreg manufacturing. The hybrid materials contain three parts: E-fiberglass, an aerospace-grade epoxy resin system, and BNNPs. A vacuum assisted resin transfer molding (VARTM) was utilized in this processing. Two BNNP functionalization approaches are presented in this study: (a) covalent functionalization with 3-aminopropyltriethoxysilane (KH-550); (b) non-covalent functionalization with cetyltrimethylammonium bromide (CTAB). The functionalized BNNPs were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and scanning electron microscope (SEM). The results showed that BN powder was successfully functionalized via the covalent and non-covalent approaches without any crystal structure change and big agglomerate particles were broken into platelet-like nanoparticles (BNNPs) after functionalization. Compared to pristine BN powder, surface modified BNNPs could result in significant improvement in mechanical properties such as tensile, flexural and compressive strength and modulus. CTAB functionalized BNNPs (CTAB-BNNPs) showed higher tensile and flexural strength but lower compressive strength than KH-550 functionalized BNNPs (KH550-BNNPs). These reinforcements are mainly attributed to good BNNPs dispersion and interfacial adhesion between epoxy matrix and BNNPs. This study reveals the potential in improving mechanical properties of BNNPs-containing composites laminates through surface functionalization of BNNPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boron%20nitride" title="boron nitride">boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=prepreg" title=" prepreg"> prepreg</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite "> composite </a> </p> <a href="https://publications.waset.org/abstracts/24228/boron-nitride-nanoparticle-enhanced-prepreg-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Preparation and Characterization of AlkylAmines’ Surface Functionalized Activated Carbons for Dye Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20M.%20AL-Mashaikhi">Said M. AL-Mashaikhi</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20I.%20El-Shafey"> El-Said I. El-Shafey</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakhreldin%20O.%20Suliman"> Fakhreldin O. Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Al-Busafi"> Saleh Al-Busafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon (AC) was prepared from date palm leaflets via NaOH activation. AC was oxidized using nitric acid, producing oxidized activated carbon (OAC). OAC was surface functionalized using different amine surfactants, including methylamine (ONM), ethylamine (ONE), and diethylamine (ONDE) using the amide coupling process. Produced carbons were surface characterized for surface area and porosity, X-ray diffraction, SEM, FTIR, and TGA. AC surface area (580 m²/g) has shown a decrease in oxidation to 260 m²/g for OAC. On amine functionalization, the surface area has further decreased to 218, 108, and 20 m²/g on functionalization with methylamine, ethylamine, and diethylamine, respectively. FTIR and TGA showed that the nature of amine functionalization of AC is chemical. Methylene blue sorption was tested on these carbons in terms of kinetics and equilibrium. Sorption was found faster on amine-functionalized carbons than both AC and OAC, and this is due to hydrophobic interaction with the alkyl groups immobilized with data following pseudo second-order reaction. On the other hand, AC showed the slowest adsorption kinetic process due to the diffusion in the porous structure of AC. Sorption equilibrium data was found to follow the Langmuir sorption isotherm with maximum sorption found on ONE. Regardless of its lower surface area than activated carbon, ethylamine functionalized AC showed better performance than AC in terms of kinetics and equilibrium for dye removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20interaction" title=" hydrophobic interaction"> hydrophobic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/136863/preparation-and-characterization-of-alkylamines-surface-functionalized-activated-carbons-for-dye-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Pal">Monalisa Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20Mandal"> Kalyan Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-based%20oxide%20nanostructures" title="co-based oxide nanostructures">co-based oxide nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-color%20fluorescence" title=" multi-color fluorescence"> multi-color fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a> </p> <a href="https://publications.waset.org/abstracts/25906/surface-modification-of-co-based-nanostructures-to-develop-intrinsic-fluorescence-and-catalytic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Alzate-Carvajal">Natalia Alzate-Carvajal</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20A.%20Acevedo-Guzman"> Diego A. Acevedo-Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Meza-Laguna"> Victor Meza-Laguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20H.%20Farias"> Mario H. Farias</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20A.%20Perez-Rey"> Luis A. Perez-Rey</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Abarca-Morales"> Edgar Abarca-Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20Garcia-Ramirez"> Victor A. Garcia-Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Basiuk"> Vladimir A. Basiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20V.%20Basiuk"> Elena V. Basiuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amines" title="amines">amines</a>, <a href="https://publications.waset.org/abstracts/search?q=covalent%20functionalization" title=" covalent functionalization"> covalent functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-phase" title=" gas-phase"> gas-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide%20paper" title=" graphene oxide paper"> graphene oxide paper</a> </p> <a href="https://publications.waset.org/abstracts/91820/gas-phase-nondestructive-and-environmentally-friendly-covalent-functionalization-of-graphene-oxide-paper-with-amines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Xu">Xiaodong Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Zhao"> Dan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiujuan%20Chang"> Xiujuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunming%20Li"> Chunming Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiyun%20Zhou"> Huiyun Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Li"> Xin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Shi"> Qiang Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shifang%20Luan"> Shifang Luan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinghua%20Yin"> Jinghua Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (<em>S</em>)-1-acryloylpyrrolidine-2-carboxylic acid ((<em>S</em>)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (<em>S</em>)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionalization" title="functionalization">functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=chiral%20monomer" title=" chiral monomer"> chiral monomer</a>, <a href="https://publications.waset.org/abstracts/search?q=hemocompatibility" title=" hemocompatibility"> hemocompatibility</a> </p> <a href="https://publications.waset.org/abstracts/67964/functionalization-of-polypropylene-with-chiral-monomer-for-improving-hemocompatibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20ChobfroushKhoei">D. ChobfroushKhoei</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Heidari"> S. K. Heidari </a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Dariadel"> Sh. Dariadel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MWNT-COOH" title="MWNT-COOH">MWNT-COOH</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=phenylisocyanate" title=" phenylisocyanate"> phenylisocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=phenylisothiocyanate" title=" phenylisothiocyanate"> phenylisothiocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=4-phenylendiamine" title=" 4-phenylendiamine"> 4-phenylendiamine</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20investigation" title=" toxicity investigation "> toxicity investigation </a> </p> <a href="https://publications.waset.org/abstracts/10914/functionalization-of-carboxylated-single-walled-carbon-nanotubes-with-2-en-4-hydroxy-cyclo-1-octanon-and-toxicity-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Functionalization and Dispersion of Multiwall Carbon Nanotubes in Waterborne Polyurethane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahla%20Hajializadeh">Shahla Hajializadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hamedanlou"> Maryam Hamedanlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiwall carbon nanotubes were chemically modified with amide groups for the purpose of enhancing their chemical affinity with waterborne polyurethane. In this study, a thermoplastic nanocomposite containing functionalized multiwall carbon nanotube/waterborne polyurethane (WBPU/MWNT) via in situ polymerization has been prepared. The impacts of MWNT addition on the morphology and electrical properties of nanocomposites were investigated. Micrographs of Scanning Electron Microscopy (SEM) prove that functionalized CNT can be effectively dispersed in WBPU matrix. The electrical conductivity of nanocomposites increased with the CNT contents in as such the nanocomposites containing 1 wt% of MWNT exhibited a conductivity nearly five orders of magnitude higher than the WBPU film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20functionalization" title="chemical functionalization">chemical functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20polymerization" title=" in situ polymerization"> in situ polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotubes" title=" multiwall carbon nanotubes"> multiwall carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=waterborne%20polyurethane" title=" waterborne polyurethane"> waterborne polyurethane</a> </p> <a href="https://publications.waset.org/abstracts/55470/functionalization-and-dispersion-of-multiwall-carbon-nanotubes-in-waterborne-polyurethane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Arbutin-loaded Butylglyceryl Dextran Nanoparticles for Topical Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20F.%20Bostanudin">Mohammad F. Bostanudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20S.%20Fei"> Tan S. Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Azwan%20M.%20Lazim"> Azwan M. Lazim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toward the development of colloidal systems that are able to enhance permeation across the skin, a material combining the non-toxic and non-immunogenic of dextran with alkylglycerols permeation enhancing property has been designed. To this purpose, a range of butylglyceryl dextrans (DEX-OX4) were synthesized via functionalization with n-butylglycidyl ether and the successful functionalization was confirmed by NMR and FT-IR spectroscopies, along with GPC with a degree of modification in the range 6.3–35.7 %. A reduced viscosity and an increased molecular weight of DEX-OX4 were also recorded when compared to that of the native dextran. DEX-OX4 was further formulated into nanocarriers and loaded with α-arbutin prior to be investigated for their particle size, morphology, stability, loading ability, and release profiles. The resulting nanoparticles were found to be close-to-spherical and relatively stable at pH 5 and 7, with size 180–220 nm (ζ-potential -22 to -25 mV), and a loading degree of 11.7 %. Lack of toxicity at application-relevant concentrations and increased permeation across skin biological membrane model were demonstrated by nanoparticles in-vitro results against immortalized skin human keratinocytes cells (HaCaT). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butylglycerols" title="butylglycerols">butylglycerols</a>, <a href="https://publications.waset.org/abstracts/search?q=dextran" title=" dextran"> dextran</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=transdermal" title=" transdermal "> transdermal </a> </p> <a href="https://publications.waset.org/abstracts/128722/arbutin-loaded-butylglyceryl-dextran-nanoparticles-for-topical-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Functionalization of Sanitary Pads with Probiotic Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Sauperl">O. Sauperl</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Fras%20Zemljic"> L. Fras Zemljic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The textile industry is gaining increasing importance in the field of medical materials. Therefore, presented research is focused on textile materials for external (out-of-body) use. Such materials could be various hygienic textile products (diapers, tampons, sanitary napkins, incontinence products, etc.), protective textiles and various hospital linens (surgical covers, masks, gowns, cloths, bed linens, etc.) wound pillows, bandages, orthopedic socks, etc. Function of tampons and sanitary napkins is not only to provide protection during the menstrual cycle, but their function can be also to take care of physiological or pathological vaginal discharge. In general, women's intimate areas are against infection protected by a low pH value of the vaginal flora. High pH inhibits the development of harmful microorganisms, as it is difficult to be reproduced in an acidic environment. The normal vaginal flora in healthy women is highly colonized by lactobacilli. The lactic acid produced by these organisms maintains the constant acidity of the vagina. If the balance of natural protection breaks, infections can occur. In the market, there exist probiotic tampons as a medical product supplying the vagina with beneficial probiotic lactobacilli. But, many users have concerns about the use of tampons due to the possible dry-out of the vagina as well as the possible toxic shock syndrome, which is the reason that they use mainly sanitary napkins during the menstrual cycle. Functionalization of sanitary napkins with probiotics is, therefore, interesting in regard to maintain a healthy vaginal flora and to offer to users added value of the sanitary napkins in the sense of health- and environmentally-friendly products. For this reason, the presented research is oriented in functionalization of the sanitary napkins with the probiotic paste in order to activate the lactic acid bacteria presented in the core of the functionalized sanitary napkin at the time of the contact with the menstrual fluid. In this way, lactobacilli could penetrate into vagina and by maintaining healthy vaginal flora to reduce the risk of vaginal disorders. In regard to the targeted research problem, the influence of probiotic paste applied onto cotton hygienic napkins on selected properties was studied. The aim of the research was to determine whether the sanitary napkins with the applied probiotic paste may assure suitable vaginal pH to maintain a healthy vaginal flora during the use of this product. Together with this, sorption properties of probiotic functionalized sanitary napkins were evaluated and compared to the untreated one. The research itself was carried out on the basis of tracking and controlling the input parameters, currently defined by Slovenian producer (Tosama d.o.o.) as the most important. Successful functionalization of sanitary pads with the probiotic paste was confirmed by ATR-FTIR spectroscopy. Results of the methods used within the presented research show that the absorption of the pads treated with probiotic paste deteriorates compared to non-treated ones. The coating shows a 6-month stability. Functionalization of sanitary pads with probiotic paste is believed to have a commercial potential for lowering the probability of infection during the menstrual cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionalization" title="functionalization">functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20paste" title=" probiotic paste"> probiotic paste</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitary%20pads" title=" sanitary pads"> sanitary pads</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20materials" title=" textile materials"> textile materials</a> </p> <a href="https://publications.waset.org/abstracts/99493/functionalization-of-sanitary-pads-with-probiotic-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Szymanski">L. Szymanski</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kolacinski"> Z. Kolacinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kami%C5%84ski"> Z. Kamiński</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Raniszewski"> G. Raniszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Fraczyk"> J. Fraczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Pietrzak"> L. Pietrzak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synthesis%20of%20carbon%20nanotubes" title="synthesis of carbon nanotubes">synthesis of carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=ligands" title=" ligands"> ligands</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/39148/synthesis-and-preparation-of-carbon-ferromagnetic-nanocontainers-for-cancer-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Prasad%20Maity">Krishna Prasad Maity</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Tanty"> Narendra Tanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Patra"> Ananya Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Prasad"> V. Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulomb%20interaction" title="coulomb interaction">coulomb interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetoresistance%20transition" title=" magnetoresistance transition"> magnetoresistance transition</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline%20composite" title=" polyaniline composite"> polyaniline composite</a>, <a href="https://publications.waset.org/abstracts/search?q=polaron-bipolaron" title=" polaron-bipolaron"> polaron-bipolaron</a> </p> <a href="https://publications.waset.org/abstracts/98940/magnetoresistance-transition-from-negative-to-positive-in-functionalization-of-carbon-nanotube-and-composite-with-polyaniline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Effect of Carbon Nanotubes Functionalization with Nitrogen Groups on Pollutant Emissions in an Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Gamboa">David Gamboa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20Herrera"> Bernardo Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Cacua"> Karen Cacua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have been explored as alternatives to reduce particulate matter from diesel engines, which is one of the most common pollutants of the air in urban centers. However, the use of nanomaterials as additives for diesel has to overcome the instability of the dispersions to be considered viable for commercial use. In this work, functionalization of carbon nanotubes with amide groups was performed to improve the stability of these nanomaterials in a mix of 90% petroleum diesel and 10% palm oil biodiesel (B10) in concentrations of 50 and 100 ppm. The resulting nano fuel was used as the fuel for a stationary internal combustion engine, where the particulate matter, NOx, and CO were measured. The results showed that the use of amide groups significantly enhances the time for the carbon nanotubes to remain suspended in the fuel, and at the same time, these nanomaterials helped to reduce the particulate matter and NOx emissions. However, the CO emissions with nano fuel were higher than those ones with the combustion of B10. These results suggest that carbon nanotubes have thermal and catalytic effects on the combustion of B10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engine" title=" internal combustion engine"> internal combustion engine</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/156085/effect-of-carbon-nanotubes-functionalization-with-nitrogen-groups-on-pollutant-emissions-in-an-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Interaction of Glycolipid S-TGA-1 with Bacteriorhodopsin and Its Functional Role </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masataka%20Inada">Masataka Inada</a>, <a href="https://publications.waset.org/abstracts/search?q=Masanao%20Kinoshita"> Masanao Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuaki%20Matsumori"> Nobuaki Matsumori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been demonstrated that lipid molecules in biological membranes are responsible for the functionalization and structuration of membrane proteins. However, it is still unclear how the interaction of lipid molecules with membrane proteins is correlated with the function of the membrane proteins. Here we first developed an evaluation method for the interaction between membrane proteins and lipid molecules via surface plasmon resonance (SPR) analysis. Bacteriorhodopsin (bR), which was obtained by the culture of halobacteria, was used as a membrane protein. We prepared SPR sensor chips covered with self-assembled monolayer containing mercaptocarboxylic acids, and immobilized bR onto them. Then, we evaluated the interactions with various lipids that have different structures. As a result, the halobacterium-specific glycolipid S-TGA-1 was found to have much higher affinity with bRs than other lipids. This is probably due to not only hydrophobic and electrostatic interactions but also hydrogen bonds with sugar moieties in the glycolipid. Next, we analyzed the roles of the lipid in the structuration and functionalization of bR. CD analysis showed that S-TGA-1 could promote trimerization of bR monomers more efficiently than any other lipids. Flash photolysis further indicated that bR trimers formed by S-TGA-1 reproduced the photocyclic activity of bR in purple membrane, halobacterium-membrane. These results suggest that S-TGA-1 promotes trimerization of bR through strong interactions and consequently fulfills the bR’s function efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20protein" title="membrane protein">membrane protein</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriorhodopsin" title=" bacteriorhodopsin"> bacteriorhodopsin</a>, <a href="https://publications.waset.org/abstracts/search?q=glycolipid" title=" glycolipid"> glycolipid</a> </p> <a href="https://publications.waset.org/abstracts/72463/interaction-of-glycolipid-s-tga-1-with-bacteriorhodopsin-and-its-functional-role" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Eldessouki">Mohamed Eldessouki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebraheem%20Shady"> Ebraheem Shady</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Gowayed"> Yasser Gowayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes%20functionalization" title="carbon nanotubes functionalization">carbon nanotubes functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20nanocomposites" title=" epoxy nanocomposites"> epoxy nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/7896/surface-activation-of-carbon-nanotubes-generating-a-chemical-interaction-in-epoxy-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Vegetable Oil-Based Anticorrosive Coatings for Metals Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brindusa%20Balanuca">Brindusa Balanuca</a>, <a href="https://publications.waset.org/abstracts/search?q=Raluca%20Stan"> Raluca Stan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Ott"> Cristina Ott</a>, <a href="https://publications.waset.org/abstracts/search?q=Matei%20Raicopol"> Matei Raicopol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study aims to develop anti corrosive coatings using vegetable oil (VO)-based polymers. Due to their chemical versatility, reduced costs and more important, higher hydrophobicity, VO’s are great candidates in the field of anti-corrosive materials. Lignin (Ln) derivatives were also used in this research study in order to achieve performant hydrophobic anti-corrosion layers. Methods Through a rational functionalization pathway, the selected VO (linseed oil) is converted to more reactive monomer – methacrylate linseed oil (noted MLO). The synthesized MLO cover the metals surface in a thin layer and through different polymerization techniques (using visible radiation or temperature, respectively) and well-established reaction conditions, is converted to a hydrophobic coating capable to protect the metals against corrosive factors. In order to increase the anti-corrosion protection, lignin (Ln) was selected to be used together with MLO macromonomer. Thus, super hydrophobic protective coatings will be formulated. Results The selected synthetic strategy to convert the VO in more reactive compounds – MLO – has led to a functionalization degree of greater than 80%. The obtained monomers were characterized through NMR and FT-IR by monitoring the characteristic signals after each synthesis step. Using H-NMR data, the functionalization degrees were established. VO-based and also VO-Ln anti corrosion formulations were both photochemical and thermal polymerized in specific reaction conditions (initiators, temperature range, reaction time) and were tested as anticorrosive coatings. Complete and advances characterization of the synthesized materials will be presented in terms of thermal, mechanical and morphological properties. The anticorrosive properties were also evaluated and will be presented. Conclusions Through the design strategy briefly presented, new composite materials for metal corrosion protection were successfully developed, using natural derivatives: vegetable oils and lignin, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticorrosion%20protection" title="anticorrosion protection">anticorrosion protection</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobe%20layers" title=" hydrophobe layers"> hydrophobe layers</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=methacrylates" title=" methacrylates"> methacrylates</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/78930/vegetable-oil-based-anticorrosive-coatings-for-metals-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camille%20Perr%C3%A9ard">Camille Perréard</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoann%20Ladner"> Yoann Ladner</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanny%20D%27Orly%C3%A9"> Fanny D'Orlyé</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phanie%20Descroix"> Stéphanie Descroix</a>, <a href="https://publications.waset.org/abstracts/search?q=V%C3%A9lan%20Taniga"> Vélan Taniga</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Varenne"> Anne Varenne</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9dric%20Guyon"> Cédric Guyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael.%20Tatoulian"> Michael. Tatoulian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Kanoufi"> Frédéric Kanoufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrine%20Slim"> Cyrine Slim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Griveau"> Sophie Griveau</a>, <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Bedioui"> Fethi Bedioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkyne-azide%20click%20chemistry%20%28CuAAC%29" title="alkyne-azide click chemistry (CuAAC)">alkyne-azide click chemistry (CuAAC)</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20modification" title=" electrochemical modification"> electrochemical modification</a>, <a href="https://publications.waset.org/abstracts/search?q=microsystem" title=" microsystem"> microsystem</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20bromination" title=" plasma bromination"> plasma bromination</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%0D%0Afunctionalization" title=" surface functionalization"> surface functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20polymers" title=" thermoplastic polymers"> thermoplastic polymers</a> </p> <a href="https://publications.waset.org/abstracts/28589/surface-sunctionalization-strategies-for-the-design-of-thermoplastic-microfluidic-devices-for-new-analytical-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Porosity and Surface Chemistry of Functionalized Carbonaceous Materials from Date Palm Leaflets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Said%20I.%20El-Shafey">El-Said I. El-Shafey</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeda%20Naheed%20F.%20Ali"> Syeda Naheed F. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20S.%20Al-Busafi"> Saleh S. Al-Busafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Haider%20A.%20J.%20Al-Lawati"> Haider A. J. Al-Lawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Date palm leaflets were utilized as a precursor for activated carbon (AC) preparation using KOH activation. AC produced was oxidized using nitric acid producing oxidized activated carbon (OAC). OAC that possesses acidic surface was surface functionalized to produce basic activated carbons using linear diamine compounds (ethylene diamine and propylene diamine). OAC was also functionalized to produce hydrophobic activated carbons using ethylamine (EA) and aniline (AN). Dehydrated carbon was also prepared from date palm leaflets using sulfuric acid dehydration/ oxidation and was surface functionalized in the same way as AC. Nitric acid oxidation was not necessary for DC as it is acidic carbon. The surface area of AC is high (823 m2/g) with microporosity domination, however, after oxidation and surface functionalization, both the surface area and surface microporosity decrease tremendously. DC surface area was low (15 m2/g) with mesoporosity domination. Surface functionalization has decreased the surface area of activated carbons. FTIR spectra show that -COOH group on DC and OAC almost disappeared after surface functionalization. The surface chemistry of all carbons produced was tested for pHzpc, basic sites, boehm titration, thermogravimetric analysis and zeta potential measurement. Scanning electron microscopy and energy dispersive spectroscopy in addition to CHN elemental analysis were also carried out. DC and OAC possess low pHzpc and high surface functionality, however, basic and hydrophobic carbons possess high pHzpc and low surface functionality. The different behavior of carbons is related to their different surface chemistry. Methylene blue adsorption was found to be faster on hydrophobic carbons based on AC and DC. The Larger adsorption capacity of methylene blue was found for hydrophobic carbons. Dominating adsorption forces of methylene blue varies from carbon to another depending on its surface nature. Sorption forces include hydrophobic forces, H-bonding, electrostatic interactions and van der Waals forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic" title=" acidic"> acidic</a>, <a href="https://publications.waset.org/abstracts/search?q=basic" title=" basic"> basic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a> </p> <a href="https://publications.waset.org/abstracts/66827/porosity-and-surface-chemistry-of-functionalized-carbonaceous-materials-from-date-palm-leaflets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Simsir">Hamza Simsir</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurettin%20Eltugral"> Nurettin Eltugral</a>, <a href="https://publications.waset.org/abstracts/search?q=Selhan%20Karag%C3%B6z"> Selhan Karagöz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nano science and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood, was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silver%20nanoparticles" title="Silver nanoparticles">Silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand" title=" ligand"> ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/18783/ligand-depended-adsorption-characteristics-of-silver-nanoparticles-on-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Carbon Nanotubes Functionalization via Ullmann-Type Reactions Yielding C-C, C-O and C-N Bonds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Kolanowska">Anna Kolanowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Kuziel"> Anna Kuziel</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C5%82awomir%20Boncel"> Sławomir Boncel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotubes (CNTs) represent a combination of lightness and nanoscopic size with high tensile strength, excellent thermal and electrical conductivity. By now, CNTs have been used as a support in heterogeneous catalysis (CuCl anchored to pre-functionalized CNTs) in the Ullmann-type coupling with aryl halides toward formation of C-N and C-O bonds. The results indicated that the stability of the catalyst was much improved and the elaborated catalytic system was efficient and recyclable. However, CNTs have not been considered as the substrate itself in the Ullmann-type reactions. But if successful, this functionalization would open new areas of CNT chemistry leading to enhanced in-solvent/matrix nanotube individualization. The copper-catalyzed Ullmann-type reaction is an attractive method for the formation of carbon-heteroatom and carbon-carbon bonds in organic synthesis. This condensation reaction is usually conducted at temperature as high as 200 oC, often in the presence of stoichiometric amounts of copper reagent and with activated aryl halides. However, a small amount of organic additive (e.g. diamines, amino acids, diols, 1,10-phenanthroline) can be applied in order to increase the solubility and stability of copper catalyst, and at the same time to allow performing the reaction under mild conditions. The copper (pre-)catalyst is prepared by in situ mixing of copper salt and the appropriate chelator. Our research is focused on the application of Ullmann-type reaction for the covalent functionalization of CNTs. Firstly, CNTs were chlorinated by using iodine trichloride (ICl3) in carbon tetrachloride (CCl4). This method involves formation of several chemical species (ICl, Cl2 and I2Cl6), but the most reactive is the dimer. The fact (that the dimer is the main individual in CCl4) is the reason for high reactivity and possibly high functionalization levels of CNTs. This method, indeed, yielded a notable amount of chlorine onto the MWCNT surface. The next step was the reaction of CNT-Cl with three substrates: aniline, iodobenzene and phenol for the formation C-N, C-C and C-O bonds, respectively, in the presence of 1,10-phenanthroline and cesium carbonate (Cs2CO3) as a base. As the CNT substrates, two multi-wall CNT (MWCNT) types were used: commercially available Nanocyl NC7000™ (9.6 nm diameter, 1.5 µm length, 90% purity) and thicker MWCNTs (in-house) synthesized in our laboratory using catalytic chemical vapour deposition (c-CVD). In-house CNTs had diameter ranging between 60-70 nm and length up to 300 µm. Since classical Ullmann reaction was found as suffering from poor yields, we have investigated the effect of various solvents (toluene, acetonitrile, dimethyl sulfoxide and N,N-dimethylformamide) on the coupling of substrates. Owing to the fact that the aryl halides show the reactivity order of I>Br>Cl>F, we have also investigated the effect of iodine presence on CNT surface on reaction yield. In this case, in first step we have used iodine monochloride instead of iodine trichloride. Finally, we have used the optimized reaction conditions with p-bromophenol and 1,2,4-trihydroxybenzene for the control of CNT dispersion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20reaction" title=" coupling reaction"> coupling reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=Ullmann%20reaction" title=" Ullmann reaction"> Ullmann reaction</a> </p> <a href="https://publications.waset.org/abstracts/92023/carbon-nanotubes-functionalization-via-ullmann-type-reactions-yielding-c-c-c-o-and-c-n-bonds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucija%20Pustahija">Lucija Pustahija</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Bandl"> Christine Bandl</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Kern"> Wolfgang Kern</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Mitterer"> Christian Mitterer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20oxidation" title=" dry oxidation"> dry oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilanes" title=" organosilanes"> organosilanes</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolytic%20carbon" title=" pyrolytic carbon"> pyrolytic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=resins" title=" resins"> resins</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20functionalization" title=" surface functionalization"> surface functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20oxidation" title=" wet oxidation"> wet oxidation</a> </p> <a href="https://publications.waset.org/abstracts/152210/investigation-of-different-surface-oxidation-methods-on-pyrolytic-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Double Functionalization of Magnetic Colloids with Electroactive Molecules and Antibody for Platelet Detection and Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feixiong%20Chen">Feixiong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoufel%20%20Haddour"> Naoufel Haddour</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Frenea-Robin"> Marie Frenea-Robin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20%20M%C3%A9Rieux"> Yves MéRieux</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann%20Chevolot"> Yann Chevolot</a>, <a href="https://publications.waset.org/abstracts/search?q=Virginie%20Monnier"> Virginie Monnier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neonatal thrombopenia occurs when the mother generates antibodies against her baby’s platelet antigens. It is particularly critical for newborns because it can cause coagulation troubles leading to intracranial hemorrhage. In this case, diagnosis must be done quickly to make platelets transfusion immediately after birth. Before transfusion, platelet antigens must be tested carefully to avoid rejection. The majority of thrombopenia (95 %) are caused by antibodies directed against Human Platelet Antigen 1a (HPA-1a) or 5b (HPA-5b). The common method for antigen platelets detection is polymerase chain reaction allowing for identification of gene sequence. However, it is expensive, time-consuming and requires significant blood volume which is not suitable for newborns. We propose to develop a point-of-care device based on double functionalized magnetic colloids with 1) antibodies specific to antigen platelets and 2) highly sensitive electroactive molecules in order to be detected by an electrochemical microsensor. These magnetic colloids will be used first to isolate platelets from other blood components, then to capture specifically platelets bearing HPA-1a and HPA-5b antigens and finally to attract them close to sensor working electrode for improved electrochemical signal. The expected advantages are an assay time lower than 20 min starting from blood volume smaller than 100 µL. Our functionalization procedure based on amine dendrimers and NHS-ester modification of initial carboxyl colloids will be presented. Functionalization efficiency was evaluated by colorimetric titration of surface chemical groups, zeta potential measurements, infrared spectroscopy, fluorescence scanning and cyclic voltammetry. Our results showed that electroactive molecules and antibodies can be immobilized successfully onto magnetic colloids. Application of a magnetic field onto working electrode increased the detected electrochemical signal. Magnetic colloids were able to capture specific purified antigens extracted from platelets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magnetic%20Nanoparticles" title="Magnetic Nanoparticles ">Magnetic Nanoparticles </a>, <a href="https://publications.waset.org/abstracts/search?q=Electroactive%20Molecules" title=" Electroactive Molecules"> Electroactive Molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=Antibody" title=" Antibody"> Antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=Platelet" title=" Platelet"> Platelet</a> </p> <a href="https://publications.waset.org/abstracts/66772/double-functionalization-of-magnetic-colloids-with-electroactive-molecules-and-antibody-for-platelet-detection-and-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Destruction of Colon Cells by Nanocontainers of Ferromagnetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Szymanski">Lukasz Szymanski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Kolacinski"> Zbigniew Kolacinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Raniszewski"> Grzegorz Raniszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Slawomir%20Wiak"> Slawomir Wiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Pietrzak"> Lukasz Pietrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Koza"> Dariusz Koza</a>, <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Przybylowska-Sygut"> Karolina Przybylowska-Sygut</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Majsterek"> Ireneusz Majsterek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Kaminski"> Zbigniew Kaminski</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Fraczyk"> Justyna Fraczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Walczak"> Malgorzata Walczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Beata%20Kolasinska"> Beata Kolasinska</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Bednarek"> Adam Bednarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Konka"> Joanna Konka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to investigate the influence of electromagnetic field from the range of radio frequencies on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon - ferromagnetic nanocontainers (FNCs) includes: The synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Pristine ferromagnetic carbon nanotubes are not suitable for application in medicine and biotechnology. Appropriate functionalization of ferromagnetic carbon nanotubes allows to receiving materials useful in medicine. Finally, a product contains folic acids on the surface of FNCs. The folic acid is a ligand of folate receptors – α which is overexpressed on the surface of epithelial tumours cells. It is expected that folic acids will be recognized and selectively bound by receptors presented on the surface of tumour cells. In our research, FNCs were covalently functionalized in a multi-step procedure. Ferromagnetic carbon nanotubes were oxidated using different oxidative agents. For this purpose, strong acids such as HNO3, or mixture HNO3 and H2SO4 were used. Reactive carbonyl and carboxyl groups were formed on the open sides and at the defects on the sidewalls of FNCs. These groups allow further modification of FNCs as a reaction of amidation, reaction of introduction appropriate linkers which separate solid surface of FNCs and ligand (folic acid). In our studies, amino acid and peptide have been applied as ligands. The last step of chemical modification was reaction-condensation with folic acid. In all reaction as coupling reagents were used derivatives of 1,3,5-triazine. The first trials in the device for hyperthermal RF generator have been done. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. Obtained functionalized nanoparticles enabled to reach the temperature of denaturation tumor cells in given frequencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20colon%20cells" title="cancer colon cells">cancer colon cells</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=ligands" title=" ligands"> ligands</a> </p> <a href="https://publications.waset.org/abstracts/52984/destruction-of-colon-cells-by-nanocontainers-of-ferromagnetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Basiuk">Vladimir A. Basiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20J.%20Flores-Sanchez"> Laura J. Flores-Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Meza-Laguna"> Victor Meza-Laguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20O.%20Flores-Flores"> Jose O. Flores-Flores</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauro%20Bucio-Galindo"> Lauro Bucio-Galindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20V.%20Basiuk"> Elena V. Basiuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-phase" title=" gas-phase"> gas-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%28II%29%20phthalocyanines" title=" metal(II) phthalocyanines"> metal(II) phthalocyanines</a> </p> <a href="https://publications.waset.org/abstracts/91818/gas-phase-noncovalent-functionalization-of-pristine-single-walled-carbon-nanotubes-with-3d-metalii-phthalocyanines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=functionalization&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=functionalization&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=functionalization&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=functionalization&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=functionalization&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=functionalization&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>