CINXE.COM
Theorem gwerth-cymedrig - Wicipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="cy" dir="ltr"> <head> <meta charset="UTF-8"> <title>Theorem gwerth-cymedrig - Wicipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )cywikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy" ,"wgMonthNames":["","Ionawr","Chwefror","Mawrth","Ebrill","Mai","Mehefin","Gorffennaf","Awst","Medi","Hydref","Tachwedd","Rhagfyr"],"wgRequestId":"03f39f80-46a3-4fd5-8b85-0538a181b80c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Theorem_gwerth-cymedrig","wgTitle":"Theorem gwerth-cymedrig","wgCurRevisionId":11016823,"wgRevisionId":11016823,"wgArticleId":284935,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links"],"wgPageViewLanguage":"cy","wgPageContentLanguage":"cy","wgPageContentModel":"wikitext","wgRelevantPageName":"Theorem_gwerth-cymedrig","wgRelevantArticleId":284935,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0, "wgVisualEditor":{"pageLanguageCode":"cy","pageLanguageDir":"ltr","pageVariantFallbacks":"cy"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":4000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q189136","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options": "loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession", "wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=cy&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=cy&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=cy&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Mvt2.svg/1200px-Mvt2.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1060"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Mvt2.svg/800px-Mvt2.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="706"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Mvt2.svg/640px-Mvt2.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="565"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Theorem gwerth-cymedrig - Wicipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//cy.m.wikipedia.org/wiki/Theorem_gwerth-cymedrig"> <link rel="alternate" type="application/x-wiki" title="Golygu" href="/w/index.php?title=Theorem_gwerth-cymedrig&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wicipedia (cy)"> <link rel="EditURI" type="application/rsd+xml" href="//cy.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://cy.wikipedia.org/wiki/Theorem_gwerth-cymedrig"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cy"> <link rel="alternate" type="application/atom+xml" title="Ffrwd Atom Wicipedia" href="/w/index.php?title=Arbennig:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Theorem_gwerth-cymedrig rootpage-Theorem_gwerth-cymedrig skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Neidio i'r cynnwys</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Safle"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Prif ddewislen" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Prif ddewislen</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Prif ddewislen</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">symud i'r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">cuddio</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Panel llywio </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Hafan" title="Ymweld â'r Hafan [z]" accesskey="z"><span>Hafan</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wicipedia:Porth_y_Gymuned" title="Pethau i'w gwneud, adnoddau a thudalennau'r gymuned"><span>Porth y Gymuned</span></a></li><li id="n-cafe" class="mw-list-item"><a href="/wiki/Wicipedia:Y_Caffi"><span>Y Caffi</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Categori:Materion_cyfoes" title="Gwybodaeth yn gysylltiedig â materion cyfoes"><span>Materion cyfoes</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Arbennig:RecentChanges" title="Rhestr y newidiadau diweddar ar y wici. [r]" accesskey="r"><span>Newidiadau diweddar</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Arbennig:Random" title="Llwytho tudalen ar hap [x]" accesskey="x"><span>Erthygl ar hap</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Wicipedia:Cymorth" title="Tudalennau cymorth"><span>Cymorth</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Hafan" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wicipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-cy.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-cy.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Arbennig:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Chwilio Wicipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Chwilio</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Chwilio Wicipedia" aria-label="Chwilio Wicipedia" autocapitalize="sentences" title="Chwilio Wicipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Arbennig:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Chwilio</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Offer personol"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Gwedd"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Newidiwch ymddangosiad maint ffont, lled a lliw y dudalen" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Gwedd" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Gwedd</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_cy.wikipedia.org&uselang=cy" class=""><span>Rhoi</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Arbennig:CreateAccount&returnto=Theorem+gwerth-cymedrig" title="Rydym yn argymell eich bod yn creu cyfri ac yn menwgofnodi. Fodd bynnag, dydy hyn ddim yn orfodol" class=""><span>Creu cyfrif</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Arbennig:UserLogin&returnto=Theorem+gwerth-cymedrig" title="Fe'ch anogir i fewngofnodi, er nad oes rhaid gwneud. [o]" accesskey="o" class=""><span>Mewngofnodi</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Rhagor o opsiynau" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Offer personol" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Offer personol</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Dewislen defnyddiwr" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_cy.wikipedia.org&uselang=cy"><span>Rhoi</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Arbennig:CreateAccount&returnto=Theorem+gwerth-cymedrig" title="Rydym yn argymell eich bod yn creu cyfri ac yn menwgofnodi. Fodd bynnag, dydy hyn ddim yn orfodol"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Creu cyfrif</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Arbennig:UserLogin&returnto=Theorem+gwerth-cymedrig" title="Fe'ch anogir i fewngofnodi, er nad oes rhaid gwneud. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Mewngofnodi</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Tudalennau ar gyfer golygyddion allgofnodedig <a href="/wiki/Cymorth:Cyflwyniad" aria-label="Dysgu mwy am olygu"><span>dysgu mwy</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Arbennig:MyContributions" title="Rhestr golygiadau o'r cyfeiriad IP hwn [y]" accesskey="y"><span>Cyfraniadau</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Arbennig:MyTalk" title="Sgwrs ynglŷn â golygiadau o'r cyfeiriad IP hwn [n]" accesskey="n"><span>Sgwrs</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Safle"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Cynnwys" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Cynnwys</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">symud i'r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">cuddio</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Y dechrau</div> </a> </li> <li id="toc-Hanes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Hanes"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Hanes</span> </div> </a> <ul id="toc-Hanes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Datganiad_ffurfiol" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Datganiad_ffurfiol"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Datganiad ffurfiol</span> </div> </a> <ul id="toc-Datganiad_ffurfiol-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Prawf" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Prawf"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Prawf</span> </div> </a> <ul id="toc-Prawf-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cyfeiriadau" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cyfeiriadau"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Cyfeiriadau</span> </div> </a> <ul id="toc-Cyfeiriadau-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Cynnwys" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toglo'r tabl cynnwys" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toglo'r tabl cynnwys</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Theorem gwerth-cymedrig</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ewch i erthygl mewn iaith arall. Ar gael mewn 52 iaith" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-52" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">52 iaith</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%9B%E1%8B%95%E1%8A%A8%E1%88%8B%E1%8B%8A_%E1%8B%8B%E1%8C%8B_%E1%8A%A5%E1%88%AD%E1%8C%8D%E1%8C%A5" title="ማዕከላዊ ዋጋ እርግጥ - Amhareg" lang="am" hreflang="am" data-title="ማዕከላዊ ዋጋ እርግጥ" data-language-autonym="አማርኛ" data-language-local-name="Amhareg" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%A8%D8%B1%D9%87%D9%86%D8%A9_%D8%A7%D9%84%D9%82%D9%8A%D9%85%D8%A9_%D8%A7%D9%84%D9%85%D8%AA%D9%88%D8%B3%D8%B7%D8%A9" title="مبرهنة القيمة المتوسطة - Arabeg" lang="ar" hreflang="ar" data-title="مبرهنة القيمة المتوسطة" data-language-autonym="العربية" data-language-local-name="Arabeg" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Orta_qiym%C9%99t_teoremi" title="Orta qiymət teoremi - Aserbaijaneg" lang="az" hreflang="az" data-title="Orta qiymət teoremi" data-language-autonym="Azərbaycanca" data-language-local-name="Aserbaijaneg" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%97%E0%A6%A1%E0%A6%BC_%E0%A6%AE%E0%A6%BE%E0%A6%A8_%E0%A6%89%E0%A6%AA%E0%A6%AA%E0%A6%BE%E0%A6%A6%E0%A7%8D%E0%A6%AF" title="গড় মান উপপাদ্য - Bengaleg" lang="bn" hreflang="bn" data-title="গড় মান উপপাদ্য" data-language-autonym="বাংলা" data-language-local-name="Bengaleg" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Teorema_del_valor_mitj%C3%A0" title="Teorema del valor mitjà - Catalaneg" lang="ca" hreflang="ca" data-title="Teorema del valor mitjà" data-language-autonym="Català" data-language-local-name="Catalaneg" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AA%DB%8C%DB%86%D8%B1%D9%85%DB%8C_%D8%A8%DB%95%DA%BE%D8%A7%DB%8C_%D9%86%D8%A7%D9%88%DB%95%D9%86%D8%AF" title="تیۆرمی بەھای ناوەند - Cwrdeg Sorani" lang="ckb" hreflang="ckb" data-title="تیۆرمی بەھای ناوەند" data-language-autonym="کوردی" data-language-local-name="Cwrdeg Sorani" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/V%C4%9Bta_o_st%C5%99edn%C3%AD_hodnot%C4%9B_diferenci%C3%A1ln%C3%ADho_po%C4%8Dtu" title="Věta o střední hodnotě diferenciálního počtu - Tsieceg" lang="cs" hreflang="cs" data-title="Věta o střední hodnotě diferenciálního počtu" data-language-autonym="Čeština" data-language-local-name="Tsieceg" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Middelv%C3%A6rdis%C3%A6tningen" title="Middelværdisætningen - Daneg" lang="da" hreflang="da" data-title="Middelværdisætningen" data-language-autonym="Dansk" data-language-local-name="Daneg" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Mittelwertsatz_der_Differentialrechnung" title="Mittelwertsatz der Differentialrechnung - Almaeneg" lang="de" hreflang="de" data-title="Mittelwertsatz der Differentialrechnung" data-language-autonym="Deutsch" data-language-local-name="Almaeneg" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%98%CE%B5%CF%8E%CF%81%CE%B7%CE%BC%CE%B1_%CE%BC%CE%AD%CF%83%CE%B7%CF%82_%CF%84%CE%B9%CE%BC%CE%AE%CF%82" title="Θεώρημα μέσης τιμής - Groeg" lang="el" hreflang="el" data-title="Θεώρημα μέσης τιμής" data-language-autonym="Ελληνικά" data-language-local-name="Groeg" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Mean_value_theorem" title="Mean value theorem - Saesneg" lang="en" hreflang="en" data-title="Mean value theorem" data-language-autonym="English" data-language-local-name="Saesneg" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Meznombra_valora_teoremo" title="Meznombra valora teoremo - Esperanto" lang="eo" hreflang="eo" data-title="Meznombra valora teoremo" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teorema_del_valor_medio" title="Teorema del valor medio - Sbaeneg" lang="es" hreflang="es" data-title="Teorema del valor medio" data-language-autonym="Español" data-language-local-name="Sbaeneg" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Lagrange%27i_keskv%C3%A4%C3%A4rtusteoreem" title="Lagrange'i keskväärtusteoreem - Estoneg" lang="et" hreflang="et" data-title="Lagrange'i keskväärtusteoreem" data-language-autonym="Eesti" data-language-local-name="Estoneg" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Batez_besteko_balioaren_teorema" title="Batez besteko balioaren teorema - Basgeg" lang="eu" hreflang="eu" data-title="Batez besteko balioaren teorema" data-language-autonym="Euskara" data-language-local-name="Basgeg" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D8%B6%DB%8C%D9%87_%D9%85%D9%82%D8%AF%D8%A7%D8%B1_%D9%85%DB%8C%D8%A7%D9%86%DA%AF%DB%8C%D9%86" title="قضیه مقدار میانگین - Perseg" lang="fa" hreflang="fa" data-title="قضیه مقدار میانگین" data-language-autonym="فارسی" data-language-local-name="Perseg" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Differentiaalilaskennan_v%C3%A4liarvolause" title="Differentiaalilaskennan väliarvolause - Ffinneg" lang="fi" hreflang="fi" data-title="Differentiaalilaskennan väliarvolause" data-language-autonym="Suomi" data-language-local-name="Ffinneg" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_des_accroissements_finis" title="Théorème des accroissements finis - Ffrangeg" lang="fr" hreflang="fr" data-title="Théorème des accroissements finis" data-language-autonym="Français" data-language-local-name="Ffrangeg" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Teorema_do_valor_medio" title="Teorema do valor medio - Galisieg" lang="gl" hreflang="gl" data-title="Teorema do valor medio" data-language-autonym="Galego" data-language-local-name="Galisieg" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%A4%D7%98_%D7%94%D7%A2%D7%A8%D7%9A_%D7%94%D7%9E%D7%9E%D7%95%D7%A6%D7%A2_%D7%A9%D7%9C_%D7%9C%D7%92%D7%A8%D7%90%D7%A0%D7%96%27" title="משפט הערך הממוצע של לגראנז' - Hebraeg" lang="he" hreflang="he" data-title="משפט הערך הממוצע של לגראנז'" data-language-autonym="עברית" data-language-local-name="Hebraeg" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A4%BE%E0%A4%A7%E0%A5%8D%E0%A4%AF%E0%A4%AE%E0%A4%BE%E0%A4%A8_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A5%87%E0%A4%AF" title="माध्यमान प्रमेय - Hindi" lang="hi" hreflang="hi" data-title="माध्यमान प्रमेय" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Riemannov_teorem" title="Riemannov teorem - Croateg" lang="hr" hreflang="hr" data-title="Riemannov teorem" data-language-autonym="Hrvatski" data-language-local-name="Croateg" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Lagrange-f%C3%A9le_k%C3%B6z%C3%A9p%C3%A9rt%C3%A9kt%C3%A9tel" title="Lagrange-féle középértéktétel - Hwngareg" lang="hu" hreflang="hu" data-title="Lagrange-féle középértéktétel" data-language-autonym="Magyar" data-language-local-name="Hwngareg" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Teorema_nilai_purata" title="Teorema nilai purata - Indoneseg" lang="id" hreflang="id" data-title="Teorema nilai purata" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indoneseg" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Me%C3%B0algildissetningin" title="Meðalgildissetningin - Islandeg" lang="is" hreflang="is" data-title="Meðalgildissetningin" data-language-autonym="Íslenska" data-language-local-name="Islandeg" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teorema_di_Lagrange" title="Teorema di Lagrange - Eidaleg" lang="it" hreflang="it" data-title="Teorema di Lagrange" data-language-autonym="Italiano" data-language-local-name="Eidaleg" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%B9%B3%E5%9D%87%E5%80%A4%E3%81%AE%E5%AE%9A%E7%90%86" title="平均値の定理 - Japaneeg" lang="ja" hreflang="ja" data-title="平均値の定理" data-language-autonym="日本語" data-language-local-name="Japaneeg" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%8F%89%EA%B7%A0%EA%B0%92_%EC%A0%95%EB%A6%AC" title="평균값 정리 - Coreeg" lang="ko" hreflang="ko" data-title="평균값 정리" data-language-autonym="한국어" data-language-local-name="Coreeg" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Teorema_de_Lagrange" title="Teorema de Lagrange - Lombardeg" lang="lmo" hreflang="lmo" data-title="Teorema de Lagrange" data-language-autonym="Lombard" data-language-local-name="Lombardeg" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Lagran%C5%BEo_vidutin%C4%97s_reik%C5%A1m%C4%97s_teorema" title="Lagranžo vidutinės reikšmės teorema - Lithwaneg" lang="lt" hreflang="lt" data-title="Lagranžo vidutinės reikšmės teorema" data-language-autonym="Lietuvių" data-language-local-name="Lithwaneg" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Lagran%C5%BEa_teor%C4%93ma" title="Lagranža teorēma - Latfieg" lang="lv" hreflang="lv" data-title="Lagranža teorēma" data-language-autonym="Latviešu" data-language-local-name="Latfieg" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B8_%D0%B7%D0%B0_%D1%81%D1%80%D0%B5%D0%B4%D0%BD%D0%B0_%D0%B2%D1%80%D0%B5%D0%B4%D0%BD%D0%BE%D1%81%D1%82" title="Теореми за средна вредност - Macedoneg" lang="mk" hreflang="mk" data-title="Теореми за средна вредност" data-language-autonym="Македонски" data-language-local-name="Macedoneg" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Middelwaardestelling" title="Middelwaardestelling - Iseldireg" lang="nl" hreflang="nl" data-title="Middelwaardestelling" data-language-autonym="Nederlands" data-language-local-name="Iseldireg" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Middelverdisetningen" title="Middelverdisetningen - Norwyeg Bokmål" lang="nb" hreflang="nb" data-title="Middelverdisetningen" data-language-autonym="Norsk bokmål" data-language-local-name="Norwyeg Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Twierdzenie_Lagrange%E2%80%99a_(rachunek_r%C3%B3%C5%BCniczkowy)" title="Twierdzenie Lagrange’a (rachunek różniczkowy) - Pwyleg" lang="pl" hreflang="pl" data-title="Twierdzenie Lagrange’a (rachunek różniczkowy)" data-language-autonym="Polski" data-language-local-name="Pwyleg" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Teorema_%C3%ABd_Cauchy_dle_ch%C3%ABrs%C3%B9e_fin%C3%ACe" title="Teorema ëd Cauchy dle chërsùe finìe - Piedmonteg" lang="pms" hreflang="pms" data-title="Teorema ëd Cauchy dle chërsùe finìe" data-language-autonym="Piemontèis" data-language-local-name="Piedmonteg" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Teorema_do_valor_m%C3%A9dio" title="Teorema do valor médio - Portiwgaleg" lang="pt" hreflang="pt" data-title="Teorema do valor médio" data-language-autonym="Português" data-language-local-name="Portiwgaleg" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teorema_cre%C8%99terilor_finite" title="Teorema creșterilor finite - Rwmaneg" lang="ro" hreflang="ro" data-title="Teorema creșterilor finite" data-language-autonym="Română" data-language-local-name="Rwmaneg" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%BA%D0%BE%D0%BD%D0%B5%D1%87%D0%BD%D1%8B%D1%85_%D0%BF%D1%80%D0%B8%D1%80%D0%B0%D1%89%D0%B5%D0%BD%D0%B8%D0%B9" title="Формула конечных приращений - Rwseg" lang="ru" hreflang="ru" data-title="Формула конечных приращений" data-language-autonym="Русский" data-language-local-name="Rwseg" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Lagrangeova_veta_o_strednej_hodnote" title="Lagrangeova veta o strednej hodnote - Slofaceg" lang="sk" hreflang="sk" data-title="Lagrangeova veta o strednej hodnote" data-language-autonym="Slovenčina" data-language-local-name="Slofaceg" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Izrek_o_povpre%C4%8Dni_vrednosti" title="Izrek o povprečni vrednosti - Slofeneg" lang="sl" hreflang="sl" data-title="Izrek o povprečni vrednosti" data-language-autonym="Slovenščina" data-language-local-name="Slofeneg" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Teorema_e_vler%C3%ABs_mesatare" title="Teorema e vlerës mesatare - Albaneg" lang="sq" hreflang="sq" data-title="Teorema e vlerës mesatare" data-language-autonym="Shqip" data-language-local-name="Albaneg" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9B%D0%B0%D0%B3%D1%80%D0%B0%D0%BD%D0%B6%D0%BE%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0" title="Лагранжова теорема - Serbeg" lang="sr" hreflang="sr" data-title="Лагранжова теорема" data-language-autonym="Српски / srpski" data-language-local-name="Serbeg" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Medelv%C3%A4rdessatsen" title="Medelvärdessatsen - Swedeg" lang="sv" hreflang="sv" data-title="Medelvärdessatsen" data-language-autonym="Svenska" data-language-local-name="Swedeg" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%87%E0%AE%9F%E0%AF%88%E0%AE%AE%E0%AE%A4%E0%AE%BF%E0%AE%AA%E0%AF%8D%E0%AE%AA%E0%AF%81%E0%AE%A4%E0%AF%8D_%E0%AE%A4%E0%AF%87%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AE%AE%E0%AF%8D" title="இடைமதிப்புத் தேற்றம் - Tamileg" lang="ta" hreflang="ta" data-title="இடைமதிப்புத் தேற்றம்" data-language-autonym="தமிழ்" data-language-local-name="Tamileg" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%97%E0%B8%A4%E0%B8%A9%E0%B8%8E%E0%B8%B5%E0%B8%9A%E0%B8%97%E0%B8%84%E0%B9%88%E0%B8%B2%E0%B8%A1%E0%B8%B1%E0%B8%8A%E0%B8%8C%E0%B8%B4%E0%B8%A1" title="ทฤษฎีบทค่ามัชฌิม - Thai" lang="th" hreflang="th" data-title="ทฤษฎีบทค่ามัชฌิม" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Ortalama_de%C4%9Fer_teoremi" title="Ortalama değer teoremi - Tyrceg" lang="tr" hreflang="tr" data-title="Ortalama değer teoremi" data-language-autonym="Türkçe" data-language-local-name="Tyrceg" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BF%D1%80%D0%BE_%D1%81%D0%B5%D1%80%D0%B5%D0%B4%D0%BD%D1%94_%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%BD%D1%8F" title="Теорема про середнє значення - Wcreineg" lang="uk" hreflang="uk" data-title="Теорема про середнє значення" data-language-autonym="Українська" data-language-local-name="Wcreineg" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%82%D8%B6%DB%8C%DB%81_%D9%82%D8%AF%D8%B1_%D9%88%D8%B3%D8%B7%DB%8C" title="قضیہ قدر وسطی - Wrdw" lang="ur" hreflang="ur" data-title="قضیہ قدر وسطی" data-language-autonym="اردو" data-language-local-name="Wrdw" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Lagranj_formulasi" title="Lagranj formulasi - Wsbeceg" lang="uz" hreflang="uz" data-title="Lagranj formulasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Wsbeceg" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_gi%C3%A1_tr%E1%BB%8B_trung_b%C3%ACnh" title="Định lý giá trị trung bình - Fietnameg" lang="vi" hreflang="vi" data-title="Định lý giá trị trung bình" data-language-autonym="Tiếng Việt" data-language-local-name="Fietnameg" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%B8%AD%E5%80%BC%E5%AE%9A%E7%90%86" title="中值定理 - Tsieinëeg" lang="zh" hreflang="zh" data-title="中值定理" data-language-autonym="中文" data-language-local-name="Tsieinëeg" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q189136#sitelinks-wikipedia" title="Golygu dolenni rhyngwici" class="wbc-editpage">Golygu dolenni</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Parthau"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Theorem_gwerth-cymedrig" title="Gweld y dudalen bwnc [c]" accesskey="c"><span>Erthygl</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Sgwrs:Theorem_gwerth-cymedrig&action=edit&redlink=1" rel="discussion" class="new" title="Sgwrsio am y dudalen (dim tudalen ar gael) [t]" accesskey="t"><span>Sgwrs</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Newid amrywiad iaith" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Cymraeg</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Golygon"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Theorem_gwerth-cymedrig"><span>Darllen</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&veaction=edit" title="Golygu'r dudalen hon [v]" accesskey="v"><span>Golygu</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=edit" title="Golygu cod ffynhonnell y dudalen hon [e]" accesskey="e"><span>Golygu cod</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=history" title="Fersiynau cynt o'r dudalen hon. [h]" accesskey="h"><span>Gweld hanes</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Offer tudalen"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Blwch offer" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Blwch offer</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Blwch offer</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">symud i'r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">cuddio</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Rhagor o opsiynau" > <div class="vector-menu-heading"> Gweithredoedd </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Theorem_gwerth-cymedrig"><span>Darllen</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&veaction=edit" title="Golygu'r dudalen hon [v]" accesskey="v"><span>Golygu</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=edit" title="Golygu cod ffynhonnell y dudalen hon [e]" accesskey="e"><span>Golygu cod</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=history"><span>Gweld hanes</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Cyffredinol </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Arbennig:WhatLinksHere/Theorem_gwerth-cymedrig" title="Rhestr o bob tudalen sy'n cysylltu â hon [j]" accesskey="j"><span>Beth sy'n cysylltu yma</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Arbennig:RecentChangesLinked/Theorem_gwerth-cymedrig" rel="nofollow" title="Newidiadau diweddar i dudalennau sydd yn cysylltu â hon [k]" accesskey="k"><span>Newidiadau perthnasol</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Arbennig:SpecialPages" title="Rhestr o'r holl dudalennau arbennig [q]" accesskey="q"><span>Tudalennau arbennig</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&oldid=11016823" title="Dolen barhaol i'r fersiwn hwn y dudalen hon"><span>Dolen barhaol</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=info" title="Mwy o wybodaeth am y dudalen hon"><span>Gwybodaeth am y dudalen</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Arbennig:CiteThisPage&page=Theorem_gwerth-cymedrig&id=11016823&wpFormIdentifier=titleform" title="Gwybodaeth ar sut i gyfeirio at y dudalen hon"><span>Cyfeirio at y dudalen hon</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Arbennig:UrlShortener&url=https%3A%2F%2Fcy.wikipedia.org%2Fwiki%2FTheorem_gwerth-cymedrig"><span>Cael URL byr</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Arbennig:QrCode&url=https%3A%2F%2Fcy.wikipedia.org%2Fwiki%2FTheorem_gwerth-cymedrig"><span>Lawrlwytho cod QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Argraffu / allforio </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Arbennig:Book&bookcmd=book_creator&referer=Theorem+gwerth-cymedrig"><span>Llunio llyfr</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Arbennig:DownloadAsPdf&page=Theorem_gwerth-cymedrig&action=show-download-screen"><span>Lawrlwytho fel PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Theorem_gwerth-cymedrig&printable=yes" title="Cynhyrchwch fersiwn o'r dudalen yn barod at ei hargraffu [p]" accesskey="p"><span>Fersiwn argraffu</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Mewn prosiectau eraill </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Mean_value_theorem" hreflang="en"><span>Comin Wikimedia</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q189136" title="Cysylltu i eitem ystorfa gysylltiedig [g]" accesskey="g"><span>Eitem Wicidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Offer tudalen"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Gwedd"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Gwedd</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">symud i'r bar ochr</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">cuddio</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Oddi ar Wicipedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="cy" dir="ltr"><figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Mvt2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Mvt2.svg/260px-Mvt2.svg.png" decoding="async" width="260" height="230" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Mvt2.svg/390px-Mvt2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Mvt2.svg/520px-Mvt2.svg.png 2x" data-file-width="744" data-file-height="657" /></a><figcaption>Ar gyfer unrhyw ffwythiant sy'n ddi-dor ar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> ac yn ddifferadwy ar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> mae yna ryw <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> yn y cyfwng <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> fel bod y secant sy'n ymuno pwyntiau terfyn y cyfwng <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> yn baralel i'r tangiad yn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>.</figcaption></figure> <p>Mewn <a href="/wiki/Mathemateg" title="Mathemateg">mathemateg</a>, mae'r <b>theorem gwerth-cymedrig</b> yn nodi, yn fras, os rhoddir arc blanar rhwng dau bwynt terfyn, bodolir o leiaf un pwynt lle mae'r <a href="/wiki/Tangiad" title="Tangiad">tangiad</a> i'r arc yn baralel i'r secant trwy ei bwyntiau terfyn. </p><p> Yn fanwl gywir, os yw <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> yn ffwythiant di-dor ar <a href="/wiki/Cyfwng" title="Cyfwng">gyfwng caeedig</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>, ac yn <a href="/wiki/Deilliant" title="Deilliant">ddifferadwy</a> ar y <a href="/wiki/Cyfwng" title="Cyfwng">cyfwng agored</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>, yna mae pwynt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> yn bodoli o fewn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> fel bod y tangiad yn <i>c</i> yn baralel i'r llinell secant trwy'r pwyntiau terfyn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,f(a))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,f(a))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2250e602b41f737373c715600ba8f2d2cad1759d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.391ex; height:2.843ex;" alt="{\displaystyle (a,f(a))}"></span> ac <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b,f(b))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b,f(b))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdf2ce5325ab4148e1fa650cbc7b152796675430" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle (b,f(b))}"></span>, hynny yw,</p><div class="center" style="width:auto; margin-left:auto; margin-right:auto;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4e68eccc69d29a2a10d669fdd0a7f038417277b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.646ex; height:6.009ex;" alt="{\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}.}"></span></div><p>Mae'n un o'r canlyniadau pwysicaf mewn <a href="/wiki/Dadansoddi_real" title="Dadansoddi real">dadansoddiad real</a>. </p><meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Hanes">Hanes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&veaction=edit&section=1" title="Golygu'r adran: Hanes" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=edit&section=1" title="Edit section's source code: Hanes"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Disgrifiwyd achos arbennig o’r <a href="/wiki/Theorem" title="Theorem">theorem</a> hon yn gyntaf gan Parameshvara (1370–1460), o Ysgol Seryddiaeth a Mathemateg Kerala yn <a href="/wiki/India" title="India">India</a>, yn ei sylwebaethau ar Govindasvāmi a Bhāskara II.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Profwyd ffurf gyfyngedig o'r theorem gan Michel Rolle ym 1691; y canlyniad oedd yr hyn a elwir bellach yn theorem Rolle, ac fe'i profwyd ar gyfer polynomialau yn unig, heb dechnegau calcwlws. Cafodd y theorem gwerth-cymedrig yn ei ffurf fodern ei nodi a'i brofi gan Augustin Louis Cauchy ym 1823.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Datganiad_ffurfiol">Datganiad ffurfiol</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&veaction=edit&section=2" title="Golygu'r adran: Datganiad ffurfiol" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=edit&section=2" title="Edit section's source code: Datganiad ffurfiol"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Mittelwertsatz3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Mittelwertsatz3.svg/220px-Mittelwertsatz3.svg.png" decoding="async" width="220" height="157" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/94/Mittelwertsatz3.svg/330px-Mittelwertsatz3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/94/Mittelwertsatz3.svg/440px-Mittelwertsatz3.svg.png 2x" data-file-width="403" data-file-height="288" /></a><figcaption>Mae'r ffwythiant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> yn cyflawni graddiant y secant rhwng <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> fel ei deilliad ar y pwynt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \xi \in (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ξ<!-- ξ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \xi \in (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5abeddc918baa404afdae198bfa6feea783f7e6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.941ex; height:2.843ex;" alt="{\displaystyle \xi \in (a,b)}"></span>.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/Delwedd:Mittelwertsatz6.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Mittelwertsatz6.svg/220px-Mittelwertsatz6.svg.png" decoding="async" width="220" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Mittelwertsatz6.svg/330px-Mittelwertsatz6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Mittelwertsatz6.svg/440px-Mittelwertsatz6.svg.png 2x" data-file-width="403" data-file-height="257" /></a><figcaption>Mae hefyd yn bosibl bod mwy nag un tangiad yn baralel i'r secant.</figcaption></figure> <p>Gadewch i<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:[a,b]\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:[a,b]\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b592d102ccd1ba134d401c5b3ea177baaba3ffac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.063ex; height:2.843ex;" alt="{\displaystyle f:[a,b]\to \mathbb {R} }"></span> bod yn ffwythiant di-dor ar y cyfwng caeedig <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>, ac yn ddifferadwy ar y cyfwng agored <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>, lle<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a<b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo><</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a<b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91a7698e4c7401bb321f97888b872b583a9e4642" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.326ex; height:2.176ex;" alt="{\displaystyle a<b}"></span>. Yna bodolir rhyw <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> o fewn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> fel bod </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4e68eccc69d29a2a10d669fdd0a7f038417277b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:20.646ex; height:6.009ex;" alt="{\displaystyle f'(c)={\frac {f(b)-f(a)}{b-a}}.}"></span></dd></dl> <p>Mae'r theorem gwerth-cymedrig yn cyffredinoli theorem Rolle, sydd â'r dybiaeth bod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(a)=f(b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(a)=f(b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70209bf143b8417feef2aed98b2e86bc8f447e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.502ex; height:2.843ex;" alt="{\displaystyle f(a)=f(b)}"></span>, hynny yw bod ochr dde'r mynegiant uchod yn sero. </p><p>Mae'r theorem gwerth-cymedrig yn dal i fod yn ddilys mewn lleoliad ychydig yn fwy cyffredinol. Nid oes ond angen tybio hynny<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:[a,b]\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:[a,b]\to \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b592d102ccd1ba134d401c5b3ea177baaba3ffac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.063ex; height:2.843ex;" alt="{\displaystyle f:[a,b]\to \mathbb {R} }"></span> yn barhaus ar<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span>, a hynny am bob <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> yn<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> y terfyn </p><p>Mae'r mynegiant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f(b)-f(a)}{(b-a)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f(b)-f(a)}{(b-a)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d39fc2515caf0eda644fff94da91df2ee65adae0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:12.08ex; height:6.509ex;" alt="{\displaystyle {\frac {f(b)-f(a)}{(b-a)}}}"></span> yn rhoi <a href="/wiki/Goledd" title="Goledd">graddiant</a> y llinell sy'n ymuno'r pwyntiau <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,f(a))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,f(a))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2250e602b41f737373c715600ba8f2d2cad1759d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.391ex; height:2.843ex;" alt="{\displaystyle (a,f(a))}"></span> ac <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (b,f(b))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>b</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (b,f(b))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdf2ce5325ab4148e1fa650cbc7b152796675430" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle (b,f(b))}"></span>, sy'n gord i graff <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. Mae<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f'(x)}"></span> yn rhoi graddiant y tangiad i'r gromlin yn y pwynt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x,f(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x,f(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b21dd0c5c5815bc0516f679f631fd588ceb458d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.59ex; height:2.843ex;" alt="{\displaystyle (x,f(x))}"></span>. Felly mae'r theorem gwerth-cymedrig yn dweud, o ystyried unrhyw gord cromlin esmwyth, y gallwn ddod o hyd i bwynt sy'n gorwedd rhwng diweddbwyntiau'r cord fel bod y tangiad ar y pwynt hwnnw yn baralel i'r cord. </p> <div class="mw-heading mw-heading2"><h2 id="Prawf">Prawf</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&veaction=edit&section=3" title="Golygu'r adran: Prawf" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=edit&section=3" title="Edit section's source code: Prawf"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Diffiniwch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)=f(x)-rx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>r</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)=f(x)-rx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08b7ba4e1f642c2e288ff501ecfc8546d3420e4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.99ex; height:2.843ex;" alt="{\displaystyle g(x)=f(x)-rx}"></span>, lle mae <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> yn gysonyn. Gan fod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> yn ddi-dor ar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.555ex; height:2.843ex;" alt="{\displaystyle [a,b]}"></span> ac yn ddifferadwy ar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span>, mae'r un peth yn wir am <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span>. Rydyn ni nawr eisiau dewis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> fel bod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> yn bodloni amodau theorem Rolle, sef </p><p>O theorem Rolle, gan fod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3556280e66fe2c0d0140df20935a6f057381d77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.116ex; height:2.009ex;" alt="{\displaystyle g}"></span> yn ddifferadwy ac mae <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(a)=g(b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(a)=g(b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbb3132b28d37d33ef51d76598f5caec8839e302" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.176ex; height:2.843ex;" alt="{\displaystyle g(a)=g(b)}"></span>, mae yna bodoler rhyw <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> o fewn <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e5710198f33b00695903460983021e75860e2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.071ex; height:2.843ex;" alt="{\displaystyle (a,b)}"></span> lle mae <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g'(c)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g'(c)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae82763220b93716bfd8e6fb0fe66acae1f75b35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.88ex; height:3.009ex;" alt="{\displaystyle g'(c)=0}"></span>. Mae'n dilyn o'r hafaliad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(x)=f(x)-rx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>r</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(x)=f(x)-rx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08b7ba4e1f642c2e288ff501ecfc8546d3420e4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.99ex; height:2.843ex;" alt="{\displaystyle g(x)=f(x)-rx}"></span> bod, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&g'(x)=f'(x)-r\\&g'(c)=0\\&g'(c)=f'(c)-r=0\\&\Rightarrow f'(c)=r={\frac {f(b)-f(a)}{b-a}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>r</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo stretchy="false">⇒<!-- ⇒ --></mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&g'(x)=f'(x)-r\\&g'(c)=0\\&g'(c)=f'(c)-r=0\\&\Rightarrow f'(c)=r={\frac {f(b)-f(a)}{b-a}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790a897dee55dc02d8f1191a998d22f7df27350c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.852ex; margin-bottom: -0.319ex; width:28.512ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}&g'(x)=f'(x)-r\\&g'(c)=0\\&g'(c)=f'(c)-r=0\\&\Rightarrow f'(c)=r={\frac {f(b)-f(a)}{b-a}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Cyfeiriadau">Cyfeiriadau</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&veaction=edit&section=4" title="Golygu'r adran: Cyfeiriadau" class="mw-editsection-visualeditor"><span>golygu</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Theorem_gwerth-cymedrig&action=edit&section=4" title="Edit section's source code: Cyfeiriadau"><span>golygu cod</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist" style="list-style-type: decimal;"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">J. J. O'Connor and E. F. Robertson (2000). <a rel="nofollow" class="external text" href="http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Paramesvara.html">Paramesvara</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150402163744/http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Paramesvara.html">Archifwyd</a> 2015-04-02 yn y <a href="/wiki/Peiriant_Wayback" title="Peiriant Wayback">Peiriant Wayback</a>, <i><a href="/w/index.php?title=MacTutor_History_of_Mathematics_archive&action=edit&redlink=1" class="new" title="MacTutor History of Mathematics archive (dim tudalen ar gael)">MacTutor History of Mathematics archive</a></i>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><cite id="CITEREFÁdám_Besenyei" class="citation web">Ádám Besenyei. <a rel="nofollow" class="external text" href="http://abesenyei.web.elte.hu/publications/meanvalue.pdf">"Historical development of the mean value theorem"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Historical+development+of+the+mean+value+theorem&rft.au=%C3%81d%C3%A1m+Besenyei&rft_id=http%3A%2F%2Fabesenyei.web.elte.hu%2Fpublications%2Fmeanvalue.pdf&rfr_id=info%3Asid%2Fcy.wikipedia.org%3ATheorem+gwerth-cymedrig" class="Z3988"></span><style data-mw-deduplicate="TemplateStyles:r8312344">.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}</style></span> </li> </ol></div></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐8f644c877‐qzw7n Cached time: 20241106083042 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.111 seconds Real time usage: 0.454 seconds Preprocessor visited node count: 399/1000000 Post‐expand include size: 2121/2097152 bytes Template argument size: 119/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 0/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 5444/5000000 bytes Lua time usage: 0.035/10.000 seconds Lua memory usage: 1592598/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 87.794 1 -total 87.75% 77.035 1 Nodyn:Cyfeiriadau 54.10% 47.498 1 Nodyn:Cite_web 23.04% 20.225 1 Nodyn:Webarchive 8.88% 7.799 1 Nodyn:Canol 2.05% 1.802 1 Nodyn:Main_other --> <!-- Saved in parser cache with key cywiki:pcache:idhash:284935-0!canonical and timestamp 20241106083042 and revision id 11016823. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Wedi dod o "<a dir="ltr" href="https://cy.wikipedia.org/w/index.php?title=Theorem_gwerth-cymedrig&oldid=11016823">https://cy.wikipedia.org/w/index.php?title=Theorem_gwerth-cymedrig&oldid=11016823</a>"</div></div> <div id="catlinks" class="catlinks catlinks-allhidden" data-mw="interface"><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categori cudd: <ul><li><a href="/wiki/Categori:Webarchive_template_wayback_links" title="Categori:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Golygwyd y dudalen hon ddiwethaf ar 26 Rhagfyr 2021, am 07:59.</li> <li id="footer-info-copyright">Mae'r testun ar gael o dan <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">Creative Commons Attribution-ShareAlike License</a>; gall telerau ychwanegol fod yn berthnasol. Gweler y <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Telerau Gwasanaeth</a> am fanylion.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Polisi preifatrwydd</a></li> <li id="footer-places-about"><a href="/wiki/Wicipedia:Yngl%C5%B7n_%C3%A2_Wicipedia">Ynglŷn â Wicipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wicipedia:Gwadiad_Cyffredinol">Gwadiadau</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Cod Ymddygiad</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Datblygwyr</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/cy.wikipedia.org">Ystadegau</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Datganiad cwcis</a></li> <li id="footer-places-mobileview"><a href="//cy.m.wikipedia.org/w/index.php?title=Theorem_gwerth-cymedrig&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Golwg symudol</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6df7948d6c-7ftfv","wgBackendResponseTime":176,"wgPageParseReport":{"limitreport":{"cputime":"0.111","walltime":"0.454","ppvisitednodes":{"value":399,"limit":1000000},"postexpandincludesize":{"value":2121,"limit":2097152},"templateargumentsize":{"value":119,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":5444,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 87.794 1 -total"," 87.75% 77.035 1 Nodyn:Cyfeiriadau"," 54.10% 47.498 1 Nodyn:Cite_web"," 23.04% 20.225 1 Nodyn:Webarchive"," 8.88% 7.799 1 Nodyn:Canol"," 2.05% 1.802 1 Nodyn:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.035","limit":"10.000"},"limitreport-memusage":{"value":1592598,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-8f644c877-qzw7n","timestamp":"20241106083042","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Theorem gwerth-cymedrig","url":"https:\/\/cy.wikipedia.org\/wiki\/Theorem_gwerth-cymedrig","sameAs":"http:\/\/www.wikidata.org\/entity\/Q189136","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q189136","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2020-10-21T20:31:58Z","dateModified":"2021-12-26T07:59:05Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/ee\/Mvt2.svg"}</script> </body> </html>