CINXE.COM
Invertible matrix - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Invertible matrix - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"7e9f2d06-78d5-4cce-a131-16c1cf60996f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Invertible_matrix","wgTitle":"Invertible matrix","wgCurRevisionId":1249575168,"wgRevisionId":1249575168,"wgArticleId":217122,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from September 2020","All articles needing additional references","Wikipedia articles that are too technical from August 2021","All articles that are too technical","Articles with multiple maintenance issues","All articles with unsourced statements","Articles with unsourced statements from December 2009","Wikipedia external links cleanup from June 2015", "Linear algebra","Matrices","Determinants","Matrix theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Invertible_matrix","wgRelevantArticleId":217122,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Inverse_of_a_matrix","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgInternalRedirectTargetUrl":"/wiki/Invertible_matrix","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true, "wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q242188","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready", "ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Invertible matrix - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Invertible_matrix"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Invertible_matrix&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Invertible_matrix"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Invertible_matrix rootpage-Invertible_matrix skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Invertible+matrix" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Invertible+matrix" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Invertible+matrix" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Invertible+matrix" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-The_invertible_matrix_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_invertible_matrix_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>The invertible matrix theorem</span> </div> </a> <ul id="toc-The_invertible_matrix_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Other properties</span> </div> </a> <ul id="toc-Other_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_relation_to_its_adjugate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_relation_to_its_adjugate"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>In relation to its adjugate</span> </div> </a> <ul id="toc-In_relation_to_its_adjugate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_relation_to_the_identity_matrix" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_relation_to_the_identity_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>In relation to the identity matrix</span> </div> </a> <ul id="toc-In_relation_to_the_identity_matrix-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Density" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Density"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Density</span> </div> </a> <ul id="toc-Density-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Methods_of_matrix_inversion" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Methods_of_matrix_inversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Methods of matrix inversion</span> </div> </a> <button aria-controls="toc-Methods_of_matrix_inversion-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Methods of matrix inversion subsection</span> </button> <ul id="toc-Methods_of_matrix_inversion-sublist" class="vector-toc-list"> <li id="toc-Gaussian_elimination" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gaussian_elimination"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Gaussian elimination</span> </div> </a> <ul id="toc-Gaussian_elimination-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Newton's_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Newton's_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Newton's method</span> </div> </a> <ul id="toc-Newton's_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cayley–Hamilton_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cayley–Hamilton_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Cayley–Hamilton method</span> </div> </a> <ul id="toc-Cayley–Hamilton_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Eigendecomposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eigendecomposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Eigendecomposition</span> </div> </a> <ul id="toc-Eigendecomposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cholesky_decomposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cholesky_decomposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Cholesky decomposition</span> </div> </a> <ul id="toc-Cholesky_decomposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Analytic_solution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Analytic_solution"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Analytic solution</span> </div> </a> <ul id="toc-Analytic_solution-sublist" class="vector-toc-list"> <li id="toc-Inversion_of_2_×_2_matrices" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Inversion_of_2_×_2_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.1</span> <span>Inversion of 2 × 2 matrices</span> </div> </a> <ul id="toc-Inversion_of_2_×_2_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inversion_of_3_×_3_matrices" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Inversion_of_3_×_3_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.2</span> <span>Inversion of 3 × 3 matrices</span> </div> </a> <ul id="toc-Inversion_of_3_×_3_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inversion_of_4_×_4_matrices" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Inversion_of_4_×_4_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6.3</span> <span>Inversion of 4 × 4 matrices</span> </div> </a> <ul id="toc-Inversion_of_4_×_4_matrices-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Blockwise_inversion" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Blockwise_inversion"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Blockwise inversion</span> </div> </a> <ul id="toc-Blockwise_inversion-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-By_Neumann_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#By_Neumann_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>By Neumann series</span> </div> </a> <ul id="toc-By_Neumann_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-p-adic_approximation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#p-adic_approximation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span><i>p</i>-adic approximation</span> </div> </a> <ul id="toc-p-adic_approximation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reciprocal_basis_vectors_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reciprocal_basis_vectors_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.10</span> <span>Reciprocal basis vectors method</span> </div> </a> <ul id="toc-Reciprocal_basis_vectors_method-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Derivative_of_the_matrix_inverse" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Derivative_of_the_matrix_inverse"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Derivative of the matrix inverse</span> </div> </a> <ul id="toc-Derivative_of_the_matrix_inverse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalized_inverse" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalized_inverse"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Generalized inverse</span> </div> </a> <ul id="toc-Generalized_inverse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Applications</span> </div> </a> <button aria-controls="toc-Applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications subsection</span> </button> <ul id="toc-Applications-sublist" class="vector-toc-list"> <li id="toc-Regression/least_squares" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Regression/least_squares"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Regression/least squares</span> </div> </a> <ul id="toc-Regression/least_squares-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrix_inverses_in_real-time_simulations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrix_inverses_in_real-time_simulations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Matrix inverses in real-time simulations</span> </div> </a> <ul id="toc-Matrix_inverses_in_real-time_simulations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Matrix_inverses_in_MIMO_wireless_communication" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Matrix_inverses_in_MIMO_wireless_communication"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Matrix inverses in MIMO wireless communication</span> </div> </a> <ul id="toc-Matrix_inverses_in_MIMO_wireless_communication-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Invertible matrix</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 37 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-37" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">37 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B5%D9%81%D9%88%D9%81%D8%A9_%D9%82%D8%A7%D8%A8%D9%84%D8%A9_%D9%84%D9%84%D8%B9%D9%83%D8%B3" title="مصفوفة قابلة للعكس – Arabic" lang="ar" hreflang="ar" data-title="مصفوفة قابلة للعكس" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/T%C9%99rs_matris" title="Tərs matris – Azerbaijani" lang="az" hreflang="az" data-title="Tərs matris" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Kh%C3%B3-ge%CC%8Dk_h%C3%A2ng-lia%CC%8Dt" title="Khó-ge̍k hâng-lia̍t – Minnan" lang="nan" hreflang="nan" data-title="Khó-ge̍k hâng-lia̍t" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matriu_invertible" title="Matriu invertible – Catalan" lang="ca" hreflang="ca" data-title="Matriu invertible" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%AE%D1%85%C4%83%D0%BD%D0%BC%D0%B0%D0%BD_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Юхăнман матрица – Chuvash" lang="cv" hreflang="cv" data-title="Юхăнман матрица" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Regul%C3%A1rn%C3%AD_matice" title="Regulární matice – Czech" lang="cs" hreflang="cs" data-title="Regulární matice" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Invertibel_matrix" title="Invertibel matrix – Danish" lang="da" hreflang="da" data-title="Invertibel matrix" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Regul%C3%A4re_Matrix" title="Reguläre Matrix – German" lang="de" hreflang="de" data-title="Reguläre Matrix" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Regulaarne_maatriks" title="Regulaarne maatriks – Estonian" lang="et" hreflang="et" data-title="Regulaarne maatriks" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CE%BD%CF%84%CE%B9%CF%83%CF%84%CF%81%CE%AD%CF%88%CE%B9%CE%BC%CE%BF%CF%82_%CF%80%CE%AF%CE%BD%CE%B1%CE%BA%CE%B1%CF%82" title="Αντιστρέψιμος πίνακας – Greek" lang="el" hreflang="el" data-title="Αντιστρέψιμος πίνακας" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matriz_invertible" title="Matriz invertible – Spanish" lang="es" hreflang="es" data-title="Matriz invertible" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Inversigebla_matrico" title="Inversigebla matrico – Esperanto" lang="eo" hreflang="eo" data-title="Inversigebla matrico" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Alderantzizko_matrize" title="Alderantzizko matrize – Basque" lang="eu" hreflang="eu" data-title="Alderantzizko matrize" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%D8%B3_%D9%88%D8%A7%D8%B1%D9%88%D9%86%E2%80%8C%D9%BE%D8%B0%DB%8C%D8%B1" title="ماتریس وارونپذیر – Persian" lang="fa" hreflang="fa" data-title="ماتریس وارونپذیر" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Matrice_inversible" title="Matrice inversible – French" lang="fr" hreflang="fr" data-title="Matrice inversible" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Matriz_invert%C3%ADbel" title="Matriz invertíbel – Galician" lang="gl" hreflang="gl" data-title="Matriz invertíbel" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B0%80%EC%97%AD%ED%96%89%EB%A0%AC" title="가역행렬 – Korean" lang="ko" hreflang="ko" data-title="가역행렬" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Matriks_terbalikkan" title="Matriks terbalikkan – Indonesian" lang="id" hreflang="id" data-title="Matriks terbalikkan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Andhverfanlegt_fylki" title="Andhverfanlegt fylki – Icelandic" lang="is" hreflang="is" data-title="Andhverfanlegt fylki" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matrice_invertibile" title="Matrice invertibile – Italian" lang="it" hreflang="it" data-title="Matrice invertibile" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%98%D7%A8%D7%99%D7%A6%D7%94_%D7%94%D7%A4%D7%99%D7%9B%D7%94" title="מטריצה הפיכה – Hebrew" lang="he" hreflang="he" data-title="מטריצה הפיכה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Matris_invertibila" title="Matris invertibila – Lombard" lang="lmo" hreflang="lmo" data-title="Matris invertibila" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Invert%C3%A1lhat%C3%B3_m%C3%A1trix" title="Invertálható mátrix – Hungarian" lang="hu" hreflang="hu" data-title="Invertálható mátrix" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E8%A1%8C%E5%88%97" title="正則行列 – Japanese" lang="ja" hreflang="ja" data-title="正則行列" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Inversarea_matricilor" title="Inversarea matricilor – Romanian" lang="ro" hreflang="ro" data-title="Inversarea matricilor" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B2%D1%8B%D1%80%D0%BE%D0%B6%D0%B4%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Невырожденная матрица – Russian" lang="ru" hreflang="ru" data-title="Невырожденная матрица" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Invertible_matrix" title="Invertible matrix – Simple English" lang="en-simple" hreflang="en-simple" data-title="Invertible matrix" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%BE%DB%95%DA%B5%DA%AF%DB%95%DA%95%D8%A7%D9%88%DB%95%DB%8C_%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%DA%A9%D8%B3" title="ھەڵگەڕاوەی ماتریکس – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ھەڵگەڕاوەی ماتریکس" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%BD%D0%B2%D0%B5%D1%80%D1%82%D0%B8%D0%B1%D0%B8%D0%BB%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0" title="Инвертибилна матрица – Serbian" lang="sr" hreflang="sr" data-title="Инвертибилна матрица" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Invertibilna_matrica" title="Invertibilna matrica – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Invertibilna matrica" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/K%C3%A4%C3%A4ntyv%C3%A4_matriisi" title="Kääntyvä matriisi – Finnish" lang="fi" hreflang="fi" data-title="Kääntyvä matriisi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Inverterbar_matris" title="Inverterbar matris – Swedish" lang="sv" hreflang="sv" data-title="Inverterbar matris" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A8%E0%AF%87%E0%AE%B0%E0%AF%8D%E0%AE%AE%E0%AE%BE%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%95%E0%AF%8D%E0%AE%95_%E0%AE%85%E0%AE%A3%E0%AE%BF" title="நேர்மாற்றத்தக்க அணி – Tamil" lang="ta" hreflang="ta" data-title="நேர்மாற்றத்தக்க அணி" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Tersinir_matris" title="Tersinir matris – Turkish" lang="tr" hreflang="tr" data-title="Tersinir matris" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B2%D0%B8%D1%80%D0%BE%D0%B4%D0%B6%D0%B5%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8F" title="Невироджена матриця – Ukrainian" lang="uk" hreflang="uk" data-title="Невироджена матриця" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ma_tr%E1%BA%ADn_kh%E1%BA%A3_ngh%E1%BB%8Bch" title="Ma trận khả nghịch – Vietnamese" lang="vi" hreflang="vi" data-title="Ma trận khả nghịch" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%9D%9E%E5%A5%87%E5%BC%82%E6%96%B9%E9%98%B5" title="非奇异方阵 – Chinese" lang="zh" hreflang="zh" data-title="非奇异方阵" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q242188#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Invertible_matrix" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Invertible_matrix" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Invertible_matrix"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Invertible_matrix&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Invertible_matrix&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Invertible_matrix"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Invertible_matrix&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Invertible_matrix&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Invertible_matrix" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Invertible_matrix" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Invertible_matrix&oldid=1249575168" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Invertible_matrix&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Invertible_matrix&id=1249575168&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FInvertible_matrix"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FInvertible_matrix"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Invertible_matrix&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Invertible_matrix&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q242188" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Inverse_of_a_matrix&redirect=no" class="mw-redirect" title="Inverse of a matrix">Inverse of a matrix</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Matrix which has a multiplicative inverse</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1248332772">.mw-parser-output .multiple-issues-text{width:95%;margin:0.2em 0}.mw-parser-output .multiple-issues-text>.mw-collapsible-content{margin-top:0.3em}.mw-parser-output .compact-ambox .ambox{border:none;border-collapse:collapse;background-color:transparent;margin:0 0 0 1.6em!important;padding:0!important;width:auto;display:block}body.mediawiki .mw-parser-output .compact-ambox .ambox.mbox-small-left{font-size:100%;width:auto;margin:0}.mw-parser-output .compact-ambox .ambox .mbox-text{padding:0!important;margin:0!important}.mw-parser-output .compact-ambox .ambox .mbox-text-span{display:list-item;line-height:1.5em;list-style-type:disc}body.skin-minerva .mw-parser-output .multiple-issues-text>.mw-collapsible-toggle,.mw-parser-output .compact-ambox .ambox .mbox-image,.mw-parser-output .compact-ambox .ambox .mbox-imageright,.mw-parser-output .compact-ambox .ambox .mbox-empty-cell,.mw-parser-output .compact-ambox .hide-when-compact{display:none}</style><table class="box-Multiple_issues plainlinks metadata ambox ambox-content ambox-multiple_issues compact-ambox" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span"><div class="multiple-issues-text mw-collapsible"><b>This article has multiple issues.</b> Please help <b><a href="/wiki/Special:EditPage/Invertible_matrix" title="Special:EditPage/Invertible matrix">improve it</a></b> or discuss these issues on the <b><a href="/wiki/Talk:Invertible_matrix" title="Talk:Invertible matrix">talk page</a></b>. <small><i>(<a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove these messages</a>)</i></small> <div class="mw-collapsible-content"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Invertible_matrix" title="Special:EditPage/Invertible matrix">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Invertible+matrix%22">"Invertible matrix"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Invertible+matrix%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Invertible+matrix%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Invertible+matrix%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Invertible+matrix%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Invertible+matrix%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">September 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Technical plainlinks metadata ambox ambox-style ambox-technical" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>may be too technical for most readers to understand</b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Invertible_matrix&action=edit">help improve it</a> to <a href="/wiki/Wikipedia:Make_technical_articles_understandable" title="Wikipedia:Make technical articles understandable">make it understandable to non-experts</a>, without removing the technical details.</span> <span class="date-container"><i>(<span class="date">August 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> </div> </div><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, an <b>invertible matrix</b> is a <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> which has an <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">inverse</a>. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. Invertible matrices are the same size as their inverse. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> <span class="texhtml"><b>A</b></span> is called <b>invertible</b> (also <b>nonsingular</b>, <b>nondegenerate</b> or rarely <b>regular</b>) if there exists an <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> square matrix <span class="texhtml"><b>B</b></span> such that<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {AB} =\mathbf {BA} =\mathbf {I} _{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {AB} =\mathbf {BA} =\mathbf {I} _{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/993e9650055f5129e0c2b1a329df528b81742819" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.917ex; height:2.509ex;" alt="{\displaystyle \mathbf {AB} =\mathbf {BA} =\mathbf {I} _{n},}"></span>where <span class="texhtml"><b>I</b><sub><i>n</i></sub></span> denotes the <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> and the multiplication used is ordinary <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> If this is the case, then the matrix <span class="texhtml"><b>B</b></span> is uniquely determined by <span class="texhtml"><b>A</b></span>, and is called the <a href="/wiki/Multiplicative_inverse" title="Multiplicative inverse">(multiplicative) <i><b>inverse</b></i></a> of <span class="texhtml"><b>A</b></span>, denoted by <span class="texhtml"><b>A</b><sup>−1</sup></span>. <b>Matrix inversion</b> is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>Over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, a square matrix that is <i>not</i> invertible is called <b>singular</b> or <b>degenerate</b>. A square matrix with entries in a field is singular <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> its <a href="/wiki/Determinant" title="Determinant">determinant</a> is zero. Singular matrices are rare in the sense that if a square matrix's entries are randomly selected from any bounded region on the <a href="/wiki/Number_line" title="Number line">number line</a> or <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>, the <a href="/wiki/Probability" title="Probability">probability</a> that the matrix is singular is 0, that is, it will <a href="/wiki/Almost_surely" title="Almost surely">"almost never"</a> be singular. Non-square matrices, i.e. <span class="texhtml mvar" style="font-style:italic;">m</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices for which <span class="texhtml"><i>m</i> ≠ <i>n</i></span>, do not have an inverse. However, in some cases such a matrix may have a <a href="/wiki/Inverse_element#Matrices" title="Inverse element">left inverse</a> or <a href="/wiki/Inverse_element#Matrices" title="Inverse element">right inverse</a>. If <span class="texhtml"><b>A</b></span> is <span class="texhtml mvar" style="font-style:italic;">m</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> and the <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> of <span class="texhtml"><b>A</b></span> is equal to <span class="texhtml"><i>n</i></span>, (<span class="texhtml"><i>n</i> ≤ <i>m</i></span>), then <span class="texhtml"><b>A</b></span> has a left inverse, an <span class="texhtml"><i>n</i></span>-by-<span class="texhtml mvar" style="font-style:italic;"><i>m</i></span> matrix <span class="texhtml"><b>B</b></span> such that <span class="texhtml"><b>BA</b> = <b>I</b><sub><i>n</i></sub></span>. If <span class="texhtml"><b>A</b></span> has rank <span class="texhtml"><i>m</i></span> (<span class="texhtml"><i>m</i> ≤ <i>n</i></span>), then it has a right inverse, an <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">m</span> matrix <span class="texhtml"><b>B</b></span> such that <span class="texhtml"><b>AB</b> = <b>I</b><sub><i>m</i></sub></span>. </p><p>While the most common case is that of matrices over the <a href="/wiki/Real_number" title="Real number">real</a> or <a href="/wiki/Complex_number" title="Complex number">complex</a> numbers, all these definitions can be given for matrices over any <a href="/wiki/Algebraic_structure" title="Algebraic structure">algebraic structure</a> equipped with <a href="/wiki/Addition" title="Addition">addition</a> and <a href="/wiki/Multiplication" title="Multiplication">multiplication</a> (i.e. <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a>). However, in the case of a ring being <a href="/wiki/Commutative_ring" title="Commutative ring">commutative</a>, the condition for a square matrix to be invertible is that its determinant is invertible in the ring, which in general is a stricter requirement than it being nonzero. For a <a href="/wiki/Noncommutative_ring" title="Noncommutative ring">noncommutative ring</a>, the usual determinant is not defined. The conditions for existence of left-inverse or right-inverse are more complicated, since a notion of rank does not exist over rings. </p><p>The set of <span class="texhtml"><i>n</i> × <i>n</i></span> invertible matrices together with the operation of <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a> and entries from ring <span class="texhtml mvar" style="font-style:italic;">R</span> form a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a>, the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a> of degree <span class="texhtml mvar" style="font-style:italic;">n</span>, denoted <span class="texhtml">GL<sub><i>n</i></sub>(<i>R</i>)</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=2" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="The_invertible_matrix_theorem">The invertible matrix theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=3" title="Edit section: The invertible matrix theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><b>A</b></span> be a square <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrix over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml mvar" style="font-style:italic;">K</span> (e.g., the field <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span>⁠</span> of real numbers). The following statements are equivalent, i.e., they are either all true or all false for any given matrix:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <ul><li><span class="texhtml"><b>A</b></span> is invertible, i.e. it has an inverse under matrix multiplication, i.e., there exists a <span class="texhtml"><b>B</b></span> such that <span class="texhtml"><b>AB</b> = <b>I</b><sub><i>n</i></sub> = <b>BA</b></span>. (In this statement, "invertible" can equivalently be replaced with "left-invertible" or "right-invertible", in which one-sided inverses are considered.)</li> <li>The linear transformation mapping <span class="texhtml"><b>x</b></span> to <span class="texhtml"><b>Ax</b></span> is invertible, i.e., has an inverse under function composition. (Here, again, "invertible" can equivalently be replaced with either "left-invertible" or "right-invertible")</li> <li>The <a href="/wiki/Transpose" title="Transpose">transpose</a> <span class="texhtml"><b>A</b><sup>T</sup></span> is an invertible matrix.</li> <li><span class="texhtml"><b>A</b></span> is <a href="/wiki/Row_equivalence" title="Row equivalence">row-equivalent</a> to the <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> <span class="texhtml"><b>I</b><sub><i>n</i></sub></span>.</li> <li><span class="texhtml"><b>A</b></span> is <a href="/wiki/Row_equivalence" title="Row equivalence">column-equivalent</a> to the <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> identity matrix <span class="texhtml"><b>I</b><sub><i>n</i></sub></span>.</li> <li><span class="texhtml"><b>A</b></span> has <span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Pivot_position" class="mw-redirect" title="Pivot position">pivot positions</a>.</li> <li><span class="texhtml"><b>A</b></span> has full <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a>: <span class="texhtml">rank <b>A</b> = <i>n</i></span>.</li> <li><span class="texhtml"><b>A</b></span> has a trivial <a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">kernel</a>: <span class="texhtml">ker(<b>A</b>) = {<b>0</b>}.</span></li> <li>The linear transformation mapping <span class="texhtml"><b>x</b></span> to <span class="texhtml"><b>Ax</b></span> is bijective; that is, the equation <span class="texhtml"><b>Ax</b> = <b>b</b></span> has exactly one solution for each <span class="texhtml"><b>b</b></span> in <span class="texhtml mvar" style="font-style:italic;">K<sup>n</sup></span>. (Here, "bijective" can equivalently be replaced with "<a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a>" or "<a href="/wiki/Surjective" class="mw-redirect" title="Surjective">surjective</a>")</li> <li>The columns of <span class="texhtml"><b>A</b></span> form a <a href="/wiki/Basis_of_a_vector_space" class="mw-redirect" title="Basis of a vector space">basis</a> of <span class="texhtml mvar" style="font-style:italic;">K<sup>n</sup></span>. (In this statement, "basis" can equivalently be replaced with either "linearly independent set" or "spanning set")</li> <li>The rows of <span class="texhtml"><b>A</b></span> form a basis of <span class="texhtml mvar" style="font-style:italic;">K<sup>n</sup></span>. (Similarly, here, "basis" can equivalently be replaced with either "linearly independent set" or "spanning set")</li> <li>The <a href="/wiki/Determinant" title="Determinant">determinant</a> of <span class="texhtml"><b>A</b></span> is nonzero: <span class="texhtml">det <b>A</b> ≠ 0</span>. (In general, a square matrix over a <a href="/wiki/Commutative_ring" title="Commutative ring">commutative ring</a> is invertible if and only if its determinant is a <a href="/wiki/Unit_(ring_theory)" title="Unit (ring theory)">unit</a> (i.e. multiplicatively invertible element) of that ring.</li> <li>The number 0 is not an <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalue</a> of <span class="texhtml"><b>A</b></span>. (More generally, a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is an eigenvalue of <span class="texhtml"><b>A</b></span> if the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} -\lambda \mathbf {I} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} -\lambda \mathbf {I} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29a7c87b40de792974d3929d9d1f470e0671caa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.229ex; height:2.343ex;" alt="{\displaystyle \mathbf {A} -\lambda \mathbf {I} }"></span> is singular, where <span class="texhtml"><b>I</b></span> is the identity matrix.)</li> <li>The matrix <span class="texhtml"><b>A</b></span> can be expressed as a finite product of <a href="/wiki/Elementary_matrix" title="Elementary matrix">elementary matrices</a>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Other_properties">Other properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=4" title="Edit section: Other properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Furthermore, the following properties hold for an invertible matrix <span class="texhtml"><b>A</b></span>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {A} ^{-1})^{-1}=\mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {A} ^{-1})^{-1}=\mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/401fa5da493f741295b17b51187238a4ca543518" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.612ex; height:3.176ex;" alt="{\displaystyle (\mathbf {A} ^{-1})^{-1}=\mathbf {A} }"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (k\mathbf {A} )^{-1}=k^{-1}\mathbf {A} ^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (k\mathbf {A} )^{-1}=k^{-1}\mathbf {A} ^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8c45311265a658a3eb01ffb7d54998403636a74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.368ex; height:3.176ex;" alt="{\displaystyle (k\mathbf {A} )^{-1}=k^{-1}\mathbf {A} ^{-1}}"></span> for nonzero scalar <span class="texhtml mvar" style="font-style:italic;">k</span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {Ax} )^{+}=\mathbf {x} ^{+}\mathbf {A} ^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">x</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {Ax} )^{+}=\mathbf {x} ^{+}\mathbf {A} ^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41d9251626864faa58236e047707b41c03a33c26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.123ex; height:3.176ex;" alt="{\displaystyle (\mathbf {Ax} )^{+}=\mathbf {x} ^{+}\mathbf {A} ^{-1}}"></span> if <span class="texhtml"><b>A</b></span> has orthonormal columns, where <span class="texhtml"><sup>+</sup></span> denotes the <a href="/wiki/Moore%E2%80%93Penrose_inverse" title="Moore–Penrose inverse">Moore–Penrose inverse</a> and <span class="texhtml"><b>x</b></span> is a vector</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {A} ^{\mathrm {T} })^{-1}=(\mathbf {A} ^{-1})^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {A} ^{\mathrm {T} })^{-1}=(\mathbf {A} ^{-1})^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0898926aeba35f9f344470dee2ffa64f8a2425e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.259ex; height:3.176ex;" alt="{\displaystyle (\mathbf {A} ^{\mathrm {T} })^{-1}=(\mathbf {A} ^{-1})^{\mathrm {T} }}"></span></li> <li>For any invertible <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {AB} )^{-1}=\mathbf {B} ^{-1}\mathbf {A} ^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {AB} )^{-1}=\mathbf {B} ^{-1}\mathbf {A} ^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31d495dce8a46a90d1a1d4f2a68113a238d3022a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.394ex; height:3.176ex;" alt="{\displaystyle (\mathbf {AB} )^{-1}=\mathbf {B} ^{-1}\mathbf {A} ^{-1}.}"></span> More generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} _{1},\dots ,\mathbf {A} _{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} _{1},\dots ,\mathbf {A} _{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee54f2a4a407460ea3106679781edcb70ea19375" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.36ex; height:2.509ex;" alt="{\displaystyle \mathbf {A} _{1},\dots ,\mathbf {A} _{k}}"></span> are invertible <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {A} _{1}\mathbf {A} _{2}\cdots \mathbf {A} _{k-1}\mathbf {A} _{k})^{-1}=\mathbf {A} _{k}^{-1}\mathbf {A} _{k-1}^{-1}\cdots \mathbf {A} _{2}^{-1}\mathbf {A} _{1}^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>⋯<!-- ⋯ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {A} _{1}\mathbf {A} _{2}\cdots \mathbf {A} _{k-1}\mathbf {A} _{k})^{-1}=\mathbf {A} _{k}^{-1}\mathbf {A} _{k-1}^{-1}\cdots \mathbf {A} _{2}^{-1}\mathbf {A} _{1}^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d57fd38b02c9a1e47f2075b1d333a68861de92a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:47.612ex; height:3.509ex;" alt="{\displaystyle (\mathbf {A} _{1}\mathbf {A} _{2}\cdots \mathbf {A} _{k-1}\mathbf {A} _{k})^{-1}=\mathbf {A} _{k}^{-1}\mathbf {A} _{k-1}^{-1}\cdots \mathbf {A} _{2}^{-1}\mathbf {A} _{1}^{-1}.}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det \mathbf {A} ^{-1}=(\det \mathbf {A} )^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det \mathbf {A} ^{-1}=(\det \mathbf {A} )^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1e8d29f896fa22f7485353a2dfee74cac6f265" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.492ex; height:3.176ex;" alt="{\displaystyle \det \mathbf {A} ^{-1}=(\det \mathbf {A} )^{-1}.}"></span></li></ul> <p>The rows of the inverse matrix <span class="texhtml"><b>V</b></span> of a matrix <span class="texhtml"><b>U</b></span> are <a href="/wiki/Orthonormal" class="mw-redirect" title="Orthonormal">orthonormal</a> to the columns of <span class="texhtml"><b>U</b></span> (and vice versa interchanging rows for columns). To see this, suppose that <span class="texhtml"><b>UV</b> = <b>VU</b> = <b>I</b></span> where the rows of <span class="texhtml"><b>V</b></span> are denoted as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{i}^{\mathrm {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{i}^{\mathrm {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a7c3dc5bb8dab3950ed1536ffc56234cdd0923a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.546ex; height:3.176ex;" alt="{\displaystyle v_{i}^{\mathrm {T} }}"></span> and the columns of <span class="texhtml"><b>U</b></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f8d397f4684f948df846413e6d62b009718724" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.239ex; height:2.343ex;" alt="{\displaystyle u_{j}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq i,j\leq n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq i,j\leq n.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf8622ec2db51b7b65656a2480456ddab6553d76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.195ex; height:2.509ex;" alt="{\displaystyle 1\leq i,j\leq n.}"></span> Then clearly, the <a href="/wiki/Dot_product" title="Dot product">Euclidean inner product</a> of any two <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{i}^{\mathrm {T} }u_{j}=\delta _{i,j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msubsup> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{i}^{\mathrm {T} }u_{j}=\delta _{i,j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c69f4664bf9a40c7b1dc0bd6594ec7298916afb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.498ex; height:3.176ex;" alt="{\displaystyle v_{i}^{\mathrm {T} }u_{j}=\delta _{i,j}.}"></span> This property can also be useful in constructing the inverse of a square matrix in some instances, where a set of <a href="/wiki/Orthogonal" class="mw-redirect" title="Orthogonal">orthogonal</a> vectors (but not necessarily orthonormal vectors) to the columns of <span class="texhtml"><b>U</b></span> are known. In which case, one can apply the iterative <a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a> to this initial set to determine the rows of the inverse <span class="texhtml"><b>V</b></span>. </p><p>A matrix that is its own inverse (i.e., a matrix <span class="texhtml"><b>A</b></span> such that <span class="texhtml"><b>A</b> = <b>A</b><sup>−1</sup></span>, and consequently <span class="texhtml"><b>A</b><sup>2</sup> = <b>I</b></span>), is called an <a href="/wiki/Involutory_matrix" title="Involutory matrix">involutory matrix</a>. </p> <div class="mw-heading mw-heading3"><h3 id="In_relation_to_its_adjugate">In relation to its adjugate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=5" title="Edit section: In relation to its adjugate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Adjugate_matrix" title="Adjugate matrix">adjugate</a> of a matrix <span class="texhtml"><b>A</b></span> can be used to find the inverse of <span class="texhtml"><b>A</b></span> as follows: </p><p>If <span class="texhtml"><b>A</b></span> is an invertible matrix, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\operatorname {adj} (\mathbf {A} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mi>adj</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\operatorname {adj} (\mathbf {A} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e13aa55052bf5949bd7acd3a1833d7751f46106a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:23.375ex; height:6.009ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\operatorname {adj} (\mathbf {A} ).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="In_relation_to_the_identity_matrix">In relation to the identity matrix</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=6" title="Edit section: In relation to the identity matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It follows from the <a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associativity</a> of matrix multiplication that if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {AB} =\mathbf {I} \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {AB} =\mathbf {I} \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a33e24fe5e0d6dc7eca95332638aebd6918598c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.613ex; height:2.176ex;" alt="{\displaystyle \mathbf {AB} =\mathbf {I} \ }"></span></dd></dl> <p>for <i>finite square</i> matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span>, then also </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {BA} =\mathbf {I} \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {BA} =\mathbf {I} \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66da7c56c99606ddf8dc5847d3c1fc5737a148c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.613ex; height:2.176ex;" alt="{\displaystyle \mathbf {BA} =\mathbf {I} \ }"></span><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Density">Density</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=7" title="Edit section: Density"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Over the field of real numbers, the set of singular <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices, considered as a <a href="/wiki/Subset" title="Subset">subset</a> of <span class="nowrap">⁠<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n\times n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n\times n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7d35f654d48723d2bb1f15741a7f41a9eb1e5bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.808ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n\times n},}"></span>⁠</span> is a <a href="/wiki/Null_set" title="Null set">null set</a>, that is, has <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a> zero. This is true because singular matrices are the roots of the <a href="/wiki/Determinant" title="Determinant">determinant</a> function. This is a <a href="/wiki/Continuous_function" title="Continuous function">continuous function</a> because it is a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> in the entries of the matrix. Thus in the language of <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a>, <a href="/wiki/Almost_all" title="Almost all">almost all</a> <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices are invertible. </p><p>Furthermore, the set of <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> invertible matrices is <a href="/wiki/Open_set" title="Open set">open</a> and <a href="/wiki/Dense_set" title="Dense set">dense</a> in the <a href="/wiki/Topological_space" title="Topological space">topological space</a> of all <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices. Equivalently, the set of singular matrices is <a href="/wiki/Closed_set" title="Closed set">closed</a> and <a href="/wiki/Nowhere_dense" class="mw-redirect" title="Nowhere dense">nowhere dense</a> in the space of <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices. </p><p>In practice however, one may encounter non-invertible matrices. And in <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical calculations</a>, matrices which are invertible, but close to a non-invertible matrix, can still be problematic; such matrices are said to be <a href="/wiki/Condition_number#Matrices" title="Condition number">ill-conditioned</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=8" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An example with rank of <span class="texhtml"><i>n</i> − 1</span> is a non-invertible matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{pmatrix}2&4\\2&4\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{pmatrix}2&4\\2&4\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e19a15663f16d05b7befdfc5cb06cb637f8c0d74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.585ex; height:6.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{pmatrix}2&4\\2&4\end{pmatrix}}.}"></span></dd></dl> <p>We can see the rank of this 2-by-2 matrix is 1, which is <span class="texhtml"><i>n</i> − 1 ≠ <i>n</i></span>, so it is non-invertible. </p><p>Consider the following 2-by-2 matrix: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\1&-1\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\1&-1\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c8067003f6815e36c6c28f7aaad45ca59884a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.343ex; height:7.509ex;" alt="{\displaystyle \mathbf {B} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\1&-1\end{pmatrix}}.}"></span></dd></dl> <p>The matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {B} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb0ef39b0f5ffa23c170aa7f7b4e718327c4d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.901ex; height:2.176ex;" alt="{\displaystyle \mathbf {B} }"></span> is invertible. To check this, one can compute that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \det \mathbf {B} =-{\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \det \mathbf {B} =-{\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b8b78c9424f6a4598f88a4f6dfb93d82e231661" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:12.082ex; height:3.509ex;" alt="{\textstyle \det \mathbf {B} =-{\frac {1}{2}}}"></span>, which is non-zero. </p><p>As an example of a non-invertible, or singular, matrix, consider the matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\{\tfrac {2}{3}}&-1\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\{\tfrac {2}{3}}&-1\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e5a82b5323b7bf77490a17f2ae45da678726df1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:18.373ex; height:7.843ex;" alt="{\displaystyle \mathbf {C} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\{\tfrac {2}{3}}&-1\end{pmatrix}}.}"></span></dd></dl> <p>The determinant of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11de80478fce9090e43eed19100b37cc841661e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:2.176ex;" alt="{\displaystyle \mathbf {C} }"></span> is 0, which is a <a href="/wiki/Necessary_and_sufficient_condition" class="mw-redirect" title="Necessary and sufficient condition">necessary and sufficient condition</a> for a matrix to be non-invertible. </p> <div class="mw-heading mw-heading2"><h2 id="Methods_of_matrix_inversion">Methods of matrix inversion</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=9" title="Edit section: Methods of matrix inversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Gaussian_elimination">Gaussian elimination</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=10" title="Edit section: Gaussian elimination"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a> is a useful and easy way to compute the inverse of a matrix. To compute a matrix inverse using this method, an <a href="/wiki/Augmented_matrix" title="Augmented matrix">augmented matrix</a> is first created with the left side being the matrix to invert and the right side being the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>. Then, Gaussian elimination is used to convert the left side into the identity matrix, which causes the right side to become the inverse of the input matrix. </p><p>For example, take the following matrix: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\1&-1\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\1&-1\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db38a6ef332a98604791bd1f6134e83ff6751d2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.461ex; height:7.509ex;" alt="{\displaystyle \mathbf {A} ={\begin{pmatrix}-1&{\tfrac {3}{2}}\\1&-1\end{pmatrix}}.}"></span> </p><p>The first step to compute its inverse is to create the augmented matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\begin{array}{cc|cc}-1&{\tfrac {3}{2}}&1&0\\1&-1&0&1\end{array}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center" rowspacing="4pt" columnspacing="1em" columnlines="none solid none"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\begin{array}{cc|cc}-1&{\tfrac {3}{2}}&1&0\\1&-1&0&1\end{array}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbb0c2018d7c07bc1982f3adf4646b0adce7f3a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:22.559ex; height:7.843ex;" alt="{\displaystyle \left({\begin{array}{cc|cc}-1&{\tfrac {3}{2}}&1&0\\1&-1&0&1\end{array}}\right).}"></span> </p><p>Call the first row of this matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d63c96f59d98589d923c4f0b04222feaa7283e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.818ex; height:2.509ex;" alt="{\displaystyle R_{1}}"></span> and the second row <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f571121c264178676d1df8ab899f238a39bc2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.818ex; height:2.509ex;" alt="{\displaystyle R_{2}}"></span>. Then, add row 1 to row 2 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R_{1}+R_{2}\to R_{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R_{1}+R_{2}\to R_{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce184e83b6dc9f65cf9158fd032dcb6ffab7fc0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.365ex; height:2.843ex;" alt="{\displaystyle (R_{1}+R_{2}\to R_{2}).}"></span> This yields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\begin{array}{cc|cc}-1&{\tfrac {3}{2}}&1&0\\0&{\tfrac {1}{2}}&1&1\end{array}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center" rowspacing="4pt" columnspacing="1em" columnlines="none solid none"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\begin{array}{cc|cc}-1&{\tfrac {3}{2}}&1&0\\0&{\tfrac {1}{2}}&1&1\end{array}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76df704ec37cb83acf31d3a4f9c3b0e92190727f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.671ex; width:21.632ex; height:8.509ex;" alt="{\displaystyle \left({\begin{array}{cc|cc}-1&{\tfrac {3}{2}}&1&0\\0&{\tfrac {1}{2}}&1&1\end{array}}\right).}"></span> </p><p>Next, subtract row 2, multiplied by 3, from row 1 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (R_{1}-3\,R_{2}\to R_{1}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mn>3</mn> <mspace width="thinmathspace" /> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (R_{1}-3\,R_{2}\to R_{1}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b375ecec1d3e451d58c7a736150d131971b4e287" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.915ex; height:2.843ex;" alt="{\displaystyle (R_{1}-3\,R_{2}\to R_{1}),}"></span> which yields <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\begin{array}{cc|cc}-1&0&-2&-3\\0&{\tfrac {1}{2}}&1&1\end{array}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center" rowspacing="4pt" columnspacing="1em" columnlines="none solid none"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\begin{array}{cc|cc}-1&0&-2&-3\\0&{\tfrac {1}{2}}&1&1\end{array}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b02c0bf7ccf9d39a4c60d22a9d963ce392d8be2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:24.862ex; height:7.843ex;" alt="{\displaystyle \left({\begin{array}{cc|cc}-1&0&-2&-3\\0&{\tfrac {1}{2}}&1&1\end{array}}\right).}"></span> </p><p>Finally, multiply row 1 by −1 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-R_{1}\to R_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-R_{1}\to R_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20d259abbec54e28c9b11f1be9964747d0c64bb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.868ex; height:2.843ex;" alt="{\displaystyle (-R_{1}\to R_{1})}"></span> and row 2 by 2 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2\,R_{2}\to R_{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>2</mn> <mspace width="thinmathspace" /> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (2\,R_{2}\to R_{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56063e10e04b772d530216a238627ccf9634479f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.256ex; height:2.843ex;" alt="{\displaystyle (2\,R_{2}\to R_{2}).}"></span> This yields the identity matrix on the left side and the inverse matrix on the right:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\begin{array}{cc|cc}1&0&2&3\\0&1&2&2\end{array}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center" rowspacing="4pt" columnspacing="1em" columnlines="none solid none"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\begin{array}{cc|cc}1&0&2&3\\0&1&2&2\end{array}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3034409db006517caf335325f6cad641be640e5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:18.942ex; height:7.509ex;" alt="{\displaystyle \left({\begin{array}{cc|cc}1&0&2&3\\0&1&2&2\end{array}}\right).}"></span> </p><p>Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\begin{pmatrix}2&3\\2&2\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\begin{pmatrix}2&3\\2&2\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43e2aea21a622b001c9b0aa8419b3139274183ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.918ex; height:6.176ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\begin{pmatrix}2&3\\2&2\end{pmatrix}}.}"></span> </p><p>The reason it works is that the process of Gaussian elimination can be viewed as a sequence of applying left matrix multiplication using elementary row operations using <a href="/wiki/Elementary_matrix" title="Elementary matrix">elementary matrices</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc7a9f69e9f4cb6e835f609c6c574012eea0bca3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.976ex; height:2.509ex;" alt="{\displaystyle \mathbf {E} _{n}}"></span>), such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {A} =\mathbf {I} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {A} =\mathbf {I} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b96b7261aa0889daebc9be22f4d9217116f3f3fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.95ex; height:2.509ex;" alt="{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {A} =\mathbf {I} .}"></span> </p><p>Applying right-multiplication using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0de28471a737cec8b509e29f4fa204a901c1984" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.999ex; height:3.009ex;" alt="{\displaystyle \mathbf {A} ^{-1},}"></span> we get <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {I} =\mathbf {I} \mathbf {A} ^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {I} =\mathbf {I} \mathbf {A} ^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f17cb67790bab0a7611b951d1c22f52d633f2233" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.297ex; height:3.009ex;" alt="{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {I} =\mathbf {I} \mathbf {A} ^{-1}.}"></span> And the right side <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} \mathbf {A} ^{-1}=\mathbf {A} ^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {I} \mathbf {A} ^{-1}=\mathbf {A} ^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bf35037336b403f79c669259b85f00882b43422" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.464ex; height:3.009ex;" alt="{\displaystyle \mathbf {I} \mathbf {A} ^{-1}=\mathbf {A} ^{-1},}"></span> which is the inverse we want. </p><p>To obtain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {I} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">E</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {I} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3957b283573b8268471e2c9d12087ad80b905c91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.832ex; height:2.509ex;" alt="{\displaystyle \mathbf {E} _{n}\mathbf {E} _{n-1}\cdots \mathbf {E} _{2}\mathbf {E} _{1}\mathbf {I} ,}"></span> we create the augumented matrix by combining <span class="texhtml"><b>A</b></span> with <span class="texhtml"><b>I</b></span> and applying <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a>. The two portions will be transformed using the same sequence of elementary row operations. When the left portion becomes <span class="texhtml"><b>I</b></span>, the right portion applied the same elementary row operation sequence will become <span class="texhtml"><b>A</b><sup>−1</sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Newton's_method"><span id="Newton.27s_method"></span>Newton's method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=11" title="Edit section: Newton's method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A generalization of <a href="/wiki/Newton%27s_method" title="Newton's method">Newton's method</a> as used for a <a href="/wiki/Multiplicative_inverse#Algorithms" title="Multiplicative inverse">multiplicative inverse algorithm</a> may be convenient, if it is convenient to find a suitable starting seed: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{k+1}=2X_{k}-X_{k}AX_{k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>A</mi> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{k+1}=2X_{k}-X_{k}AX_{k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e9cedd88e295dc5669a444eaa8b7d7f4eb0a170" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.644ex; height:2.509ex;" alt="{\displaystyle X_{k+1}=2X_{k}-X_{k}AX_{k}.}"></span></dd></dl> <p><a href="/wiki/Victor_Pan" title="Victor Pan">Victor Pan</a> and <a href="/wiki/John_Reif" title="John Reif">John Reif</a> have done work that includes ways of generating a starting seed.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>Newton's method is particularly useful when dealing with <a href="/wiki/Family_(set_theory)" class="mw-redirect" title="Family (set theory)">families</a> of related matrices that behave enough like the sequence manufactured for the <a href="/wiki/Homotopy" title="Homotopy">homotopy</a> above: sometimes a good starting point for refining an approximation for the new inverse can be the already obtained inverse of a previous matrix that nearly matches the current matrix, for example, the pair of sequences of inverse matrices used in obtaining <a href="/wiki/Matrix_square_root#By_Denman–Beavers_iteration" class="mw-redirect" title="Matrix square root">matrix square roots by Denman–Beavers iteration</a>; this may need more than one pass of the iteration at each new matrix, if they are not close enough together for just one to be enough. Newton's method is also useful for "touch up" corrections to the Gauss–Jordan algorithm which has been contaminated by small errors due to <a href="/wiki/Round-off_error" title="Round-off error">imperfect computer arithmetic</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Cayley–Hamilton_method"><span id="Cayley.E2.80.93Hamilton_method"></span>Cayley–Hamilton method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=12" title="Edit section: Cayley–Hamilton method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Cayley%E2%80%93Hamilton_theorem" title="Cayley–Hamilton theorem">Cayley–Hamilton theorem</a> allows the inverse of <span class="texhtml"><b>A</b></span> to be expressed in terms of <span class="texhtml">det(<b>A</b>)</span>, traces and powers of <span class="texhtml"><b>A</b></span>:<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\sum _{s=0}^{n-1}\mathbf {A} ^{s}\sum _{k_{1},k_{2},\ldots ,k_{n-1}}\prod _{l=1}^{n-1}{\frac {(-1)^{k_{l}+1}}{l^{k_{l}}k_{l}!}}\operatorname {tr} \left(\mathbf {A} ^{l}\right)^{k_{l}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </munder> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <msup> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> </msup> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>!</mo> </mrow> </mfrac> </mrow> <mi>tr</mi> <mo>⁡<!-- --></mo> <msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\sum _{s=0}^{n-1}\mathbf {A} ^{s}\sum _{k_{1},k_{2},\ldots ,k_{n-1}}\prod _{l=1}^{n-1}{\frac {(-1)^{k_{l}+1}}{l^{k_{l}}k_{l}!}}\operatorname {tr} \left(\mathbf {A} ^{l}\right)^{k_{l}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10c3357d8c84994be3bd3d17459de4dca4a6e659" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:56.073ex; height:7.843ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\sum _{s=0}^{n-1}\mathbf {A} ^{s}\sum _{k_{1},k_{2},\ldots ,k_{n-1}}\prod _{l=1}^{n-1}{\frac {(-1)^{k_{l}+1}}{l^{k_{l}}k_{l}!}}\operatorname {tr} \left(\mathbf {A} ^{l}\right)^{k_{l}},}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">n</span> is size of <span class="texhtml"><b>A</b></span>, and <span class="texhtml">tr(<b>A</b>)</span> is the <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">trace</a> of matrix <span class="texhtml"><b>A</b></span> given by the sum of the <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a>. The sum is taken over <span class="texhtml mvar" style="font-style:italic;">s</span> and the sets of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k_{l}\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k_{l}\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7bd62dc750ae2faa00048f7345ba0b630f3df7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.195ex; height:2.509ex;" alt="{\displaystyle k_{l}\geq 0}"></span> satisfying the linear <a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s+\sum _{l=1}^{n-1}lk_{l}=n-1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>s</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>l</mi> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s+\sum _{l=1}^{n-1}lk_{l}=n-1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f278839d8c2666ae993aaecb2a902a6dfc1a0a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.443ex; height:7.343ex;" alt="{\displaystyle s+\sum _{l=1}^{n-1}lk_{l}=n-1.}"></span></dd></dl> <p>The formula can be rewritten in terms of complete <a href="/wiki/Bell_polynomials" title="Bell polynomials">Bell polynomials</a> of arguments <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{l}=-(l-1)!\operatorname {tr} \left(A^{l}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>l</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{l}=-(l-1)!\operatorname {tr} \left(A^{l}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ba0f218c0326dda114533880792ef3d53999b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.42ex; height:3.343ex;" alt="{\displaystyle t_{l}=-(l-1)!\operatorname {tr} \left(A^{l}\right)}"></span> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\sum _{s=1}^{n}\mathbf {A} ^{s-1}{\frac {(-1)^{n-1}}{(n-s)!}}B_{n-s}(t_{1},t_{2},\ldots ,t_{n-s}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>s</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\sum _{s=1}^{n}\mathbf {A} ^{s-1}{\frac {(-1)^{n-1}}{(n-s)!}}B_{n-s}(t_{1},t_{2},\ldots ,t_{n-s}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/512f72f6bed764bb9fd2cbf4bae22bf9f1a03ef3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.129ex; height:7.009ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\sum _{s=1}^{n}\mathbf {A} ^{s-1}{\frac {(-1)^{n-1}}{(n-s)!}}B_{n-s}(t_{1},t_{2},\ldots ,t_{n-s}).}"></span></dd></dl> <p>This is described in more detail under <a href="/wiki/Cayley%E2%80%93Hamilton_theorem#Determinant_and_inverse_matrix" title="Cayley–Hamilton theorem">Cayley–Hamilton method</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Eigendecomposition">Eigendecomposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=13" title="Edit section: Eigendecomposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Eigendecomposition_of_a_matrix" title="Eigendecomposition of a matrix">Eigendecomposition of a matrix</a></div> <p>If matrix <span class="texhtml"><b>A</b></span> can be eigendecomposed, and if none of its eigenvalues are zero, then <span class="texhtml"><b>A</b></span> is invertible and its inverse is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}=\mathbf {Q} \mathbf {\Lambda } ^{-1}\mathbf {Q} ^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Λ<!-- Λ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}=\mathbf {Q} \mathbf {\Lambda } ^{-1}\mathbf {Q} ^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e6cf923f9e79652a78ccb41acf6738779010697" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.652ex; height:3.009ex;" alt="{\displaystyle \mathbf {A} ^{-1}=\mathbf {Q} \mathbf {\Lambda } ^{-1}\mathbf {Q} ^{-1},}"></span></dd></dl> <p>where <span class="texhtml"><b>Q</b></span> is the square <span class="texhtml">(<i>N</i> × <i>N</i>)</span> matrix whose <span class="texhtml mvar" style="font-style:italic;">i</span>th column is the <a href="/wiki/Eigenvector" class="mw-redirect" title="Eigenvector">eigenvector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2752dcbff884354069fe332b8e51eb0a70a531b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.837ex; height:2.009ex;" alt="{\displaystyle q_{i}}"></span> of <span class="texhtml"><b>A</b></span>, and <span class="texhtml"><b>Λ</b></span> is the <a href="/wiki/Diagonal_matrix" title="Diagonal matrix">diagonal matrix</a> whose diagonal entries are the corresponding eigenvalues, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Lambda _{ii}=\lambda _{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Lambda _{ii}=\lambda _{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed819091a61b8fab4dddd43de0684b0d56eb0597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.88ex; height:2.509ex;" alt="{\displaystyle \Lambda _{ii}=\lambda _{i}.}"></span> If <span class="texhtml"><b>A</b></span> is symmetric, <span class="texhtml"><b>Q</b></span> is guaranteed to be an <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal matrix</a>, therefore <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} ^{-1}=\mathbf {Q} ^{\mathrm {T} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Q</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Q} ^{-1}=\mathbf {Q} ^{\mathrm {T} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c6c4635baf145f3d7a47466da26c888aa8ed1ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.513ex; height:3.009ex;" alt="{\displaystyle \mathbf {Q} ^{-1}=\mathbf {Q} ^{\mathrm {T} }.}"></span> Furthermore, because <span class="texhtml"><b>Λ</b></span> is a diagonal matrix, its inverse is easy to calculate: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[\Lambda ^{-1}\right]_{ii}={\frac {1}{\lambda _{i}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>[</mo> <msup> <mi mathvariant="normal">Λ<!-- Λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[\Lambda ^{-1}\right]_{ii}={\frac {1}{\lambda _{i}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/839af615243151e8666a32caa26ab67108145c32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:13.989ex; height:5.676ex;" alt="{\displaystyle \left[\Lambda ^{-1}\right]_{ii}={\frac {1}{\lambda _{i}}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Cholesky_decomposition">Cholesky decomposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=14" title="Edit section: Cholesky decomposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Cholesky_decomposition" title="Cholesky decomposition">Cholesky decomposition</a></div> <p>If matrix <span class="texhtml"><b>A</b></span> is <a href="/wiki/Positive_definite_matrix" class="mw-redirect" title="Positive definite matrix">positive definite</a>, then its inverse can be obtained as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}=\left(\mathbf {L} ^{*}\right)^{-1}\mathbf {L} ^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}=\left(\mathbf {L} ^{*}\right)^{-1}\mathbf {L} ^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2470a040625b308655f32373a99f401447d72452" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.843ex; height:3.343ex;" alt="{\displaystyle \mathbf {A} ^{-1}=\left(\mathbf {L} ^{*}\right)^{-1}\mathbf {L} ^{-1},}"></span></dd></dl> <p>where <span class="texhtml"><b>L</b></span> is the <a href="/wiki/Lower_triangular" class="mw-redirect" title="Lower triangular">lower triangular</a> <a href="/wiki/Cholesky_decomposition" title="Cholesky decomposition">Cholesky decomposition</a> of <span class="texhtml"><b>A</b></span>, and <span class="texhtml"><b>L</b>*</span> denotes the <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a> of <span class="texhtml"><b>L</b></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Analytic_solution">Analytic solution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=15" title="Edit section: Analytic solution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Cramer%27s_rule" title="Cramer's rule">Cramer's rule</a></div> <p>Writing the transpose of the <a href="/wiki/Matrix_of_cofactors" class="mw-redirect" title="Matrix of cofactors">matrix of cofactors</a>, known as an <a href="/wiki/Adjugate_matrix" title="Adjugate matrix">adjugate matrix</a>, can also be an efficient way to calculate the inverse of <i>small</i> matrices, but this <a href="/wiki/Recursion" title="Recursion">recursive</a> method is inefficient for large matrices. To determine the inverse, we calculate a matrix of cofactors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\mathbf {C} ^{\mathrm {T} }={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}{\begin{pmatrix}\mathbf {C} _{11}&\mathbf {C} _{21}&\cdots &\mathbf {C} _{n1}\\\mathbf {C} _{12}&\mathbf {C} _{22}&\cdots &\mathbf {C} _{n2}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {C} _{1n}&\mathbf {C} _{2n}&\cdots &\mathbf {C} _{nn}\\\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\mathbf {C} ^{\mathrm {T} }={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}{\begin{pmatrix}\mathbf {C} _{11}&\mathbf {C} _{21}&\cdots &\mathbf {C} _{n1}\\\mathbf {C} _{12}&\mathbf {C} _{22}&\cdots &\mathbf {C} _{n2}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {C} _{1n}&\mathbf {C} _{2n}&\cdots &\mathbf {C} _{nn}\\\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da69ff393cc3515fa4e17ea39779b71a94b19a92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:50.545ex; height:14.176ex;" alt="{\displaystyle \mathbf {A} ^{-1}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\mathbf {C} ^{\mathrm {T} }={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}{\begin{pmatrix}\mathbf {C} _{11}&\mathbf {C} _{21}&\cdots &\mathbf {C} _{n1}\\\mathbf {C} _{12}&\mathbf {C} _{22}&\cdots &\mathbf {C} _{n2}\\\vdots &\vdots &\ddots &\vdots \\\mathbf {C} _{1n}&\mathbf {C} _{2n}&\cdots &\mathbf {C} _{nn}\\\end{pmatrix}}}"></span></dd></dl> <p>so that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\mathbf {A} ^{-1}\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} ^{\mathrm {T} }\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} _{ji}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <msub> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\mathbf {A} ^{-1}\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} ^{\mathrm {T} }\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} _{ji}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ce7e2c3c9b820ddbb6a2feb9a55601911862af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:36.519ex; height:6.009ex;" alt="{\displaystyle \left(\mathbf {A} ^{-1}\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} ^{\mathrm {T} }\right)_{ij}={1 \over {\begin{vmatrix}\mathbf {A} \end{vmatrix}}}\left(\mathbf {C} _{ji}\right)}"></span></dd></dl> <p>where <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>A</b></span>|</span> is the <a href="/wiki/Determinant" title="Determinant">determinant</a> of <span class="texhtml"><b>A</b></span>, <span class="texhtml"><b>C</b></span> is the matrix of cofactors, and <span class="texhtml"><b>C</b><sup>T</sup></span> represents the matrix <a href="/wiki/Transpose" title="Transpose">transpose</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Inversion_of_2_×_2_matrices"><span id="Inversion_of_2_.C3.97_2_matrices"></span>Inversion of 2 × 2 matrices</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=16" title="Edit section: Inversion of 2 × 2 matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>cofactor equation</i> listed above yields the following result for <span class="nowrap">2 × 2</span> matrices. Inversion of these matrices can be done as follows:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b\\c&d\\\end{bmatrix}}^{-1}={\frac {1}{\det \mathbf {A} }}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}={\frac {1}{ad-bc}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mi>d</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>d</mi> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>c</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>a</mi> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>c</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>d</mi> </mtd> <mtd> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mi>c</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b\\c&d\\\end{bmatrix}}^{-1}={\frac {1}{\det \mathbf {A} }}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}={\frac {1}{ad-bc}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ed952db96b47e19ed879e28f83361155000b429" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:59.952ex; height:6.509ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b\\c&d\\\end{bmatrix}}^{-1}={\frac {1}{\det \mathbf {A} }}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}={\frac {1}{ad-bc}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}.}"></span></dd></dl> <p>This is possible because <span class="texhtml">1/(<i>ad</i> − <i>bc</i>)</span> is the <a href="/wiki/Reciprocal_(mathematics)" class="mw-redirect" title="Reciprocal (mathematics)">reciprocal</a> of the determinant of the matrix in question, and the same strategy could be used for other matrix sizes. </p><p>The Cayley–Hamilton method gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det \mathbf {A} }}\left[\left(\operatorname {tr} \mathbf {A} \right)\mathbf {I} -\mathbf {A} \right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det \mathbf {A} }}\left[\left(\operatorname {tr} \mathbf {A} \right)\mathbf {I} -\mathbf {A} \right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6a9c4572ae4bc8d969f0b14145493efd4791a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:28.931ex; height:5.343ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det \mathbf {A} }}\left[\left(\operatorname {tr} \mathbf {A} \right)\mathbf {I} -\mathbf {A} \right].}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Inversion_of_3_×_3_matrices"><span id="Inversion_of_3_.C3.97_3_matrices"></span>Inversion of 3 × 3 matrices</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=17" title="Edit section: Inversion of 3 × 3 matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Computationally_efficient" class="mw-redirect" title="Computationally efficient">computationally efficient</a> <span class="nowrap">3 × 3</span> matrix inversion is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\\\end{bmatrix}}^{-1}={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,B&\,C\\\,D&\,E&\,F\\\,G&\,H&\,I\\\end{bmatrix}}^{\mathrm {T} }={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,D&\,G\\\,B&\,E&\,H\\\,C&\,F&\,I\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> <mtd> <mi>c</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> </mtd> <mtd> <mi>e</mi> </mtd> <mtd> <mi>f</mi> </mtd> </mtr> <mtr> <mtd> <mi>g</mi> </mtd> <mtd> <mi>h</mi> </mtd> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thinmathspace" /> <mi>A</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>B</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>C</mi> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace" /> <mi>D</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>E</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>F</mi> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace" /> <mi>G</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>H</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>I</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mspace width="thinmathspace" /> <mi>A</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>D</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>G</mi> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace" /> <mi>B</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>E</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>H</mi> </mtd> </mtr> <mtr> <mtd> <mspace width="thinmathspace" /> <mi>C</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>F</mi> </mtd> <mtd> <mspace width="thinmathspace" /> <mi>I</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\\\end{bmatrix}}^{-1}={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,B&\,C\\\,D&\,E&\,F\\\,G&\,H&\,I\\\end{bmatrix}}^{\mathrm {T} }={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,D&\,G\\\,B&\,E&\,H\\\,C&\,F&\,I\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e3c15aec39a5ad87acba97400d8fd215f30f7b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:76.359ex; height:9.843ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b&c\\d&e&f\\g&h&i\\\end{bmatrix}}^{-1}={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,B&\,C\\\,D&\,E&\,F\\\,G&\,H&\,I\\\end{bmatrix}}^{\mathrm {T} }={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}\,A&\,D&\,G\\\,B&\,E&\,H\\\,C&\,F&\,I\\\end{bmatrix}}}"></span></dd></dl> <p>(where the <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalar</a> <span class="texhtml mvar" style="font-style:italic;">A</span> is not to be confused with the matrix <span class="texhtml"><b>A</b></span>). </p><p>If the determinant is non-zero, the matrix is invertible, with the entries of the intermediary matrix on the right side above given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{6}A&={}&(ei-fh),&\quad &D&={}&-(bi-ch),&\quad &G&={}&(bf-ce),\\B&={}&-(di-fg),&\quad &E&={}&(ai-cg),&\quad &H&={}&-(af-cd),\\C&={}&(dh-eg),&\quad &F&={}&-(ah-bg),&\quad &I&={}&(ae-bd).\\\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo stretchy="false">(</mo> <mi>e</mi> <mi>i</mi> <mo>−<!-- − --></mo> <mi>f</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> </mtd> <mtd> <mi>D</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>b</mi> <mi>i</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> </mtd> <mtd> <mi>G</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo stretchy="false">(</mo> <mi>b</mi> <mi>f</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mi>e</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>B</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>d</mi> <mi>i</mi> <mo>−<!-- − --></mo> <mi>f</mi> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> </mtd> <mtd> <mi>E</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo stretchy="false">(</mo> <mi>a</mi> <mi>i</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> </mtd> <mtd> <mi>H</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>f</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>C</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo stretchy="false">(</mo> <mi>d</mi> <mi>h</mi> <mo>−<!-- − --></mo> <mi>e</mi> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> </mtd> <mtd> <mi>F</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>h</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> <mtd> <mspace width="1em" /> </mtd> <mtd> <mi>I</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mo stretchy="false">(</mo> <mi>a</mi> <mi>e</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>d</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{6}A&={}&(ei-fh),&\quad &D&={}&-(bi-ch),&\quad &G&={}&(bf-ce),\\B&={}&-(di-fg),&\quad &E&={}&(ai-cg),&\quad &H&={}&-(af-cd),\\C&={}&(dh-eg),&\quad &F&={}&-(ah-bg),&\quad &I&={}&(ae-bd).\\\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd4d53623d8e3436da9b76bcfdd3ddf98cb935f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:55.587ex; height:9.176ex;" alt="{\displaystyle {\begin{alignedat}{6}A&={}&(ei-fh),&\quad &D&={}&-(bi-ch),&\quad &G&={}&(bf-ce),\\B&={}&-(di-fg),&\quad &E&={}&(ai-cg),&\quad &H&={}&-(af-cd),\\C&={}&(dh-eg),&\quad &F&={}&-(ah-bg),&\quad &I&={}&(ae-bd).\\\end{alignedat}}}"></span></dd></dl> <p>The determinant of <span class="texhtml"><b>A</b></span> can be computed by applying the <a href="/wiki/Rule_of_Sarrus" title="Rule of Sarrus">rule of Sarrus</a> as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(\mathbf {A} )=aA+bB+cC.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>A</mi> <mo>+</mo> <mi>b</mi> <mi>B</mi> <mo>+</mo> <mi>c</mi> <mi>C</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(\mathbf {A} )=aA+bB+cC.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d36697eaa2961b54cfc06e44c102f6dce854e97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.992ex; height:2.843ex;" alt="{\displaystyle \det(\mathbf {A} )=aA+bB+cC.}"></span></dd></dl> <p>The Cayley–Hamilton decomposition gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\left({\frac {1}{2}}\left[(\operatorname {tr} \mathbf {A} )^{2}-\operatorname {tr} (\mathbf {A} ^{2})\right]\mathbf {I} -\mathbf {A} \operatorname {tr} \mathbf {A} +\mathbf {A} ^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\left({\frac {1}{2}}\left[(\operatorname {tr} \mathbf {A} )^{2}-\operatorname {tr} (\mathbf {A} ^{2})\right]\mathbf {I} -\mathbf {A} \operatorname {tr} \mathbf {A} +\mathbf {A} ^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b0001e0f1d1cb3d6c54511dc5d0368202dee33b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:57.923ex; height:6.343ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\left({\frac {1}{2}}\left[(\operatorname {tr} \mathbf {A} )^{2}-\operatorname {tr} (\mathbf {A} ^{2})\right]\mathbf {I} -\mathbf {A} \operatorname {tr} \mathbf {A} +\mathbf {A} ^{2}\right).}"></span></dd></dl> <p><span class="anchor" id="Inversion_of_3×3_matrices_based_on_vector_products"></span> The general <span class="nowrap">3 × 3</span> inverse can be expressed concisely in terms of the <a href="/wiki/Cross_product" title="Cross product">cross product</a> and <a href="/wiki/Triple_product" title="Triple product">triple product</a>. If a matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}\mathbf {x} _{0}&\mathbf {x} _{1}&\mathbf {x} _{2}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}\mathbf {x} _{0}&\mathbf {x} _{1}&\mathbf {x} _{2}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f1cfa670e35356eb168072436d5d94a40458a2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.204ex; height:2.843ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}\mathbf {x} _{0}&\mathbf {x} _{1}&\mathbf {x} _{2}\end{bmatrix}}}"></span> (consisting of three column vectors, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/799c59f89751f24a2719c4da95f1acdd3e2faf52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {x} _{0}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a02b3163e7a24d90f15c809c2dca63ba5cccca7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {x} _{1}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1274d8a5c59d33efd3639a4137c7f91598038d1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.465ex; height:2.009ex;" alt="{\displaystyle \mathbf {x} _{2}}"></span>) is invertible, its inverse is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}{(\mathbf {x} _{1}\times \mathbf {x} _{2})}^{\mathrm {T} }\\{(\mathbf {x} _{2}\times \mathbf {x} _{0})}^{\mathrm {T} }\\{(\mathbf {x} _{0}\times \mathbf {x} _{1})}^{\mathrm {T} }\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}{(\mathbf {x} _{1}\times \mathbf {x} _{2})}^{\mathrm {T} }\\{(\mathbf {x} _{2}\times \mathbf {x} _{0})}^{\mathrm {T} }\\{(\mathbf {x} _{0}\times \mathbf {x} _{1})}^{\mathrm {T} }\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77da2e7a835f573652de57c6d15ac04a83d2dddd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:30.843ex; height:10.843ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}{\begin{bmatrix}{(\mathbf {x} _{1}\times \mathbf {x} _{2})}^{\mathrm {T} }\\{(\mathbf {x} _{2}\times \mathbf {x} _{0})}^{\mathrm {T} }\\{(\mathbf {x} _{0}\times \mathbf {x} _{1})}^{\mathrm {T} }\end{bmatrix}}.}"></span></dd></dl> <p>The determinant of <span class="texhtml"><b>A</b></span>, <span class="texhtml">det(<b>A</b>)</span>, is equal to the triple product of <span class="texhtml"><b>x</b><sub>0</sub></span>, <span class="texhtml"><b>x</b><sub>1</sub></span>, and <span class="texhtml"><b>x</b><sub>2</sub></span>—the volume of the <a href="/wiki/Parallelepiped" title="Parallelepiped">parallelepiped</a> formed by the rows or columns: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(\mathbf {A} )=\mathbf {x} _{0}\cdot (\mathbf {x} _{1}\times \mathbf {x} _{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(\mathbf {A} )=\mathbf {x} _{0}\cdot (\mathbf {x} _{1}\times \mathbf {x} _{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30be526c6fe4905526f4c094b1cee1b331606f35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.528ex; height:2.843ex;" alt="{\displaystyle \det(\mathbf {A} )=\mathbf {x} _{0}\cdot (\mathbf {x} _{1}\times \mathbf {x} _{2}).}"></span></dd></dl> <p>The correctness of the formula can be checked by using cross- and triple-product properties and by noting that for groups, left and right inverses always coincide. Intuitively, because of the cross products, each row of <span class="texhtml"><b>A</b><sup>–1</sup></span> is orthogonal to the non-corresponding two columns of <span class="texhtml"><b>A</b></span> (causing the off-diagonal terms of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {I} =\mathbf {A} ^{-1}\mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {I} =\mathbf {A} ^{-1}\mathbf {A} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8853751ababdee69b55e57fab7c4bb19c0a259bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.484ex; height:2.676ex;" alt="{\displaystyle \mathbf {I} =\mathbf {A} ^{-1}\mathbf {A} }"></span> be zero). Dividing by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(\mathbf {A} )=\mathbf {x} _{0}\cdot (\mathbf {x} _{1}\times \mathbf {x} _{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(\mathbf {A} )=\mathbf {x} _{0}\cdot (\mathbf {x} _{1}\times \mathbf {x} _{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/727e0ffc544eb168334c361c9ce0ed4569e6ca9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.881ex; height:2.843ex;" alt="{\displaystyle \det(\mathbf {A} )=\mathbf {x} _{0}\cdot (\mathbf {x} _{1}\times \mathbf {x} _{2})}"></span></dd></dl> <p>causes the diagonal entries of <span class="texhtml"><b>I</b> = <b>A</b><sup>−1</sup><b>A</b></span> to be unity. For example, the first diagonal is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1={\frac {1}{\mathbf {x_{0}} \cdot (\mathbf {x} _{1}\times \mathbf {x} _{2})}}\mathbf {x_{0}} \cdot (\mathbf {x} _{1}\times \mathbf {x} _{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </msub> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </msub> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>×<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1={\frac {1}{\mathbf {x_{0}} \cdot (\mathbf {x} _{1}\times \mathbf {x} _{2})}}\mathbf {x_{0}} \cdot (\mathbf {x} _{1}\times \mathbf {x} _{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b7c7671f1ebf97636abf149677369fe0644dd0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:33.439ex; height:6.009ex;" alt="{\displaystyle 1={\frac {1}{\mathbf {x_{0}} \cdot (\mathbf {x} _{1}\times \mathbf {x} _{2})}}\mathbf {x_{0}} \cdot (\mathbf {x} _{1}\times \mathbf {x} _{2}).}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Inversion_of_4_×_4_matrices"><span id="Inversion_of_4_.C3.97_4_matrices"></span>Inversion of 4 × 4 matrices</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=18" title="Edit section: Inversion of 4 × 4 matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With increasing dimension, expressions for the inverse of <span class="texhtml"><b>A</b></span> get complicated. For <span class="texhtml"><i>n</i> = 4</span>, the Cayley–Hamilton method leads to an expression that is still tractable: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\left({\frac {1}{6}}\left[(\operatorname {tr} \mathbf {A} )^{3}-3\operatorname {tr} \mathbf {A} \operatorname {tr} (\mathbf {A} ^{2})+2\operatorname {tr} (\mathbf {A} ^{3})\right]\mathbf {I} -{\frac {1}{2}}\mathbf {A} \left[(\operatorname {tr} \mathbf {A} )^{2}-\operatorname {tr} (\mathbf {A} ^{2})\right]+\mathbf {A} ^{2}\operatorname {tr} \mathbf {A} -\mathbf {A} ^{3}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>3</mn> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\left({\frac {1}{6}}\left[(\operatorname {tr} \mathbf {A} )^{3}-3\operatorname {tr} \mathbf {A} \operatorname {tr} (\mathbf {A} ^{2})+2\operatorname {tr} (\mathbf {A} ^{3})\right]\mathbf {I} -{\frac {1}{2}}\mathbf {A} \left[(\operatorname {tr} \mathbf {A} )^{2}-\operatorname {tr} (\mathbf {A} ^{2})\right]+\mathbf {A} ^{2}\operatorname {tr} \mathbf {A} -\mathbf {A} ^{3}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00e3f3b73d1714da529cd3c7ce1be0901b4d5bb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:102.037ex; height:6.343ex;" alt="{\displaystyle \mathbf {A} ^{-1}={\frac {1}{\det(\mathbf {A} )}}\left({\frac {1}{6}}\left[(\operatorname {tr} \mathbf {A} )^{3}-3\operatorname {tr} \mathbf {A} \operatorname {tr} (\mathbf {A} ^{2})+2\operatorname {tr} (\mathbf {A} ^{3})\right]\mathbf {I} -{\frac {1}{2}}\mathbf {A} \left[(\operatorname {tr} \mathbf {A} )^{2}-\operatorname {tr} (\mathbf {A} ^{2})\right]+\mathbf {A} ^{2}\operatorname {tr} \mathbf {A} -\mathbf {A} ^{3}\right).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Blockwise_inversion">Blockwise inversion</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=19" title="Edit section: Blockwise inversion"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Matrices can also be <i>inverted blockwise</i> by using the following analytic inversion formula:<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}&-\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\\-\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}&\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}&-\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\\-\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}&\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7f3b9c79ecbaeb937d4b6101e6e7d4bc7e2ff13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:84.326ex; height:8.176ex;" alt="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}&-\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\\-\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}&\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\end{bmatrix}},}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>where <span class="texhtml"><b>A</b></span>, <span class="texhtml"><b>B</b></span>, <span class="texhtml"><b>C</b></span> and <span class="texhtml"><b>D</b></span> are <a href="/wiki/Block_matrix" title="Block matrix">matrix sub-blocks</a> of arbitrary size. (<span class="texhtml"><b>A</b></span> must be square, so that it can be inverted. Furthermore, <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>D</b> − <b>CA</b><sup>−1</sup><b>B</b></span> must be nonsingular.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup>) This strategy is particularly advantageous if <span class="texhtml"><b>A</b></span> is diagonal and <span class="texhtml"><b>D</b> − <b>CA</b><sup>−1</sup><b>B</b></span> (the <a href="/wiki/Schur_complement" title="Schur complement">Schur complement</a> of <span class="texhtml"><b>A</b></span>) is a small matrix, since they are the only matrices requiring inversion. </p><p>This technique was reinvented several times and is due to <a href="/w/index.php?title=Hans_Boltz&action=edit&redlink=1" class="new" title="Hans Boltz (page does not exist)">Hans Boltz</a> (1923),<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (December 2009)">citation needed</span></a></i>]</sup> who used it for the inversion of <a href="/wiki/Geodesy" title="Geodesy">geodetic</a> matrices, and <a href="/wiki/Tadeusz_Banachiewicz" title="Tadeusz Banachiewicz">Tadeusz Banachiewicz</a> (1937), who generalized it and proved its correctness. </p><p>The <a href="/wiki/Nullity_theorem" title="Nullity theorem">nullity theorem</a> says that the nullity of <span class="texhtml"><b>A</b></span> equals the nullity of the sub-block in the lower right of the inverse matrix, and that the nullity of <span class="texhtml"><b>B</b></span> equals the nullity of the sub-block in the upper right of the inverse matrix. </p><p>The inversion procedure that led to Equation (<b><a href="#math_1">1</a></b>) performed matrix block operations that operated on <span class="texhtml"><b>C</b></span> and <span class="texhtml"><b>D</b></span> first. Instead, if <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> are operated on first, and provided <span class="texhtml"><b>D</b></span> and <span class="texhtml"><b>A</b> − <b>BD</b><sup>−1</sup><b>C</b></span> are nonsingular,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> the result is </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&-\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}\\-\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&\quad \mathbf {D} ^{-1}+\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mspace width="1em" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&-\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}\\-\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&\quad \mathbf {D} ^{-1}+\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/025b91c0b7118b6093d336011d0be98efc06cd0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:86.8ex; height:8.176ex;" alt="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&-\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}\\-\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&\quad \mathbf {D} ^{-1}+\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}\end{bmatrix}}.}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>Equating Equations (<b><a href="#math_1">1</a></b>) and (<b><a href="#math_2">2</a></b>) leads to </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&=\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}\\\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}&=\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\\\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&=\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}\\\mathbf {D} ^{-1}+\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}&=\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&=\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}\\\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}&=\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\\\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&=\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}\\\mathbf {D} ^{-1}+\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}&=\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95307c24089c9a92aeec2960a79615f799382ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:78.474ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&=\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}\\\left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}&=\mathbf {A} ^{-1}\mathbf {B} \left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\\\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}&=\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\mathbf {CA} ^{-1}\\\mathbf {D} ^{-1}+\mathbf {D} ^{-1}\mathbf {C} \left(\mathbf {A} -\mathbf {BD} ^{-1}\mathbf {C} \right)^{-1}\mathbf {BD} ^{-1}&=\left(\mathbf {D} -\mathbf {CA} ^{-1}\mathbf {B} \right)^{-1}\end{aligned}}}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span>)</b></td></tr></tbody></table> <p>where Equation (<b><a href="#math_3">3</a></b>) is the <a href="/wiki/Woodbury_matrix_identity" title="Woodbury matrix identity">Woodbury matrix identity</a>, which is equivalent to the <a href="/wiki/Binomial_inverse_theorem" class="mw-redirect" title="Binomial inverse theorem">binomial inverse theorem</a>. </p><p>If <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>D</b></span> are both invertible, then the above two block matrix inverses can be combined to provide the simple factorization </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\left(\mathbf {A} -\mathbf {B} \mathbf {D} ^{-1}\mathbf {C} \right)^{-1}&\mathbf {0} \\\mathbf {0} &\left(\mathbf {D} -\mathbf {C} \mathbf {A} ^{-1}\mathbf {B} \right)^{-1}\end{bmatrix}}{\begin{bmatrix}\mathbf {I} &-\mathbf {B} \mathbf {D} ^{-1}\\-\mathbf {C} \mathbf {A} ^{-1}&\mathbf {I} \end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mtd> <mtd> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\left(\mathbf {A} -\mathbf {B} \mathbf {D} ^{-1}\mathbf {C} \right)^{-1}&\mathbf {0} \\\mathbf {0} &\left(\mathbf {D} -\mathbf {C} \mathbf {A} ^{-1}\mathbf {B} \right)^{-1}\end{bmatrix}}{\begin{bmatrix}\mathbf {I} &-\mathbf {B} \mathbf {D} ^{-1}\\-\mathbf {C} \mathbf {A} ^{-1}&\mathbf {I} \end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46798b30007cd793ef614505911e1400ac163dd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:78.248ex; height:8.176ex;" alt="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {B} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\left(\mathbf {A} -\mathbf {B} \mathbf {D} ^{-1}\mathbf {C} \right)^{-1}&\mathbf {0} \\\mathbf {0} &\left(\mathbf {D} -\mathbf {C} \mathbf {A} ^{-1}\mathbf {B} \right)^{-1}\end{bmatrix}}{\begin{bmatrix}\mathbf {I} &-\mathbf {B} \mathbf {D} ^{-1}\\-\mathbf {C} \mathbf {A} ^{-1}&\mathbf {I} \end{bmatrix}}.}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>By the <a href="/wiki/Weinstein%E2%80%93Aronszajn_identity" title="Weinstein–Aronszajn identity">Weinstein–Aronszajn identity</a>, one of the two matrices in the block-diagonal matrix is invertible exactly when the other is. </p><p>This formula simplifies significantly when the upper right block matrix <span class="texhtml"><b>B</b></span> is the <a href="/wiki/Zero_matrix" title="Zero matrix">zero matrix</a>. This formulation is useful when the matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>D</b></span> have relatively simple inverse formulas (or <a href="/wiki/Moore%E2%80%93Penrose_inverse" title="Moore–Penrose inverse">pseudo inverses</a> in the case where the blocks are not all square. In this special case, the block matrix inversion formula stated in full generality above becomes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {0} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}&\mathbf {0} \\-\mathbf {D} ^{-1}\mathbf {CA} ^{-1}&\mathbf {D} ^{-1}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {0} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}&\mathbf {0} \\-\mathbf {D} ^{-1}\mathbf {CA} ^{-1}&\mathbf {D} ^{-1}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f46b724dcbc889e39cb231017ec1c4c856fd3d52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.062ex; height:6.676ex;" alt="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {0} \\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}&\mathbf {0} \\-\mathbf {D} ^{-1}\mathbf {CA} ^{-1}&\mathbf {D} ^{-1}\end{bmatrix}}.}"></span></dd></dl> <p>If the given invertible matrix is a symmetric matrix with invertible block <span class="texhtml"><b>A</b></span> the following block inverse formula holds<sup id="cite_ref-Cormen_12-0" class="reference"><a href="#cite_note-Cormen-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 1.6em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {C} ^{T}\\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1}&-\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\\-\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1}&\mathbf {S} ^{-1}\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mtd> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {C} ^{T}\\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1}&-\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\\-\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1}&\mathbf {S} ^{-1}\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c764c2ff7c3427a539e747a60f355e66df1f494c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:60.742ex; height:6.843ex;" alt="{\displaystyle {\begin{bmatrix}\mathbf {A} &\mathbf {C} ^{T}\\\mathbf {C} &\mathbf {D} \end{bmatrix}}^{-1}={\begin{bmatrix}\mathbf {A} ^{-1}+\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1}&-\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\\-\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1}&\mathbf {S} ^{-1}\end{bmatrix}},}"></span> </td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span>)</b></td></tr></tbody></table> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {S} =\mathbf {D} -\mathbf {C} \mathbf {A} ^{-1}\mathbf {C} ^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {S} =\mathbf {D} -\mathbf {C} \mathbf {A} ^{-1}\mathbf {C} ^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/116040b2578aac93c76707f765c77e296dbc4b62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:19.078ex; height:2.843ex;" alt="{\displaystyle \mathbf {S} =\mathbf {D} -\mathbf {C} \mathbf {A} ^{-1}\mathbf {C} ^{T}}"></span>. This requires 2 inversions of the half-sized matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>S</b></span> and only 4 multiplications of half-sized matrices, if organized properly <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} _{1}=\mathbf {C} \mathbf {A} ^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} _{1}=\mathbf {C} \mathbf {A} ^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c5995575259860d197d5feaeb7ca5269a924ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.846ex; height:3.009ex;" alt="{\displaystyle \mathbf {W} _{1}=\mathbf {C} \mathbf {A} ^{-1},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} _{2}=\mathbf {W} _{1}\mathbf {C} ^{T}=\mathbf {C} \mathbf {A} ^{-1}\mathbf {C} ^{T},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} _{2}=\mathbf {W} _{1}\mathbf {C} ^{T}=\mathbf {C} \mathbf {A} ^{-1}\mathbf {C} ^{T},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b492832cce63627e9a1493015df7fcbd2a8229c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.402ex; height:3.009ex;" alt="{\displaystyle \mathbf {W} _{2}=\mathbf {W} _{1}\mathbf {C} ^{T}=\mathbf {C} \mathbf {A} ^{-1}\mathbf {C} ^{T},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} _{3}=\mathbf {S} ^{-1}\mathbf {W} _{1}=\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} _{3}=\mathbf {S} ^{-1}\mathbf {W} _{1}=\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c1e879ba28ff837453dccaa9244f90a0cfa9290" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.397ex; height:3.009ex;" alt="{\displaystyle \mathbf {W} _{3}=\mathbf {S} ^{-1}\mathbf {W} _{1}=\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1},}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {W} _{4}=\mathbf {W} _{1}^{T}\mathbf {W} _{3}=\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">W</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">C</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {W} _{4}=\mathbf {W} _{1}^{T}\mathbf {W} _{3}=\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d49e2504b21309dba30be347cd49a2be68b01f91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.404ex; height:3.176ex;" alt="{\displaystyle \mathbf {W} _{4}=\mathbf {W} _{1}^{T}\mathbf {W} _{3}=\mathbf {A} ^{-1}\mathbf {C} ^{T}\mathbf {S} ^{-1}\mathbf {C} \mathbf {A} ^{-1},}"></span> together with some additions, subtractions, negations and transpositions of negligible complexity. Any matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e499ae5946af9c09777ada933051b3669d3372c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.537ex; height:2.176ex;" alt="{\displaystyle \mathbf {M} }"></span> has an associated positive semidefinite, symmetric matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M} ^{T}\mathbf {M} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M} ^{T}\mathbf {M} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2eed65f986c38e0e27258769326492ba5f7033e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.464ex; height:2.676ex;" alt="{\displaystyle \mathbf {M} ^{T}\mathbf {M} }"></span>, which is exactly invertible (and positive definite), if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e499ae5946af9c09777ada933051b3669d3372c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.537ex; height:2.176ex;" alt="{\displaystyle \mathbf {M} }"></span> is invertible. By writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M} ^{-1}=\left(\mathbf {M} ^{T}\mathbf {M} \right)^{-1}\mathbf {M} ^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M} ^{-1}=\left(\mathbf {M} ^{T}\mathbf {M} \right)^{-1}\mathbf {M} ^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc843fd05b4f5be9fee4464bb1b227272576255" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.822ex; height:3.843ex;" alt="{\displaystyle \mathbf {M} ^{-1}=\left(\mathbf {M} ^{T}\mathbf {M} \right)^{-1}\mathbf {M} ^{T}}"></span> matrix inversion can be reduced to inverting symmetric matrices and 2 additional matrix multiplications, because the <a href="/wiki/Definite_matrix#Decomposition" title="Definite matrix">positive definite matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {M} ^{T}\mathbf {M} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {M} ^{T}\mathbf {M} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2eed65f986c38e0e27258769326492ba5f7033e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.464ex; height:2.676ex;" alt="{\displaystyle \mathbf {M} ^{T}\mathbf {M} }"></span> satisfies the invertibility condition for its left upper block <span class="texhtml"><b>A</b></span>. </p><p>These formulas together allow to construct a <a href="/wiki/Divide_and_conquer_algorithm" class="mw-redirect" title="Divide and conquer algorithm">divide and conquer algorithm</a> that uses blockwise inversion of associated symmetric matrices to invert a matrix with the same time complexity as the <a href="/wiki/Matrix_multiplication_algorithm" title="Matrix multiplication algorithm">matrix multiplication algorithm</a> that is used internally.<sup id="cite_ref-Cormen_12-1" class="reference"><a href="#cite_note-Cormen-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Computational_complexity_of_matrix_multiplication" title="Computational complexity of matrix multiplication">Research into matrix multiplication complexity</a> shows that there exist matrix multiplication algorithms with a complexity of <span class="texhtml"><i>O</i>(<i>n</i><sup>2.371552</sup>)</span> operations, while the best proven lower bound is <span class="texhtml"><a href="/wiki/Big_O_notation#Family_of_Bachmann–Landau_notations" title="Big O notation">Ω</a>(<i>n</i><sup>2</sup> log <i>n</i>)</span>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="By_Neumann_series">By Neumann series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=20" title="Edit section: By Neumann series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a matrix <span class="texhtml"><b>A</b></span> has the property that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }(\mathbf {I} -\mathbf {A} )^{n}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }(\mathbf {I} -\mathbf {A} )^{n}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4049cb0599635cbd510f7b6b359fc849acb5c34b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.435ex; height:3.843ex;" alt="{\displaystyle \lim _{n\to \infty }(\mathbf {I} -\mathbf {A} )^{n}=0}"></span></dd></dl> <p>then <span class="texhtml"><b>A</b></span> is nonsingular and its inverse may be expressed by a <a href="/wiki/Neumann_series" title="Neumann series">Neumann series</a>:<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}=\sum _{n=0}^{\infty }(\mathbf {I} -\mathbf {A} )^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}=\sum _{n=0}^{\infty }(\mathbf {I} -\mathbf {A} )^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/330be98a0681c50d5f799130115ee6cd38c3fa9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.354ex; height:6.843ex;" alt="{\displaystyle \mathbf {A} ^{-1}=\sum _{n=0}^{\infty }(\mathbf {I} -\mathbf {A} )^{n}.}"></span></dd></dl> <p>Truncating the sum results in an "approximate" inverse which may be useful as a <a href="/wiki/Preconditioner" title="Preconditioner">preconditioner</a>. Note that a truncated series can be accelerated exponentially by noting that the Neumann series is a <a href="/wiki/Geometric_sum" class="mw-redirect" title="Geometric sum">geometric sum</a>. As such, it satisfies </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{2^{L}-1}(\mathbf {I} -\mathbf {A} )^{n}=\prod _{l=0}^{L-1}\left(\mathbf {I} +(\mathbf {I} -\mathbf {A} )^{2^{l}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msup> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{2^{L}-1}(\mathbf {I} -\mathbf {A} )^{n}=\prod _{l=0}^{L-1}\left(\mathbf {I} +(\mathbf {I} -\mathbf {A} )^{2^{l}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5af1a7ba7738e8870dfc0f47272cbe297adbdf86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.531ex; height:7.843ex;" alt="{\displaystyle \sum _{n=0}^{2^{L}-1}(\mathbf {I} -\mathbf {A} )^{n}=\prod _{l=0}^{L-1}\left(\mathbf {I} +(\mathbf {I} -\mathbf {A} )^{2^{l}}\right)}"></span>.</dd></dl> <p>Therefore, only <span class="texhtml">2<i>L</i> − 2</span> matrix multiplications are needed to compute <span class="texhtml">2<sup><i>L</i></sup></span> terms of the sum. </p><p>More generally, if <span class="texhtml"><b>A</b></span> is "near" the invertible matrix <span class="texhtml"><b>X</b></span> in the sense that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\left(\mathbf {I} -\mathbf {X} ^{-1}\mathbf {A} \right)^{n}=0\mathrm {~~or~~} \lim _{n\to \infty }\left(\mathbf {I} -\mathbf {A} \mathbf {X} ^{-1}\right)^{n}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> </mtext> <mtext> </mtext> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">r</mi> <mtext> </mtext> <mtext> </mtext> </mrow> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\left(\mathbf {I} -\mathbf {X} ^{-1}\mathbf {A} \right)^{n}=0\mathrm {~~or~~} \lim _{n\to \infty }\left(\mathbf {I} -\mathbf {A} \mathbf {X} ^{-1}\right)^{n}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1d573ded3c7edd0acf6dd172261049a60b605f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:49.773ex; height:4.176ex;" alt="{\displaystyle \lim _{n\to \infty }\left(\mathbf {I} -\mathbf {X} ^{-1}\mathbf {A} \right)^{n}=0\mathrm {~~or~~} \lim _{n\to \infty }\left(\mathbf {I} -\mathbf {A} \mathbf {X} ^{-1}\right)^{n}=0}"></span></dd></dl> <p>then <span class="texhtml"><b>A</b></span> is nonsingular and its inverse is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}=\sum _{n=0}^{\infty }\left(\mathbf {X} ^{-1}(\mathbf {X} -\mathbf {A} )\right)^{n}\mathbf {X} ^{-1}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}=\sum _{n=0}^{\infty }\left(\mathbf {X} ^{-1}(\mathbf {X} -\mathbf {A} )\right)^{n}\mathbf {X} ^{-1}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c5ad7119b544c3d8d9076c3303aa863657ee2a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.162ex; height:6.843ex;" alt="{\displaystyle \mathbf {A} ^{-1}=\sum _{n=0}^{\infty }\left(\mathbf {X} ^{-1}(\mathbf {X} -\mathbf {A} )\right)^{n}\mathbf {X} ^{-1}~.}"></span></dd></dl> <p>If it is also the case that <span class="texhtml"><b>A</b> − <b>X</b></span> has <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> 1 then this simplifies to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}=\mathbf {X} ^{-1}-{\frac {\mathbf {X} ^{-1}(\mathbf {A} -\mathbf {X} )\mathbf {X} ^{-1}}{1+\operatorname {tr} \left(\mathbf {X} ^{-1}(\mathbf {A} -\mathbf {X} )\right)}}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}=\mathbf {X} ^{-1}-{\frac {\mathbf {X} ^{-1}(\mathbf {A} -\mathbf {X} )\mathbf {X} ^{-1}}{1+\operatorname {tr} \left(\mathbf {X} ^{-1}(\mathbf {A} -\mathbf {X} )\right)}}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66d0a8de173ec0db7487f1ff2446500075e67d86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:37.697ex; height:7.343ex;" alt="{\displaystyle \mathbf {A} ^{-1}=\mathbf {X} ^{-1}-{\frac {\mathbf {X} ^{-1}(\mathbf {A} -\mathbf {X} )\mathbf {X} ^{-1}}{1+\operatorname {tr} \left(\mathbf {X} ^{-1}(\mathbf {A} -\mathbf {X} )\right)}}~.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="p-adic_approximation"><i>p</i>-adic approximation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=21" title="Edit section: p-adic approximation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><b>A</b></span> is a matrix with <a href="/wiki/Integer" title="Integer">integer</a> or <a href="/wiki/Rational_number" title="Rational number">rational</a> entries and we seek a solution in <a href="/wiki/Arbitrary-precision_arithmetic" title="Arbitrary-precision arithmetic">arbitrary-precision</a> rationals, then a <a href="/wiki/P-adic" class="mw-redirect" title="P-adic"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic</a> approximation method converges to an exact solution in <span class="texhtml">O(<i>n</i><sup>4</sup> log<sup>2</sup> <i>n</i>)</span>, assuming standard <span class="texhtml">O(<i>n</i><sup>3</sup>)</span> matrix multiplication is used.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> The method relies on solving <span class="texhtml mvar" style="font-style:italic;">n</span> linear systems via Dixon's method of <span class="texhtml mvar" style="font-style:italic;">p</span>-adic approximation (each in <span class="texhtml">O(<i>n</i><sup>3</sup> log<sup>2</sup> <i>n</i>)</span>) and is available as such in software specialized in arbitrary-precision matrix operations, for example, in IML.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Reciprocal_basis_vectors_method">Reciprocal basis vectors method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=22" title="Edit section: Reciprocal basis vectors method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Reciprocal_basis" class="mw-redirect" title="Reciprocal basis">Reciprocal basis</a></div> <p>Given an <span class="texhtml"><i>n</i> × <i>n</i></span> square matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} =\left[x^{ij}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msup> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} =\left[x^{ij}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bcdbd40b9ad9e18e49f3dbee92a5f67de48c667" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.864ex; height:3.343ex;" alt="{\displaystyle \mathbf {X} =\left[x^{ij}\right]}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\leq i,j\leq n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\leq i,j\leq n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a261efc4a9aa731385da988d0ccb68a202d522ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.549ex; height:2.509ex;" alt="{\displaystyle 1\leq i,j\leq n}"></span>, with <span class="texhtml mvar" style="font-style:italic;">n</span> rows interpreted as <span class="texhtml mvar" style="font-style:italic;">n</span> vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{i}=x^{ij}\mathbf {e} _{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{i}=x^{ij}\mathbf {e} _{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132d7b2e8170903bb971940ea55e8c45c951f8e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.251ex; height:3.343ex;" alt="{\displaystyle \mathbf {x} _{i}=x^{ij}\mathbf {e} _{j}}"></span> (<a href="/wiki/Einstein_summation" class="mw-redirect" title="Einstein summation">Einstein summation</a> assumed) where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b7742f3851d608848056eab437b32e8b753dd5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.135ex; height:2.343ex;" alt="{\displaystyle \mathbf {e} _{j}}"></span> are a standard <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> of <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} _{i}=\mathbf {e} ^{i},\mathbf {e} _{i}\cdot \mathbf {e} ^{j}=\delta _{i}^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>=</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} _{i}=\mathbf {e} ^{i},\mathbf {e} _{i}\cdot \mathbf {e} ^{j}=\delta _{i}^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51e31f5007a1be571e45133d5fc8a318d74202fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.083ex; height:3.509ex;" alt="{\displaystyle \mathbf {e} _{i}=\mathbf {e} ^{i},\mathbf {e} _{i}\cdot \mathbf {e} ^{j}=\delta _{i}^{j}}"></span>), then using <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a> (or <a href="/wiki/Geometric_algebra" title="Geometric algebra">geometric algebra</a>) we compute the reciprocal (sometimes called <a href="/wiki/Geometric_algebra#Dual_basis" title="Geometric algebra">dual</a>) column vectors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{i}=x_{ji}\mathbf {e} ^{j}=(-1)^{i-1}(\mathbf {x} _{1}\wedge \cdots \wedge ()_{i}\wedge \cdots \wedge \mathbf {x} _{n})\cdot (\mathbf {x} _{1}\wedge \ \mathbf {x} _{2}\wedge \cdots \wedge \mathbf {x} _{n})^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>∧<!-- ∧ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>∧<!-- ∧ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{i}=x_{ji}\mathbf {e} ^{j}=(-1)^{i-1}(\mathbf {x} _{1}\wedge \cdots \wedge ()_{i}\wedge \cdots \wedge \mathbf {x} _{n})\cdot (\mathbf {x} _{1}\wedge \ \mathbf {x} _{2}\wedge \cdots \wedge \mathbf {x} _{n})^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6f763c639cd1ef6bcbaffd32c3f3659b8daf077" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:70.752ex; height:3.343ex;" alt="{\displaystyle \mathbf {x} ^{i}=x_{ji}\mathbf {e} ^{j}=(-1)^{i-1}(\mathbf {x} _{1}\wedge \cdots \wedge ()_{i}\wedge \cdots \wedge \mathbf {x} _{n})\cdot (\mathbf {x} _{1}\wedge \ \mathbf {x} _{2}\wedge \cdots \wedge \mathbf {x} _{n})^{-1}}"></span></dd></dl> <p>as the columns of the inverse matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} ^{-1}=[x_{ji}].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} ^{-1}=[x_{ji}].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78d43f884ab940a905153b017d09490e0ed6a6e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.198ex; height:3.343ex;" alt="{\displaystyle \mathbf {X} ^{-1}=[x_{ji}].}"></span> Note that, the place "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ()_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ()_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d2d567afc79f80afc8766df857153dcbd131090" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.609ex; height:2.843ex;" alt="{\displaystyle ()_{i}}"></span>" indicates that "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57d2ef3df60acdb53bdf90535264041fea7231cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {x} _{i}}"></span>" is removed from that place in the above expression for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} ^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} ^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf9a7653709fa1f5ff7818e182d141f5c09d7559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.211ex; height:2.676ex;" alt="{\displaystyle \mathbf {x} ^{i}}"></span>. We then have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} \mathbf {X} ^{-1}=\left[\mathbf {x} _{i}\cdot \mathbf {x} ^{j}\right]=\left[\delta _{i}^{j}\right]=\mathbf {I} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} \mathbf {X} ^{-1}=\left[\mathbf {x} _{i}\cdot \mathbf {x} ^{j}\right]=\left[\delta _{i}^{j}\right]=\mathbf {I} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3b784769b878e5e00d9c003037c0e0aa44dd292" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:30.207ex; height:4.843ex;" alt="{\displaystyle \mathbf {X} \mathbf {X} ^{-1}=\left[\mathbf {x} _{i}\cdot \mathbf {x} ^{j}\right]=\left[\delta _{i}^{j}\right]=\mathbf {I} _{n}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{i}^{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{i}^{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ff8a003e21c4cc60d2577b44edecf710120992b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.963ex; height:3.509ex;" alt="{\displaystyle \delta _{i}^{j}}"></span> is the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>. We also have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} ^{-1}\mathbf {X} =\left[\left(\mathbf {e} _{i}\cdot \mathbf {x} ^{k}\right)\left(\mathbf {e} ^{j}\cdot \mathbf {x} _{k}\right)\right]=\left[\mathbf {e} _{i}\cdot \mathbf {e} ^{j}\right]=\left[\delta _{i}^{j}\right]=\mathbf {I} _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <msubsup> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mo>]</mo> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} ^{-1}\mathbf {X} =\left[\left(\mathbf {e} _{i}\cdot \mathbf {x} ^{k}\right)\left(\mathbf {e} ^{j}\cdot \mathbf {x} _{k}\right)\right]=\left[\mathbf {e} _{i}\cdot \mathbf {e} ^{j}\right]=\left[\delta _{i}^{j}\right]=\mathbf {I} _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8b3a1a25ab9213ccc1996b44c9dbc688c4b4068" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:52.038ex; height:4.843ex;" alt="{\displaystyle \mathbf {X} ^{-1}\mathbf {X} =\left[\left(\mathbf {e} _{i}\cdot \mathbf {x} ^{k}\right)\left(\mathbf {e} ^{j}\cdot \mathbf {x} _{k}\right)\right]=\left[\mathbf {e} _{i}\cdot \mathbf {e} ^{j}\right]=\left[\delta _{i}^{j}\right]=\mathbf {I} _{n}}"></span>, as required. If the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57d2ef3df60acdb53bdf90535264041fea7231cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {x} _{i}}"></span> are not linearly independent, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {x} _{1}\wedge \mathbf {x} _{2}\wedge \cdots \wedge \mathbf {x} _{n})=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>∧<!-- ∧ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {x} _{1}\wedge \mathbf {x} _{2}\wedge \cdots \wedge \mathbf {x} _{n})=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c423b4b8de32bddfe056fff2e1e879d58f56527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.101ex; height:2.843ex;" alt="{\displaystyle (\mathbf {x} _{1}\wedge \mathbf {x} _{2}\wedge \cdots \wedge \mathbf {x} _{n})=0}"></span> and the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {X} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {X} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f75966a2f9d5672136fa9401ee1e75008f95ffd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {X} }"></span> is not invertible (has no inverse). </p> <div class="mw-heading mw-heading2"><h2 id="Derivative_of_the_matrix_inverse">Derivative of the matrix inverse</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=23" title="Edit section: Derivative of the matrix inverse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that the invertible matrix <b>A</b> depends on a parameter <i>t</i>. Then the derivative of the inverse of <b>A</b> with respect to <i>t</i> is given by<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}=-\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}=-\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4f1a7661254642247ea754982e6649dbade6550" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:24.887ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}=-\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-1}.}"></span></dd></dl> <p>To derive the above expression for the derivative of the inverse of <b>A</b>, one can differentiate the definition of the matrix inverse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}\mathbf {A} =\mathbf {I} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}\mathbf {A} =\mathbf {I} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9466de8b4f79d93ee74e2b3d6dd52e2260c901c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.484ex; height:2.676ex;" alt="{\displaystyle \mathbf {A} ^{-1}\mathbf {A} =\mathbf {I} }"></span> and then solve for the inverse of <b>A</b>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} (\mathbf {A} ^{-1}\mathbf {A} )}{\mathrm {d} t}}={\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}\mathbf {A} +\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}={\frac {\mathrm {d} \mathbf {I} }{\mathrm {d} t}}=\mathbf {0} .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} (\mathbf {A} ^{-1}\mathbf {A} )}{\mathrm {d} t}}={\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}\mathbf {A} +\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}={\frac {\mathrm {d} \mathbf {I} }{\mathrm {d} t}}=\mathbf {0} .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/689280edcad0d944ff49fabb86ed109f942dd7a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:44.572ex; height:6.176ex;" alt="{\displaystyle {\frac {\mathrm {d} (\mathbf {A} ^{-1}\mathbf {A} )}{\mathrm {d} t}}={\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}\mathbf {A} +\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}={\frac {\mathrm {d} \mathbf {I} }{\mathrm {d} t}}=\mathbf {0} .}"></span></dd></dl> <p>Subtracting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/167b6b416b51d626642c11c1796e62060a40e36c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.5ex; height:5.509ex;" alt="{\displaystyle \mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}}"></span> from both sides of the above and multiplying on the right by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e4a37527a4700b3ad51e31a1fba1dbfc2a5af22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.352ex; height:2.676ex;" alt="{\displaystyle \mathbf {A} ^{-1}}"></span> gives the correct expression for the derivative of the inverse: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}=-\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}=-\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4f1a7661254642247ea754982e6649dbade6550" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:24.887ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} \mathbf {A} ^{-1}}{\mathrm {d} t}}=-\mathbf {A} ^{-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-1}.}"></span></dd></dl> <p>Similarly, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ε<!-- ε --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30c89172e5b88edbd45d3e2772c7f5e562e5173" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle \varepsilon }"></span> is a small number then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\mathbf {A} +\varepsilon \mathbf {X} \right)^{-1}=\mathbf {A} ^{-1}-\varepsilon \mathbf {A} ^{-1}\mathbf {X} \mathbf {A} ^{-1}+{\mathcal {O}}(\varepsilon ^{2})\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi>ε<!-- ε --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\mathbf {A} +\varepsilon \mathbf {X} \right)^{-1}=\mathbf {A} ^{-1}-\varepsilon \mathbf {A} ^{-1}\mathbf {X} \mathbf {A} ^{-1}+{\mathcal {O}}(\varepsilon ^{2})\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6065bd95f24e872c3385074f2d2885681fe38d24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.875ex; height:3.343ex;" alt="{\displaystyle \left(\mathbf {A} +\varepsilon \mathbf {X} \right)^{-1}=\mathbf {A} ^{-1}-\varepsilon \mathbf {A} ^{-1}\mathbf {X} \mathbf {A} ^{-1}+{\mathcal {O}}(\varepsilon ^{2})\,.}"></span></dd></dl> <p>More generally, if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} f(\mathbf {A} )}{\mathrm {d} t}}=\sum _{i}g_{i}(\mathbf {A} ){\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}h_{i}(\mathbf {A} ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\mathrm {d} f(\mathbf {A} )}{\mathrm {d} t}}=\sum _{i}g_{i}(\mathbf {A} ){\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}h_{i}(\mathbf {A} ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ff9e5f6a8ec5bace272992c31da3e6428a6d2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.576ex; height:6.843ex;" alt="{\displaystyle {\frac {\mathrm {d} f(\mathbf {A} )}{\mathrm {d} t}}=\sum _{i}g_{i}(\mathbf {A} ){\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}h_{i}(\mathbf {A} ),}"></span></dd></dl> <p>then, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {A} +\varepsilon \mathbf {X} )=f(\mathbf {A} )+\varepsilon \sum _{i}g_{i}(\mathbf {A} )\mathbf {X} h_{i}(\mathbf {A} )+{\mathcal {O}}\left(\varepsilon ^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>ε<!-- ε --></mi> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow> <mo>(</mo> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {A} +\varepsilon \mathbf {X} )=f(\mathbf {A} )+\varepsilon \sum _{i}g_{i}(\mathbf {A} )\mathbf {X} h_{i}(\mathbf {A} )+{\mathcal {O}}\left(\varepsilon ^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1671ff10b475d7644272cfb4b0226c489172ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:51.413ex; height:5.509ex;" alt="{\displaystyle f(\mathbf {A} +\varepsilon \mathbf {X} )=f(\mathbf {A} )+\varepsilon \sum _{i}g_{i}(\mathbf {A} )\mathbf {X} h_{i}(\mathbf {A} )+{\mathcal {O}}\left(\varepsilon ^{2}\right).}"></span></dd></dl> <p>Given a positive integer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} \mathbf {A} ^{n}}{\mathrm {d} t}}&=\sum _{i=1}^{n}\mathbf {A} ^{i-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{n-i},\\{\frac {\mathrm {d} \mathbf {A} ^{-n}}{\mathrm {d} t}}&=-\sum _{i=1}^{n}\mathbf {A} ^{-i}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-(n+1-i)}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\mathrm {d} \mathbf {A} ^{n}}{\mathrm {d} t}}&=\sum _{i=1}^{n}\mathbf {A} ^{i-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{n-i},\\{\frac {\mathrm {d} \mathbf {A} ^{-n}}{\mathrm {d} t}}&=-\sum _{i=1}^{n}\mathbf {A} ^{-i}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-(n+1-i)}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23147ed8dd799592c46c9a55e2447a8eeb730fef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:35.067ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} \mathbf {A} ^{n}}{\mathrm {d} t}}&=\sum _{i=1}^{n}\mathbf {A} ^{i-1}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{n-i},\\{\frac {\mathrm {d} \mathbf {A} ^{-n}}{\mathrm {d} t}}&=-\sum _{i=1}^{n}\mathbf {A} ^{-i}{\frac {\mathrm {d} \mathbf {A} }{\mathrm {d} t}}\mathbf {A} ^{-(n+1-i)}.\end{aligned}}}"></span></dd></dl> <p>Therefore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(\mathbf {A} +\varepsilon \mathbf {X} )^{n}&=\mathbf {A} ^{n}+\varepsilon \sum _{i=1}^{n}\mathbf {A} ^{i-1}\mathbf {X} \mathbf {A} ^{n-i}+{\mathcal {O}}\left(\varepsilon ^{2}\right),\\(\mathbf {A} +\varepsilon \mathbf {X} )^{-n}&=\mathbf {A} ^{-n}-\varepsilon \sum _{i=1}^{n}\mathbf {A} ^{-i}\mathbf {X} \mathbf {A} ^{-(n+1-i)}+{\mathcal {O}}\left(\varepsilon ^{2}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>ε<!-- ε --></mi> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow> <mo>(</mo> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>ε<!-- ε --></mi> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">X</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>i</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow> <mo>(</mo> <msup> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(\mathbf {A} +\varepsilon \mathbf {X} )^{n}&=\mathbf {A} ^{n}+\varepsilon \sum _{i=1}^{n}\mathbf {A} ^{i-1}\mathbf {X} \mathbf {A} ^{n-i}+{\mathcal {O}}\left(\varepsilon ^{2}\right),\\(\mathbf {A} +\varepsilon \mathbf {X} )^{-n}&=\mathbf {A} ^{-n}-\varepsilon \sum _{i=1}^{n}\mathbf {A} ^{-i}\mathbf {X} \mathbf {A} ^{-(n+1-i)}+{\mathcal {O}}\left(\varepsilon ^{2}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eaeba69cd30b9c5c6850fc751550b86a99fe033" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:54.927ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}(\mathbf {A} +\varepsilon \mathbf {X} )^{n}&=\mathbf {A} ^{n}+\varepsilon \sum _{i=1}^{n}\mathbf {A} ^{i-1}\mathbf {X} \mathbf {A} ^{n-i}+{\mathcal {O}}\left(\varepsilon ^{2}\right),\\(\mathbf {A} +\varepsilon \mathbf {X} )^{-n}&=\mathbf {A} ^{-n}-\varepsilon \sum _{i=1}^{n}\mathbf {A} ^{-i}\mathbf {X} \mathbf {A} ^{-(n+1-i)}+{\mathcal {O}}\left(\varepsilon ^{2}\right).\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Generalized_inverse">Generalized inverse</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=24" title="Edit section: Generalized inverse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some of the properties of inverse matrices are shared by <a href="/wiki/Generalized_inverse" title="Generalized inverse">generalized inverses</a> (for example, the <a href="/wiki/Moore%E2%80%93Penrose_inverse" title="Moore–Penrose inverse">Moore–Penrose inverse</a>), which can be defined for any <i>m</i>-by-<i>n</i> matrix.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=25" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For most practical applications, it is <i>not</i> necessary to invert a matrix to solve a <a href="/wiki/System_of_linear_equations" title="System of linear equations">system of linear equations</a>; however, for a unique solution, it <i>is</i> necessary that the matrix involved be invertible. </p><p>Decomposition techniques like <a href="/wiki/LU_decomposition" title="LU decomposition">LU decomposition</a> are much faster than inversion, and various fast algorithms for special classes of linear systems have also been developed. </p> <div class="mw-heading mw-heading3"><h3 id="Regression/least_squares"><span id="Regression.2Fleast_squares"></span>Regression/least squares</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=26" title="Edit section: Regression/least squares"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Matrix_inverses_in_real-time_simulations">Matrix inverses in real-time simulations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=27" title="Edit section: Matrix inverses in real-time simulations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Matrix inversion plays a significant role in <a href="/wiki/Computer_graphics" title="Computer graphics">computer graphics</a>, particularly in <a href="/wiki/3D_graphics" class="mw-redirect" title="3D graphics">3D graphics</a> rendering and 3D simulations. Examples include screen-to-world <a href="/wiki/Ray_casting" title="Ray casting">ray casting</a>, world-to-subspace-to-world object transformations, and physical simulations. </p> <div class="mw-heading mw-heading3"><h3 id="Matrix_inverses_in_MIMO_wireless_communication">Matrix inverses in MIMO wireless communication</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=28" title="Edit section: Matrix inverses in MIMO wireless communication"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Matrix inversion also plays a significant role in the <a href="/wiki/MIMO" title="MIMO">MIMO</a> (Multiple-Input, Multiple-Output) technology in <a href="/wiki/Wireless_communications" class="mw-redirect" title="Wireless communications">wireless communications</a>. The MIMO system consists of <i>N</i> transmit and <i>M</i> receive antennas. Unique signals, occupying the same <a href="/wiki/Frequency_band" class="mw-redirect" title="Frequency band">frequency band</a>, are sent via <i>N</i> transmit antennas and are received via <i>M</i> receive antennas. The signal arriving at each receive antenna will be a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of the <i>N</i> transmitted signals forming an <i>N</i> × <i>M</i> transmission matrix <b>H</b>. It is crucial for the matrix <b>H</b> to be invertible for the receiver to be able to figure out the transmitted information. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=29" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 30em;"> <ul><li><a href="/wiki/Binomial_inverse_theorem" class="mw-redirect" title="Binomial inverse theorem">Binomial inverse theorem</a></li> <li><a href="/wiki/LU_decomposition" title="LU decomposition">LU decomposition</a></li> <li><a href="/wiki/Matrix_decomposition" title="Matrix decomposition">Matrix decomposition</a></li> <li><a href="/wiki/Matrix_square_root" class="mw-redirect" title="Matrix square root">Matrix square root</a></li> <li><a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">Minor (linear algebra)</a></li> <li><a href="/wiki/Partial_inverse_of_a_matrix" title="Partial inverse of a matrix">Partial inverse of a matrix</a></li> <li><a href="/wiki/Pseudoinverse" class="mw-redirect" title="Pseudoinverse">Pseudoinverse</a></li> <li><a href="/wiki/Rybicki_Press_algorithm" title="Rybicki Press algorithm">Rybicki Press algorithm</a></li> <li><a href="/wiki/Singular_value_decomposition" title="Singular value decomposition">Singular value decomposition</a></li> <li><a href="/wiki/Woodbury_matrix_identity" title="Woodbury matrix identity">Woodbury matrix identity</a></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=30" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFAxler2014" class="citation book cs1"><a href="/wiki/Sheldon_Axler" title="Sheldon Axler">Axler, Sheldon</a> (18 December 2014). <i>Linear Algebra Done Right</i>. <a href="/wiki/Undergraduate_Texts_in_Mathematics" title="Undergraduate Texts in Mathematics">Undergraduate Texts in Mathematics</a> (3rd ed.). <a href="/wiki/Springer_Publishing" title="Springer Publishing">Springer Publishing</a> (published 2015). p. 296. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-11079-0" title="Special:BookSources/978-3-319-11079-0"><bdi>978-3-319-11079-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra+Done+Right&rft.series=Undergraduate+Texts+in+Mathematics&rft.pages=296&rft.edition=3rd&rft.pub=Springer+Publishing&rft.date=2014-12-18&rft.isbn=978-3-319-11079-0&rft.aulast=Axler&rft.aufirst=Sheldon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.-S._Roger_Jang2001" class="citation web cs1">J.-S. Roger Jang (March 2001). <a rel="nofollow" class="external text" href="https://www.cs.nthu.edu.tw/~jang/book/addenda/matinv/matinv/">"Matrix Inverse in Block Form"</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Matrix+Inverse+in+Block+Form&rft.date=2001-03&rft.au=J.-S.+Roger+Jang&rft_id=https%3A%2F%2Fwww.cs.nthu.edu.tw%2F~jang%2Fbook%2Faddenda%2Fmatinv%2Fmatinv%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/InvertibleMatrixTheorem.html">"Invertible Matrix Theorem"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Invertible+Matrix+Theorem&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FInvertibleMatrixTheorem.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornJohnson1985" class="citation book cs1">Horn, Roger A.; Johnson, Charles R. (1985). <i>Matrix Analysis</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. p. 14. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-38632-6" title="Special:BookSources/978-0-521-38632-6"><bdi>978-0-521-38632-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Analysis&rft.pages=14&rft.pub=Cambridge+University+Press&rft.date=1985&rft.isbn=978-0-521-38632-6&rft.aulast=Horn&rft.aufirst=Roger+A.&rft.au=Johnson%2C+Charles+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span>.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPanReif1985" class="citation cs2">Pan, Victor; Reif, John (1985), <i>Efficient Parallel Solution of Linear Systems</i>, Proceedings of the 17th Annual ACM Symposium on Theory of Computing, Providence: <a href="/wiki/Association_for_Computing_Machinery" title="Association for Computing Machinery">ACM</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Efficient+Parallel+Solution+of+Linear+Systems&rft.place=Providence&rft.series=Proceedings+of+the+17th+Annual+ACM+Symposium+on+Theory+of+Computing&rft.pub=ACM&rft.date=1985&rft.aulast=Pan&rft.aufirst=Victor&rft.au=Reif%2C+John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPanReif1985" class="citation cs2">Pan, Victor; Reif, John (1985), <i>Harvard University Center for Research in Computing Technology Report TR-02-85</i>, Cambridge, MA: <a href="/w/index.php?title=Aiken_Computation_Laboratory&action=edit&redlink=1" class="new" title="Aiken Computation Laboratory (page does not exist)">Aiken Computation Laboratory</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Harvard+University+Center+for+Research+in+Computing+Technology+Report+TR-02-85&rft.place=Cambridge%2C+MA&rft.pub=Aiken+Computation+Laboratory&rft.date=1985&rft.aulast=Pan&rft.aufirst=Victor&rft.au=Reif%2C+John&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">A proof can be found in the Appendix B of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKondratyukKrivoruchenko1992" class="citation journal cs1">Kondratyuk, L. A.; Krivoruchenko, M. I. (1992). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/226920070">"Superconducting quark matter in SU(2) color group"</a>. <i>Zeitschrift für Physik A</i>. <b>344</b> (1): 99–115. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992ZPhyA.344...99K">1992ZPhyA.344...99K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01291027">10.1007/BF01291027</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120467300">120467300</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Zeitschrift+f%C3%BCr+Physik+A&rft.atitle=Superconducting+quark+matter+in+SU%282%29+color+group&rft.volume=344&rft.issue=1&rft.pages=99-115&rft.date=1992&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120467300%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF01291027&rft_id=info%3Abibcode%2F1992ZPhyA.344...99K&rft.aulast=Kondratyuk&rft.aufirst=L.+A.&rft.au=Krivoruchenko%2C+M.+I.&rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F226920070&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrang2003" class="citation book cs1">Strang, Gilbert (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Gv4pCVyoUVYC"><i>Introduction to linear algebra</i></a> (3rd ed.). SIAM. p. 71. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-9614088-9-3" title="Special:BookSources/978-0-9614088-9-3"><bdi>978-0-9614088-9-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+linear+algebra&rft.pages=71&rft.edition=3rd&rft.pub=SIAM&rft.date=2003&rft.isbn=978-0-9614088-9-3&rft.aulast=Strang&rft.aufirst=Gilbert&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGv4pCVyoUVYC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span>, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Gv4pCVyoUVYC&pg=PA71">Chapter 2, page 71</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTzon-TzerSheng-Hua2002" class="citation journal cs1">Tzon-Tzer, Lu; Sheng-Hua, Shiou (2002). "Inverses of 2 × 2 block matrices". <i>Computers & Mathematics with Applications</i>. <b>43</b> (1–2): 119–129. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0898-1221%2801%2900278-4">10.1016/S0898-1221(01)00278-4</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Computers+%26+Mathematics+with+Applications&rft.atitle=Inverses+of+2+%C3%97+2+block+matrices&rft.volume=43&rft.issue=1%E2%80%932&rft.pages=119-129&rft.date=2002&rft_id=info%3Adoi%2F10.1016%2FS0898-1221%2801%2900278-4&rft.aulast=Tzon-Tzer&rft.aufirst=Lu&rft.au=Sheng-Hua%2C+Shiou&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein2005" class="citation book cs1">Bernstein, Dennis (2005). <i>Matrix Mathematics</i>. Princeton University Press. p. 44. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-11802-4" title="Special:BookSources/978-0-691-11802-4"><bdi>978-0-691-11802-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Mathematics&rft.pages=44&rft.pub=Princeton+University+Press&rft.date=2005&rft.isbn=978-0-691-11802-4&rft.aulast=Bernstein&rft.aufirst=Dennis&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein2005" class="citation book cs1">Bernstein, Dennis (2005). <i>Matrix Mathematics</i>. Princeton University Press. p. 45. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-11802-4" title="Special:BookSources/978-0-691-11802-4"><bdi>978-0-691-11802-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Mathematics&rft.pages=45&rft.pub=Princeton+University+Press&rft.date=2005&rft.isbn=978-0-691-11802-4&rft.aulast=Bernstein&rft.aufirst=Dennis&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-Cormen-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cormen_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cormen_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, <i>Introduction to Algorithms</i>, 3rd ed., MIT Press, Cambridge, MA, 2009, §28.2.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><a href="/wiki/Ran_Raz" title="Ran Raz">Ran Raz</a>. On the complexity of matrix product. In Proceedings of the thirty-fourth annual ACM symposium on Theory of computing. ACM Press, 2002. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F509907.509932">10.1145/509907.509932</a>.</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStewart1998" class="citation book cs1">Stewart, Gilbert (1998). <i>Matrix Algorithms: Basic decompositions</i>. SIAM. p. 55. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-414-2" title="Special:BookSources/978-0-89871-414-2"><bdi>978-0-89871-414-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Algorithms%3A+Basic+decompositions&rft.pages=55&rft.pub=SIAM&rft.date=1998&rft.isbn=978-0-89871-414-2&rft.aulast=Stewart&rft.aufirst=Gilbert&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaramotoMatsumoto2009" class="citation journal cs1">Haramoto, H.; Matsumoto, M. (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cam.2008.07.044">"A p-adic algorithm for computing the inverse of integer matrices"</a>. <i>Journal of Computational and Applied Mathematics</i>. <b>225</b> (1): 320–322. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009JCoAM.225..320H">2009JCoAM.225..320H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cam.2008.07.044">10.1016/j.cam.2008.07.044</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Computational+and+Applied+Mathematics&rft.atitle=A+p-adic+algorithm+for+computing+the+inverse+of+integer+matrices&rft.volume=225&rft.issue=1&rft.pages=320-322&rft.date=2009&rft_id=info%3Adoi%2F10.1016%2Fj.cam.2008.07.044&rft_id=info%3Abibcode%2F2009JCoAM.225..320H&rft.aulast=Haramoto&rft.aufirst=H.&rft.au=Matsumoto%2C+M.&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cam.2008.07.044&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/~astorjoh/iml.html">"IML - Integer Matrix Library"</a>. <i>cs.uwaterloo.ca</i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=cs.uwaterloo.ca&rft.atitle=IML+-+Integer+Matrix+Library&rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2F~astorjoh%2Fiml.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMagnusNeudecker1999" class="citation book cs1">Magnus, Jan R.; Neudecker, Heinz (1999). <i>Matrix Differential Calculus : with Applications in Statistics and Econometrics</i> (Revised ed.). New York: John Wiley & Sons. pp. 151–152. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-98633-X" title="Special:BookSources/0-471-98633-X"><bdi>0-471-98633-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Differential+Calculus+%3A+with+Applications+in+Statistics+and+Econometrics&rft.place=New+York&rft.pages=151-152&rft.edition=Revised&rft.pub=John+Wiley+%26+Sons&rft.date=1999&rft.isbn=0-471-98633-X&rft.aulast=Magnus&rft.aufirst=Jan+R.&rft.au=Neudecker%2C+Heinz&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRoman2008" class="citation cs2"><a href="/wiki/Steven_Roman" title="Steven Roman">Roman, Stephen</a> (2008), <i>Advanced Linear Algebra</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a> (Third ed.), Springer, p. 446, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-72828-5" title="Special:BookSources/978-0-387-72828-5"><bdi>978-0-387-72828-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Advanced+Linear+Algebra&rft.series=Graduate+Texts+in+Mathematics&rft.pages=446&rft.edition=Third&rft.pub=Springer&rft.date=2008&rft.isbn=978-0-387-72828-5&rft.aulast=Roman&rft.aufirst=Stephen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinLuYingCar2009" class="citation journal cs1">Lin, Lin; Lu, Jianfeng; Ying, Lexing; Car, Roberto; E, Weinan (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.4310%2FCMS.2009.v7.n3.a12">"Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems"</a>. <i>Communications in Mathematical Sciences</i>. <b>7</b> (3): 755–777. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4310%2FCMS.2009.v7.n3.a12">10.4310/CMS.2009.v7.n3.a12</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Communications+in+Mathematical+Sciences&rft.atitle=Fast+algorithm+for+extracting+the+diagonal+of+the+inverse+matrix+with+application+to+the+electronic+structure+analysis+of+metallic+systems&rft.volume=7&rft.issue=3&rft.pages=755-777&rft.date=2009&rft_id=info%3Adoi%2F10.4310%2FCMS.2009.v7.n3.a12&rft.aulast=Lin&rft.aufirst=Lin&rft.au=Lu%2C+Jianfeng&rft.au=Ying%2C+Lexing&rft.au=Car%2C+Roberto&rft.au=E%2C+Weinan&rft_id=https%3A%2F%2Fdoi.org%2F10.4310%252FCMS.2009.v7.n3.a12&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=31" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Inversion_of_a_matrix">"Inversion of a matrix"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Inversion+of+a+matrix&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DInversion_of_a_matrix&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCormenLeisersonRivestStein2001" class="citation book cs1"><a href="/wiki/Thomas_H._Cormen" title="Thomas H. Cormen">Cormen, Thomas H.</a>; <a href="/wiki/Charles_E._Leiserson" title="Charles E. Leiserson">Leiserson, Charles E.</a>; <a href="/wiki/Ron_Rivest" title="Ron Rivest">Rivest, Ronald L.</a>; <a href="/wiki/Clifford_Stein" title="Clifford Stein">Stein, Clifford</a> (2001) [1990]. "28.4: Inverting matrices". <a href="/wiki/Introduction_to_Algorithms" title="Introduction to Algorithms"><i>Introduction to Algorithms</i></a> (2nd ed.). MIT Press and McGraw-Hill. pp. 755–760. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-262-03293-7" title="Special:BookSources/0-262-03293-7"><bdi>0-262-03293-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=28.4%3A+Inverting+matrices&rft.btitle=Introduction+to+Algorithms&rft.pages=755-760&rft.edition=2nd&rft.pub=MIT+Press+and+McGraw-Hill&rft.date=2001&rft.isbn=0-262-03293-7&rft.aulast=Cormen&rft.aufirst=Thomas+H.&rft.au=Leiserson%2C+Charles+E.&rft.au=Rivest%2C+Ronald+L.&rft.au=Stein%2C+Clifford&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernstein2009" class="citation book cs1">Bernstein, Dennis S. (2009). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jgEiuHlTCYcC"><i>Matrix Mathematics: Theory, Facts, and Formulas</i></a> (2nd ed.). Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0691140391" title="Special:BookSources/978-0691140391"><bdi>978-0691140391</bdi></a> – via <a href="/wiki/Google_Books" title="Google Books">Google Books</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Mathematics%3A+Theory%2C+Facts%2C+and+Formulas&rft.edition=2nd&rft.pub=Princeton+University+Press&rft.date=2009&rft.isbn=978-0691140391&rft.aulast=Bernstein&rft.aufirst=Dennis+S.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjgEiuHlTCYcC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPetersenPedersen2012" class="citation web cs1">Petersen, Kaare Brandt; Pedersen, Michael Syskind (November 15, 2012). <a rel="nofollow" class="external text" href="https://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3274/pdf/imm3274.pdf#page=17">"The Matrix Cookbook"</a> <span class="cs1-format">(PDF)</span>. pp. 17–23.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=The+Matrix+Cookbook&rft.pages=17-23&rft.date=2012-11-15&rft.aulast=Petersen&rft.aufirst=Kaare+Brandt&rft.au=Pedersen%2C+Michael+Syskind&rft_id=https%3A%2F%2Fwww2.imm.dtu.dk%2Fpubdb%2Fviews%2Fedoc_download.php%2F3274%2Fpdf%2Fimm3274.pdf%23page%3D17&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Invertible_matrix&action=edit&section=32" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-External_links plainlinks metadata ambox ambox-style ambox-external_links" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article's <b>use of <a href="/wiki/Wikipedia:External_links" title="Wikipedia:External links">external links</a> may not follow Wikipedia's policies or guidelines</b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Invertible_matrix&action=edit">improve this article</a> by removing <a href="/wiki/Wikipedia:What_Wikipedia_is_not#Wikipedia_is_not_a_mirror_or_a_repository_of_links,_images,_or_media_files" title="Wikipedia:What Wikipedia is not">excessive</a> or <a href="/wiki/Wikipedia:External_links" title="Wikipedia:External links">inappropriate</a> external links, and converting useful links where appropriate into <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">footnote references</a>.</span> <span class="date-container"><i>(<span class="date">June 2015</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSanderson2016" class="citation web cs1">Sanderson, Grant (August 15, 2016). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=uQhTuRlWMxw&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=7">"Inverse Matrices, Column Space and Null Space"</a>. <i>Essence of Linear Algebra</i>. <a rel="nofollow" class="external text" href="https://ghostarchive.org/varchive/youtube/20211103/uQhTuRlWMxw">Archived</a> from the original on 2021-11-03 – via <a href="/wiki/YouTube" title="YouTube">YouTube</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Essence+of+Linear+Algebra&rft.atitle=Inverse+Matrices%2C+Column+Space+and+Null+Space&rft.date=2016-08-15&rft.aulast=Sanderson&rft.aufirst=Grant&rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DuQhTuRlWMxw%26list%3DPLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab%26index%3D7&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStrang" class="citation web cs1">Strang, Gilbert. <a rel="nofollow" class="external text" href="https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/lecture-3-multiplication-and-inverse-matrices/">"Linear Algebra Lecture on Inverse Matrices"</a>. <i><a href="/wiki/MIT_OpenCourseWare" title="MIT OpenCourseWare">MIT OpenCourseWare</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MIT+OpenCourseWare&rft.atitle=Linear+Algebra+Lecture+on+Inverse+Matrices&rft.aulast=Strang&rft.aufirst=Gilbert&rft_id=https%3A%2F%2Focw.mit.edu%2Fcourses%2Fmathematics%2F18-06-linear-algebra-spring-2010%2Fvideo-lectures%2Flecture-3-multiplication-and-inverse-matrices%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AInvertible+matrix" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www.vias.org/tmdatanaleng/cc_matrix_pseudoinv.html">Moore-Penrose Inverse Matrix</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Linear_algebra" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Linear_algebra" title="Template:Linear algebra"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Linear_algebra" title="Template talk:Linear algebra"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Linear_algebra" title="Special:EditPage/Template:Linear algebra"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Linear_algebra" style="font-size:114%;margin:0 4em"><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Outline_of_linear_algebra" title="Outline of linear algebra">Outline</a></li> <li><a href="/wiki/Glossary_of_linear_algebra" title="Glossary of linear algebra">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">Scalar</a></li> <li><a href="/wiki/Euclidean_vector" title="Euclidean vector">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li> <li><a href="/wiki/Scalar_multiplication" title="Scalar multiplication">Scalar multiplication</a></li> <li><a href="/wiki/Vector_projection" title="Vector projection">Vector projection</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Linear projection</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Linear_combination" title="Linear combination">Linear combination</a></li> <li><a href="/wiki/Multilinear_map" title="Multilinear map">Multilinear map</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Change_of_basis" title="Change of basis">Change of basis</a></li> <li><a href="/wiki/Row_and_column_vectors" title="Row and column vectors">Row and column vectors</a></li> <li><a href="/wiki/Row_and_column_spaces" title="Row and column spaces">Row and column spaces</a></li> <li><a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">Kernel</a></li> <li><a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">Eigenvalues and eigenvectors</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a></li> <li><a href="/wiki/System_of_linear_equations" title="System of linear equations">Linear equations</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Euclidean_space" title="Euclidean space"><img alt="Three dimensional Euclidean space" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/80px-Linear_subspaces_with_shading.svg.png" decoding="async" width="80" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/120px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/160px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrices</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Matrix_decomposition" title="Matrix decomposition">Decomposition</a></li> <li><a class="mw-selflink selflink">Invertible</a></li> <li><a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">Minor</a></li> <li><a href="/wiki/Matrix_multiplication" title="Matrix multiplication">Multiplication</a></li> <li><a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">Rank</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li> <li><a href="/wiki/Cramer%27s_rule" title="Cramer's rule">Cramer's rule</a></li> <li><a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a></li> <li><a href="/wiki/Productive_matrix" title="Productive matrix">Productive matrix</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Bilinear_map" title="Bilinear map">Bilinear</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Orthogonality" title="Orthogonality">Orthogonality</a></li> <li><a href="/wiki/Dot_product" title="Dot product">Dot product</a></li> <li><a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a></li> <li><a href="/wiki/Outer_product" title="Outer product">Outer product</a></li> <li><a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a></li> <li><a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Determinant" title="Determinant">Determinant</a></li> <li><a href="/wiki/Cross_product" title="Cross product">Cross product</a></li> <li><a href="/wiki/Triple_product" title="Triple product">Triple product</a></li> <li><a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">Seven-dimensional cross product</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Bivector" title="Bivector">Bivector</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li> <li><a href="/wiki/Outermorphism" title="Outermorphism">Outermorphism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_space" title="Vector space">Vector space</a> constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_space" title="Dual space">Dual</a></li> <li><a href="/wiki/Direct_sum_of_modules#Construction_for_two_vector_spaces" title="Direct sum of modules">Direct sum</a></li> <li><a href="/wiki/Function_space#In_linear_algebra" title="Function space">Function space</a></li> <li><a href="/wiki/Quotient_space_(linear_algebra)" title="Quotient space (linear algebra)">Quotient</a></li> <li><a href="/wiki/Linear_subspace" title="Linear subspace">Subspace</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">Numerical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">Floating-point</a></li> <li><a href="/wiki/Numerical_stability" title="Numerical stability">Numerical stability</a></li> <li><a href="/wiki/Basic_Linear_Algebra_Subprograms" title="Basic Linear Algebra Subprograms">Basic Linear Algebra Subprograms</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse matrix</a></li> <li><a href="/wiki/Comparison_of_linear_algebra_libraries" title="Comparison of linear algebra libraries">Comparison of linear algebra libraries</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Matrix_classes" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Matrix_classes" title="Template:Matrix classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Matrix_classes" title="Template talk:Matrix classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Matrix_classes" title="Special:EditPage/Template:Matrix classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Matrix_classes" style="font-size:114%;margin:0 4em"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a> classes</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Explicitly constrained entries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alternant_matrix" title="Alternant matrix">Alternant</a></li> <li><a href="/wiki/Anti-diagonal_matrix" title="Anti-diagonal matrix">Anti-diagonal</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Anti-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Anti-symmetric</a></li> <li><a href="/wiki/Arrowhead_matrix" title="Arrowhead matrix">Arrowhead</a></li> <li><a href="/wiki/Band_matrix" title="Band matrix">Band</a></li> <li><a href="/wiki/Bidiagonal_matrix" title="Bidiagonal matrix">Bidiagonal</a></li> <li><a href="/wiki/Bisymmetric_matrix" title="Bisymmetric matrix">Bisymmetric</a></li> <li><a href="/wiki/Block-diagonal_matrix" class="mw-redirect" title="Block-diagonal matrix">Block-diagonal</a></li> <li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Block_tridiagonal_matrix" class="mw-redirect" title="Block tridiagonal matrix">Block tridiagonal</a></li> <li><a href="/wiki/Boolean_matrix" title="Boolean matrix">Boolean</a></li> <li><a href="/wiki/Cauchy_matrix" title="Cauchy matrix">Cauchy</a></li> <li><a href="/wiki/Centrosymmetric_matrix" title="Centrosymmetric matrix">Centrosymmetric</a></li> <li><a href="/wiki/Conference_matrix" title="Conference matrix">Conference</a></li> <li><a href="/wiki/Complex_Hadamard_matrix" title="Complex Hadamard matrix">Complex Hadamard</a></li> <li><a href="/wiki/Copositive_matrix" title="Copositive matrix">Copositive</a></li> <li><a href="/wiki/Diagonally_dominant_matrix" title="Diagonally dominant matrix">Diagonally dominant</a></li> <li><a href="/wiki/Diagonal_matrix" title="Diagonal matrix">Diagonal</a></li> <li><a href="/wiki/DFT_matrix" title="DFT matrix">Discrete Fourier Transform</a></li> <li><a href="/wiki/Elementary_matrix" title="Elementary matrix">Elementary</a></li> <li><a href="/wiki/Equivalent_matrix" class="mw-redirect" title="Equivalent matrix">Equivalent</a></li> <li><a href="/wiki/Frobenius_matrix" title="Frobenius matrix">Frobenius</a></li> <li><a href="/wiki/Generalized_permutation_matrix" title="Generalized permutation matrix">Generalized permutation</a></li> <li><a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard</a></li> <li><a href="/wiki/Hankel_matrix" title="Hankel matrix">Hankel</a></li> <li><a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a></li> <li><a href="/wiki/Hessenberg_matrix" title="Hessenberg matrix">Hessenberg</a></li> <li><a href="/wiki/Hollow_matrix" title="Hollow matrix">Hollow</a></li> <li><a href="/wiki/Integer_matrix" title="Integer matrix">Integer</a></li> <li><a href="/wiki/Logical_matrix" title="Logical matrix">Logical</a></li> <li><a href="/wiki/Matrix_unit" title="Matrix unit">Matrix unit</a></li> <li><a href="/wiki/Metzler_matrix" title="Metzler matrix">Metzler</a></li> <li><a href="/wiki/Moore_matrix" title="Moore matrix">Moore</a></li> <li><a href="/wiki/Nonnegative_matrix" title="Nonnegative matrix">Nonnegative</a></li> <li><a href="/wiki/Pentadiagonal_matrix" class="mw-redirect" title="Pentadiagonal matrix">Pentadiagonal</a></li> <li><a href="/wiki/Permutation_matrix" title="Permutation matrix">Permutation</a></li> <li><a href="/wiki/Persymmetric_matrix" title="Persymmetric matrix">Persymmetric</a></li> <li><a href="/wiki/Polynomial_matrix" title="Polynomial matrix">Polynomial</a></li> <li><a href="/wiki/Quaternionic_matrix" title="Quaternionic matrix">Quaternionic</a></li> <li><a href="/wiki/Signature_matrix" title="Signature matrix">Signature</a></li> <li><a href="/wiki/Skew-Hermitian_matrix" title="Skew-Hermitian matrix">Skew-Hermitian</a></li> <li><a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">Skew-symmetric</a></li> <li><a href="/wiki/Skyline_matrix" title="Skyline matrix">Skyline</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse</a></li> <li><a href="/wiki/Sylvester_matrix" title="Sylvester matrix">Sylvester</a></li> <li><a href="/wiki/Symmetric_matrix" title="Symmetric matrix">Symmetric</a></li> <li><a href="/wiki/Toeplitz_matrix" title="Toeplitz matrix">Toeplitz</a></li> <li><a href="/wiki/Triangular_matrix" title="Triangular matrix">Triangular</a></li> <li><a href="/wiki/Tridiagonal_matrix" title="Tridiagonal matrix">Tridiagonal</a></li> <li><a href="/wiki/Vandermonde_matrix" title="Vandermonde matrix">Vandermonde</a></li> <li><a href="/wiki/Walsh_matrix" title="Walsh matrix">Walsh</a></li> <li><a href="/wiki/Z-matrix_(mathematics)" title="Z-matrix (mathematics)">Z</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constant</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exchange_matrix" title="Exchange matrix">Exchange</a></li> <li><a href="/wiki/Hilbert_matrix" title="Hilbert matrix">Hilbert</a></li> <li><a href="/wiki/Identity_matrix" title="Identity matrix">Identity</a></li> <li><a href="/wiki/Lehmer_matrix" title="Lehmer matrix">Lehmer</a></li> <li><a href="/wiki/Matrix_of_ones" title="Matrix of ones">Of ones</a></li> <li><a href="/wiki/Pascal_matrix" title="Pascal matrix">Pascal</a></li> <li><a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli</a></li> <li><a href="/wiki/Redheffer_matrix" title="Redheffer matrix">Redheffer</a></li> <li><a href="/wiki/Shift_matrix" title="Shift matrix">Shift</a></li> <li><a href="/wiki/Zero_matrix" title="Zero matrix">Zero</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Conditions on <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalues or eigenvectors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Companion_matrix" title="Companion matrix">Companion</a></li> <li><a href="/wiki/Convergent_matrix" title="Convergent matrix">Convergent</a></li> <li><a href="/wiki/Defective_matrix" title="Defective matrix">Defective</a></li> <li><a href="/wiki/Definite_matrix" title="Definite matrix">Definite</a></li> <li><a href="/wiki/Diagonalizable_matrix" title="Diagonalizable matrix">Diagonalizable</a></li> <li><a href="/wiki/Hurwitz-stable_matrix" title="Hurwitz-stable matrix">Hurwitz-stable</a></li> <li><a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix">Positive-definite</a></li> <li><a href="/wiki/Stieltjes_matrix" title="Stieltjes matrix">Stieltjes</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Satisfying conditions on <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">products</a> or <a href="/wiki/Inverse_of_a_matrix" class="mw-redirect" title="Inverse of a matrix">inverses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Matrix_congruence" title="Matrix congruence">Congruent</a></li> <li><a href="/wiki/Idempotent_matrix" title="Idempotent matrix">Idempotent</a> or <a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Projection</a></li> <li><a class="mw-selflink selflink">Invertible</a></li> <li><a href="/wiki/Involutory_matrix" title="Involutory matrix">Involutory</a></li> <li><a href="/wiki/Nilpotent_matrix" title="Nilpotent matrix">Nilpotent</a></li> <li><a href="/wiki/Normal_matrix" title="Normal matrix">Normal</a></li> <li><a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal</a></li> <li><a href="/wiki/Unimodular_matrix" title="Unimodular matrix">Unimodular</a></li> <li><a href="/wiki/Unipotent" title="Unipotent">Unipotent</a></li> <li><a href="/wiki/Unitary_matrix" title="Unitary matrix">Unitary</a></li> <li><a href="/wiki/Totally_unimodular_matrix" class="mw-redirect" title="Totally unimodular matrix">Totally unimodular</a></li> <li><a href="/wiki/Weighing_matrix" title="Weighing matrix">Weighing</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With specific applications</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjugate_matrix" title="Adjugate matrix">Adjugate</a></li> <li><a href="/wiki/Alternating_sign_matrix" title="Alternating sign matrix">Alternating sign</a></li> <li><a href="/wiki/Augmented_matrix" title="Augmented matrix">Augmented</a></li> <li><a href="/wiki/B%C3%A9zout_matrix" title="Bézout matrix">Bézout</a></li> <li><a href="/wiki/Carleman_matrix" title="Carleman matrix">Carleman</a></li> <li><a href="/wiki/Cartan_matrix" title="Cartan matrix">Cartan</a></li> <li><a href="/wiki/Circulant_matrix" title="Circulant matrix">Circulant</a></li> <li><a href="/wiki/Cofactor_matrix" class="mw-redirect" title="Cofactor matrix">Cofactor</a></li> <li><a href="/wiki/Commutation_matrix" title="Commutation matrix">Commutation</a></li> <li><a href="/wiki/Confusion_matrix" title="Confusion matrix">Confusion</a></li> <li><a href="/wiki/Coxeter_matrix" class="mw-redirect" title="Coxeter matrix">Coxeter</a></li> <li><a href="/wiki/Distance_matrix" title="Distance matrix">Distance</a></li> <li><a href="/wiki/Duplication_and_elimination_matrices" title="Duplication and elimination matrices">Duplication and elimination</a></li> <li><a href="/wiki/Euclidean_distance_matrix" title="Euclidean distance matrix">Euclidean distance</a></li> <li><a href="/wiki/Fundamental_matrix_(linear_differential_equation)" title="Fundamental matrix (linear differential equation)">Fundamental (linear differential equation)</a></li> <li><a href="/wiki/Generator_matrix" title="Generator matrix">Generator</a></li> <li><a href="/wiki/Gram_matrix" title="Gram matrix">Gram</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian</a></li> <li><a href="/wiki/Householder_transformation" title="Householder transformation">Householder</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian</a></li> <li><a href="/wiki/Moment_matrix" title="Moment matrix">Moment</a></li> <li><a href="/wiki/Payoff_matrix" class="mw-redirect" title="Payoff matrix">Payoff</a></li> <li><a href="/wiki/Pick_matrix" class="mw-redirect" title="Pick matrix">Pick</a></li> <li><a href="/wiki/Random_matrix" title="Random matrix">Random</a></li> <li><a href="/wiki/Rotation_matrix" title="Rotation matrix">Rotation</a></li> <li><a href="/wiki/Routh%E2%80%93Hurwitz_matrix" title="Routh–Hurwitz matrix">Routh-Hurwitz</a></li> <li><a href="/wiki/Seifert_matrix" class="mw-redirect" title="Seifert matrix">Seifert</a></li> <li><a href="/wiki/Shear_matrix" class="mw-redirect" title="Shear matrix">Shear</a></li> <li><a href="/wiki/Similarity_matrix" class="mw-redirect" title="Similarity matrix">Similarity</a></li> <li><a href="/wiki/Symplectic_matrix" title="Symplectic matrix">Symplectic</a></li> <li><a href="/wiki/Totally_positive_matrix" title="Totally positive matrix">Totally positive</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Statistics" title="Statistics">statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centering_matrix" title="Centering matrix">Centering</a></li> <li><a href="/wiki/Correlation_matrix" class="mw-redirect" title="Correlation matrix">Correlation</a></li> <li><a href="/wiki/Covariance_matrix" title="Covariance matrix">Covariance</a></li> <li><a href="/wiki/Design_matrix" title="Design matrix">Design</a></li> <li><a href="/wiki/Doubly_stochastic_matrix" title="Doubly stochastic matrix">Doubly stochastic</a></li> <li><a href="/wiki/Fisher_information_matrix" class="mw-redirect" title="Fisher information matrix">Fisher information</a></li> <li><a href="/wiki/Projection_matrix" title="Projection matrix">Hat</a></li> <li><a href="/wiki/Precision_(statistics)" title="Precision (statistics)">Precision</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Stochastic</a></li> <li><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Transition</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adjacency_matrix" title="Adjacency matrix">Adjacency</a></li> <li><a href="/wiki/Biadjacency_matrix" class="mw-redirect" title="Biadjacency matrix">Biadjacency</a></li> <li><a href="/wiki/Degree_matrix" title="Degree matrix">Degree</a></li> <li><a href="/wiki/Edmonds_matrix" title="Edmonds matrix">Edmonds</a></li> <li><a href="/wiki/Incidence_matrix" title="Incidence matrix">Incidence</a></li> <li><a href="/wiki/Laplacian_matrix" title="Laplacian matrix">Laplacian</a></li> <li><a href="/wiki/Seidel_adjacency_matrix" title="Seidel adjacency matrix">Seidel adjacency</a></li> <li><a href="/wiki/Tutte_matrix" title="Tutte matrix">Tutte</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Used in science and engineering</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density</a></li> <li><a href="/wiki/Fundamental_matrix_(computer_vision)" title="Fundamental matrix (computer vision)">Fundamental (computer vision)</a></li> <li><a href="/wiki/Fuzzy_associative_matrix" title="Fuzzy associative matrix">Fuzzy associative</a></li> <li><a href="/wiki/Gamma_matrices" title="Gamma matrices">Gamma</a></li> <li><a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann</a></li> <li><a href="/wiki/Hamiltonian_matrix" title="Hamiltonian matrix">Hamiltonian</a></li> <li><a href="/wiki/Irregular_matrix" title="Irregular matrix">Irregular</a></li> <li><a href="/wiki/Overlap_matrix" class="mw-redirect" title="Overlap matrix">Overlap</a></li> <li><a href="/wiki/S-matrix" title="S-matrix">S</a></li> <li><a href="/wiki/State-transition_matrix" title="State-transition matrix">State transition</a></li> <li><a href="/wiki/Substitution_matrix" title="Substitution matrix">Substitution</a></li> <li><a href="/wiki/Z-matrix_(chemistry)" title="Z-matrix (chemistry)">Z (chemistry)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related terms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Jordan_normal_form" title="Jordan normal form">Jordan normal form</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Matrix_exponential" title="Matrix exponential">Matrix exponential</a></li> <li><a href="/wiki/Matrix_representation_of_conic_sections" title="Matrix representation of conic sections">Matrix representation of conic sections</a></li> <li><a href="/wiki/Perfect_matrix" title="Perfect matrix">Perfect matrix</a></li> <li><a href="/wiki/Pseudoinverse" class="mw-redirect" title="Pseudoinverse">Pseudoinverse</a></li> <li><a href="/wiki/Row_echelon_form" title="Row echelon form">Row echelon form</a></li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></li> <li><a href="/wiki/List_of_matrices" class="mw-redirect" title="List of matrices">List of matrices</a></li> <li><a href="/wiki/Category:Matrices" title="Category:Matrices">Category:Matrices</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐qn7zs Cached time: 20241122140721 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.075 seconds Real time usage: 1.382 seconds Preprocessor visited node count: 11161/1000000 Post‐expand include size: 157834/2097152 bytes Template argument size: 23499/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 10/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 106294/5000000 bytes Lua time usage: 0.521/10.000 seconds Lua memory usage: 7122277/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 933.445 1 -total 23.80% 222.176 1 Template:Reflist 19.25% 179.676 158 Template:Math 14.29% 133.427 9 Template:Cite_book 12.50% 116.718 2 Template:Navbox 12.26% 114.458 1 Template:Short_description 10.99% 102.564 1 Template:Linear_algebra 10.89% 101.645 1 Template:Multiple_issues 9.22% 86.090 2 Template:Pagetype 7.10% 66.259 3 Template:Ambox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:217122-0!canonical and timestamp 20241122140721 and revision id 1249575168. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Invertible_matrix&oldid=1249575168">https://en.wikipedia.org/w/index.php?title=Invertible_matrix&oldid=1249575168</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Linear algebra</a></li><li><a href="/wiki/Category:Matrices" title="Category:Matrices">Matrices</a></li><li><a href="/wiki/Category:Determinants" title="Category:Determinants">Determinants</a></li><li><a href="/wiki/Category:Matrix_theory" title="Category:Matrix theory">Matrix theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_September_2020" title="Category:Articles needing additional references from September 2020">Articles needing additional references from September 2020</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Wikipedia_articles_that_are_too_technical_from_August_2021" title="Category:Wikipedia articles that are too technical from August 2021">Wikipedia articles that are too technical from August 2021</a></li><li><a href="/wiki/Category:All_articles_that_are_too_technical" title="Category:All articles that are too technical">All articles that are too technical</a></li><li><a href="/wiki/Category:Articles_with_multiple_maintenance_issues" title="Category:Articles with multiple maintenance issues">Articles with multiple maintenance issues</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_December_2009" title="Category:Articles with unsourced statements from December 2009">Articles with unsourced statements from December 2009</a></li><li><a href="/wiki/Category:Wikipedia_external_links_cleanup_from_June_2015" title="Category:Wikipedia external links cleanup from June 2015">Wikipedia external links cleanup from June 2015</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 5 October 2024, at 16:52<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Invertible_matrix&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-ttbpv","wgBackendResponseTime":145,"wgPageParseReport":{"limitreport":{"cputime":"1.075","walltime":"1.382","ppvisitednodes":{"value":11161,"limit":1000000},"postexpandincludesize":{"value":157834,"limit":2097152},"templateargumentsize":{"value":23499,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":10,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":106294,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 933.445 1 -total"," 23.80% 222.176 1 Template:Reflist"," 19.25% 179.676 158 Template:Math"," 14.29% 133.427 9 Template:Cite_book"," 12.50% 116.718 2 Template:Navbox"," 12.26% 114.458 1 Template:Short_description"," 10.99% 102.564 1 Template:Linear_algebra"," 10.89% 101.645 1 Template:Multiple_issues"," 9.22% 86.090 2 Template:Pagetype"," 7.10% 66.259 3 Template:Ambox"]},"scribunto":{"limitreport-timeusage":{"value":"0.521","limit":"10.000"},"limitreport-memusage":{"value":7122277,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-qn7zs","timestamp":"20241122140721","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Invertible matrix","url":"https:\/\/en.wikipedia.org\/wiki\/Invertible_matrix","sameAs":"http:\/\/www.wikidata.org\/entity\/Q242188","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q242188","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-04-27T02:38:29Z","dateModified":"2024-10-05T16:52:37Z","headline":"square matrix with non-zero determinant"}</script> </body> </html>