CINXE.COM
Schrödinger equation - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Schrödinger equation - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"aba29d2f-8387-4d72-bf94-72319f72d56a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Schrödinger_equation","wgTitle":"Schrödinger equation","wgCurRevisionId":1258465434,"wgRevisionId":1258465434,"wgArticleId":59874,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","CS1 German-language sources (de)","Articles with short description","Short description is different from Wikidata","Use dmy dates from June 2016","Schrödinger equation","Differential equations","Partial differential equations","Wave mechanics","Functions of space and time"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Schrödinger_equation","wgRelevantArticleId":59874, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q165498","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.categoryTree.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.categoryTree","ext.cite.ux-enhancements","ext.math.popup","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp", "ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.categoryTree.styles%7Cext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Schrödinger equation - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Schr%C3%B6dinger_equation"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Schrödinger_equation rootpage-Schrödinger_equation skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Schr%C3%B6dinger+equation" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Schr%C3%B6dinger+equation" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Schr%C3%B6dinger+equation" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Schr%C3%B6dinger+equation" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Preliminaries" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Preliminaries"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Preliminaries</span> </div> </a> <ul id="toc-Preliminaries-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time-dependent_equation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time-dependent_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Time-dependent equation</span> </div> </a> <ul id="toc-Time-dependent_equation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Time-independent_equation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Time-independent_equation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Time-independent equation</span> </div> </a> <ul id="toc-Time-independent_equation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Linearity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linearity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Linearity</span> </div> </a> <ul id="toc-Linearity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unitarity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unitarity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Unitarity</span> </div> </a> <ul id="toc-Unitarity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Changes_of_basis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Changes_of_basis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Changes of basis</span> </div> </a> <ul id="toc-Changes_of_basis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_current" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_current"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Probability current</span> </div> </a> <ul id="toc-Probability_current-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Separation_of_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Separation_of_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Separation of variables</span> </div> </a> <ul id="toc-Separation_of_variables-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Particle_in_a_box" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Particle_in_a_box"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Particle in a box</span> </div> </a> <ul id="toc-Particle_in_a_box-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Harmonic_oscillator" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Harmonic_oscillator"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Harmonic oscillator</span> </div> </a> <ul id="toc-Harmonic_oscillator-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hydrogen_atom" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hydrogen_atom"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Hydrogen atom</span> </div> </a> <ul id="toc-Hydrogen_atom-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Approximate_solutions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Approximate_solutions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Approximate solutions</span> </div> </a> <ul id="toc-Approximate_solutions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Semiclassical_limit" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Semiclassical_limit"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Semiclassical limit</span> </div> </a> <ul id="toc-Semiclassical_limit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Density_matrices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Density_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Density matrices</span> </div> </a> <ul id="toc-Density_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_quantum_physics_and_quantum_field_theory" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relativistic_quantum_physics_and_quantum_field_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Relativistic quantum physics and quantum field theory</span> </div> </a> <button aria-controls="toc-Relativistic_quantum_physics_and_quantum_field_theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Relativistic quantum physics and quantum field theory subsection</span> </button> <ul id="toc-Relativistic_quantum_physics_and_quantum_field_theory-sublist" class="vector-toc-list"> <li id="toc-Klein–Gordon_and_Dirac_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Klein–Gordon_and_Dirac_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Klein–Gordon and Dirac equations</span> </div> </a> <ul id="toc-Klein–Gordon_and_Dirac_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fock_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fock_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Fock space</span> </div> </a> <ul id="toc-Fock_space-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interpretation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Interpretation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Interpretation</span> </div> </a> <ul id="toc-Interpretation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Schrödinger equation</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 72 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-72" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">72 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Schr%C3%B6dinger-vergelyking" title="Schrödinger-vergelyking – Afrikaans" lang="af" hreflang="af" data-title="Schrödinger-vergelyking" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D8%B4%D8%B1%D9%88%D8%AF%D9%86%D8%BA%D8%B1" title="معادلة شرودنغر – Arabic" lang="ar" hreflang="ar" data-title="معادلة شرودنغر" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Schr%C3%B6dinger" title="Ecuación de Schrödinger – Asturian" lang="ast" hreflang="ast" data-title="Ecuación de Schrödinger" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/%C5%9Eredinger_t%C9%99nliyi" title="Şredinger tənliyi – Azerbaijani" lang="az" hreflang="az" data-title="Şredinger tənliyi" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B6%E0%A7%8D%E0%A6%B0%E0%A7%8B%E0%A6%A1%E0%A6%BF%E0%A6%99%E0%A6%BE%E0%A6%B0_%E0%A6%B8%E0%A6%AE%E0%A7%80%E0%A6%95%E0%A6%B0%E0%A6%A3" title="শ্রোডিঙার সমীকরণ – Bangla" lang="bn" hreflang="bn" data-title="শ্রোডিঙার সমীকরণ" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D1%9E%D0%BD%D0%B5%D0%BD%D0%BD%D0%B5_%D0%A8%D1%80%D0%BE%D0%B4%D0%B7%D1%96%D0%BD%D0%B3%D0%B5%D1%80%D0%B0" title="Ураўненне Шродзінгера – Belarusian" lang="be" hreflang="be" data-title="Ураўненне Шродзінгера" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BD%D0%B0_%D0%A8%D1%80%D1%8C%D0%BE%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80" title="Уравнение на Шрьодингер – Bulgarian" lang="bg" hreflang="bg" data-title="Уравнение на Шрьодингер" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Schr%C3%B6dingerova_jedna%C4%8Dina" title="Schrödingerova jednačina – Bosnian" lang="bs" hreflang="bs" data-title="Schrödingerova jednačina" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Equaci%C3%B3_de_Schr%C3%B6dinger" title="Equació de Schrödinger – Catalan" lang="ca" hreflang="ca" data-title="Equació de Schrödinger" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A8%D1%80%D1%91%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80_%D1%82%D0%B0%D0%BD%D0%BB%C4%83%D1%85%C4%95" title="Шрёдингер танлăхĕ – Chuvash" lang="cv" hreflang="cv" data-title="Шрёдингер танлăхĕ" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Schr%C3%B6dingerova_rovnice" title="Schrödingerova rovnice – Czech" lang="cs" hreflang="cs" data-title="Schrödingerova rovnice" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Schr%C3%B6dingers_ligning" title="Schrödingers ligning – Danish" lang="da" hreflang="da" data-title="Schrödingers ligning" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Schr%C3%B6dingergleichung" title="Schrödingergleichung – German" lang="de" hreflang="de" data-title="Schrödingergleichung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Schr%C3%B6dingeri_v%C3%B5rrand" title="Schrödingeri võrrand – Estonian" lang="et" hreflang="et" data-title="Schrödingeri võrrand" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%BE%CE%AF%CF%83%CF%89%CF%83%CE%B7_%CE%A3%CF%81%CE%AD%CE%BD%CF%84%CE%B9%CE%BD%CE%B3%CE%BA%CE%B5%CF%81" title="Εξίσωση Σρέντινγκερ – Greek" lang="el" hreflang="el" data-title="Εξίσωση Σρέντινγκερ" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Schr%C3%B6dinger" title="Ecuación de Schrödinger – Spanish" lang="es" hreflang="es" data-title="Ecuación de Schrödinger" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ekvacio_de_Schr%C3%B6dinger" title="Ekvacio de Schrödinger – Esperanto" lang="eo" hreflang="eo" data-title="Ekvacio de Schrödinger" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Schr%C3%B6dingerren_ekuazioa" title="Schrödingerren ekuazioa – Basque" lang="eu" hreflang="eu" data-title="Schrödingerren ekuazioa" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D9%87_%D8%B4%D8%B1%D9%88%D8%AF%DB%8C%D9%86%DA%AF%D8%B1" title="معادله شرودینگر – Persian" lang="fa" hreflang="fa" data-title="معادله شرودینگر" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/%C3%89quation_de_Schr%C3%B6dinger" title="Équation de Schrödinger – French" lang="fr" hreflang="fr" data-title="Équation de Schrödinger" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Schr%C3%B6dinger" title="Ecuación de Schrödinger – Galician" lang="gl" hreflang="gl" data-title="Ecuación de Schrödinger" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8A%88%EB%A2%B0%EB%94%A9%EA%B1%B0_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="슈뢰딩거 방정식 – Korean" lang="ko" hreflang="ko" data-title="슈뢰딩거 방정식" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%87%D6%80%D5%B5%D5%B8%D5%A4%D5%AB%D5%B6%D5%A3%D5%A5%D6%80%D5%AB_%D5%B0%D5%A1%D5%BE%D5%A1%D5%BD%D5%A1%D6%80%D5%B8%D6%82%D5%B4" title="Շրյոդինգերի հավասարում – Armenian" lang="hy" hreflang="hy" data-title="Շրյոդինգերի հավասարում" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B6%E0%A5%8D%E0%A4%B0%E0%A5%8B%E0%A4%A1%E0%A4%BF%E0%A4%82%E0%A4%97%E0%A4%B0_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="श्रोडिंगर समीकरण – Hindi" lang="hi" hreflang="hi" data-title="श्रोडिंगर समीकरण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Schr%C3%B6dingerova_jednad%C5%BEba" title="Schrödingerova jednadžba – Croatian" lang="hr" hreflang="hr" data-title="Schrödingerova jednadžba" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Persamaan_Schr%C3%B6dinger" title="Persamaan Schrödinger – Indonesian" lang="id" hreflang="id" data-title="Persamaan Schrödinger" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Equation_de_Schr%C3%B6dinger" title="Equation de Schrödinger – Interlingua" lang="ia" hreflang="ia" data-title="Equation de Schrödinger" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Jafna_Schr%C3%B6dingers" title="Jafna Schrödingers – Icelandic" lang="is" hreflang="is" data-title="Jafna Schrödingers" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Equazione_di_Schr%C3%B6dinger" title="Equazione di Schrödinger – Italian" lang="it" hreflang="it" data-title="Equazione di Schrödinger" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%95%D7%95%D7%90%D7%AA_%D7%A9%D7%A8%D7%93%D7%99%D7%A0%D7%92%D7%A8" title="משוואת שרדינגר – Hebrew" lang="he" hreflang="he" data-title="משוואת שרדינגר" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A8%E1%83%A0%E1%83%94%E1%83%93%E1%83%98%E1%83%9C%E1%83%92%E1%83%94%E1%83%A0%E1%83%98%E1%83%A1_%E1%83%92%E1%83%90%E1%83%9C%E1%83%A2%E1%83%9D%E1%83%9A%E1%83%94%E1%83%91%E1%83%90" title="შრედინგერის განტოლება – Georgian" lang="ka" hreflang="ka" data-title="შრედინგერის განტოლება" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C5%A0r%C4%93dingera_vien%C4%81dojums" title="Šrēdingera vienādojums – Latvian" lang="lv" hreflang="lv" data-title="Šrēdingera vienādojums" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/%C5%A0r%C4%97dingerio_lygtis" title="Šrėdingerio lygtis – Lithuanian" lang="lt" hreflang="lt" data-title="Šrėdingerio lygtis" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Schr%C3%B6dingervergelieking" title="Schrödingervergelieking – Limburgish" lang="li" hreflang="li" data-title="Schrödingervergelieking" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Schr%C3%B6dinger-egyenlet" title="Schrödinger-egyenlet – Hungarian" lang="hu" hreflang="hu" data-title="Schrödinger-egyenlet" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://mk.wikipedia.org/wiki/%D0%A8%D1%80%D0%B5%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D0%BA%D0%B0" title="Шредингерова равенка – Macedonian" lang="mk" hreflang="mk" data-title="Шредингерова равенка" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Ekwazzjoni_ta%27_Schr%C3%B6dinger" title="Ekwazzjoni ta' Schrödinger – Maltese" lang="mt" hreflang="mt" data-title="Ekwazzjoni ta' Schrödinger" data-language-autonym="Malti" data-language-local-name="Maltese" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D8%B4%D8%B1%D9%88%D8%AF%D9%8A%D9%86%D8%AC%D8%B1" title="معادلة شرودينجر – Egyptian Arabic" lang="arz" hreflang="arz" data-title="معادلة شرودينجر" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Persamaan_Schr%C3%B6dinger" title="Persamaan Schrödinger – Malay" lang="ms" hreflang="ms" data-title="Persamaan Schrödinger" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A8%D1%80%D0%B5%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%B8%D0%B9%D0%BD_%D1%82%D1%8D%D0%B3%D1%88%D0%B8%D1%82%D0%B3%D1%8D%D0%BB" title="Шредингерийн тэгшитгэл – Mongolian" lang="mn" hreflang="mn" data-title="Шредингерийн тэгшитгэл" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Schr%C3%B6dingervergelijking" title="Schrödingervergelijking – Dutch" lang="nl" hreflang="nl" data-title="Schrödingervergelijking" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%A5%E3%83%AC%E3%83%BC%E3%83%87%E3%82%A3%E3%83%B3%E3%82%AC%E3%83%BC%E6%96%B9%E7%A8%8B%E5%BC%8F" title="シュレーディンガー方程式 – Japanese" lang="ja" hreflang="ja" data-title="シュレーディンガー方程式" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Schr%C3%B6dinger-ligning" title="Schrödinger-ligning – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Schrödinger-ligning" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Schr%C3%B6dingerlikninga" title="Schrödingerlikninga – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Schrödingerlikninga" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Equacion_de_Schr%C3%B6dinger" title="Equacion de Schrödinger – Occitan" lang="oc" hreflang="oc" data-title="Equacion de Schrödinger" data-language-autonym="Occitan" data-language-local-name="Occitan" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Shredinger_tenglamasi" title="Shredinger tenglamasi – Uzbek" lang="uz" hreflang="uz" data-title="Shredinger tenglamasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%BC%E0%A9%8D%E0%A8%B0%E0%A9%8B%E0%A8%A1%E0%A8%BF%E0%A9%B0%E0%A8%9C%E0%A8%B0_%E0%A8%87%E0%A8%95%E0%A9%81%E0%A8%8F%E0%A8%B8%E0%A8%BC%E0%A8%A8" title="ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ – Punjabi" lang="pa" hreflang="pa" data-title="ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B4%D8%B1%D9%88%DA%88%D9%86%DA%AF%D8%B1_%D9%85%D8%B3%D8%A7%D9%88%D8%A7%D8%AA" title="شروڈنگر مساوات – Western Punjabi" lang="pnb" hreflang="pnb" data-title="شروڈنگر مساوات" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/R%C3%B3wnanie_Schr%C3%B6dingera" title="Równanie Schrödingera – Polish" lang="pl" hreflang="pl" data-title="Równanie Schrödingera" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Equa%C3%A7%C3%A3o_de_Schr%C3%B6dinger" title="Equação de Schrödinger – Portuguese" lang="pt" hreflang="pt" data-title="Equação de Schrödinger" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ecua%C8%9Bia_lui_Schr%C3%B6dinger" title="Ecuația lui Schrödinger – Romanian" lang="ro" hreflang="ro" data-title="Ecuația lui Schrödinger" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%A8%D1%80%D1%91%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%B0" title="Уравнение Шрёдингера – Russian" lang="ru" hreflang="ru" data-title="Уравнение Шрёдингера" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ekuacioni_i_Shrodingerit" title="Ekuacioni i Shrodingerit – Albanian" lang="sq" hreflang="sq" data-title="Ekuacioni i Shrodingerit" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Schrödinger equation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Schr%C3%B6dingerova_rovnica" title="Schrödingerova rovnica – Slovak" lang="sk" hreflang="sk" data-title="Schrödingerova rovnica" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Schr%C3%B6dingerjeva_ena%C4%8Dba" title="Schrödingerjeva enačba – Slovenian" lang="sl" hreflang="sl" data-title="Schrödingerjeva enačba" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%C5%A0redingerova_jedna%C4%8Dina" title="Šredingerova jednačina – Serbian" lang="sr" hreflang="sr" data-title="Šredingerova jednačina" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Schr%C3%B6dingerova_jedna%C4%8Dina" title="Schrödingerova jednačina – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Schrödingerova jednačina" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Schr%C3%B6dingerin_yht%C3%A4l%C3%B6" title="Schrödingerin yhtälö – Finnish" lang="fi" hreflang="fi" data-title="Schrödingerin yhtälö" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Schr%C3%B6dingerekvationen" title="Schrödingerekvationen – Swedish" lang="sv" hreflang="sv" data-title="Schrödingerekvationen" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Ekwasyong_Schr%C3%B6dinger" title="Ekwasyong Schrödinger – Tagalog" lang="tl" hreflang="tl" data-title="Ekwasyong Schrödinger" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%81%E0%AE%B0%E0%AF%8B%E0%AE%9F%E0%AE%BF%E0%AE%99%E0%AF%8D%E0%AE%95%E0%AE%B0%E0%AF%8D_%E0%AE%9A%E0%AE%AE%E0%AE%A9%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="சுரோடிங்கர் சமன்பாடு – Tamil" lang="ta" hreflang="ta" data-title="சுரோடிங்கர் சமன்பாடு" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A8%D1%80%D3%A9%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80_%D1%82%D0%B8%D0%B3%D0%B5%D0%B7%D0%BB%D3%99%D0%BC%D3%99%D1%81%D0%B5" title="Шрөдингер тигезләмәсе – Tatar" lang="tt" hreflang="tt" data-title="Шрөдингер тигезләмәсе" data-language-autonym="Татарча / tatarça" data-language-local-name="Tatar" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%A1%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%8A%E0%B9%80%E0%B8%A3%E0%B8%AD%E0%B8%94%E0%B8%B4%E0%B8%87%E0%B9%80%E0%B8%87%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="สมการชเรอดิงเงอร์ – Thai" lang="th" hreflang="th" data-title="สมการชเรอดิงเงอร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Schr%C3%B6dinger_denklemi" title="Schrödinger denklemi – Turkish" lang="tr" hreflang="tr" data-title="Schrödinger denklemi" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%A8%D1%80%D0%B5%D0%B4%D1%96%D0%BD%D0%B3%D0%B5%D1%80%D0%B0" title="Рівняння Шредінгера – Ukrainian" lang="uk" hreflang="uk" data-title="Рівняння Шредінгера" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C6%B0%C6%A1ng_tr%C3%ACnh_Schr%C3%B6dinger" title="Phương trình Schrödinger – Vietnamese" lang="vi" hreflang="vi" data-title="Phương trình Schrödinger" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%AB%A4%E6%96%B9%E7%A8%8B" title="薛定諤方程 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="薛定諤方程" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%B0%94%E6%96%B9%E7%A8%8B" title="薛定谔方程 – Wu" lang="wuu" hreflang="wuu" data-title="薛定谔方程" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A9%D7%A8%D7%A2%D7%93%D7%99%D7%A0%D7%92%D7%A2%D7%A8_%D7%92%D7%9C%D7%99%D7%99%D7%9B%D7%95%D7%A0%D7%92" title="שרעדינגער גלייכונג – Yiddish" lang="yi" hreflang="yi" data-title="שרעדינגער גלייכונג" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%AB%A4%E6%96%B9%E7%A8%8B%E5%BC%8F" title="薛定諤方程式 – Cantonese" lang="yue" hreflang="yue" data-title="薛定諤方程式" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://zh.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%B0%94%E6%96%B9%E7%A8%8B" title="薛定谔方程 – Chinese" lang="zh" hreflang="zh" data-title="薛定谔方程" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q165498#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Schr%C3%B6dinger_equation" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Schr%C3%B6dinger_equation" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Schr%C3%B6dinger_equation"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Schr%C3%B6dinger_equation"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Schr%C3%B6dinger_equation" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Schr%C3%B6dinger_equation" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger_equation&oldid=1258465434" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Schr%C3%B6dinger_equation&id=1258465434&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSchr%25C3%25B6dinger_equation"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSchr%25C3%25B6dinger_equation"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Schr%C3%B6dinger_equation&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dinger_equation&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Schr%C3%B6dinger_equation" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Schr%C3%B6dinger_equation" hreflang="en"><span>Wikiquote</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Schr%C3%B6dinger_equation" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q165498" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Description of a quantum-mechanical system</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For a more general introduction to the topic, see <a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction to quantum mechanics</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist nowraplinks" style="width:19.0em;"><tbody><tr><td class="sidebar-pretitle">Part of a series of articles about</td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></th></tr><tr><td class="sidebar-image"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1799e4a910c7d26396922a20ef5ceec25ca1871c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.882ex; height:5.509ex;" alt="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle }"></span><div class="sidebar-caption" style="font-size:90%;padding-top:0.4em;font-style:italic;"><a class="mw-selflink selflink">Schrödinger equation</a></div></td></tr><tr><td class="sidebar-above hlist nowrap" style="display:block;margin-bottom:0.4em;"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a></li></ul></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Background</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Fundamentals</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)">Complementarity</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_number" title="Quantum number">Quantum number</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">State</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li></ul></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Experiments</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell's inequality</a></li> <li><a href="/wiki/CHSH_inequality" title="CHSH inequality">CHSH inequality</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Leggett_inequality" title="Leggett inequality">Leggett inequality</a></li> <li><a href="/wiki/Leggett%E2%80%93Garg_inequality" title="Leggett–Garg inequality">Leggett–Garg inequality</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper's experiment">Popper</a></li></ul> </div> <ul><li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a> <ul><li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice</a></li></ul></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger's cat">Schrödinger's cat</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler's delayed-choice experiment">Wheeler's delayed-choice</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Formulations</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Overview</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase-space</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Sum-over-histories (path integral)</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Equations</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a class="mw-selflink selflink">Schrödinger</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective-collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Advanced topics</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><div class="hlist"> <ul><li><a href="/wiki/Yakir_Aharonov" title="Yakir Aharonov">Aharonov</a></li> <li><a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">Bell</a></li> <li><a href="/wiki/Hans_Bethe" title="Hans Bethe">Bethe</a></li> <li><a href="/wiki/Patrick_Blackett" title="Patrick Blackett">Blackett</a></li> <li><a href="/wiki/Felix_Bloch" title="Felix Bloch">Bloch</a></li> <li><a href="/wiki/David_Bohm" title="David Bohm">Bohm</a></li> <li><a href="/wiki/Niels_Bohr" title="Niels Bohr">Bohr</a></li> <li><a href="/wiki/Max_Born" title="Max Born">Born</a></li> <li><a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Bose</a></li> <li><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">de Broglie</a></li> <li><a href="/wiki/Arthur_Compton" title="Arthur Compton">Compton</a></li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac</a></li> <li><a href="/wiki/Clinton_Davisson" title="Clinton Davisson">Davisson</a></li> <li><a href="/wiki/Peter_Debye" title="Peter Debye">Debye</a></li> <li><a href="/wiki/Paul_Ehrenfest" title="Paul Ehrenfest">Ehrenfest</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/Hugh_Everett_III" title="Hugh Everett III">Everett</a></li> <li><a href="/wiki/Vladimir_Fock" title="Vladimir Fock">Fock</a></li> <li><a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Fermi</a></li> <li><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman</a></li> <li><a href="/wiki/Roy_J._Glauber" title="Roy J. Glauber">Glauber</a></li> <li><a href="/wiki/Martin_Gutzwiller" title="Martin Gutzwiller">Gutzwiller</a></li> <li><a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Heisenberg</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Jordan</a></li> <li><a href="/wiki/Hans_Kramers" title="Hans Kramers">Kramers</a></li> <li><a href="/wiki/Willis_Lamb" title="Willis Lamb">Lamb</a></li> <li><a href="/wiki/Lev_Landau" title="Lev Landau">Landau</a></li> <li><a href="/wiki/Max_von_Laue" title="Max von Laue">Laue</a></li> <li><a href="/wiki/Henry_Moseley" title="Henry Moseley">Moseley</a></li> <li><a href="/wiki/Robert_Andrews_Millikan" title="Robert Andrews Millikan">Millikan</a></li> <li><a href="/wiki/Heike_Kamerlingh_Onnes" title="Heike Kamerlingh Onnes">Onnes</a></li> <li><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Pauli</a></li> <li><a href="/wiki/Max_Planck" title="Max Planck">Planck</a></li> <li><a href="/wiki/Isidor_Isaac_Rabi" title="Isidor Isaac Rabi">Rabi</a></li> <li><a href="/wiki/C._V._Raman" title="C. V. Raman">Raman</a></li> <li><a href="/wiki/Johannes_Rydberg" title="Johannes Rydberg">Rydberg</a></li> <li><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Schrödinger</a></li> <li><a href="/wiki/Michelle_Simmons" title="Michelle Simmons">Simmons</a></li> <li><a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Sommerfeld</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Wilhelm_Wien" title="Wilhelm Wien">Wien</a></li> <li><a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Wigner</a></li> <li><a href="/wiki/Pieter_Zeeman" title="Pieter Zeeman">Zeeman</a></li> <li><a href="/wiki/Anton_Zeilinger" title="Anton Zeilinger">Zeilinger</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar" style="border-top:1px solid #aaa;padding-top:0.1em;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics" title="Template:Quantum mechanics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics" title="Template talk:Quantum mechanics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics" title="Special:EditPage/Template:Quantum mechanics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><th class="sidebar-title"><a href="/wiki/Modern_physics" title="Modern physics">Modern physics</a></th></tr><tr><td class="sidebar-image"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}|\psi _{n}(t)\rangle =i\hbar {\frac {d}{dt}}|\psi _{n}(t)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}|\psi _{n}(t)\rangle =i\hbar {\frac {d}{dt}}|\psi _{n}(t)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6227214310d46ffac904ca257878eee1fb6ce726" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:24.027ex; height:5.509ex;" alt="{\displaystyle {\hat {H}}|\psi _{n}(t)\rangle =i\hbar {\frac {d}{dt}}|\psi _{n}(t)\rangle }"></span> <br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <mi mathvariant="normal">Λ<!-- Λ --></mi> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>κ<!-- κ --></mi> </mrow> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> <mi>ν<!-- ν --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/124ab80fcb17e2733cc17ff6f93da5e52f355c77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.468ex; height:2.843ex;" alt="{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}"></span><div class="sidebar-caption" style="font-size:90%;padding-top:0.4em;font-style:italic;"><a class="mw-selflink selflink">Schrödinger</a> and <a href="/wiki/Einstein_field_equations" title="Einstein field equations">Einstein field equations</a></div></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Founders</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Niels_Bohr" title="Niels Bohr">Niels Bohr</a></li> <li><a href="/wiki/Max_Born" title="Max Born">Max Born</a></li> <li><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Erwin Schrödinger</a></li> <li><a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Werner Heisenberg</a></li> <li><a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Pascual Jordan</a></li> <li><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Wolfgang Pauli</a></li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a></li> <li><a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Ernest Rutherford</a></li> <li><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a></li> <li><a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Satyendra Nath Bose</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Concepts</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Spacetime_topology" title="Spacetime topology">Topology</a></li> <li><a href="/wiki/Space" title="Space">Space</a></li> <li><a href="/wiki/Time" title="Time">Time</a></li> <li><a href="/wiki/Energy" title="Energy">Energy</a></li> <li><a href="/wiki/Matter" title="Matter">Matter</a></li> <li><a href="/wiki/Work_(physics)" title="Work (physics)">Work</a></li> <li><a href="/wiki/Randomness" title="Randomness">Randomness</a></li> <li><a href="/wiki/Information" title="Information">Information</a></li> <li><a href="/wiki/Entropy" title="Entropy">Entropy</a></li> <li><a href="/wiki/Light" title="Light">Light</a></li> <li><a href="/wiki/Particle" title="Particle">Particle</a></li> <li><a href="/wiki/Wave" title="Wave">Wave</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Branches</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Applied_physics" title="Applied physics">Applied</a></li> <li><a href="/wiki/Experimental_physics" title="Experimental physics">Experimental</a></li> <li><a href="/wiki/Theoretical_physics" title="Theoretical physics">Theoretical</a></li> <li><a href="/wiki/Mathematical_physics" title="Mathematical physics">Mathematical</a></li> <li><a href="/wiki/Philosophy_of_physics" title="Philosophy of physics">Philosophy of physics</a></li> <li><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a> <ul><li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_computation" class="mw-redirect" title="Quantum computation">Quantum computation</a></li></ul></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/Weak_interaction" title="Weak interaction">Weak interaction</a></li> <li><a href="/wiki/Electroweak_interaction" title="Electroweak interaction">Electroweak interaction</a></li> <li><a href="/wiki/Strong_interaction" title="Strong interaction">Strong interaction</a></li> <li><a href="/wiki/Atomic_physics" title="Atomic physics">Atomic</a></li> <li><a href="/wiki/Particle_physics" title="Particle physics">Particle</a></li> <li><a href="/wiki/Nuclear_physics" title="Nuclear physics">Nuclear</a></li> <li><a href="/wiki/Atomic,_molecular,_and_optical_physics" title="Atomic, molecular, and optical physics">Atomic, molecular, and optical</a></li> <li><a href="/wiki/Condensed_matter_physics" title="Condensed matter physics">Condensed matter</a></li> <li><a href="/wiki/Statistical_physics" class="mw-redirect" title="Statistical physics">Statistical</a></li> <li><a href="/wiki/Complex_system" title="Complex system">Complex systems</a></li> <li><a href="/wiki/Non-linear_dynamics" class="mw-redirect" title="Non-linear dynamics">Non-linear dynamics</a></li> <li><a href="/wiki/Biophysics" title="Biophysics">Biophysics</a></li> <li><a href="/wiki/Neurophysics" title="Neurophysics">Neurophysics</a></li> <li><a href="/wiki/Plasma_physics" class="mw-redirect" title="Plasma physics">Plasma physics</a></li> <li><a href="/wiki/Special_relativity" title="Special relativity">Special relativity</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Astrophysics" title="Astrophysics">Astrophysics</a></li> <li><a href="/wiki/Cosmology" title="Cosmology">Cosmology</a></li> <li><a href="/wiki/Theories_of_gravitation" class="mw-redirect" title="Theories of gravitation">Theories of gravitation</a></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Theory_of_everything" title="Theory of everything">Theory of everything</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Scientists</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><a href="/wiki/Wilhelm_R%C3%B6ntgen" title="Wilhelm Röntgen">Röntgen</a></li> <li><a href="/wiki/Edward_Witten" title="Edward Witten">Witten</a></li> <li><a href="/wiki/Henri_Becquerel" title="Henri Becquerel">Becquerel</a></li> <li><a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Lorentz</a></li> <li><a href="/wiki/Max_Planck" title="Max Planck">Planck</a></li> <li><a href="/wiki/Pierre_Curie" title="Pierre Curie">Curie</a></li> <li><a href="/wiki/Wilhelm_Wien" title="Wilhelm Wien">Wien</a></li> <li><a href="/wiki/Marie_Curie" title="Marie Curie">Skłodowska-Curie</a></li> <li><a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Sommerfeld</a></li> <li><a href="/wiki/Ernest_Rutherford" title="Ernest Rutherford">Rutherford</a></li> <li><a href="/wiki/Frederick_Soddy" title="Frederick Soddy">Soddy</a></li> <li><a href="/wiki/Heike_Kamerlingh_Onnes" title="Heike Kamerlingh Onnes">Onnes</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Einstein</a></li> <li><a href="/wiki/Frank_Wilczek" title="Frank Wilczek">Wilczek</a></li> <li><a href="/wiki/Max_Born" title="Max Born">Born</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl</a></li> <li><a href="/wiki/Niels_Bohr" title="Niels Bohr">Bohr</a></li> <li><a href="/wiki/Hendrik_Kramers" class="mw-redirect" title="Hendrik Kramers">Kramers</a></li> <li><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Schrödinger</a></li> <li><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">de Broglie</a></li> <li><a href="/wiki/Max_von_Laue" title="Max von Laue">Laue</a></li> <li><a href="/wiki/Satyendra_Nath_Bose" title="Satyendra Nath Bose">Bose</a></li> <li><a href="/wiki/Arthur_Compton" title="Arthur Compton">Compton</a></li> <li><a href="/wiki/Wolfgang_Pauli" title="Wolfgang Pauli">Pauli</a></li> <li><a href="/wiki/Ernest_Walton" title="Ernest Walton">Walton</a></li> <li><a href="/wiki/Enrico_Fermi" title="Enrico Fermi">Fermi</a></li> <li><a href="/wiki/Johannes_Diderik_van_der_Waals" title="Johannes Diderik van der Waals">van der Waals</a></li> <li><a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Heisenberg</a></li> <li><a href="/wiki/Freeman_Dyson" title="Freeman Dyson">Dyson</a></li> <li><a href="/wiki/Pieter_Zeeman" title="Pieter Zeeman">Zeeman</a></li> <li><a href="/wiki/Henry_Moseley" title="Henry Moseley">Moseley</a></li> <li><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a></li> <li><a href="/wiki/Kurt_G%C3%B6del" title="Kurt Gödel">Gödel</a></li> <li><a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Jordan</a></li> <li><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac</a></li> <li><a href="/wiki/Eugene_Wigner" title="Eugene Wigner">Wigner</a></li> <li><a href="/wiki/Stephen_Hawking" title="Stephen Hawking">Hawking</a></li> <li><a href="/wiki/Philip_Warren_Anderson" class="mw-redirect" title="Philip Warren Anderson">P. W. Anderson</a></li> <li><a href="/wiki/Georges_Lema%C3%AEtre" title="Georges Lemaître">Lemaître</a></li> <li><a href="/wiki/Sir_George_Paget_Thomson" class="mw-redirect" title="Sir George Paget Thomson">Thomson</a></li> <li><a href="/wiki/Henri_Poincar%C3%A9" title="Henri Poincaré">Poincaré</a></li> <li><a href="/wiki/John_Archibald_Wheeler" title="John Archibald Wheeler">Wheeler</a></li> <li><a href="/wiki/Roger_Penrose" title="Roger Penrose">Penrose</a></li> <li><a href="/wiki/Robert_A._Millikan" class="mw-redirect" title="Robert A. Millikan">Millikan</a></li> <li><a href="/wiki/Yoichiro_Nambu" title="Yoichiro Nambu">Nambu</a></li> <li><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann</a></li> <li><a href="/wiki/Peter_Higgs" title="Peter Higgs">Higgs</a></li> <li><a href="/wiki/Otto_Hahn" title="Otto Hahn">Hahn</a></li> <li><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman</a></li> <li><a href="/wiki/Yang_Chen-Ning" title="Yang Chen-Ning">Yang</a></li> <li><a href="/wiki/Tsung-Dao_Lee" title="Tsung-Dao Lee">Lee</a></li> <li><a href="/wiki/Philipp_Lenard" title="Philipp Lenard">Lenard</a></li> <li><a href="/wiki/Abdus_Salam" title="Abdus Salam">Salam</a></li> <li><a href="/wiki/Gerard_%27t_Hooft" title="Gerard 't Hooft">'t Hooft</a></li> <li><a href="/wiki/Martinus_Veltman" class="mw-redirect" title="Martinus Veltman">Veltman</a></li> <li><a href="/wiki/John_Stewart_Bell" title="John Stewart Bell">Bell</a></li> <li><a href="/wiki/Murray_Gell-Mann" title="Murray Gell-Mann">Gell-Mann</a></li> <li><a href="/wiki/J._J._Thomson" title="J. J. Thomson">J. J. Thomson</a></li> <li><a href="/wiki/C._V._Raman" title="C. V. Raman">Raman</a></li> <li><a href="/wiki/Lawrence_Bragg" title="Lawrence Bragg">Bragg</a></li> <li><a href="/wiki/John_Bardeen" title="John Bardeen">Bardeen</a></li> <li><a href="/wiki/William_Shockley" title="William Shockley">Shockley</a></li> <li><a href="/wiki/James_Chadwick" title="James Chadwick">Chadwick</a></li> <li><a href="/wiki/Ernest_O._Lawrence" class="mw-redirect" title="Ernest O. Lawrence">Lawrence</a></li> <li><a href="/wiki/Anton_Zeilinger" title="Anton Zeilinger">Zeilinger</a></li> <li><a href="/wiki/Samuel_Goudsmit" title="Samuel Goudsmit">Goudsmit</a></li> <li><a href="/wiki/George_Uhlenbeck" title="George Uhlenbeck">Uhlenbeck</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Categories</div><div class="sidebar-list-content mw-collapsible-content hlist"> <ul><li><div class="CategoryTreeTag" data-ct-options="{"mode":0,"hideprefix":20,"showcount":false,"namespaces":false,"notranslations":false}"><div class="CategoryTreeSection"><div class="CategoryTreeItem"><span class="CategoryTreeEmptyBullet"></span> <bdi dir="ltr"><a href="/wiki/Category:Modern_physics" title="Category:Modern physics">Modern physics</a></bdi></div><div class="CategoryTreeChildren" style="display:none"></div></div></div></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Modern_physics" title="Template:Modern physics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Modern_physics" title="Template talk:Modern physics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Modern_physics" title="Special:EditPage/Template:Modern physics"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>The <b>Schrödinger equation</b> is a <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equation</a> that governs the <a href="/wiki/Wave_function" title="Wave function">wave function</a> of a non-relativistic quantum-mechanical system.<sup id="cite_ref-Griffiths2004_1-0" class="reference"><a href="#cite_note-Griffiths2004-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 1–2">: 1–2 </span></sup> Its discovery was a significant landmark in the development of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>. It is named after <a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Erwin Schrödinger</a>, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his <a href="/wiki/Nobel_Prize_in_Physics" title="Nobel Prize in Physics">Nobel Prize in Physics</a> in 1933.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-sch_3-0" class="reference"><a href="#cite_note-sch-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Conceptually, the Schrödinger equation is the quantum counterpart of <a href="/wiki/Newton%27s_second_law" class="mw-redirect" title="Newton's second law">Newton's second law</a> in <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a>. Given a set of known initial conditions, Newton's second law makes a mathematical prediction as to what path a given physical system will take over time. The Schrödinger equation gives the evolution over time of the <a href="/wiki/Wave_function" title="Wave function">wave function</a>, the quantum-mechanical characterization of an isolated physical system. The equation was postulated by Schrödinger based on a postulate of <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> that all matter has an associated <a href="/wiki/Matter_wave" title="Matter wave">matter wave</a>. The equation predicted bound states of the atom in agreement with experimental observations.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: II:268">: II:268 </span></sup> </p><p>The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions. Other formulations of quantum mechanics include <a href="/wiki/Matrix_mechanics" title="Matrix mechanics">matrix mechanics</a>, introduced by <a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Werner Heisenberg</a>, and the <a href="/wiki/Path_integral_formulation" title="Path integral formulation">path integral formulation</a>, developed chiefly by <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a>. When these approaches are compared, the use of the Schrödinger equation is sometimes called "wave mechanics". The <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein-Gordon equation</a> is a <a href="/wiki/Wave_equation" title="Wave equation">wave equation</a> which is the relativistic version of the Schrödinger equation. The Schrödinger equation is nonrelativistic because it contains a first derivative in time and a second derivative in space, and therefore space & time are not on equal footing. </p><p><a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a> incorporated <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a> and quantum mechanics into a <a href="/wiki/Dirac_equation" title="Dirac equation">single formulation</a> that simplifies to the Schrödinger equation in the non-relativistic limit. This is the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a>, which contains a single derivative in both space and time. The second-derivative PDE of the <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein-Gordon equation</a> led to a problem with probability density even though it was a <a href="/wiki/Relativistic_wave_equations" title="Relativistic wave equations">relativistic wave equation</a>. The probability density could be negative, which is physically unviable. This was fixed by Dirac by taking the so-called square-root of the Klein-Gordon operator and in turn introducing <a href="/wiki/Gamma_matrices" title="Gamma matrices">Dirac matrices</a>. In a modern context, the Klein-Gordon equation describes <a href="/wiki/Scalar_boson" title="Scalar boson">spin-less</a> particles, while the Dirac equation describes <a href="/wiki/Fermion" title="Fermion">spin-1/2</a> particles. </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Preliminaries">Preliminaries</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=2" title="Edit section: Preliminaries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Introductory courses on physics or chemistry typically introduce the Schrödinger equation in a way that can be appreciated knowing only the concepts and notations of basic <a href="/wiki/Calculus" title="Calculus">calculus</a>, particularly <a href="/wiki/Derivative" title="Derivative">derivatives</a> with respect to space and time. A special case of the Schrödinger equation that admits a statement in those terms is the position-space Schrödinger equation for a single nonrelativistic particle in one dimension: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (x,t)=\left[-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}+V(x,t)\right]\Psi (x,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (x,t)=\left[-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}+V(x,t)\right]\Psi (x,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83d11efa47cdd8f0f74fa65e2f105cf82fa49bf6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:45.357ex; height:6.343ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (x,t)=\left[-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}+V(x,t)\right]\Psi (x,t).}"></span> Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f78f255e641e6cd2cd4bcb63183af3a47d84808e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.821ex; height:2.843ex;" alt="{\displaystyle \Psi (x,t)}"></span> is a wave function, a function that assigns a <a href="/wiki/Complex_number" title="Complex number">complex number</a> to each point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> at each time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. The parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> is the mass of the particle, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb6eeabffa0b021abc76f4de9533b58bb5e0ac69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.8ex; height:2.843ex;" alt="{\displaystyle V(x,t)}"></span> is the <i><a href="/wiki/Scalar_Potential" class="mw-redirect" title="Scalar Potential">potential</a></i> that represents the environment in which the particle exists.<sup id="cite_ref-Zwiebach2022_5-0" class="reference"><a href="#cite_note-Zwiebach2022-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 74">: 74 </span></sup> The constant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> is the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de68de3a92517953436c93b5a76461d49160cc41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.306ex; height:2.176ex;" alt="{\displaystyle \hbar }"></span> is the reduced <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a>, which has units of <a href="/wiki/Action_(physics)" title="Action (physics)">action</a> (<a href="/wiki/Energy" title="Energy">energy</a> multiplied by time).<sup id="cite_ref-Zwiebach2022_5-1" class="reference"><a href="#cite_note-Zwiebach2022-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 10">: 10 </span></sup> </p> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Wavepacket-a2k4-en.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Wavepacket-a2k4-en.gif/300px-Wavepacket-a2k4-en.gif" decoding="async" width="300" height="178" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Wavepacket-a2k4-en.gif/450px-Wavepacket-a2k4-en.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b7/Wavepacket-a2k4-en.gif/600px-Wavepacket-a2k4-en.gif 2x" data-file-width="640" data-file-height="380" /></a><figcaption>Complex plot of a <a href="/wiki/Wave_function" title="Wave function">wave function</a> that satisfies the nonrelativistic <a href="/wiki/Free_particle#Quantum_free_particle" title="Free particle">free</a> Schrödinger equation with <span class="texhtml"><i>V</i> = 0</span>. For more details see <a href="/wiki/Wave_packet#Gaussian_wave_packets_in_quantum_mechanics" title="Wave packet">wave packet</a></figcaption></figure> <p>Broadening beyond this simple case, the <a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">mathematical formulation of quantum mechanics</a> developed by <a href="/wiki/Paul_Dirac" title="Paul Dirac">Paul Dirac</a>,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> <a href="/wiki/David_Hilbert" title="David Hilbert">David Hilbert</a>,<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> <a href="/wiki/John_von_Neumann" title="John von Neumann">John von Neumann</a>,<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> defines the state of a quantum mechanical system to be a vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27f1893b769a08cd6b296e115a29e61cab675e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.065ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle }"></span> belonging to a <a href="/wiki/Separable_space" title="Separable space">separable</a> <a href="/wiki/Complex_number" title="Complex number">complex</a> <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19ef4c7b923a5125ac91aa491838a95ee15b804f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.964ex; height:2.176ex;" alt="{\displaystyle {\mathcal {H}}}"></span>. This vector is postulated to be normalized under the Hilbert space's inner product, that is, in <a href="/wiki/Dirac_notation" class="mw-redirect" title="Dirac notation">Dirac notation</a> it obeys <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \psi |\psi \rangle =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \psi |\psi \rangle =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0004edb3b03f76513b7511c9e8b04bb47230c0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.743ex; height:2.843ex;" alt="{\displaystyle \langle \psi |\psi \rangle =1}"></span>. The exact nature of this Hilbert space is dependent on the system – for example, for describing position and momentum the Hilbert space is the space of <a href="/wiki/Square-integrable_function" title="Square-integrable function">square-integrable functions</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba162c66ca85776c83557af5088cc6f8584d1912" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.676ex;" alt="{\displaystyle L^{2}}"></span>, while the Hilbert space for the <a href="/wiki/Spin_(physics)" title="Spin (physics)">spin</a> of a single proton is the two-dimensional <a href="/wiki/Complex_vector_space" class="mw-redirect" title="Complex vector space">complex vector space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f43d6ec8a1e1fe5a85aec0dd9bdcd45ae09b06b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{2}}"></span> with the usual inner product.<sup id="cite_ref-Zwiebach2022_5-2" class="reference"><a href="#cite_note-Zwiebach2022-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 322">: 322 </span></sup> </p><p>Physical quantities of interest – position, momentum, energy, spin – are represented by <a href="/wiki/Observable" title="Observable">observables</a>, which are <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">self-adjoint operators</a> acting on the Hilbert space. A wave function can be an <a href="/wiki/Eigenvector" class="mw-redirect" title="Eigenvector">eigenvector</a> of an observable, in which case it is called an <a href="/wiki/Eigenstate" class="mw-redirect" title="Eigenstate">eigenstate</a>, and the associated <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalue</a> corresponds to the value of the observable in that eigenstate. More generally, a quantum state will be a linear combination of the eigenstates, known as a <a href="/wiki/Quantum_superposition" title="Quantum superposition">quantum superposition</a>. When an observable is measured, the result will be one of its eigenvalues with probability given by the <a href="/wiki/Born_rule" title="Born rule">Born rule</a>: in the simplest case the eigenvalue <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> is non-degenerate and the probability is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\langle \lambda |\psi \rangle |^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\langle \lambda |\psi \rangle |^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2dab3c9562f7cde542fbcc4a9c1bf0e4278a49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.672ex; height:3.343ex;" alt="{\displaystyle |\langle \lambda |\psi \rangle |^{2}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\lambda \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>λ<!-- λ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\lambda \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c29db6291c00f9d784f826ce7f6ade8f26e4d2c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.907ex; height:2.843ex;" alt="{\displaystyle |\lambda \rangle }"></span> is its associated eigenvector. More generally, the eigenvalue is degenerate and the probability is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \psi |P_{\lambda }|\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \psi |P_{\lambda }|\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be5633112d6d1ffae8c15afaffcf8cba792b69e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.812ex; height:2.843ex;" alt="{\displaystyle \langle \psi |P_{\lambda }|\psi \rangle }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/330591f9b6fffc93ca78514576fd0d8cfac6f0c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.683ex; height:2.509ex;" alt="{\displaystyle P_{\lambda }}"></span> is the <a href="/wiki/Projection-valued_measure#Application_in_quantum_mechanics" title="Projection-valued measure">projector</a> onto its associated eigenspace.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>note 1<span class="cite-bracket">]</span></a></sup> </p><p>A momentum eigenstate would be a perfectly monochromatic wave of infinite extent, which is not square-integrable. Likewise a <a href="/wiki/Position_operator#Eigenstates" title="Position operator">position eigenstate</a> would be a <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta distribution</a>, not square-integrable and technically not a function at all. Consequently, neither can belong to the particle's Hilbert space. Physicists sometimes regard these eigenstates, composed of elements outside the Hilbert space, as "<a href="/wiki/Dirac_delta_function#Quantum_mechanics" title="Dirac delta function">generalized eigenvectors</a>". These are used for calculational convenience and do not represent physical states.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Cohen-Tannoudji_12-0" class="reference"><a href="#cite_note-Cohen-Tannoudji-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 100–105">: 100–105 </span></sup> Thus, a position-space wave function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f78f255e641e6cd2cd4bcb63183af3a47d84808e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.821ex; height:2.843ex;" alt="{\displaystyle \Psi (x,t)}"></span> as used above can be written as the inner product of a time-dependent state vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi (t)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi (t)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa59620f689d5702f96dc423287b1f6f7c6e78b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.009ex; height:2.843ex;" alt="{\displaystyle |\Psi (t)\rangle }"></span> with unphysical but convenient "position eigenstates" <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48004887d8f9dfc489bd2bc793780b7f1d8039ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.881ex; height:2.843ex;" alt="{\displaystyle |x\rangle }"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (x,t)=\langle x|\Psi (t)\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (x,t)=\langle x|\Psi (t)\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58e486073ca9b6ecfd2508bc7b18a10648835770" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.809ex; height:2.843ex;" alt="{\displaystyle \Psi (x,t)=\langle x|\Psi (t)\rangle .}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Time-dependent_equation">Time-dependent equation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=3" title="Edit section: Time-dependent equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:StationaryStatesAnimation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/e/e0/StationaryStatesAnimation.gif" decoding="async" width="300" height="280" class="mw-file-element" data-file-width="300" data-file-height="280" /></a><figcaption>Each of these three rows is a wave function which satisfies the time-dependent Schrödinger equation for a <a href="/wiki/Quantum_harmonic_oscillator" title="Quantum harmonic oscillator">harmonic oscillator</a>. Left: The real part (blue) and imaginary part (red) of the wave function. Right: The <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> of finding the particle with this wave function at a given position. The top two rows are examples of <b><a href="/wiki/Stationary_state" title="Stationary state">stationary states</a></b>, which correspond to <a href="/wiki/Standing_wave" title="Standing wave">standing waves</a>. The bottom row is an example of a state which is <i>not</i> a stationary state.</figcaption></figure> <p>The form of the Schrödinger equation depends on the physical situation. The most general form is the time-dependent Schrödinger equation, which gives a description of a system evolving with time:<sup id="cite_ref-Shankar1994_13-0" class="reference"><a href="#cite_note-Shankar1994-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 143">: 143 </span></sup> </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 5px; border-width:2px; border-style: solid; border-color: rgb(80,200,120); color: inherit;text-align: center; display: table"><b>Time-dependent Schrödinger equation</b> <i>(general)</i> <p><span class="mwe-math-element" data-qid="Q165498"><a href="/w/index.php?title=Special:MathWikibase&qid=Q165498" style="color:inherit;"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {d}{dt}}\vert \Psi (t)\rangle ={\hat {H}}\vert \Psi (t)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo fence="false" stretchy="false">|</mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo fence="false" stretchy="false">|</mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {d}{dt}}\vert \Psi (t)\rangle ={\hat {H}}\vert \Psi (t)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e59451da64dff4be22db56d1adf9968e2a32d9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.18ex; height:5.509ex;" alt="{\displaystyle i\hbar {\frac {d}{dt}}\vert \Psi (t)\rangle ={\hat {H}}\vert \Psi (t)\rangle }"></a></span> </p> </div> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> is time, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vert \Psi (t)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">|</mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vert \Psi (t)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57a2c943e64b01c08dbfe21bd2f200cb0a16eb93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.009ex; height:2.843ex;" alt="{\displaystyle \vert \Psi (t)\rangle }"></span> is the state vector of the quantum system (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5471531a3fe80741a839bc98d49fae862a6439a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Psi }"></span> being the Greek letter <a href="/wiki/Psi_(letter)" class="mw-redirect" title="Psi (letter)">psi</a>), and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb06de5217295d7fbdbf68fb9c5309a513fc99e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.843ex;" alt="{\displaystyle {\hat {H}}}"></span> is an observable, the <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a> <a href="/wiki/Operator_(physics)" title="Operator (physics)">operator</a>. </p><p>The term "Schrödinger equation" can refer to both the general equation, or the specific nonrelativistic version. The general equation is indeed quite general, used throughout quantum mechanics, for everything from the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> to <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, by plugging in diverse expressions for the Hamiltonian. The specific nonrelativistic version is an approximation that yields accurate results in many situations, but only to a certain extent (see <a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">relativistic quantum mechanics</a> and <a href="/wiki/Relativistic_quantum_field_theory" class="mw-redirect" title="Relativistic quantum field theory">relativistic quantum field theory</a>). </p><p>To apply the Schrödinger equation, write down the <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a> for the system, accounting for the <a href="/wiki/Kinetic_energy" title="Kinetic energy">kinetic</a> and <a href="/wiki/Potential_energy" title="Potential energy">potential</a> energies of the particles constituting the system, then insert it into the Schrödinger equation. The resulting partial <a href="/wiki/Differential_equation" title="Differential equation">differential equation</a> is solved for the wave function, which contains information about the system. In practice, the square of the absolute value of the wave function at each point is taken to define a <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a>.<sup id="cite_ref-Zwiebach2022_5-3" class="reference"><a href="#cite_note-Zwiebach2022-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 78">: 78 </span></sup> For example, given a wave function in position space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f78f255e641e6cd2cd4bcb63183af3a47d84808e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.821ex; height:2.843ex;" alt="{\displaystyle \Psi (x,t)}"></span> as above, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr(x,t)=|\Psi (x,t)|^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr(x,t)=|\Psi (x,t)|^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47a2cb01c21b3d0919f19b93b8e60eab5082a7db" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.421ex; height:3.343ex;" alt="{\displaystyle \Pr(x,t)=|\Psi (x,t)|^{2}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Time-independent_equation"><span class="anchor" id="Time_independent_equation"></span> Time-independent equation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=4" title="Edit section: Time-independent equation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The time-dependent Schrödinger equation described above predicts that wave functions can form <a href="/wiki/Standing_wave" title="Standing wave">standing waves</a>, called <a href="/wiki/Stationary_state" title="Stationary state">stationary states</a>. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for <i>any</i> state. Stationary states can also be described by a simpler form of the Schrödinger equation, the time-independent Schrödinger equation. </p> <div class="equation-box" style="margin: 0 0 0 1.6em;padding: 5px; border-width:2px; border-style: solid; border-color: rgb(80,200,120); color: inherit;text-align: center; display: table"><b>Time-independent Schrödinger equation</b> (<i>general</i>) <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {\hat {H}} |\Psi \rangle =E|\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {\hat {H}} |\Psi \rangle =E|\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6ce1cc8ef9ec26c68c7ba654a371194e41a316f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.724ex; height:3.343ex;" alt="{\displaystyle \operatorname {\hat {H}} |\Psi \rangle =E|\Psi \rangle }"></span> </p> </div> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> is the energy of the system.<sup id="cite_ref-Zwiebach2022_5-4" class="reference"><a href="#cite_note-Zwiebach2022-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 134">: 134 </span></sup> This is only used when the <a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a> itself is not dependent on time explicitly. However, even in this case the total wave function is dependent on time as explained in the section on <a href="#Properties">linearity</a> below. In the language of <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, this equation is an <a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">eigenvalue equation</a>. Therefore, the wave function is an <a href="/wiki/Eigenfunction" title="Eigenfunction">eigenfunction</a> of the Hamiltonian operator with corresponding eigenvalue(s) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=5" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Linearity">Linearity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=6" title="Edit section: Linearity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Schrödinger equation is a <a href="/wiki/Linear_differential_equation" title="Linear differential equation">linear differential equation</a>, meaning that if two state vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi _{1}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi _{1}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7917a2e2cb0d3c7191f41a4f7ee250f4d4c56fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.119ex; height:2.843ex;" alt="{\displaystyle |\psi _{1}\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi _{2}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi _{2}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9cace1b140a568a4b9a90587dde3b342266bcf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.119ex; height:2.843ex;" alt="{\displaystyle |\psi _{2}\rangle }"></span> are solutions, then so is any <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle =a|\psi _{1}\rangle +b|\psi _{2}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle =a|\psi _{1}\rangle +b|\psi _{2}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b01b7757a5637a13c2baca96bc9ddd4421c54bc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.469ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle =a|\psi _{1}\rangle +b|\psi _{2}\rangle }"></span> of the two state vectors where <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are any complex numbers.<sup id="cite_ref-rieffel_14-0" class="reference"><a href="#cite_note-rieffel-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 25">: 25 </span></sup> Moreover, the sum can be extended for any number of state vectors. This property allows <a href="/wiki/Quantum_superposition" title="Quantum superposition">superpositions of quantum states</a> to be solutions of the Schrödinger equation. Even more generally, it holds that a general solution to the Schrödinger equation can be found by taking a weighted sum over a basis of states. A choice often employed is the basis of <a href="/wiki/Energy_operator" title="Energy operator">energy</a> eigenstates, which are solutions of the time-independent Schrödinger equation. In this basis, a time-dependent state vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi (t)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi (t)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa59620f689d5702f96dc423287b1f6f7c6e78b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.009ex; height:2.843ex;" alt="{\displaystyle |\Psi (t)\rangle }"></span> can be written as the linear combination <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi (t)\rangle =\sum _{n}A_{n}e^{{-iE_{n}t}/\hbar }|\psi _{E_{n}}\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi (t)\rangle =\sum _{n}A_{n}e^{{-iE_{n}t}/\hbar }|\psi _{E_{n}}\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0125f0d865353725c6209653559d31be73f4977" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.611ex; height:5.509ex;" alt="{\displaystyle |\Psi (t)\rangle =\sum _{n}A_{n}e^{{-iE_{n}t}/\hbar }|\psi _{E_{n}}\rangle ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/730f6906700685b6d52f3958b1c2ae659d2d97d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.962ex; height:2.509ex;" alt="{\displaystyle A_{n}}"></span> are complex numbers and the vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi _{E_{n}}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi _{E_{n}}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f18086e40eb9d507793c81d26d0892fe3e092f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.475ex; height:2.843ex;" alt="{\displaystyle |\psi _{E_{n}}\rangle }"></span> are solutions of the time-independent equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}|\psi _{E_{n}}\rangle =E_{n}|\psi _{E_{n}}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}|\psi _{E_{n}}\rangle =E_{n}|\psi _{E_{n}}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5be64b1fe453f27f547ea887c80522b9148f852" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.045ex; height:3.343ex;" alt="{\displaystyle {\hat {H}}|\psi _{E_{n}}\rangle =E_{n}|\psi _{E_{n}}\rangle }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Unitarity">Unitarity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=7" title="Edit section: Unitarity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Wigner%27s_theorem" title="Wigner's theorem">Wigner's theorem</a> and <a href="/wiki/Stone%27s_theorem_on_one-parameter_unitary_groups" title="Stone's theorem on one-parameter unitary groups">Stone's theorem</a></div> <p>Holding the Hamiltonian <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb06de5217295d7fbdbf68fb9c5309a513fc99e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.843ex;" alt="{\displaystyle {\hat {H}}}"></span> constant, the Schrödinger equation has the solution<sup id="cite_ref-Shankar1994_13-1" class="reference"><a href="#cite_note-Shankar1994-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi (t)\rangle =e^{-i{\hat {H}}t/\hbar }|\Psi (0)\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi (t)\rangle =e^{-i{\hat {H}}t/\hbar }|\Psi (0)\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d5c246e98a0f18c02cf9ab08e59b030fed67944" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.046ex; height:3.676ex;" alt="{\displaystyle |\Psi (t)\rangle =e^{-i{\hat {H}}t/\hbar }|\Psi (0)\rangle .}"></span> The operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)=e^{-i{\hat {H}}t/\hbar }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)=e^{-i{\hat {H}}t/\hbar }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24585bcade503c9b4b85a9de5ab4c11b13616d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.49ex; height:3.676ex;" alt="{\displaystyle {\hat {U}}(t)=e^{-i{\hat {H}}t/\hbar }}"></span> is known as the time-evolution operator, and it is <a href="/wiki/Unitarity_(physics)" title="Unitarity (physics)">unitary</a>: it preserves the inner product between vectors in the Hilbert space.<sup id="cite_ref-rieffel_14-1" class="reference"><a href="#cite_note-rieffel-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> Unitarity is a general feature of time evolution under the Schrödinger equation. If the initial state is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi (0)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi (0)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c6660c137556347397bf107d3a100129506bee6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.331ex; height:2.843ex;" alt="{\displaystyle |\Psi (0)\rangle }"></span>, then the state at a later time <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> will be given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi (t)\rangle ={\hat {U}}(t)|\Psi (0)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi (t)\rangle ={\hat {U}}(t)|\Psi (0)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0860dcef3c997964016e455f4cc0290cac85e0a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.87ex; height:3.343ex;" alt="{\displaystyle |\Psi (t)\rangle ={\hat {U}}(t)|\Psi (0)\rangle }"></span> for some unitary operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3738abe482389decc7fafef3e80b85c3cee782f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.431ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(t)}"></span>. Conversely, suppose that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3738abe482389decc7fafef3e80b85c3cee782f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.431ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(t)}"></span> is a continuous family of unitary operators parameterized by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. <a href="/wiki/Without_loss_of_generality" title="Without loss of generality">Without loss of generality</a>,<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> the parameterization can be chosen so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5659e50b725bc8ffb8fc20198ad66df193776acc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.754ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(0)}"></span> is the identity operator and that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t/N)^{N}={\hat {U}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>N</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t/N)^{N}={\hat {U}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10c53a16db6e44525262f8af36bb61a0772b994d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.879ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(t/N)^{N}={\hat {U}}(t)}"></span> for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b5e672f875388753faa233a18e9f2cf1275aaa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.325ex; height:2.176ex;" alt="{\displaystyle N>0}"></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3738abe482389decc7fafef3e80b85c3cee782f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.431ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(t)}"></span> depends upon the parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> in such a way that <span class="mwe-math-element" id="unitary operator given self-adjoint operator"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)=e^{-i{\hat {G}}t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)=e^{-i{\hat {G}}t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ec1b731cccaabd7cb1ef5d9bf8505e4050a3c8" class="mwe-math-fallback-image-display mw-invert skin-invert" id="unitary_operator_given_self-adjoint_operator" aria-hidden="true" style="vertical-align: -0.838ex; width:12.577ex; height:3.676ex;" alt="{\displaystyle {\hat {U}}(t)=e^{-i{\hat {G}}t}}"></span> for some self-adjoint operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/481aa9ebb6efdec53b01da30a4f1ca2ce77873c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.843ex;" alt="{\displaystyle {\hat {G}}}"></span>, called the <i>generator</i> of the family <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3738abe482389decc7fafef3e80b85c3cee782f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.431ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(t)}"></span>. A Hamiltonian is just such a generator (up to the factor of the Planck constant that would be set to 1 in <a href="/wiki/Natural_units" title="Natural units">natural units</a>). To see that the generator is Hermitian, note that with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(\delta t)\approx {\hat {U}}(0)-i{\hat {G}}\delta t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>δ<!-- δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>δ<!-- δ --></mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(\delta t)\approx {\hat {U}}(0)-i{\hat {G}}\delta t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3892e16121c90f959c92a3364d53d400e3d3c9b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.691ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(\delta t)\approx {\hat {U}}(0)-i{\hat {G}}\delta t}"></span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(\delta t)^{\dagger }{\hat {U}}(\delta t)\approx ({\hat {U}}(0)^{\dagger }+i{\hat {G}}^{\dagger }\delta t)({\hat {U}}(0)-i{\hat {G}}\delta t)=I+i\delta t({\hat {G}}^{\dagger }-{\hat {G}})+O(\delta t^{2}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>δ<!-- δ --></mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>δ<!-- δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>≈<!-- ≈ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mo>+</mo> <mi>i</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mi>δ<!-- δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>δ<!-- δ --></mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>I</mi> <mo>+</mo> <mi>i</mi> <mi>δ<!-- δ --></mi> <mi>t</mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>G</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>O</mi> <mo stretchy="false">(</mo> <mi>δ<!-- δ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(\delta t)^{\dagger }{\hat {U}}(\delta t)\approx ({\hat {U}}(0)^{\dagger }+i{\hat {G}}^{\dagger }\delta t)({\hat {U}}(0)-i{\hat {G}}\delta t)=I+i\delta t({\hat {G}}^{\dagger }-{\hat {G}})+O(\delta t^{2}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c25e6bab9bdd71ce1f17318f27126ad02309ce53" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:73.868ex; height:3.843ex;" alt="{\displaystyle {\hat {U}}(\delta t)^{\dagger }{\hat {U}}(\delta t)\approx ({\hat {U}}(0)^{\dagger }+i{\hat {G}}^{\dagger }\delta t)({\hat {U}}(0)-i{\hat {G}}\delta t)=I+i\delta t({\hat {G}}^{\dagger }-{\hat {G}})+O(\delta t^{2}),}"></span> so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3738abe482389decc7fafef3e80b85c3cee782f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.431ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(t)}"></span> is unitary only if, to first order, its derivative is Hermitian.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Changes_of_basis">Changes of basis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=8" title="Edit section: Changes of basis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Schrödinger equation is often presented using quantities varying as functions of position, but as a vector-operator equation it has a valid representation in any arbitrary complete basis of <a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">kets</a> in <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a>. As mentioned above, "bases" that lie outside the physical Hilbert space are also employed for calculational purposes. This is illustrated by the <i>position-space</i> and <i>momentum-space</i> Schrödinger equations for a nonrelativistic, spinless particle.<sup id="cite_ref-Cohen-Tannoudji_12-1" class="reference"><a href="#cite_note-Cohen-Tannoudji-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 182">: 182 </span></sup> The Hilbert space for such a particle is the space of complex square-integrable functions on three-dimensional Euclidean space, and its Hamiltonian is the sum of a kinetic-energy term that is quadratic in the momentum operator and a potential-energy term: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi (t)\rangle =\left({\frac {1}{2m}}{\hat {p}}^{2}+{\hat {V}}\right)|\Psi (t)\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {d}{dt}}|\Psi (t)\rangle =\left({\frac {1}{2m}}{\hat {p}}^{2}+{\hat {V}}\right)|\Psi (t)\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/352b5673ae7c28605a0e7f10cdf10eff3c310810" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.651ex; height:6.176ex;" alt="{\displaystyle i\hbar {\frac {d}{dt}}|\Psi (t)\rangle =\left({\frac {1}{2m}}{\hat {p}}^{2}+{\hat {V}}\right)|\Psi (t)\rangle .}"></span> Writing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> for a three-dimensional position vector and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd73e3862cb92b016721b8c492eadb4e8a577527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.485ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} }"></span> for a three-dimensional momentum vector, the position-space Schrödinger equation is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi (\mathbf {r} ,t)+V(\mathbf {r} )\Psi (\mathbf {r} ,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi (\mathbf {r} ,t)+V(\mathbf {r} )\Psi (\mathbf {r} ,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e90a151ee73c70192b182c6180b71665c11c6b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:45.003ex; height:5.843ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi (\mathbf {r} ,t)+V(\mathbf {r} )\Psi (\mathbf {r} ,t).}"></span> The momentum-space counterpart involves the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transforms</a> of the wave function and the potential: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}{\tilde {\Psi }}(\mathbf {p} ,t)={\frac {\mathbf {p} ^{2}}{2m}}{\tilde {\Psi }}(\mathbf {p} ,t)+(2\pi \hbar )^{-3/2}\int d^{3}\mathbf {p} '\,{\tilde {V}}(\mathbf {p} -\mathbf {p} '){\tilde {\Psi }}(\mathbf {p} ',t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>∫<!-- ∫ --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>′</mo> </msup> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>V</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>′</mo> </msup> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}{\tilde {\Psi }}(\mathbf {p} ,t)={\frac {\mathbf {p} ^{2}}{2m}}{\tilde {\Psi }}(\mathbf {p} ,t)+(2\pi \hbar )^{-3/2}\int d^{3}\mathbf {p} '\,{\tilde {V}}(\mathbf {p} -\mathbf {p} '){\tilde {\Psi }}(\mathbf {p} ',t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8c81cc454919c1052f4e8a2e65fb5962f963af4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:64.817ex; height:6.176ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}{\tilde {\Psi }}(\mathbf {p} ,t)={\frac {\mathbf {p} ^{2}}{2m}}{\tilde {\Psi }}(\mathbf {p} ,t)+(2\pi \hbar )^{-3/2}\int d^{3}\mathbf {p} '\,{\tilde {V}}(\mathbf {p} -\mathbf {p} '){\tilde {\Psi }}(\mathbf {p} ',t).}"></span> The functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {r} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {r} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03dc9a12e4176aaee6d293a989de7db205510164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.593ex; height:2.843ex;" alt="{\displaystyle \Psi (\mathbf {r} ,t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\Psi }}(\mathbf {p} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\Psi }}(\mathbf {p} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2326ce1de03fb1ccc426fe707ca7004d23ed5333" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.976ex; height:3.176ex;" alt="{\displaystyle {\tilde {\Psi }}(\mathbf {p} ,t)}"></span> are derived from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi (t)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi (t)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fa59620f689d5702f96dc423287b1f6f7c6e78b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.009ex; height:2.843ex;" alt="{\displaystyle |\Psi (t)\rangle }"></span> by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {r} ,t)=\langle \mathbf {r} |\Psi (t)\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {r} ,t)=\langle \mathbf {r} |\Psi (t)\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87cd6d5a6f31cbce3a0ec46af3c28a74284f1ee8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.354ex; height:2.843ex;" alt="{\displaystyle \Psi (\mathbf {r} ,t)=\langle \mathbf {r} |\Psi (t)\rangle ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\Psi }}(\mathbf {p} ,t)=\langle \mathbf {p} |\Psi (t)\rangle ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\Psi }}(\mathbf {p} ,t)=\langle \mathbf {p} |\Psi (t)\rangle ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7582f6f9149dfcd63a6a843469e2073f8c79961" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.12ex; height:3.176ex;" alt="{\displaystyle {\tilde {\Psi }}(\mathbf {p} ,t)=\langle \mathbf {p} |\Psi (t)\rangle ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {r} \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {r} \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d86ef4665f4fd222f128b598d66776b211e9dac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.654ex; height:2.843ex;" alt="{\displaystyle |\mathbf {r} \rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\mathbf {p} \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\mathbf {p} \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95550800bcd463139a63a0293bd1af7b3abb6056" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.037ex; height:2.843ex;" alt="{\displaystyle |\mathbf {p} \rangle }"></span> do not belong to the Hilbert space itself, but have well-defined inner products with all elements of that space. </p><p>When restricted from three dimensions to one, the position-space equation is just the first form of the Schrödinger equation given <a href="#Preliminaries">above</a>. The relation between position and momentum in quantum mechanics can be appreciated in a single dimension. In <a href="/wiki/Canonical_quantization" title="Canonical quantization">canonical quantization</a>, the classical variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> are promoted to self-adjoint operators <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d95a7845e4e16ffb7e18ab37a208d0ab18e0e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.176ex;" alt="{\displaystyle {\hat {x}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd4c026f1b3413adc58b9b65e89e62bce92c85a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.449ex; height:2.509ex;" alt="{\displaystyle {\hat {p}}}"></span> that satisfy the <a href="/wiki/Canonical_commutation_relation" title="Canonical commutation relation">canonical commutation relation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\hat {x}},{\hat {p}}]=i\hbar .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">]</mo> <mo>=</mo> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\hat {x}},{\hat {p}}]=i\hbar .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fee0861ae7784cb51a1b43f6c51735c22c23274e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.871ex; height:2.843ex;" alt="{\displaystyle [{\hat {x}},{\hat {p}}]=i\hbar .}"></span> This implies that<sup id="cite_ref-Cohen-Tannoudji_12-2" class="reference"><a href="#cite_note-Cohen-Tannoudji-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 190">: 190 </span></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x|{\hat {p}}|\Psi \rangle =-i\hbar {\frac {d}{dx}}\Psi (x),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mo>−<!-- − --></mo> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x|{\hat {p}}|\Psi \rangle =-i\hbar {\frac {d}{dx}}\Psi (x),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c69096f4221c7b92ae7fdbc51e68a58a7674df34" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:23.591ex; height:5.509ex;" alt="{\displaystyle \langle x|{\hat {p}}|\Psi \rangle =-i\hbar {\frac {d}{dx}}\Psi (x),}"></span> so the action of the momentum operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd4c026f1b3413adc58b9b65e89e62bce92c85a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.449ex; height:2.509ex;" alt="{\displaystyle {\hat {p}}}"></span> in the position-space representation is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle -i\hbar {\frac {d}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>−<!-- − --></mo> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle -i\hbar {\frac {d}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/507667ec83f11f223d62ee5e128304a9a67a9268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.553ex; height:3.843ex;" alt="{\textstyle -i\hbar {\frac {d}{dx}}}"></span>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {p}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {p}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f27fcc14b32e5b2187a52bb2ac7d1d24b16df9f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.503ex; height:3.009ex;" alt="{\displaystyle {\hat {p}}^{2}}"></span> becomes a <a href="/wiki/Second_derivative" title="Second derivative">second derivative</a>, and in three dimensions, the second derivative becomes the <a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4be87ad083e5ead48d92b0c82f2d4e719cb34a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.99ex; height:2.676ex;" alt="{\displaystyle \nabla ^{2}}"></span>. </p><p>The canonical commutation relation also implies that the position and momentum operators are Fourier conjugates of each other. Consequently, functions originally defined in terms of their position dependence can be converted to functions of momentum using the Fourier transform. In <a href="/wiki/Solid-state_physics" title="Solid-state physics">solid-state physics</a>, the Schrödinger equation is often written for functions of momentum, as <a href="/wiki/Bloch%27s_theorem" title="Bloch's theorem">Bloch's theorem</a> ensures the periodic crystal lattice potential couples <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\Psi }}(p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\Psi }}(p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/560ddcd21abb6996dbf885c4da13b4fb11686920" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.787ex; height:3.176ex;" alt="{\displaystyle {\tilde {\Psi }}(p)}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\Psi }}(p+K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {\Psi }}(p+K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43b175ab288b9f716c0b4b25e9e1da922b479cbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.693ex; height:3.176ex;" alt="{\displaystyle {\tilde {\Psi }}(p+K)}"></span> for only discrete <a href="/wiki/Reciprocal_lattice" title="Reciprocal lattice">reciprocal lattice</a> vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. This makes it convenient to solve the momentum-space Schrödinger equation at each <a href="/wiki/Crystal_momentum" title="Crystal momentum">point</a> in the <a href="/wiki/Brillouin_zone" title="Brillouin zone">Brillouin zone</a> independently of the other points in the Brillouin zone. </p> <div class="mw-heading mw-heading3"><h3 id="Probability_current">Probability current</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=9" title="Edit section: Probability current"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Probability_current" title="Probability current">Probability current</a> and <a href="/wiki/Continuity_equation" title="Continuity equation">Continuity equation</a></div> <p>The Schrödinger equation is consistent with <a href="/wiki/Conservation_of_probability" class="mw-redirect" title="Conservation of probability">local probability conservation</a>.<sup id="cite_ref-Cohen-Tannoudji_12-3" class="reference"><a href="#cite_note-Cohen-Tannoudji-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 238">: 238 </span></sup> It also ensures that a normalized wavefunction remains normalized after time evolution. In matrix mechanics, this means that the <a href="/wiki/Time_evolution" title="Time evolution">time evolution operator</a> is a <a href="/wiki/Unitary_operator" title="Unitary operator">unitary operator</a>.<sup id="cite_ref-:1_17-0" class="reference"><a href="#cite_note-:1-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> In contrast to, for example, the Klein Gordon equation, although a redefined inner product of a wavefunction can be time independent, the total volume integral of modulus square of the wavefunction need not be time independent.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>The continuity equation for probability in non relativistic quantum mechanics is stated as: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial }{\partial t}}\rho \left(\mathbf {r} ,t\right)+\nabla \cdot \mathbf {j} =0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>ρ<!-- ρ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial }{\partial t}}\rho \left(\mathbf {r} ,t\right)+\nabla \cdot \mathbf {j} =0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3500856df3a95959c15a8077b366eb4eb5363451" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.547ex; height:5.509ex;" alt="{\displaystyle {\frac {\partial }{\partial t}}\rho \left(\mathbf {r} ,t\right)+\nabla \cdot \mathbf {j} =0,}"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {j} ={\frac {1}{2m}}\left(\Psi ^{*}{\hat {\mathbf {p} }}\Psi -\Psi {\hat {\mathbf {p} }}\Psi ^{*}\right)=-{\frac {i\hbar }{2m}}(\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*})={\frac {\hbar }{m}}\operatorname {Im} (\psi ^{*}\nabla \psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>−<!-- − --></mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>ψ<!-- ψ --></mi> <mo>−<!-- − --></mo> <mi>ψ<!-- ψ --></mi> <mi mathvariant="normal">∇<!-- ∇ --></mi> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>m</mi> </mfrac> </mrow> <mi>Im</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {j} ={\frac {1}{2m}}\left(\Psi ^{*}{\hat {\mathbf {p} }}\Psi -\Psi {\hat {\mathbf {p} }}\Psi ^{*}\right)=-{\frac {i\hbar }{2m}}(\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*})={\frac {\hbar }{m}}\operatorname {Im} (\psi ^{*}\nabla \psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30258a436f9637a635bc8139cee75dc02b54ec50" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.164ex; width:68.057ex; height:5.343ex;" alt="{\displaystyle \mathbf {j} ={\frac {1}{2m}}\left(\Psi ^{*}{\hat {\mathbf {p} }}\Psi -\Psi {\hat {\mathbf {p} }}\Psi ^{*}\right)=-{\frac {i\hbar }{2m}}(\psi ^{*}\nabla \psi -\psi \nabla \psi ^{*})={\frac {\hbar }{m}}\operatorname {Im} (\psi ^{*}\nabla \psi )}"></span> is the <a href="/wiki/Probability_current" title="Probability current">probability current</a> or probability flux (flow per unit area). </p><p>If the wavefunction is represented as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \psi ({\bf {x}},t)={\sqrt {\rho ({\bf {x}},t)}}\exp \left({\frac {iS({\bf {x}},t)}{\hbar }}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>i</mi> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \psi ({\bf {x}},t)={\sqrt {\rho ({\bf {x}},t)}}\exp \left({\frac {iS({\bf {x}},t)}{\hbar }}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f450954bd2f148a0211d274bbbf29ead18a316f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.479ex; height:4.843ex;" alt="{\textstyle \psi ({\bf {x}},t)={\sqrt {\rho ({\bf {x}},t)}}\exp \left({\frac {iS({\bf {x}},t)}{\hbar }}\right),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S(\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S(\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bda4bdd19ddd018d8359503b0098f243879eeef1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.593ex; height:2.843ex;" alt="{\displaystyle S(\mathbf {x} ,t)}"></span> is a real function which represents the complex phase of the wavefunction, then the probability flux is calculated as:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {j} ={\frac {\rho \nabla S}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ρ<!-- ρ --></mi> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>S</mi> </mrow> <mi>m</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {j} ={\frac {\rho \nabla S}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cd10a6cdd4c4f4399c3a8746278a32b57f67983" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.164ex; width:9.552ex; height:5.509ex;" alt="{\displaystyle \mathbf {j} ={\frac {\rho \nabla S}{m}}}"></span>Hence, the spatial variation of the phase of a wavefunction is said to characterize the probability flux of the wavefunction. Although the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\nabla S}{m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mi>S</mi> </mrow> <mi>m</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\nabla S}{m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73698b945238cd43d61a64a235681fea76d79d1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.265ex; height:3.509ex;" alt="{\textstyle {\frac {\nabla S}{m}}}"></span> term appears to play the role of velocity, it does not represent velocity at a point since simultaneous measurement of position and velocity violates <a href="/wiki/Uncertainty_principle" title="Uncertainty principle">uncertainty principle</a>.<sup id="cite_ref-:1_17-1" class="reference"><a href="#cite_note-:1-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Separation_of_variables">Separation of variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=10" title="Edit section: Separation of variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the Hamiltonian is not an explicit function of time, Schrödinger's equation reads: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=\left[-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} )\right]\Psi (\mathbf {r} ,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=\left[-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} )\right]\Psi (\mathbf {r} ,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01fe6d14f4534609f7f9cf8182a7d71093e542ef" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:41.252ex; height:6.343ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=\left[-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V(\mathbf {r} )\right]\Psi (\mathbf {r} ,t).}"></span> The operator on the left side depends only on time; the one on the right side depends only on space. Solving the equation by <a href="/wiki/Separation_of_variables" title="Separation of variables">separation of variables</a> means seeking a solution of the form of a product of spatial and temporal parts<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )\tau (t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mi>τ<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )\tau (t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2ba4c9787b18c763dcbcbc3ff729d16809748e0" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.614ex; height:2.843ex;" alt="{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )\tau (t),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5942742e26cc0a33549c3cb11c79e14f76fcfa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.425ex; height:2.843ex;" alt="{\displaystyle \psi (\mathbf {r} )}"></span> is a function of all the spatial coordinate(s) of the particle(s) constituting the system only, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3492908614e5c2bae068384e9b19dc28557a73b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.851ex; height:2.843ex;" alt="{\displaystyle \tau (t)}"></span> is a function of time only. Substituting this expression for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5471531a3fe80741a839bc98d49fae862a6439a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Psi }"></span> into the time dependent left hand side shows that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tau (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>τ<!-- τ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tau (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3492908614e5c2bae068384e9b19dc28557a73b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.851ex; height:2.843ex;" alt="{\displaystyle \tau (t)}"></span> is a phase factor: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )e^{-i{Et/\hbar }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )e^{-i{Et/\hbar }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd9a528b788eefc910e59edfe87048a9afe13c4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.52ex; height:3.343ex;" alt="{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )e^{-i{Et/\hbar }}.}"></span> A solution of this type is called <i>stationary,</i> since the only time dependence is a phase factor that cancels when the probability density is calculated via the Born rule.<sup id="cite_ref-Shankar1994_13-2" class="reference"><a href="#cite_note-Shankar1994-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 143ff">: 143ff </span></sup> </p><p>The spatial part of the full wave function solves:<sup id="cite_ref-Adams_Sigel_Mlynek_1994_pp._143–210_20-0" class="reference"><a href="#cite_note-Adams_Sigel_Mlynek_1994_pp._143–210-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla ^{2}\psi (\mathbf {r} )+{\frac {2m}{\hbar ^{2}}}\left[E-V(\mathbf {r} )\right]\psi (\mathbf {r} )=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> </mrow> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mi>E</mi> <mo>−<!-- − --></mo> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla ^{2}\psi (\mathbf {r} )+{\frac {2m}{\hbar ^{2}}}\left[E-V(\mathbf {r} )\right]\psi (\mathbf {r} )=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b90a6b5dd217e587fa21717deda14ecbfaa85a50" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:35.009ex; height:5.509ex;" alt="{\displaystyle \nabla ^{2}\psi (\mathbf {r} )+{\frac {2m}{\hbar ^{2}}}\left[E-V(\mathbf {r} )\right]\psi (\mathbf {r} )=0.}"></span> where the energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> appears in the phase factor. </p><p>This generalizes to any number of particles in any number of dimensions (in a time-independent potential): the <a href="/wiki/Standing_wave" title="Standing wave">standing wave</a> solutions of the time-independent equation are the states with definite energy, instead of a probability distribution of different energies. In physics, these standing waves are called "<a href="/wiki/Stationary_state" title="Stationary state">stationary states</a>" or "<a href="/wiki/Energy_eigenstate" class="mw-redirect" title="Energy eigenstate">energy eigenstates</a>"; in chemistry they are called "<a href="/wiki/Atomic_orbital" title="Atomic orbital">atomic orbitals</a>" or "<a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbitals</a>". Superpositions of energy eigenstates change their properties according to the relative phases between the energy levels. The energy eigenstates form a basis: any wave function may be written as a sum over the discrete energy states or an integral over continuous energy states, or more generally as an integral over a measure. This is the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a> in mathematics, and in a finite-dimensional state space it is just a statement of the completeness of the eigenvectors of a <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a>. </p><p>Separation of variables can also be a useful method for the time-independent Schrödinger equation. For example, depending on the symmetry of the problem, the <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian axes</a> might be separated, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\mathbf {r} )=\psi _{x}(x)\psi _{y}(y)\psi _{z}(z),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\mathbf {r} )=\psi _{x}(x)\psi _{y}(y)\psi _{z}(z),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/999efb372925f9d3c122edf10c212ffd1f7573c2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.934ex; height:3.009ex;" alt="{\displaystyle \psi (\mathbf {r} )=\psi _{x}(x)\psi _{y}(y)\psi _{z}(z),}"></span> or <a href="/wiki/Spherical_coordinates" class="mw-redirect" title="Spherical coordinates">radial and angular coordinates</a> might be separated: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (\mathbf {r} )=\psi _{r}(r)\psi _{\theta }(\theta )\psi _{\phi }(\phi ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>θ<!-- θ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϕ<!-- ϕ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (\mathbf {r} )=\psi _{r}(r)\psi _{\theta }(\theta )\psi _{\phi }(\phi ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61c996e3c26881a48ad6551fb992ddd32021435a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.851ex; height:3.009ex;" alt="{\displaystyle \psi (\mathbf {r} )=\psi _{r}(r)\psi _{\theta }(\theta )\psi _{\phi }(\phi ).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=11" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/List_of_quantum-mechanical_systems_with_analytical_solutions" title="List of quantum-mechanical systems with analytical solutions">List of quantum-mechanical systems with analytical solutions</a></div> <div class="mw-heading mw-heading3"><h3 id="Particle_in_a_box">Particle in a box</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=12" title="Edit section: Particle in a box"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Infinite_potential_well.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Infinite_potential_well.svg/220px-Infinite_potential_well.svg.png" decoding="async" width="220" height="176" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/27/Infinite_potential_well.svg/330px-Infinite_potential_well.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/27/Infinite_potential_well.svg/440px-Infinite_potential_well.svg.png 2x" data-file-width="275" data-file-height="220" /></a><figcaption>1-dimensional potential energy box (or infinite potential well)</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Particle_in_a_box" title="Particle in a box">Particle in a box</a></div> <p>The particle in a one-dimensional potential energy box is the most mathematically simple example where restraints lead to the quantization of energy levels. The box is defined as having zero potential energy <i>inside</i> a certain region and infinite potential energy <i>outside</i>.<sup id="cite_ref-Cohen-Tannoudji_12-4" class="reference"><a href="#cite_note-Cohen-Tannoudji-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 77–78">: 77–78 </span></sup> For the one-dimensional case in the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> direction, the time-independent Schrödinger equation may be written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}\psi }{dx^{2}}}=E\psi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>E</mi> <mi>ψ<!-- ψ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}\psi }{dx^{2}}}=E\psi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc73e9216faf1390c3ed550b72be21fc068ec747" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:17.503ex; height:6.009ex;" alt="{\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}\psi }{dx^{2}}}=E\psi .}"></span> </p><p>With the differential operator defined by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {p}}_{x}=-i\hbar {\frac {d}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {p}}_{x}=-i\hbar {\frac {d}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2511885975007002c7582a9c8175689076df210a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:13.019ex; height:5.509ex;" alt="{\displaystyle {\hat {p}}_{x}=-i\hbar {\frac {d}{dx}}}"></span> the previous equation is evocative of the <a href="/wiki/Kinetic_energy#Kinetic_energy_of_rigid_bodies" title="Kinetic energy">classic kinetic energy analogue</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2m}}{\hat {p}}_{x}^{2}=E,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mi>E</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2m}}{\hat {p}}_{x}^{2}=E,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/422f57813ede91b8e348e786616c6297742b4fd7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.092ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{2m}}{\hat {p}}_{x}^{2}=E,}"></span> with state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> in this case having energy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> coincident with the kinetic energy of the particle. </p><p>The general solutions of the Schrödinger equation for the particle in a box are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)=Ae^{ikx}+Be^{-ikx}\qquad \qquad E={\frac {\hbar ^{2}k^{2}}{2m}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>A</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> <mo>+</mo> <mi>B</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>k</mi> <mi>x</mi> </mrow> </msup> <mspace width="2em" /> <mspace width="2em" /> <mi>E</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)=Ae^{ikx}+Be^{-ikx}\qquad \qquad E={\frac {\hbar ^{2}k^{2}}{2m}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5fb1b2f1d5afb42edb4eb98bf89791d283c1e53" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:42.379ex; height:5.676ex;" alt="{\displaystyle \psi (x)=Ae^{ikx}+Be^{-ikx}\qquad \qquad E={\frac {\hbar ^{2}k^{2}}{2m}}}"></span> or, from <a href="/wiki/Euler%27s_formula" title="Euler's formula">Euler's formula</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (x)=C\sin(kx)+D\cos(kx).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>C</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>D</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (x)=C\sin(kx)+D\cos(kx).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869b2e8afb87224f41a374c9ba3a8fbb93c19e8d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.37ex; height:2.843ex;" alt="{\displaystyle \psi (x)=C\sin(kx)+D\cos(kx).}"></span> </p><p>The infinite potential walls of the box determine the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C,D,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>,</mo> <mi>D</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C,D,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e153d2c75e3492a32d4fafefec88846862c3b9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.371ex; height:2.509ex;" alt="{\displaystyle C,D,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5fe40c588800aaab69041986b49a59664cd767a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.011ex; height:2.176ex;" alt="{\displaystyle x=L}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> must be zero. Thus, at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (0)=0=C\sin(0)+D\cos(0)=D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>=</mo> <mi>C</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>D</mi> <mi>cos</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (0)=0=C\sin(0)+D\cos(0)=D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34188e64cbf80486b3ad311b53b512fa36de59c6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:36.082ex; height:2.843ex;" alt="{\displaystyle \psi (0)=0=C\sin(0)+D\cos(0)=D}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d375dfda80ee8df1d1d7aa8b962114044e464305" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.185ex; height:2.176ex;" alt="{\displaystyle D=0}"></span>. At <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5fe40c588800aaab69041986b49a59664cd767a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.011ex; height:2.176ex;" alt="{\displaystyle x=L}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (L)=0=C\sin(kL),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mo>=</mo> <mi>C</mi> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>L</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (L)=0=C\sin(kL),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7a5bc9ef330efb5b6eba5d89c2ee026bbeea6a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.524ex; height:2.843ex;" alt="{\displaystyle \psi (L)=0=C\sin(kL),}"></span> in which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> cannot be zero as this would conflict with the postulate that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> has norm 1. Therefore, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(kL)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(kL)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5177ccdb2057c5c1be728af20b8ef3d61f79999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.72ex; height:2.843ex;" alt="{\displaystyle \sin(kL)=0}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle kL}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle kL}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8865c1184b2c1dff6226dae50d3be91f4f01cfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.794ex; height:2.176ex;" alt="{\displaystyle kL}"></span> must be an integer multiple of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k={\frac {n\pi }{L}}\qquad \qquad n=1,2,3,\ldots .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mi>π<!-- π --></mi> </mrow> <mi>L</mi> </mfrac> </mrow> <mspace width="2em" /> <mspace width="2em" /> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k={\frac {n\pi }{L}}\qquad \qquad n=1,2,3,\ldots .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fd91af3024e1f59cf57e04884494fd2c55664f8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.002ex; height:4.676ex;" alt="{\displaystyle k={\frac {n\pi }{L}}\qquad \qquad n=1,2,3,\ldots .}"></span> </p><p>This constraint on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> implies a constraint on the energy levels, yielding <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}={\frac {\hbar ^{2}\pi ^{2}n^{2}}{2mL^{2}}}={\frac {n^{2}h^{2}}{8mL^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>m</mi> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>8</mn> <mi>m</mi> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}={\frac {\hbar ^{2}\pi ^{2}n^{2}}{2mL^{2}}}={\frac {n^{2}h^{2}}{8mL^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe507fd1f92ebfe133aeb4f1da46ea27f569f38b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:24.503ex; height:6.009ex;" alt="{\displaystyle E_{n}={\frac {\hbar ^{2}\pi ^{2}n^{2}}{2mL^{2}}}={\frac {n^{2}h^{2}}{8mL^{2}}}.}"></span> </p><p>A <a href="/wiki/Finite_potential_well" title="Finite potential well">finite potential well</a> is the generalization of the infinite potential well problem to potential wells having finite depth. The finite potential well problem is mathematically more complicated than the infinite particle-in-a-box problem as the wave function is not pinned to zero at the walls of the well. Instead, the wave function must satisfy more complicated mathematical boundary conditions as it is nonzero in regions outside the well. Another related problem is that of the <a href="/wiki/Rectangular_potential_barrier" title="Rectangular potential barrier">rectangular potential barrier</a>, which furnishes a model for the <a href="/wiki/Quantum_tunneling" class="mw-redirect" title="Quantum tunneling">quantum tunneling</a> effect that plays an important role in the performance of modern technologies such as <a href="/wiki/Flash_memory" title="Flash memory">flash memory</a> and <a href="/wiki/Scanning_tunneling_microscope" title="Scanning tunneling microscope">scanning tunneling microscopy</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Harmonic_oscillator">Harmonic oscillator</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=13" title="Edit section: Harmonic oscillator"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:QuantumHarmonicOscillatorAnimation.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/9/90/QuantumHarmonicOscillatorAnimation.gif" decoding="async" width="300" height="373" class="mw-file-element" data-file-width="300" data-file-height="373" /></a><figcaption>A <a href="/wiki/Harmonic_oscillator" title="Harmonic oscillator">harmonic oscillator</a> in classical mechanics (A–B) and quantum mechanics (C–H). In (A–B), a ball, attached to a <a href="/wiki/Hooke%27s_law" title="Hooke's law">spring</a>, oscillates back and forth. (C–H) are six solutions to the Schrödinger Equation for this situation. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the <a href="/wiki/Wave_function" title="Wave function">wave function</a>. <a href="/wiki/Stationary_state" title="Stationary state">Stationary states</a>, or energy eigenstates, which are solutions to the time-independent Schrödinger equation, are shown in C, D, E, F, but not G or H.</figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Quantum_harmonic_oscillator" title="Quantum harmonic oscillator">Quantum harmonic oscillator</a></div> <p>The Schrödinger equation for this situation is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\psi =-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\psi +{\frac {1}{2}}m\omega ^{2}x^{2}\psi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\psi =-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\psi +{\frac {1}{2}}m\omega ^{2}x^{2}\psi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad3dd123ec016181e2329cbc5f3c7f02d2c55989" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:32.107ex; height:6.009ex;" alt="{\displaystyle E\psi =-{\frac {\hbar ^{2}}{2m}}{\frac {d^{2}}{dx^{2}}}\psi +{\frac {1}{2}}m\omega ^{2}x^{2}\psi ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is the displacement and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> the angular frequency. Furthermore, it can be used to describe approximately a wide variety of other systems, including <a href="/wiki/Molecular_vibration" title="Molecular vibration">vibrating atoms, molecules</a>,<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> and atoms or ions in lattices,<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> and approximating other potentials near equilibrium points. It is also the <a href="/wiki/Perturbation_theory_(quantum_mechanics)#Applying_perturbation_theory" title="Perturbation theory (quantum mechanics)">basis of perturbation methods</a> in quantum mechanics. </p><p>The solutions in position space are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{n}(x)={\sqrt {\frac {1}{2^{n}\,n!}}}\ \left({\frac {m\omega }{\pi \hbar }}\right)^{1/4}\ e^{-{\frac {m\omega x^{2}}{2\hbar }}}\ {\mathcal {H}}_{n}\left({\sqrt {\frac {m\omega }{\hbar }}}x\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>1</mn> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </msqrt> </mrow> <mtext> </mtext> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>ω<!-- ω --></mi> </mrow> <mrow> <mi>π<!-- π --></mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> <mtext> </mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>ω<!-- ω --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </mfrac> </mrow> </mrow> </msup> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>m</mi> <mi>ω<!-- ω --></mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </msqrt> </mrow> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{n}(x)={\sqrt {\frac {1}{2^{n}\,n!}}}\ \left({\frac {m\omega }{\pi \hbar }}\right)^{1/4}\ e^{-{\frac {m\omega x^{2}}{2\hbar }}}\ {\mathcal {H}}_{n}\left({\sqrt {\frac {m\omega }{\hbar }}}x\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/415951cfe37e7ca5af86284e15526a14fe55e3cb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:51.472ex; height:6.509ex;" alt="{\displaystyle \psi _{n}(x)={\sqrt {\frac {1}{2^{n}\,n!}}}\ \left({\frac {m\omega }{\pi \hbar }}\right)^{1/4}\ e^{-{\frac {m\omega x^{2}}{2\hbar }}}\ {\mathcal {H}}_{n}\left({\sqrt {\frac {m\omega }{\hbar }}}x\right),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\in \{0,1,2,\ldots \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>∈<!-- ∈ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\in \{0,1,2,\ldots \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc276297ae0fc59977699b50d120092fb616bb00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.873ex; height:2.843ex;" alt="{\displaystyle n\in \{0,1,2,\ldots \}}"></span>, and the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3b3aced9fa3e1ca695aa48fe711869b1fbf1c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.182ex; height:2.509ex;" alt="{\displaystyle {\mathcal {H}}_{n}}"></span> are the <a href="/wiki/Hermite_polynomials" title="Hermite polynomials">Hermite polynomials</a> of order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. The solution set may be generated by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{n}(x)={\frac {1}{\sqrt {n!}}}\left({\sqrt {\frac {m\omega }{2\hbar }}}\right)^{n}\left(x-{\frac {\hbar }{m\omega }}{\frac {d}{dx}}\right)^{n}\left({\frac {m\omega }{\pi \hbar }}\right)^{\frac {1}{4}}e^{\frac {-m\omega x^{2}}{2\hbar }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mi>n</mi> <mo>!</mo> </msqrt> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mi>m</mi> <mi>ω<!-- ω --></mi> </mrow> <mrow> <mn>2</mn> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow> <mi>m</mi> <mi>ω<!-- ω --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mi>ω<!-- ω --></mi> </mrow> <mrow> <mi>π<!-- π --></mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>m</mi> <mi>ω<!-- ω --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{n}(x)={\frac {1}{\sqrt {n!}}}\left({\sqrt {\frac {m\omega }{2\hbar }}}\right)^{n}\left(x-{\frac {\hbar }{m\omega }}{\frac {d}{dx}}\right)^{n}\left({\frac {m\omega }{\pi \hbar }}\right)^{\frac {1}{4}}e^{\frac {-m\omega x^{2}}{2\hbar }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a89294505f9abdd697f34a392d67f42df86b0a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:57.818ex; height:6.843ex;" alt="{\displaystyle \psi _{n}(x)={\frac {1}{\sqrt {n!}}}\left({\sqrt {\frac {m\omega }{2\hbar }}}\right)^{n}\left(x-{\frac {\hbar }{m\omega }}{\frac {d}{dx}}\right)^{n}\left({\frac {m\omega }{\pi \hbar }}\right)^{\frac {1}{4}}e^{\frac {-m\omega x^{2}}{2\hbar }}.}"></span> </p><p>The eigenvalues are <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}=\left(n+{\frac {1}{2}}\right)\hbar \omega .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mi>n</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>ω<!-- ω --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}=\left(n+{\frac {1}{2}}\right)\hbar \omega .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e851d3526470fd8e2a514d3bd3d53cbe59df19c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.473ex; height:6.176ex;" alt="{\displaystyle E_{n}=\left(n+{\frac {1}{2}}\right)\hbar \omega .}"></span> </p><p>The case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26819344e55f5e671c76c07c18eb4291fcec85ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=0}"></span> is called the <a href="/wiki/Ground_state" title="Ground state">ground state</a>, its energy is called the <a href="/wiki/Zero-point_energy" title="Zero-point energy">zero-point energy</a>, and the wave function is a <a href="/wiki/Normal_distribution" title="Normal distribution">Gaussian</a>.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p>The harmonic oscillator, like the particle in a box, illustrates the generic feature of the Schrödinger equation that the energies of bound eigenstates are discretized.<sup id="cite_ref-Cohen-Tannoudji_12-5" class="reference"><a href="#cite_note-Cohen-Tannoudji-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 352">: 352 </span></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Hydrogen_atom">Hydrogen atom</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=14" title="Edit section: Hydrogen atom"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Hydrogen_Density_Plots.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Hydrogen_Density_Plots.png/220px-Hydrogen_Density_Plots.png" decoding="async" width="220" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Hydrogen_Density_Plots.png/330px-Hydrogen_Density_Plots.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Hydrogen_Density_Plots.png/440px-Hydrogen_Density_Plots.png 2x" data-file-width="2200" data-file-height="2000" /></a><figcaption><a href="/wiki/Wave_function" title="Wave function">Wave functions</a> of the <a href="/wiki/Electron" title="Electron">electron</a> in a hydrogen atom at different <a href="/wiki/Energy_level" title="Energy level">energy levels</a>. They are plotted according to solutions of the Schrödinger equation.</figcaption></figure> <p>The Schrödinger equation for the electron in a <a href="/wiki/Hydrogen_atom" title="Hydrogen atom">hydrogen atom</a> (or a hydrogen-like atom) is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\psi =-{\frac {\hbar ^{2}}{2\mu }}\nabla ^{2}\psi -{\frac {q^{2}}{4\pi \varepsilon _{0}r}}\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>μ<!-- μ --></mi> </mrow> </mfrac> </mrow> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>r</mi> </mrow> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\psi =-{\frac {\hbar ^{2}}{2\mu }}\nabla ^{2}\psi -{\frac {q^{2}}{4\pi \varepsilon _{0}r}}\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2be66ddcdceee880be38fa45120ab7188d306a9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.969ex; height:6.176ex;" alt="{\displaystyle E\psi =-{\frac {\hbar ^{2}}{2\mu }}\nabla ^{2}\psi -{\frac {q^{2}}{4\pi \varepsilon _{0}r}}\psi }"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> is the electron charge, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eca0f46511c4c986c48b254073732c0bd98ae0c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.102ex; height:1.676ex;" alt="{\displaystyle \mathbf {r} }"></span> is the position of the electron relative to the nucleus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=|\mathbf {r} |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=|\mathbf {r} |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83ed88ebc2f498ef705a45241ee3c4b461e27c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.543ex; height:2.843ex;" alt="{\displaystyle r=|\mathbf {r} |}"></span> is the magnitude of the relative position, the potential term is due to the <a href="/wiki/Coulomb%27s_law" title="Coulomb's law">Coulomb interaction</a>, wherein <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acb0a8377db20e42274444cb181d51b5532b5844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.009ex;" alt="{\displaystyle \varepsilon _{0}}"></span> is the <a href="/wiki/Permittivity_of_free_space" class="mw-redirect" title="Permittivity of free space">permittivity of free space</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ={\frac {m_{q}m_{p}}{m_{q}+m_{p}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ={\frac {m_{q}m_{p}}{m_{q}+m_{p}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd64f5e4997b250249348710b2238dec084bdd3d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.305ex; height:5.676ex;" alt="{\displaystyle \mu ={\frac {m_{q}m_{p}}{m_{q}+m_{p}}}}"></span> is the 2-body <a href="/wiki/Reduced_mass" title="Reduced mass">reduced mass</a> of the hydrogen <a href="/wiki/Nucleus_(atomic_structure)" class="mw-redirect" title="Nucleus (atomic structure)">nucleus</a> (just a <a href="/wiki/Proton" title="Proton">proton</a>) of mass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7d93b292637f64f747f3fe0ea4bad9f2bd65637" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.1ex; height:2.343ex;" alt="{\displaystyle m_{p}}"></span> and the electron of mass <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/617c1f291b9e7955879f92f2128d23fc5cfe588e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.029ex; height:2.343ex;" alt="{\displaystyle m_{q}}"></span>. The negative sign arises in the potential term since the proton and electron are oppositely charged. The reduced mass in place of the electron mass is used since the electron and proton together orbit each other about a common center of mass, and constitute a two-body problem to solve. The motion of the electron is of principal interest here, so the equivalent one-body problem is the motion of the electron using the reduced mass. </p><p>The Schrödinger equation for a hydrogen atom can be solved by separation of variables.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> In this case, <a href="/wiki/Spherical_polar_coordinates" class="mw-redirect" title="Spherical polar coordinates">spherical polar coordinates</a> are the most convenient. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (r,\theta ,\varphi )=R(r)Y_{\ell }^{m}(\theta ,\varphi )=R(r)\Theta (\theta )\Phi (\varphi ),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>θ<!-- θ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ℓ<!-- ℓ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">Θ<!-- Θ --></mi> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (r,\theta ,\varphi )=R(r)Y_{\ell }^{m}(\theta ,\varphi )=R(r)\Theta (\theta )\Phi (\varphi ),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a96383ed89649df8f8e7c7d25a037692734216bd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.882ex; height:3.009ex;" alt="{\displaystyle \psi (r,\theta ,\varphi )=R(r)Y_{\ell }^{m}(\theta ,\varphi )=R(r)\Theta (\theta )\Phi (\varphi ),}"></span> where <span class="texhtml"><i>R</i></span> are radial functions and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{l}^{m}(\theta ,\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{l}^{m}(\theta ,\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be09c7b001323a46d483fdd74878794e319cce64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.029ex; height:3.009ex;" alt="{\displaystyle Y_{l}^{m}(\theta ,\varphi )}"></span> are <a href="/wiki/Spherical_harmonic" class="mw-redirect" title="Spherical harmonic">spherical harmonics</a> of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> and order <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>. This is the only atom for which the Schrödinger equation has been solved for exactly. Multi-electron atoms require approximate methods. The family of solutions are:<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{n\ell m}(r,\theta ,\varphi )={\sqrt {\left({\frac {2}{na_{0}}}\right)^{3}{\frac {(n-\ell -1)!}{2n[(n+\ell )!]}}}}e^{-r/na_{0}}\left({\frac {2r}{na_{0}}}\right)^{\ell }L_{n-\ell -1}^{2\ell +1}\left({\frac {2r}{na_{0}}}\right)\cdot Y_{\ell }^{m}(\theta ,\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>ℓ<!-- ℓ --></mi> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>θ<!-- θ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>ℓ<!-- ℓ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mn>2</mn> <mi>n</mi> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>ℓ<!-- ℓ --></mi> <mo stretchy="false">)</mo> <mo>!</mo> <mo stretchy="false">]</mo> </mrow> </mfrac> </mrow> </msqrt> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>r</mi> </mrow> <mrow> <mi>n</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>ℓ<!-- ℓ --></mi> </mrow> </msup> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>ℓ<!-- ℓ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>ℓ<!-- ℓ --></mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>r</mi> </mrow> <mrow> <mi>n</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ℓ<!-- ℓ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{n\ell m}(r,\theta ,\varphi )={\sqrt {\left({\frac {2}{na_{0}}}\right)^{3}{\frac {(n-\ell -1)!}{2n[(n+\ell )!]}}}}e^{-r/na_{0}}\left({\frac {2r}{na_{0}}}\right)^{\ell }L_{n-\ell -1}^{2\ell +1}\left({\frac {2r}{na_{0}}}\right)\cdot Y_{\ell }^{m}(\theta ,\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cbd03c1e637e614ee830354bad8a136715e7099" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:80.906ex; height:7.509ex;" alt="{\displaystyle \psi _{n\ell m}(r,\theta ,\varphi )={\sqrt {\left({\frac {2}{na_{0}}}\right)^{3}{\frac {(n-\ell -1)!}{2n[(n+\ell )!]}}}}e^{-r/na_{0}}\left({\frac {2r}{na_{0}}}\right)^{\ell }L_{n-\ell -1}^{2\ell +1}\left({\frac {2r}{na_{0}}}\right)\cdot Y_{\ell }^{m}(\theta ,\varphi )}"></span> where </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}={\frac {4\pi \varepsilon _{0}\hbar ^{2}}{m_{q}q^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mi>π<!-- π --></mi> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}={\frac {4\pi \varepsilon _{0}\hbar ^{2}}{m_{q}q^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4391f64a7ebc62b3e9ea765cf4c148516ff6cd12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:13.227ex; height:6.509ex;" alt="{\displaystyle a_{0}={\frac {4\pi \varepsilon _{0}\hbar ^{2}}{m_{q}q^{2}}}}"></span> is the <a href="/wiki/Bohr_radius" title="Bohr radius">Bohr radius</a>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{n-\ell -1}^{2\ell +1}(\cdots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>ℓ<!-- ℓ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>ℓ<!-- ℓ --></mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mo>⋯<!-- ⋯ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{n-\ell -1}^{2\ell +1}(\cdots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c862c505ce1d9d3b3898931e439b24e4b9896d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:11.399ex; height:3.509ex;" alt="{\displaystyle L_{n-\ell -1}^{2\ell +1}(\cdots )}"></span> are the <a href="/wiki/Laguerre_polynomial#Generalized_Laguerre_polynomials" class="mw-redirect" title="Laguerre polynomial">generalized Laguerre polynomials</a> of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n-\ell -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>ℓ<!-- ℓ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n-\ell -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed3e3d90b9b69badf061c9b7d83c0f0f3c2d9aa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.208ex; height:2.343ex;" alt="{\displaystyle n-\ell -1}"></span>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n,\ell ,m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>,</mo> <mi>ℓ<!-- ℓ --></mi> <mo>,</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n,\ell ,m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fda4ab8624cf7d79412ecb05cf2fdd6e204a204" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.473ex; height:2.509ex;" alt="{\displaystyle n,\ell ,m}"></span> are the <a href="/wiki/Principal_quantum_number" title="Principal quantum number">principal</a>, <a href="/wiki/Azimuthal_quantum_number" title="Azimuthal quantum number">azimuthal</a>, and <a href="/wiki/Magnetic_quantum_number" title="Magnetic quantum number">magnetic</a> <a href="/wiki/Quantum_numbers" class="mw-redirect" title="Quantum numbers">quantum numbers</a> respectively, which take the values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1,2,3,\dots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1,2,3,\dots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/553b8c8fbe85ebcc540e60dcf3cc65fab238af24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.84ex; height:2.509ex;" alt="{\displaystyle n=1,2,3,\dots ,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell =0,1,2,\dots ,n-1,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ℓ<!-- ℓ --></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell =0,1,2,\dots ,n-1,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e3e3f128717235de2e32d26189ae5aa1e99279" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.846ex; height:2.509ex;" alt="{\displaystyle \ell =0,1,2,\dots ,n-1,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=-\ell ,\dots ,\ell .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>ℓ<!-- ℓ --></mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>ℓ<!-- ℓ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=-\ell ,\dots ,\ell .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6043f467a1d64dd97e43079c6ec68716477b5166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.711ex; height:2.509ex;" alt="{\displaystyle m=-\ell ,\dots ,\ell .}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Approximate_solutions">Approximate solutions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=15" title="Edit section: Approximate solutions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is typically not possible to solve the Schrödinger equation exactly for situations of physical interest. Accordingly, approximate solutions are obtained using techniques like <a href="/wiki/Variational_method_(quantum_mechanics)" title="Variational method (quantum mechanics)">variational methods</a> and <a href="/wiki/WKB_approximation" title="WKB approximation">WKB approximation</a>. It is also common to treat a problem of interest as a small modification to a problem that can be solved exactly, a method known as <a href="/wiki/Perturbation_theory_(quantum_mechanics)" title="Perturbation theory (quantum mechanics)">perturbation theory</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Semiclassical_limit">Semiclassical limit</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=16" title="Edit section: Semiclassical limit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One simple way to compare classical to quantum mechanics is to consider the time-evolution of the <i>expected</i> position and <i>expected</i> momentum, which can then be compared to the time-evolution of the ordinary position and momentum in classical mechanics.<sup id="cite_ref-:0_26-0" class="reference"><a href="#cite_note-:0-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 302">: 302 </span></sup> The quantum expectation values satisfy the <a href="/wiki/Ehrenfest_theorem" title="Ehrenfest theorem">Ehrenfest theorem</a>. For a one-dimensional quantum particle moving in a potential <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>, the Ehrenfest theorem says <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m{\frac {d}{dt}}\langle x\rangle =\langle p\rangle ;\quad {\frac {d}{dt}}\langle p\rangle =-\left\langle V'(X)\right\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>p</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>;</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>p</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow> <mo>⟨</mo> <mrow> <msup> <mi>V</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mo>⟩</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m{\frac {d}{dt}}\langle x\rangle =\langle p\rangle ;\quad {\frac {d}{dt}}\langle p\rangle =-\left\langle V'(X)\right\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24d5e514f985a955617f92c1c99cc8e1493f51a4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:37.903ex; height:5.509ex;" alt="{\displaystyle m{\frac {d}{dt}}\langle x\rangle =\langle p\rangle ;\quad {\frac {d}{dt}}\langle p\rangle =-\left\langle V'(X)\right\rangle .}"></span> Although the first of these equations is consistent with the classical behavior, the second is not: If the pair <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\langle X\rangle ,\langle P\rangle )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>X</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>,</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>P</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\langle X\rangle ,\langle P\rangle )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a208b4fe89bcbccd675e91ada6ab2f734def8b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.187ex; height:2.843ex;" alt="{\displaystyle (\langle X\rangle ,\langle P\rangle )}"></span> were to satisfy Newton's second law, the right-hand side of the second equation would have to be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -V'\left(\left\langle X\right\rangle \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <msup> <mi>V</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mrow> <mo>⟨</mo> <mi>X</mi> <mo>⟩</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -V'\left(\left\langle X\right\rangle \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e69c62593726641abbc53ed31443be0b7390dc01" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.396ex; height:3.009ex;" alt="{\displaystyle -V'\left(\left\langle X\right\rangle \right)}"></span> which is typically not the same as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\left\langle V'(X)\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow> <mo>⟨</mo> <mrow> <msup> <mi>V</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mo>⟩</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\left\langle V'(X)\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b65fe7212b175d52fb8f58e93ebca6653409c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.396ex; height:3.009ex;" alt="{\displaystyle -\left\langle V'(X)\right\rangle }"></span>. For a general <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>V</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff31fe992a31b4c954a933f1be91e2739a1c0ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.602ex; height:2.509ex;" alt="{\displaystyle V'}"></span>, therefore, quantum mechanics can lead to predictions where expectation values do not mimic the classical behavior. In the case of the quantum harmonic oscillator, however, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>V</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff31fe992a31b4c954a933f1be91e2739a1c0ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.602ex; height:2.509ex;" alt="{\displaystyle V'}"></span> is linear and this distinction disappears, so that in this very special case, the expected position and expected momentum do exactly follow the classical trajectories. </p><p>For general systems, the best we can hope for is that the expected position and momentum will <i>approximately</i> follow the classical trajectories. If the wave function is highly concentrated around a point <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V'\left(\left\langle X\right\rangle \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>V</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mrow> <mo>⟨</mo> <mi>X</mi> <mo>⟩</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V'\left(\left\langle X\right\rangle \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a4334cb83aa21b56c0941d539772062e8c6cd79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.587ex; height:3.009ex;" alt="{\displaystyle V'\left(\left\langle X\right\rangle \right)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\langle V'(X)\right\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>⟨</mo> <mrow> <msup> <mi>V</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mo>⟩</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\langle V'(X)\right\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db61e58cc63308d55d3cea8ab0ea1c35213082f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.2ex; height:3.009ex;" alt="{\displaystyle \left\langle V'(X)\right\rangle }"></span> will be <i>almost</i> the same, since both will be approximately equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V'(x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>V</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V'(x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/597d8921d945c06cd6f9c31c4547c1fbc824b9ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.795ex; height:3.009ex;" alt="{\displaystyle V'(x_{0})}"></span>. In that case, the expected position and expected momentum will remain very close to the classical trajectories, at least for as long as the wave function remains highly localized in position. </p><p>The Schrödinger equation in its general form <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi \left(\mathbf {r} ,t\right)={\hat {H}}\Psi \left(\mathbf {r} ,t\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi \left(\mathbf {r} ,t\right)={\hat {H}}\Psi \left(\mathbf {r} ,t\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cec9d7ebb00f914b1059e09b7e9961091bc9e378" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:24.225ex; height:5.509ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi \left(\mathbf {r} ,t\right)={\hat {H}}\Psi \left(\mathbf {r} ,t\right)}"></span> is closely related to the <a href="/wiki/Hamilton%E2%80%93Jacobi_equation" title="Hamilton–Jacobi equation">Hamilton–Jacobi equation</a> (HJE) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\partial }{\partial t}}S(q_{i},t)=H\left(q_{i},{\frac {\partial S}{\partial q_{i}}},t\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi>S</mi> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>H</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>S</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>,</mo> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {\partial }{\partial t}}S(q_{i},t)=H\left(q_{i},{\frac {\partial S}{\partial q_{i}}},t\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46dd7ce857f7477248d1a27c50ea2ec6fb7b440a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.526ex; height:6.176ex;" alt="{\displaystyle -{\frac {\partial }{\partial t}}S(q_{i},t)=H\left(q_{i},{\frac {\partial S}{\partial q_{i}}},t\right)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span> is the classical <a href="/wiki/Action_(physics)" title="Action (physics)">action</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> is the <a href="/wiki/Hamiltonian_mechanics" title="Hamiltonian mechanics">Hamiltonian function</a> (not operator).<sup id="cite_ref-:0_26-1" class="reference"><a href="#cite_note-:0-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 308">: 308 </span></sup> Here the <a href="/wiki/Generalized_coordinates" title="Generalized coordinates">generalized coordinates</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2752dcbff884354069fe332b8e51eb0a70a531b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.837ex; height:2.009ex;" alt="{\displaystyle q_{i}}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=1,2,3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=1,2,3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a87b7e5d81c62b040a35078417fb9294b1ec7c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.456ex; height:2.509ex;" alt="{\displaystyle i=1,2,3}"></span> (used in the context of the HJE) can be set to the position in Cartesian coordinates as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} =(q_{1},q_{2},q_{3})=(x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} =(q_{1},q_{2},q_{3})=(x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c7bb5eab36204ca282b2c80fe86cb3b1e071155" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.9ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} =(q_{1},q_{2},q_{3})=(x,y,z)}"></span>. </p><p>Substituting <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi ={\sqrt {\rho (\mathbf {r} ,t)}}e^{iS(\mathbf {r} ,t)/\hbar }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>S</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi ={\sqrt {\rho (\mathbf {r} ,t)}}e^{iS(\mathbf {r} ,t)/\hbar }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8da49779a2066d76b17d6170f9035ec26ede6d35" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.016ex; height:4.843ex;" alt="{\displaystyle \Psi ={\sqrt {\rho (\mathbf {r} ,t)}}e^{iS(\mathbf {r} ,t)/\hbar }}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> is the probability density, into the Schrödinger equation and then taking the limit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar \to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar \to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2a3125ca5aa17bb14bf452daa5c3224c7470ab8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.083ex; height:2.176ex;" alt="{\displaystyle \hbar \to 0}"></span> in the resulting equation yield the <a href="/wiki/Hamilton%E2%80%93Jacobi_equation" title="Hamilton–Jacobi equation">Hamilton–Jacobi equation</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Density_matrices">Density matrices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=17" title="Edit section: Density matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></div> <p>Wave functions are not always the most convenient way to describe quantum systems and their behavior. When the preparation of a system is only imperfectly known, or when the system under investigation is a part of a larger whole, <a href="/wiki/Density_matrix" title="Density matrix">density matrices</a> may be used instead.<sup id="cite_ref-:0_26-2" class="reference"><a href="#cite_note-:0-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 74">: 74 </span></sup> A density matrix is a <a href="/wiki/Positive-semidefinite_matrix" class="mw-redirect" title="Positive-semidefinite matrix">positive semi-definite operator</a> whose <a href="/wiki/Trace_class" title="Trace class">trace</a> is equal to 1. (The term "density operator" is also used, particularly when the underlying Hilbert space is infinite-dimensional.) The set of all density matrices is <a href="/wiki/Convex_set" title="Convex set">convex</a>, and the extreme points are the operators that project onto vectors in the Hilbert space. These are the density-matrix representations of wave functions; in Dirac notation, they are written <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\rho }}=|\Psi \rangle \langle \Psi |.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\rho }}=|\Psi \rangle \langle \Psi |.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01939d2b70810230beda172cc9e6322198b5107a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.84ex; height:2.843ex;" alt="{\displaystyle {\hat {\rho }}=|\Psi \rangle \langle \Psi |.}"></span> </p><p>The density-matrix analogue of the Schrödinger equation for wave functions is<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial {\hat {\rho }}}{\partial t}}=[{\hat {H}},{\hat {\rho }}],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial {\hat {\rho }}}{\partial t}}=[{\hat {H}},{\hat {\rho }}],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e698027bf3928a455606afc3507e4dd111db2c20" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.151ex; height:5.676ex;" alt="{\displaystyle i\hbar {\frac {\partial {\hat {\rho }}}{\partial t}}=[{\hat {H}},{\hat {\rho }}],}"></span> where the brackets denote a <a href="/wiki/Commutator" title="Commutator">commutator</a>. This is variously known as the von Neumann equation, the Liouville–von Neumann equation, or just the Schrödinger equation for density matrices.<sup id="cite_ref-:0_26-3" class="reference"><a href="#cite_note-:0-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 312">: 312 </span></sup> If the Hamiltonian is time-independent, this equation can be easily solved to yield <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\rho }}(t)=e^{-i{\hat {H}}t/\hbar }{\hat {\rho }}(0)e^{i{\hat {H}}t/\hbar }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\rho }}(t)=e^{-i{\hat {H}}t/\hbar }{\hat {\rho }}(0)e^{i{\hat {H}}t/\hbar }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7acff49f391855ff8414892a53a5898dd9c76fc6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.76ex; height:3.676ex;" alt="{\displaystyle {\hat {\rho }}(t)=e^{-i{\hat {H}}t/\hbar }{\hat {\rho }}(0)e^{i{\hat {H}}t/\hbar }.}"></span> </p><p>More generally, if the unitary operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {U}}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {U}}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3738abe482389decc7fafef3e80b85c3cee782f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.431ex; height:3.343ex;" alt="{\displaystyle {\hat {U}}(t)}"></span> describes wave function evolution over some time interval, then the time evolution of a density matrix over that same interval is given by <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\rho }}(t)={\hat {U}}(t){\hat {\rho }}(0){\hat {U}}(t)^{\dagger }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>U</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\rho }}(t)={\hat {U}}(t){\hat {\rho }}(0){\hat {U}}(t)^{\dagger }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b561a9759a25f47ed6e9dc5c580096144ab7e261" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.943ex; height:3.343ex;" alt="{\displaystyle {\hat {\rho }}(t)={\hat {U}}(t){\hat {\rho }}(0){\hat {U}}(t)^{\dagger }.}"></span> </p><p>Unitary evolution of a density matrix conserves its <a href="/wiki/Von_Neumann_entropy" title="Von Neumann entropy">von Neumann entropy</a>.<sup id="cite_ref-:0_26-4" class="reference"><a href="#cite_note-:0-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 267">: 267 </span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Relativistic_quantum_physics_and_quantum_field_theory">Relativistic quantum physics and quantum field theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=18" title="Edit section: Relativistic quantum physics and quantum field theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The one-particle Schrödinger equation described above is valid essentially in the nonrelativistic domain. For one reason, it is essentially invariant under <a href="/wiki/Galilean_transformation" title="Galilean transformation">Galilean transformations</a>, which form the symmetry group of <a href="/wiki/Newtonian_dynamics" title="Newtonian dynamics">Newtonian dynamics</a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>note 2<span class="cite-bracket">]</span></a></sup> Moreover, processes that change particle number are natural in relativity, and so an equation for one particle (or any fixed number thereof) can only be of limited use.<sup id="cite_ref-Coleman_31-0" class="reference"><a href="#cite_note-Coleman-31"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> A more general form of the Schrödinger equation that also applies in relativistic situations can be formulated within <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a> (QFT), a framework that allows the combination of quantum mechanics with special relativity. The region in which both simultaneously apply may be described by <a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">relativistic quantum mechanics</a>. Such descriptions may use time evolution generated by a Hamiltonian operator, as in the <a href="/wiki/Schr%C3%B6dinger_functional" title="Schrödinger functional">Schrödinger functional</a> method.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Klein–Gordon_and_Dirac_equations"><span id="Klein.E2.80.93Gordon_and_Dirac_equations"></span>Klein–Gordon and Dirac equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=19" title="Edit section: Klein–Gordon and Dirac equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Attempts to combine quantum physics with special relativity began with building <a href="/wiki/Relativistic_wave_equations" title="Relativistic wave equations">relativistic wave equations</a> from the relativistic <a href="/wiki/Energy%E2%80%93momentum_relation" title="Energy–momentum relation">energy–momentum relation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E^{2}=(pc)^{2}+\left(m_{0}c^{2}\right)^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E^{2}=(pc)^{2}+\left(m_{0}c^{2}\right)^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/827a1723b9a10074790d043d418aeacb77795abe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.813ex; height:3.843ex;" alt="{\displaystyle E^{2}=(pc)^{2}+\left(m_{0}c^{2}\right)^{2},}"></span> instead of nonrelativistic energy equations. The <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon equation</a> and the <a href="/wiki/Dirac_equation" title="Dirac equation">Dirac equation</a> are two such equations. The Klein–Gordon equation, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\psi +\nabla ^{2}\psi ={\frac {m^{2}c^{2}}{\hbar ^{2}}}\psi ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>ψ<!-- ψ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\psi +\nabla ^{2}\psi ={\frac {m^{2}c^{2}}{\hbar ^{2}}}\psi ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f12b8c289fe9279a2fc54edf6d58d5c996713fe" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:28.861ex; height:6.009ex;" alt="{\displaystyle -{\frac {1}{c^{2}}}{\frac {\partial ^{2}}{\partial t^{2}}}\psi +\nabla ^{2}\psi ={\frac {m^{2}c^{2}}{\hbar ^{2}}}\psi ,}"></span> was the first such equation to be obtained, even before the nonrelativistic one-particle Schrödinger equation, and applies to massive spinless particles. Historically, Dirac obtained the Dirac equation by seeking a differential equation that would be first-order in both time and space, a desirable property for a relativistic theory. Taking the "square root" of the left-hand side of the Klein–Gordon equation in this way required factorizing it into a product of two operators, which Dirac wrote using 4 × 4 matrices <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{1},\alpha _{2},\alpha _{3},\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{1},\alpha _{2},\alpha _{3},\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e8a92018092313feae1764294b91658e603bdc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.059ex; height:2.509ex;" alt="{\displaystyle \alpha _{1},\alpha _{2},\alpha _{3},\beta }"></span>. Consequently, the wave function also became a four-component function, governed by the Dirac equation that, in free space, read <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(\beta mc^{2}+c\left(\sum _{n\mathop {=} 1}^{3}\alpha _{n}p_{n}\right)\right)\psi =i\hbar {\frac {\partial \psi }{\partial t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>β<!-- β --></mi> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mrow class="MJX-TeXAtom-OP"> <mo>=</mo> </mrow> <mo>⁡<!-- --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </munderover> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ψ<!-- ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(\beta mc^{2}+c\left(\sum _{n\mathop {=} 1}^{3}\alpha _{n}p_{n}\right)\right)\psi =i\hbar {\frac {\partial \psi }{\partial t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ac5d90eaa217982beb673e548888025f2afbe6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:37.794ex; height:7.509ex;" alt="{\displaystyle \left(\beta mc^{2}+c\left(\sum _{n\mathop {=} 1}^{3}\alpha _{n}p_{n}\right)\right)\psi =i\hbar {\frac {\partial \psi }{\partial t}}.}"></span> </p><p>This has again the form of the Schrödinger equation, with the time derivative of the wave function being given by a Hamiltonian operator acting upon the wave function. Including influences upon the particle requires modifying the Hamiltonian operator. For example, the Dirac Hamiltonian for a particle of mass <span class="texhtml"><i>m</i></span> and electric charge <span class="texhtml"><i>q</i></span> in an electromagnetic field (described by the <a href="/wiki/Electromagnetic_potential" class="mw-redirect" title="Electromagnetic potential">electromagnetic potentials</a> <span class="texhtml"><i>φ</i></span> and <span class="texhtml"><b>A</b></span>) is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}_{\text{Dirac}}=\gamma ^{0}\left[c{\boldsymbol {\gamma }}\cdot \left({\hat {\mathbf {p} }}-q\mathbf {A} \right)+mc^{2}+\gamma ^{0}q\varphi \right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>Dirac</mtext> </mrow> </msub> <mo>=</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mrow> <mo>[</mo> <mrow> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">γ<!-- γ --></mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>−<!-- − --></mo> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>m</mi> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mi>q</mi> <mi>φ<!-- φ --></mi> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}_{\text{Dirac}}=\gamma ^{0}\left[c{\boldsymbol {\gamma }}\cdot \left({\hat {\mathbf {p} }}-q\mathbf {A} \right)+mc^{2}+\gamma ^{0}q\varphi \right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9caef48f6b0eff5b2b62f7bce9026d52372a192" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.049ex; height:3.509ex;" alt="{\displaystyle {\hat {H}}_{\text{Dirac}}=\gamma ^{0}\left[c{\boldsymbol {\gamma }}\cdot \left({\hat {\mathbf {p} }}-q\mathbf {A} \right)+mc^{2}+\gamma ^{0}q\varphi \right],}"></span> in which the <span class="texhtml"><b>γ</b> = (<i>γ</i><sup>1</sup>, <i>γ</i><sup>2</sup>, <i>γ</i><sup>3</sup>)</span> and <span class="texhtml"><i>γ</i><sup>0</sup></span> are the Dirac <a href="/wiki/Gamma_matrices" title="Gamma matrices">gamma matrices</a> related to the spin of the particle. The Dirac equation is true for all <span class="nowrap"><a href="/wiki/Spin-1/2" title="Spin-1/2">spin-<style data-mw-deduplicate="TemplateStyles:r1154941027">'"`UNIQ--templatestyles-00000121-QINU`"'</style><span class="frac"><span class="num">1</span>⁄<span class="den">2</span></span></a></span> particles, and the solutions to the equation are <span class="nowrap">4-component</span> <a href="/wiki/Spinor_field" class="mw-redirect" title="Spinor field">spinor fields</a> with two components corresponding to the particle and the other two for the <a href="/wiki/Antiparticle" title="Antiparticle">antiparticle</a>. </p><p>For the Klein–Gordon equation, the general form of the Schrödinger equation is inconvenient to use, and in practice the Hamiltonian is not expressed in an analogous way to the Dirac Hamiltonian. The equations for relativistic quantum fields, of which the Klein–Gordon and Dirac equations are two examples, can be obtained in other ways, such as starting from a <a href="/wiki/Lagrangian_(field_theory)" title="Lagrangian (field theory)">Lagrangian density</a> and using the <a href="/wiki/Euler%E2%80%93Lagrange_equation" title="Euler–Lagrange equation">Euler–Lagrange equations</a> for fields, or using the <a href="/wiki/Representation_theory_of_the_Lorentz_group" title="Representation theory of the Lorentz group">representation theory of the Lorentz group</a> in which certain representations can be used to fix the equation for a <a href="/wiki/Free_particle" title="Free particle">free particle</a> of given spin (and mass). </p><p>In general, the Hamiltonian to be substituted in the general Schrödinger equation is not just a function of the position and momentum operators (and possibly time), but also of spin matrices. Also, the solutions to a relativistic wave equation, for a massive particle of spin <span class="texhtml"><i>s</i></span>, are complex-valued <span class="nowrap"><span class="texhtml">2(2<i>s</i> + 1)</span>-component</span> <a href="/wiki/Spinor_field" class="mw-redirect" title="Spinor field">spinor fields</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Fock_space">Fock space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=20" title="Edit section: Fock space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As originally formulated, the Dirac equation is an equation for a single quantum particle, just like the single-particle Schrödinger equation with wave function <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (x,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (x,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f78f255e641e6cd2cd4bcb63183af3a47d84808e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.821ex; height:2.843ex;" alt="{\displaystyle \Psi (x,t)}"></span>.</span> This is of limited use in relativistic quantum mechanics, where particle number is not fixed. Heuristically, this complication can be motivated by noting that mass–energy equivalence implies material particles can be created from energy. A common way to address this in QFT is to introduce a Hilbert space where the basis states are labeled by particle number, a so-called <a href="/wiki/Fock_space" title="Fock space">Fock space</a>. The Schrödinger equation can then be formulated for quantum states on this Hilbert space.<sup id="cite_ref-Coleman_31-1" class="reference"><a href="#cite_note-Coleman-31"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> However, because the Schrödinger equation picks out a preferred time axis, the Lorentz invariance of the theory is no longer manifest, and accordingly, the theory is often formulated in other ways.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=21" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Erwin_Schr%C3%B6dinger_(1933).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Erwin_Schr%C3%B6dinger_%281933%29.jpg/170px-Erwin_Schr%C3%B6dinger_%281933%29.jpg" decoding="async" width="170" height="240" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Erwin_Schr%C3%B6dinger_%281933%29.jpg/255px-Erwin_Schr%C3%B6dinger_%281933%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/2/2e/Erwin_Schr%C3%B6dinger_%281933%29.jpg 2x" data-file-width="280" data-file-height="396" /></a><figcaption><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Erwin Schrödinger</a></figcaption></figure> <p>Following <a href="/wiki/Max_Planck" title="Max Planck">Max Planck</a>'s quantization of light (see <a href="/wiki/Black-body_radiation" title="Black-body radiation">black-body radiation</a>), <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> interpreted Planck's <a href="/wiki/Quantum" title="Quantum">quanta</a> to be <a href="/wiki/Photon" title="Photon">photons</a>, <a href="/wiki/Corpuscular_theory_of_light" title="Corpuscular theory of light">particles of light</a>, and proposed that the <a href="/wiki/Planck_relation" title="Planck relation">energy of a photon is proportional to its frequency</a>, one of the first signs of <a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">wave–particle duality</a>. Since energy and <a href="/wiki/Momentum" title="Momentum">momentum</a> are related in the same way as <a href="/wiki/Frequency" title="Frequency">frequency</a> and <a href="/wiki/Wavenumber" title="Wavenumber">wave number</a> in <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>, it followed that the momentum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> of a photon is inversely proportional to its <a href="/wiki/Wavelength" title="Wavelength">wavelength</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>, or proportional to its wave number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p={\frac {h}{\lambda }}=\hbar k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p={\frac {h}{\lambda }}=\hbar k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bec6115de7fa0b285891ecffeeca92ac51ac9fc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-left: -0.089ex; width:12.812ex; height:5.509ex;" alt="{\displaystyle p={\frac {h}{\lambda }}=\hbar k,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> is the <a href="/wiki/Planck_constant" title="Planck constant">Planck constant</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar ={h}/{2\pi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar ={h}/{2\pi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0708c18b4e13fd8e8399ee3d0d6378e7e3ec487" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.401ex; height:2.843ex;" alt="{\displaystyle \hbar ={h}/{2\pi }}"></span> is the reduced Planck constant. <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> hypothesized that this is true for all particles, even particles which have mass such as electrons. He showed that, assuming that the <a href="/wiki/Matter_wave" title="Matter wave">matter waves</a> propagate along with their particle counterparts, electrons form <a href="/wiki/Standing_wave" title="Standing wave">standing waves</a>, meaning that only certain discrete rotational frequencies about the nucleus of an atom are allowed.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> These quantized orbits correspond to discrete <a href="/wiki/Energy_level" title="Energy level">energy levels</a>, and de Broglie reproduced the <a href="/wiki/Bohr_model" title="Bohr model">Bohr model</a> formula for the energy levels. The Bohr model was based on the assumed quantization of angular momentum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> according to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L=n{\frac {h}{2\pi }}=n\hbar .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo>=</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>n</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L=n{\frac {h}{2\pi }}=n\hbar .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e09653f08cd847a50159eb9b178a1d7fe456b00e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.853ex; height:5.343ex;" alt="{\displaystyle L=n{\frac {h}{2\pi }}=n\hbar .}"></span> According to de Broglie, the electron is described by a wave, and a whole number of wavelengths must fit along the circumference of the electron's orbit: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\lambda =2\pi r.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>λ<!-- λ --></mi> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>r</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\lambda =2\pi r.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c406e1d9a3d7ac94158a7e1521da8bcb894a4cd1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.038ex; height:2.176ex;" alt="{\displaystyle n\lambda =2\pi r.}"></span> </p><p>This approach essentially confined the electron wave in one dimension, along a circular orbit of radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>. </p><p>In 1921, prior to de Broglie, Arthur C. Lunn at the University of Chicago had used the same argument based on the completion of the relativistic energy–momentum <a href="/wiki/Four-vector" title="Four-vector">4-vector</a> to derive what we now call the de Broglie relation.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> Unlike de Broglie, Lunn went on to formulate the differential equation now known as the Schrödinger equation and solve for its energy eigenvalues for the hydrogen atom; the paper was rejected by the <i>Physical Review</i>, according to Kamen.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p><p>Following up on de Broglie's ideas, physicist <a href="/wiki/Peter_Debye" title="Peter Debye">Peter Debye</a> made an offhand comment that if particles behaved as waves, they should satisfy some sort of wave equation. Inspired by Debye's remark, Schrödinger decided to find a proper 3-dimensional wave equation for the electron. He was guided by <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">William Rowan Hamilton</a>'s <a href="/wiki/Hamilton%27s_optico-mechanical_analogy" title="Hamilton's optico-mechanical analogy">analogy between mechanics and optics</a>, encoded in the observation that the zero-wavelength limit of optics resembles a mechanical system—the trajectories of <a href="/wiki/Light_rays" class="mw-redirect" title="Light rays">light rays</a> become sharp tracks that obey <a href="/wiki/Fermat%27s_principle" title="Fermat's principle">Fermat's principle</a>, an analog of the <a href="/wiki/Principle_of_least_action" class="mw-redirect" title="Principle of least action">principle of least action</a>.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Grave_Schroedinger_(detail).png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Grave_Schroedinger_%28detail%29.png/220px-Grave_Schroedinger_%28detail%29.png" decoding="async" width="220" height="293" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Grave_Schroedinger_%28detail%29.png/330px-Grave_Schroedinger_%28detail%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Grave_Schroedinger_%28detail%29.png/440px-Grave_Schroedinger_%28detail%29.png 2x" data-file-width="690" data-file-height="920" /></a><figcaption>Schrödinger's equation inscribed on the gravestone of Annemarie and Erwin Schrödinger. (<a href="/wiki/Notation_for_differentiation#Newton's_notation" title="Notation for differentiation">Newton's dot notation</a> for the time derivative is used.)</figcaption></figure> <p>The equation he found is<sup id="cite_ref-verlagsgesellschaft1991_42-0" class="reference"><a href="#cite_note-verlagsgesellschaft1991-42"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi (\mathbf {r} ,t)+V(\mathbf {r} )\Psi (\mathbf {r} ,t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi (\mathbf {r} ,t)+V(\mathbf {r} )\Psi (\mathbf {r} ,t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3e90a151ee73c70192b182c6180b71665c11c6b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:45.003ex; height:5.843ex;" alt="{\displaystyle i\hbar {\frac {\partial }{\partial t}}\Psi (\mathbf {r} ,t)=-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}\Psi (\mathbf {r} ,t)+V(\mathbf {r} )\Psi (\mathbf {r} ,t).}"></span> </p><p>By that time <a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Arnold Sommerfeld</a> had <a href="/wiki/Sommerfeld%E2%80%93Wilson_quantization" class="mw-redirect" title="Sommerfeld–Wilson quantization">refined the Bohr model</a> with <a href="/wiki/Fine_structure" title="Fine structure">relativistic corrections</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> Schrödinger used the relativistic energy–momentum relation to find what is now known as the <a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon equation</a> in a <a href="/wiki/Coulomb_potential" class="mw-redirect" title="Coulomb potential">Coulomb potential</a> (in <a href="/wiki/Natural_units" title="Natural units">natural units</a>): <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(E+{\frac {e^{2}}{r}}\right)^{2}\psi (x)=-\nabla ^{2}\psi (x)+m^{2}\psi (x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>r</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(E+{\frac {e^{2}}{r}}\right)^{2}\psi (x)=-\nabla ^{2}\psi (x)+m^{2}\psi (x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d5d1abdb3f6f613916fcc7682a4f0f7f81338b2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:40.5ex; height:6.676ex;" alt="{\displaystyle \left(E+{\frac {e^{2}}{r}}\right)^{2}\psi (x)=-\nabla ^{2}\psi (x)+m^{2}\psi (x).}"></span> </p><p>He found the standing waves of this relativistic equation, but the relativistic corrections disagreed with Sommerfeld's formula. Discouraged, he put away his calculations and secluded himself with a mistress in a mountain cabin in December 1925.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>While at the cabin, Schrödinger decided that his earlier nonrelativistic calculations were novel enough to publish and decided to leave off the problem of relativistic corrections for the future. Despite the difficulties in solving the differential equation for hydrogen (he had sought help from his friend the mathematician <a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a><sup id="cite_ref-Schrödinger1982_46-0" class="reference"><a href="#cite_note-Schrödinger1982-46"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 3">: 3 </span></sup>) Schrödinger showed that his nonrelativistic version of the wave equation produced the correct spectral energies of hydrogen in a paper published in 1926.<sup id="cite_ref-Schrödinger1982_46-1" class="reference"><a href="#cite_note-Schrödinger1982-46"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 1">: 1 </span></sup><sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> Schrödinger computed the <a href="/wiki/Hydrogen_spectral_series" title="Hydrogen spectral series">hydrogen spectral series</a> by treating a <a href="/wiki/Hydrogen_atom" title="Hydrogen atom">hydrogen atom</a>'s <a href="/wiki/Electron" title="Electron">electron</a> as a wave <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {x} ,t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {x} ,t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5321c3723a9b3cac7b69682bd40497172bebf339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.902ex; height:2.843ex;" alt="{\displaystyle \Psi (\mathbf {x} ,t)}"></span>, moving in a <a href="/wiki/Potential_well" title="Potential well">potential well</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span>, created by the <a href="/wiki/Proton" title="Proton">proton</a>. This computation accurately reproduced the energy levels of the <a href="/wiki/Bohr_model" title="Bohr model">Bohr model</a>. </p><p>The Schrödinger equation details the behavior of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5471531a3fe80741a839bc98d49fae862a6439a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Psi }"></span> but says nothing of its <i>nature</i>. Schrödinger tried to interpret the real part of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi {\frac {\partial \Psi ^{*}}{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi {\frac {\partial \Psi ^{*}}{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c63f6a6c71648b1e1f785edcaad3ff2711c53982" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:6.825ex; height:5.509ex;" alt="{\displaystyle \Psi {\frac {\partial \Psi ^{*}}{\partial t}}}"></span> as a charge density, and then revised this proposal, saying in his next paper that the <a href="/wiki/Modulus_squared" class="mw-redirect" title="Modulus squared">modulus squared</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5471531a3fe80741a839bc98d49fae862a6439a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Psi }"></span> is a charge density. This approach was, however, unsuccessful.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>note 3<span class="cite-bracket">]</span></a></sup> In 1926, just a few days after this paper was published, <a href="/wiki/Max_Born" title="Max Born">Max Born</a> successfully interpreted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5471531a3fe80741a839bc98d49fae862a6439a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \Psi }"></span> as the <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitude</a>, whose modulus squared is equal to <a href="/wiki/Probability_density_function" title="Probability density function">probability density</a>.<sup id="cite_ref-Moore1992_48-1" class="reference"><a href="#cite_note-Moore1992-48"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 220">: 220 </span></sup> Later, Schrödinger himself explained this interpretation as follows:<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>The already ... mentioned psi-function.... is now the means for predicting probability of measurement results. In it is embodied the momentarily attained sum of theoretically based future expectation, somewhat as laid down in a catalog.</p><div class="templatequotecite">— <cite>Erwin Schrödinger</cite></div></blockquote> <div class="mw-heading mw-heading2"><h2 id="Interpretation">Interpretation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=22" title="Edit section: Interpretation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations of quantum mechanics</a></div> <p>The Schrödinger equation provides a way to calculate the wave function of a system and how it changes dynamically in time. However, the Schrödinger equation does not directly say <i>what,</i> exactly, the wave function is. The meaning of the Schrödinger equation and how the mathematical entities in it relate to physical reality depends upon the <a href="/wiki/Interpretation_of_quantum_mechanics" class="mw-redirect" title="Interpretation of quantum mechanics">interpretation of quantum mechanics</a> that one adopts. </p><p>In the views often grouped together as the <a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen interpretation</a>, a system's wave function is a collection of statistical information about that system. The Schrödinger equation relates information about the system at one time to information about it at another. While the time-evolution process represented by the Schrödinger equation is continuous and deterministic, in that knowing the wave function at one instant is in principle sufficient to calculate it for all future times, wave functions can also change discontinuously and stochastically during a <a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">measurement</a>. The wave function changes, according to this school of thought, because new information is available. The post-measurement wave function generally cannot be known prior to the measurement, but the probabilities for the different possibilities can be calculated using the <a href="/wiki/Born_rule" title="Born rule">Born rule</a>.<sup id="cite_ref-:0_26-5" class="reference"><a href="#cite_note-:0-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-omnes_53-0" class="reference"><a href="#cite_note-omnes-53"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>note 4<span class="cite-bracket">]</span></a></sup> Other, more recent interpretations of quantum mechanics, such as <a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">relational quantum mechanics</a> and <a href="/wiki/QBism" class="mw-redirect" title="QBism">QBism</a> also give the Schrödinger equation a status of this sort.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> </p><p>Schrödinger himself suggested in 1952 that the different terms of a superposition evolving under the Schrödinger equation are "not alternatives but all really happen simultaneously". This has been interpreted as an early version of Everett's <a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">many-worlds interpretation</a>.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>note 5<span class="cite-bracket">]</span></a></sup> This interpretation, formulated independently in 1956, holds that <i>all</i> the possibilities described by quantum theory <i>simultaneously</i> occur in a multiverse composed of mostly independent parallel universes.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> This interpretation removes the axiom of wave function collapse, leaving only continuous evolution under the Schrödinger equation, and so all possible states of the measured system and the measuring apparatus, together with the observer, are present in a real physical <a href="/wiki/Quantum_superposition" title="Quantum superposition">quantum superposition</a>. While the multiverse is deterministic, we perceive non-deterministic behavior governed by probabilities, because we do not observe the multiverse as a whole, but only one parallel universe at a time. Exactly how this is supposed to work has been the subject of much debate. Why we should assign probabilities at all to outcomes that are certain to occur in some worlds, and why should the probabilities be given by the Born rule?<sup id="cite_ref-wallace2003_64-0" class="reference"><a href="#cite_note-wallace2003-64"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Several ways to answer these questions in the many-worlds framework have been proposed, but there is no consensus on whether they are successful.<sup id="cite_ref-ballentine1973_65-0" class="reference"><a href="#cite_note-ballentine1973-65"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-kent2009_67-0" class="reference"><a href="#cite_note-kent2009-67"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Bohmian_mechanics" class="mw-redirect" title="Bohmian mechanics">Bohmian mechanics</a> reformulates quantum mechanics to make it deterministic, at the price of adding a force due to a "quantum potential". It attributes to each physical system not only a wave function but in addition a real position that evolves deterministically under a nonlocal guiding equation. The evolution of a physical system is given at all times by the Schrödinger equation together with the guiding equation.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=23" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col"> <ul><li><a href="/wiki/Eckhaus_equation" title="Eckhaus equation">Eckhaus equation</a></li> <li><a href="/wiki/Fokker%E2%80%93Planck_equation" title="Fokker–Planck equation">Fokker–Planck equation</a></li> <li><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations of quantum mechanics</a></li> <li><a href="/wiki/List_of_things_named_after_Erwin_Schr%C3%B6dinger" title="List of things named after Erwin Schrödinger">List of things named after Erwin Schrödinger</a></li> <li><a href="/wiki/Logarithmic_Schr%C3%B6dinger_equation" title="Logarithmic Schrödinger equation">Logarithmic Schrödinger equation</a></li> <li><a href="/wiki/Nonlinear_Schr%C3%B6dinger_equation" title="Nonlinear Schrödinger equation">Nonlinear Schrödinger equation</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli equation</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Relation_between_Schr%C3%B6dinger%27s_equation_and_the_path_integral_formulation_of_quantum_mechanics" title="Relation between Schrödinger's equation and the path integral formulation of quantum mechanics">Relation between Schrödinger's equation and the path integral formulation of quantum mechanics</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger picture</a></li> <li><a href="/wiki/Wigner_quasiprobability_distribution" title="Wigner quasiprobability distribution">Wigner quasiprobability distribution</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=24" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">This rule for obtaining probabilities from a state vector implies that vectors that only differ by an overall phase are physically equivalent; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27f1893b769a08cd6b296e115a29e61cab675e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.065ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\alpha }|\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>α<!-- α --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>ψ<!-- ψ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\alpha }|\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fe36cb29fce90d9775800616dc16d8eb67a9cff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6ex; height:3.176ex;" alt="{\displaystyle e^{i\alpha }|\psi \rangle }"></span> represent the same quantum states. In other words, the possible states are points in the <a href="/wiki/Projective_space" title="Projective space">projective space</a> of a Hilbert space, usually called the <a href="/wiki/Projective_Hilbert_space" title="Projective Hilbert space">projective Hilbert space</a>.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">More precisely, the effect of a Galilean transformation upon the Schrödinger equation can be canceled by a phase transformation of the wave function that leaves the probabilities, as calculated via the Born rule, unchanged.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">For details, see Moore,<sup id="cite_ref-Moore1992_48-0" class="reference"><a href="#cite_note-Moore1992-48"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 219">: 219 </span></sup> Jammer,<sup id="cite_ref-jammer1974_49-0" class="reference"><a href="#cite_note-jammer1974-49"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 24–25">: 24–25 </span></sup> and Karam.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">One difficulty in discussing the philosophical position of "the Copenhagen interpretation" is that there is no single, authoritative source that establishes what the interpretation is. Another complication is that the philosophical background familiar to Einstein, Bohr, Heisenberg, and contemporaries is much less so to physicists and even philosophers of physics in more recent times.<sup id="cite_ref-Faye-Stanford_54-0" class="reference"><a href="#cite_note-Faye-Stanford-54"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-chevalley1999_55-0" class="reference"><a href="#cite_note-chevalley1999-55"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Schrödinger's later writings also contain elements resembling the <a href="/wiki/Modal_interpretation" class="mw-redirect" title="Modal interpretation">modal interpretation</a> originated by <a href="/wiki/Bas_van_Fraassen" title="Bas van Fraassen">Bas van Fraassen</a>. Because Schrödinger subscribed to a kind of post-<a href="/wiki/Ernst_Mach" title="Ernst Mach">Machian</a> <a href="/wiki/Neutral_monism" title="Neutral monism">neutral monism</a>, in which "matter" and "mind" are only different aspects or arrangements of the same common elements, treating the wavefunction as physical and treating it as information became interchangeable.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=25" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Griffiths2004-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Griffiths2004_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGriffiths2004" class="citation book cs1"><a href="/wiki/David_J._Griffiths" title="David J. Griffiths">Griffiths, David J.</a> (2004). <a href="/wiki/Introduction_to_Quantum_Mechanics_(book)" title="Introduction to Quantum Mechanics (book)"><i>Introduction to Quantum Mechanics (2nd ed.)</i></a>. Prentice Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-13-111892-8" title="Special:BookSources/978-0-13-111892-8"><bdi>978-0-13-111892-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Quantum+Mechanics+%282nd+ed.%29&rft.pub=Prentice+Hall&rft.date=2004&rft.isbn=978-0-13-111892-8&rft.aulast=Griffiths&rft.aufirst=David+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.theguardian.com/technology/2013/aug/12/erwin-schrodinger-google-doodle">"Physicist Erwin Schrödinger's Google doodle marks quantum mechanics work"</a>. <i><a href="/wiki/The_Guardian" title="The Guardian">The Guardian</a></i>. 13 August 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">25 August</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Guardian&rft.atitle=Physicist+Erwin+Schr%C3%B6dinger%27s+Google+doodle+marks+quantum+mechanics+work&rft.date=2013-08-13&rft_id=https%3A%2F%2Fwww.theguardian.com%2Ftechnology%2F2013%2Faug%2F12%2Ferwin-schrodinger-google-doodle&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-sch-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-sch_3-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchrödinger1926" class="citation journal cs1">Schrödinger, E. (1926). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081217040121/http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf">"An Undulatory Theory of the Mechanics of Atoms and Molecules"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Physical_Review" title="Physical Review">Physical Review</a></i>. <b>28</b> (6): 1049–70. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926PhRv...28.1049S">1926PhRv...28.1049S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRev.28.1049">10.1103/PhysRev.28.1049</a>. Archived from <a rel="nofollow" class="external text" href="http://home.tiscali.nl/physis/HistoricPaper/Schroedinger/Schroedinger1926c.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 17 December 2008.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review&rft.atitle=An+Undulatory+Theory+of+the+Mechanics+of+Atoms+and+Molecules&rft.volume=28&rft.issue=6&rft.pages=1049-70&rft.date=1926&rft_id=info%3Adoi%2F10.1103%2FPhysRev.28.1049&rft_id=info%3Abibcode%2F1926PhRv...28.1049S&rft.aulast=Schr%C3%B6dinger&rft.aufirst=E.&rft_id=http%3A%2F%2Fhome.tiscali.nl%2Fphysis%2FHistoricPaper%2FSchroedinger%2FSchroedinger1926c.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhittaker1989" class="citation book cs1">Whittaker, Edmund T. (1989). <i>A history of the theories of aether & electricity. 2: The modern theories, 1900 – 1926</i> (Repr ed.). New York: Dover Publ. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-26126-3" title="Special:BookSources/978-0-486-26126-3"><bdi>978-0-486-26126-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+history+of+the+theories+of+aether+%26+electricity.+2%3A+The+modern+theories%2C+1900+%E2%80%93+1926&rft.place=New+York&rft.edition=Repr&rft.pub=Dover+Publ&rft.date=1989&rft.isbn=978-0-486-26126-3&rft.aulast=Whittaker&rft.aufirst=Edmund+T.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Zwiebach2022-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zwiebach2022_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zwiebach2022_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Zwiebach2022_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Zwiebach2022_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Zwiebach2022_5-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZwiebach2022" class="citation book cs1"><a href="/wiki/Barton_Zwiebach" title="Barton Zwiebach">Zwiebach, Barton</a> (2022). <i>Mastering Quantum Mechanics: Essentials, Theory, and Applications</i>. MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-04613-8" title="Special:BookSources/978-0-262-04613-8"><bdi>978-0-262-04613-8</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1347739457">1347739457</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mastering+Quantum+Mechanics%3A+Essentials%2C+Theory%2C+and+Applications&rft.pub=MIT+Press&rft.date=2022&rft_id=info%3Aoclcnum%2F1347739457&rft.isbn=978-0-262-04613-8&rft.aulast=Zwiebach&rft.aufirst=Barton&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDirac1930" class="citation book cs1"><a href="/wiki/Paul_Dirac" title="Paul Dirac">Dirac, Paul Adrien Maurice</a> (1930). <a href="/wiki/The_Principles_of_Quantum_Mechanics" title="The Principles of Quantum Mechanics"><i>The Principles of Quantum Mechanics</i></a>. Oxford: Clarendon Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Principles+of+Quantum+Mechanics&rft.place=Oxford&rft.pub=Clarendon+Press&rft.date=1930&rft.aulast=Dirac&rft.aufirst=Paul+Adrien+Maurice&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHilbert2009" class="citation book cs1"><a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert, David</a> (2009). Sauer, Tilman; Majer, Ulrich (eds.). <i>Lectures on the Foundations of Physics 1915–1927: Relativity, Quantum Theory and Epistemology</i>. Springer. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fb12915">10.1007/b12915</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-20606-4" title="Special:BookSources/978-3-540-20606-4"><bdi>978-3-540-20606-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/463777694">463777694</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+on+the+Foundations+of+Physics+1915%E2%80%931927%3A+Relativity%2C+Quantum+Theory+and+Epistemology&rft.pub=Springer&rft.date=2009&rft_id=info%3Aoclcnum%2F463777694&rft_id=info%3Adoi%2F10.1007%2Fb12915&rft.isbn=978-3-540-20606-4&rft.aulast=Hilbert&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Neumann1932" class="citation book cs1"><a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann, John</a> (1932). <i>Mathematische Grundlagen der Quantenmechanik</i>. Berlin: Springer.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematische+Grundlagen+der+Quantenmechanik&rft.place=Berlin&rft.pub=Springer&rft.date=1932&rft.aulast=von+Neumann&rft.aufirst=John&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span> English translation: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Mathematical_Foundations_of_Quantum_Mechanics" title="Mathematical Foundations of Quantum Mechanics"><i>Mathematical Foundations of Quantum Mechanics</i></a>. Translated by <a href="/wiki/Robert_T._Beyer" title="Robert T. Beyer">Beyer, Robert T.</a> Princeton University Press. 1955.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Foundations+of+Quantum+Mechanics&rft.pub=Princeton+University+Press&rft.date=1955&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeyl1950" class="citation book cs1"><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Weyl, Hermann</a> (1950) [1931]. <i>The Theory of Groups and Quantum Mechanics</i>. Translated by <a href="/wiki/Howard_P._Robertson" title="Howard P. Robertson">Robertson, H. P.</a> Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-60269-1" title="Special:BookSources/978-0-486-60269-1"><bdi>978-0-486-60269-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Theory+of+Groups+and+Quantum+Mechanics&rft.pub=Dover&rft.date=1950&rft.isbn=978-0-486-60269-1&rft.aulast=Weyl&rft.aufirst=Hermann&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span> Translated from the German <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a href="/wiki/Gruppentheorie_und_Quantenmechanik" title="Gruppentheorie und Quantenmechanik"><i>Gruppentheorie und Quantenmechanik</i></a> (2nd ed.). <a href="/w/index.php?title=S._Hirzel_Verlag&action=edit&redlink=1" class="new" title="S. Hirzel Verlag (page does not exist)">S. Hirzel Verlag</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://de.wikipedia.org/wiki/S._Hirzel_Verlag" class="extiw" title="de:S. Hirzel Verlag">de</a>]</span>. 1931.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Gruppentheorie+und+Quantenmechanik&rft.edition=2nd&rft.pub=S.+Hirzel+Verlag%3Cspan+class%3D%22noprint%22+style%3D%22font-size%3A85%25%3B+font-style%3A+normal%3B+%22%3E+%26%2391%3Bde%26%2393%3B%3C%2Fspan%3E&rft.date=1931&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHall2013" class="citation book cs1">Hall, B. C. (2013). "Chapter 6: Perspectives on the Spectral Theorem". <i>Quantum Theory for Mathematicians</i>. Graduate Texts in Mathematics. Vol. 267. Springer. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013qtm..book.....H">2013qtm..book.....H</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1461471158" title="Special:BookSources/978-1461471158"><bdi>978-1461471158</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+6%3A+Perspectives+on+the+Spectral+Theorem&rft.btitle=Quantum+Theory+for+Mathematicians&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer&rft.date=2013&rft_id=info%3Abibcode%2F2013qtm..book.....H&rft.isbn=978-1461471158&rft.aulast=Hall&rft.aufirst=B.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Cohen-Tannoudji-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-Cohen-Tannoudji_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Cohen-Tannoudji_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Cohen-Tannoudji_12-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Cohen-Tannoudji_12-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Cohen-Tannoudji_12-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Cohen-Tannoudji_12-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen-TannoudjiDiuLaloë2005" class="citation book cs1"><a href="/wiki/Claude_Cohen-Tannoudji" title="Claude Cohen-Tannoudji">Cohen-Tannoudji, Claude</a>; Diu, Bernard; Laloë, Franck (2005). <i>Quantum Mechanics</i>. Translated by Hemley, Susan Reid; Ostrowsky, Nicole; Ostrowsky, Dan. John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-16433-X" title="Special:BookSources/0-471-16433-X"><bdi>0-471-16433-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Mechanics&rft.pub=John+Wiley+%26+Sons&rft.date=2005&rft.isbn=0-471-16433-X&rft.aulast=Cohen-Tannoudji&rft.aufirst=Claude&rft.au=Diu%2C+Bernard&rft.au=Lalo%C3%AB%2C+Franck&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Shankar1994-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Shankar1994_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Shankar1994_13-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Shankar1994_13-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShankar1994" class="citation book cs1"><a href="/wiki/Ramamurti_Shankar" title="Ramamurti Shankar">Shankar, R.</a> (1994). <a href="/wiki/Principles_of_Quantum_Mechanics" title="Principles of Quantum Mechanics"><i>Principles of Quantum Mechanics</i></a> (2nd ed.). Kluwer Academic/Plenum Publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-306-44790-7" title="Special:BookSources/978-0-306-44790-7"><bdi>978-0-306-44790-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+Quantum+Mechanics&rft.edition=2nd&rft.pub=Kluwer+Academic%2FPlenum+Publishers&rft.date=1994&rft.isbn=978-0-306-44790-7&rft.aulast=Shankar&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-rieffel-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-rieffel_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rieffel_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRieffelPolak2011" class="citation book cs1"><a href="/wiki/Eleanor_Rieffel" title="Eleanor Rieffel">Rieffel, Eleanor G.</a>; Polak, Wolfgang H. (4 March 2011). <a href="/wiki/Quantum_Computing:_A_Gentle_Introduction" title="Quantum Computing: A Gentle Introduction"><i>Quantum Computing: A Gentle Introduction</i></a>. MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-01506-6" title="Special:BookSources/978-0-262-01506-6"><bdi>978-0-262-01506-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Computing%3A+A+Gentle+Introduction&rft.pub=MIT+Press&rft.date=2011-03-04&rft.isbn=978-0-262-01506-6&rft.aulast=Rieffel&rft.aufirst=Eleanor+G.&rft.au=Polak%2C+Wolfgang+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYaffe2015" class="citation web cs1">Yaffe, Laurence G. (2015). <a rel="nofollow" class="external text" href="https://courses.washington.edu/partsym/12aut/ch06.pdf">"Chapter 6: Symmetries"</a> <span class="cs1-format">(PDF)</span>. <i>Physics 226: Particles and Symmetries</i><span class="reference-accessdate">. Retrieved <span class="nowrap">1 January</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Physics+226%3A+Particles+and+Symmetries&rft.atitle=Chapter+6%3A+Symmetries&rft.date=2015&rft.aulast=Yaffe&rft.aufirst=Laurence+G.&rft_id=https%3A%2F%2Fcourses.washington.edu%2Fpartsym%2F12aut%2Fch06.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSakuraiNapolitano2017" class="citation book cs1"><a href="/wiki/J._J._Sakurai" title="J. J. Sakurai">Sakurai, J. J.</a>; Napolitano, J. (2017). <a href="/wiki/Modern_Quantum_Mechanics" title="Modern Quantum Mechanics"><i>Modern Quantum Mechanics</i></a> (Second ed.). Cambridge: Cambridge University Press. p. 68. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-108-49999-6" title="Special:BookSources/978-1-108-49999-6"><bdi>978-1-108-49999-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1105708539">1105708539</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+Quantum+Mechanics&rft.place=Cambridge&rft.pages=68&rft.edition=Second&rft.pub=Cambridge+University+Press&rft.date=2017&rft_id=info%3Aoclcnum%2F1105708539&rft.isbn=978-1-108-49999-6&rft.aulast=Sakurai&rft.aufirst=J.+J.&rft.au=Napolitano%2C+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-:1-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_17-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSakuraiNapolitano2021" class="citation book cs1">Sakurai, Jun John; Napolitano, Jim (2021). <i>Modern quantum mechanics</i> (3rd ed.). Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-108-47322-4" title="Special:BookSources/978-1-108-47322-4"><bdi>978-1-108-47322-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+quantum+mechanics&rft.place=Cambridge&rft.edition=3rd&rft.pub=Cambridge+University+Press&rft.date=2021&rft.isbn=978-1-108-47322-4&rft.aulast=Sakurai&rft.aufirst=Jun+John&rft.au=Napolitano%2C+Jim&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMostafazadeh2003" class="citation journal cs1">Mostafazadeh, Ali (7 January 2003). "Hilbert Space Structures on the Solution Space of Klein-Gordon Type Evolution Equations". <i>Classical and Quantum Gravity</i>. <b>20</b> (1): 155–171. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math-ph/0209014">math-ph/0209014</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0264-9381%2F20%2F1%2F312">10.1088/0264-9381/20/1/312</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0264-9381">0264-9381</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Classical+and+Quantum+Gravity&rft.atitle=Hilbert+Space+Structures+on+the+Solution+Space+of+Klein-Gordon+Type+Evolution+Equations&rft.volume=20&rft.issue=1&rft.pages=155-171&rft.date=2003-01-07&rft_id=info%3Aarxiv%2Fmath-ph%2F0209014&rft.issn=0264-9381&rft_id=info%3Adoi%2F10.1088%2F0264-9381%2F20%2F1%2F312&rft.aulast=Mostafazadeh&rft.aufirst=Ali&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSingh2008" class="citation journal cs1"><a href="/wiki/Chandralekha_Singh" title="Chandralekha Singh">Singh, Chandralekha</a> (March 2008). <a rel="nofollow" class="external text" href="http://aapt.scitation.org/doi/10.1119/1.2825387">"Student understanding of quantum mechanics at the beginning of graduate instruction"</a>. <i>American Journal of Physics</i>. <b>76</b> (3): 277–287. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1602.06660">1602.06660</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008AmJPh..76..277S">2008AmJPh..76..277S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.2825387">10.1119/1.2825387</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9505">0002-9505</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118493003">118493003</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Student+understanding+of+quantum+mechanics+at+the+beginning+of+graduate+instruction&rft.volume=76&rft.issue=3&rft.pages=277-287&rft.date=2008-03&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118493003%23id-name%3DS2CID&rft_id=info%3Abibcode%2F2008AmJPh..76..277S&rft_id=info%3Aarxiv%2F1602.06660&rft.issn=0002-9505&rft_id=info%3Adoi%2F10.1119%2F1.2825387&rft.aulast=Singh&rft.aufirst=Chandralekha&rft_id=http%3A%2F%2Faapt.scitation.org%2Fdoi%2F10.1119%2F1.2825387&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Adams_Sigel_Mlynek_1994_pp._143–210-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-Adams_Sigel_Mlynek_1994_pp._143–210_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAdamsSigelMlynek1994" class="citation journal cs1">Adams, C.S; Sigel, M; Mlynek, J (1994). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-1573%2894%2990066-3">"Atom optics"</a>. <i>Physics Reports</i>. <b>240</b> (3). Elsevier BV: 143–210. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994PhR...240..143A">1994PhR...240..143A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0370-1573%2894%2990066-3">10.1016/0370-1573(94)90066-3</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0370-1573">0370-1573</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Reports&rft.atitle=Atom+optics&rft.volume=240&rft.issue=3&rft.pages=143-210&rft.date=1994&rft.issn=0370-1573&rft_id=info%3Adoi%2F10.1016%2F0370-1573%2894%2990066-3&rft_id=info%3Abibcode%2F1994PhR...240..143A&rft.aulast=Adams&rft.aufirst=C.S&rft.au=Sigel%2C+M&rft.au=Mlynek%2C+J&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252F0370-1573%252894%252990066-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAtkins1978" class="citation book cs1">Atkins, P. W. (1978). <i>Physical Chemistry</i>. Oxford University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-19-855148-7" title="Special:BookSources/0-19-855148-7"><bdi>0-19-855148-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physical+Chemistry&rft.pub=Oxford+University+Press&rft.date=1978&rft.isbn=0-19-855148-7&rft.aulast=Atkins&rft.aufirst=P.+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHookHall2010" class="citation book cs1">Hook, J. R.; Hall, H. E. (2010). <i>Solid State Physics</i>. Manchester Physics Series (2nd ed.). John Wiley & Sons. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-92804-1" title="Special:BookSources/978-0-471-92804-1"><bdi>978-0-471-92804-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Solid+State+Physics&rft.series=Manchester+Physics+Series&rft.edition=2nd&rft.pub=John+Wiley+%26+Sons&rft.date=2010&rft.isbn=978-0-471-92804-1&rft.aulast=Hook&rft.aufirst=J.+R.&rft.au=Hall%2C+H.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTownsend2012" class="citation book cs1">Townsend, John S. (2012). "Chapter 7: The One-Dimensional Harmonic Oscillator". <i>A Modern Approach to Quantum Mechanics</i>. University Science Books. pp. 247–250, 254–5, 257, 272. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-891389-78-8" title="Special:BookSources/978-1-891389-78-8"><bdi>978-1-891389-78-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+7%3A+The+One-Dimensional+Harmonic+Oscillator&rft.btitle=A+Modern+Approach+to+Quantum+Mechanics&rft.pages=247-250%2C+254-5%2C+257%2C+272&rft.pub=University+Science+Books&rft.date=2012&rft.isbn=978-1-891389-78-8&rft.aulast=Townsend&rft.aufirst=John+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTiplerMosca2008" class="citation book cs1">Tipler, P. A.; Mosca, G. (2008). <i>Physics for Scientists and Engineers – with Modern Physics</i> (6th ed.). Freeman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7167-8964-2" title="Special:BookSources/978-0-7167-8964-2"><bdi>978-0-7167-8964-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Physics+for+Scientists+and+Engineers+%E2%80%93+with+Modern+Physics&rft.edition=6th&rft.pub=Freeman&rft.date=2008&rft.isbn=978-0-7167-8964-2&rft.aulast=Tipler&rft.aufirst=P.+A.&rft.au=Mosca%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffiths2008" class="citation book cs1"><a href="/wiki/David_J._Griffiths" title="David J. Griffiths">Griffiths, David J.</a> (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=w9Dz56myXm8C&pg=PA162"><i>Introduction to Elementary Particles</i></a>. Wiley-VCH. pp. 162–. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-527-40601-2" title="Special:BookSources/978-3-527-40601-2"><bdi>978-3-527-40601-2</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Elementary+Particles&rft.pages=162-&rft.pub=Wiley-VCH&rft.date=2008&rft.isbn=978-3-527-40601-2&rft.aulast=Griffiths&rft.aufirst=David+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dw9Dz56myXm8C%26pg%3DPA162&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-:0-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_26-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:0_26-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:0_26-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-:0_26-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeres1993" class="citation book cs1"><a href="/wiki/Asher_Peres" title="Asher Peres">Peres, Asher</a> (1993). <a href="/wiki/Quantum_Theory:_Concepts_and_Methods" title="Quantum Theory: Concepts and Methods"><i>Quantum Theory: Concepts and Methods</i></a>. <a href="/wiki/Kluwer" class="mw-redirect" title="Kluwer">Kluwer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7923-2549-4" title="Special:BookSources/0-7923-2549-4"><bdi>0-7923-2549-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/28854083">28854083</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Theory%3A+Concepts+and+Methods&rft.pub=Kluwer&rft.date=1993&rft_id=info%3Aoclcnum%2F28854083&rft.isbn=0-7923-2549-4&rft.aulast=Peres&rft.aufirst=Asher&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBreuerPetruccione2002" class="citation book cs1">Breuer, Heinz; Petruccione, Francesco (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=0Yx5VzaMYm8C&pg=PA110"><i>The theory of open quantum systems</i></a>. Oxford University Press. p. 110. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-852063-4" title="Special:BookSources/978-0-19-852063-4"><bdi>978-0-19-852063-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+theory+of+open+quantum+systems&rft.pages=110&rft.pub=Oxford+University+Press&rft.date=2002&rft.isbn=978-0-19-852063-4&rft.aulast=Breuer&rft.aufirst=Heinz&rft.au=Petruccione%2C+Francesco&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D0Yx5VzaMYm8C%26pg%3DPA110&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchwabl2002" class="citation book cs1">Schwabl, Franz (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=o-HyHvRZ4VcC&pg=PA16"><i>Statistical mechanics</i></a>. Springer. p. 16. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-43163-3" title="Special:BookSources/978-3-540-43163-3"><bdi>978-3-540-43163-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Statistical+mechanics&rft.pages=16&rft.pub=Springer&rft.date=2002&rft.isbn=978-3-540-43163-3&rft.aulast=Schwabl&rft.aufirst=Franz&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Do-HyHvRZ4VcC%26pg%3DPA16&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHome2013" class="citation book cs1">Home, Dipankar (2013). <i>Conceptual Foundations of Quantum Physics</i>. Springer US. pp. 4–5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781475798081" title="Special:BookSources/9781475798081"><bdi>9781475798081</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1157340444">1157340444</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Conceptual+Foundations+of+Quantum+Physics&rft.pages=4-5&rft.pub=Springer+US&rft.date=2013&rft_id=info%3Aoclcnum%2F1157340444&rft.isbn=9781475798081&rft.aulast=Home&rft.aufirst=Dipankar&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Coleman-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Coleman_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Coleman_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColeman2018" class="citation book cs1"><a href="/wiki/Sidney_Coleman" title="Sidney Coleman">Coleman, Sidney</a> (8 November 2018). Derbes, David; Ting, Yuan-sen; Chen, Bryan Gin-ge; Sohn, Richard; Griffiths, David; Hill, Brian (eds.). <i>Lectures Of Sidney Coleman On Quantum Field Theory</i>. World Scientific Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9-814-63253-9" title="Special:BookSources/978-9-814-63253-9"><bdi>978-9-814-63253-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1057736838">1057736838</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lectures+Of+Sidney+Coleman+On+Quantum+Field+Theory&rft.pub=World+Scientific+Publishing&rft.date=2018-11-08&rft_id=info%3Aoclcnum%2F1057736838&rft.isbn=978-9-814-63253-9&rft.aulast=Coleman&rft.aufirst=Sidney&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSymanzik1981" class="citation journal cs1"><a href="/wiki/Kurt_Symanzik" title="Kurt Symanzik">Symanzik, K.</a> (6 July 1981). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/0550-3213%2881%2990482-X">"Schrödinger representation and Casimir effect in renormalizable quantum field theory"</a></span>. <i>Nuclear Physics B</i>. <b>190</b> (1): 1–44. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981NuPhB.190....1S">1981NuPhB.190....1S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0550-3213%2881%2990482-X">10.1016/0550-3213(81)90482-X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0550-3213">0550-3213</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nuclear+Physics+B&rft.atitle=Schr%C3%B6dinger+representation+and+Casimir+effect+in+renormalizable+quantum+field+theory&rft.volume=190&rft.issue=1&rft.pages=1-44&rft.date=1981-07-06&rft.issn=0550-3213&rft_id=info%3Adoi%2F10.1016%2F0550-3213%2881%2990482-X&rft_id=info%3Abibcode%2F1981NuPhB.190....1S&rft.aulast=Symanzik&rft.aufirst=K.&rft_id=https%3A%2F%2Fdx.doi.org%2F10.1016%2F0550-3213%252881%252990482-X&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKiefer1992" class="citation journal cs1">Kiefer, Claus (15 March 1992). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevD.45.2044">"Functional Schrödinger equation for scalar QED"</a></span>. <i>Physical Review D</i>. <b>45</b> (6): 2044–2056. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992PhRvD..45.2044K">1992PhRvD..45.2044K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevD.45.2044">10.1103/PhysRevD.45.2044</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0556-2821">0556-2821</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10014577">10014577</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physical+Review+D&rft.atitle=Functional+Schr%C3%B6dinger+equation+for+scalar+QED&rft.volume=45&rft.issue=6&rft.pages=2044-2056&rft.date=1992-03-15&rft_id=info%3Adoi%2F10.1103%2FPhysRevD.45.2044&rft.issn=0556-2821&rft_id=info%3Apmid%2F10014577&rft_id=info%3Abibcode%2F1992PhRvD..45.2044K&rft.aulast=Kiefer&rft.aufirst=Claus&rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevD.45.2044&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHatfield1992" class="citation book cs1">Hatfield, Brian (1992). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/170230278"><i>Quantum Field Theory of Point Particles and Strings</i></a>. Cambridge, Mass.: Perseus Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4294-8516-6" title="Special:BookSources/978-1-4294-8516-6"><bdi>978-1-4294-8516-6</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/170230278">170230278</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Field+Theory+of+Point+Particles+and+Strings&rft.place=Cambridge%2C+Mass.&rft.pub=Perseus+Books&rft.date=1992&rft_id=info%3Aoclcnum%2F170230278&rft.isbn=978-1-4294-8516-6&rft.aulast=Hatfield&rft.aufirst=Brian&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F170230278&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIslam1994" class="citation journal cs1">Islam, Jamal Nazrul (May 1994). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/BF02054667">"The Schrödinger equation in quantum field theory"</a></span>. <i>Foundations of Physics</i>. <b>24</b> (5): 593–630. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994FoPh...24..593I">1994FoPh...24..593I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02054667">10.1007/BF02054667</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0015-9018">0015-9018</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120883802">120883802</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=The+Schr%C3%B6dinger+equation+in+quantum+field+theory&rft.volume=24&rft.issue=5&rft.pages=593-630&rft.date=1994-05&rft_id=info%3Adoi%2F10.1007%2FBF02054667&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120883802%23id-name%3DS2CID&rft.issn=0015-9018&rft_id=info%3Abibcode%2F1994FoPh...24..593I&rft.aulast=Islam&rft.aufirst=Jamal+Nazrul&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2FBF02054667&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSrednicki2012" class="citation book cs1">Srednicki, Mark Allen (2012). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/71808151"><i>Quantum Field Theory</i></a>. Cambridge: Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-86449-7" title="Special:BookSources/978-0-521-86449-7"><bdi>978-0-521-86449-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/71808151">71808151</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Field+Theory&rft.place=Cambridge&rft.pub=Cambridge+University+Press&rft.date=2012&rft_id=info%3Aoclcnum%2F71808151&rft.isbn=978-0-521-86449-7&rft.aulast=Srednicki&rft.aufirst=Mark+Allen&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F71808151&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Broglie1925" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">de Broglie, L.</a> (1925). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090509012910/http://www.ensmp.fr/aflb/LDB-oeuvres/De_Broglie_Kracklauer.pdf">"Recherches sur la théorie des quanta"</a> [On the Theory of Quanta] <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Annales_de_Physique" class="mw-redirect" title="Annales de Physique">Annales de Physique</a></i> (in French). <b>10</b> (3): 22–128. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1925AnPh...10...22D">1925AnPh...10...22D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1051%2Fanphys%2F192510030022">10.1051/anphys/192510030022</a>. Archived from <a rel="nofollow" class="external text" href="http://tel.archives-ouvertes.fr/docs/00/04/70/78/PDF/tel-00006807.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 9 May 2009.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annales+de+Physique&rft.atitle=Recherches+sur+la+th%C3%A9orie+des+quanta&rft.volume=10&rft.issue=3&rft.pages=22-128&rft.date=1925&rft_id=info%3Adoi%2F10.1051%2Fanphys%2F192510030022&rft_id=info%3Abibcode%2F1925AnPh...10...22D&rft.aulast=de+Broglie&rft.aufirst=L.&rft_id=http%3A%2F%2Ftel.archives-ouvertes.fr%2Fdocs%2F00%2F04%2F70%2F78%2FPDF%2Ftel-00006807.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeissmanV._V._IlievI._Gutman2008" class="citation journal cs1">Weissman, M. B.; V. V. Iliev; I. Gutman (2008). <a rel="nofollow" class="external text" href="https://match.pmf.kg.ac.rs/electronic_versions/Match59/n3/match59n3_687-708.pdf">"A pioneer remembered: biographical notes about Arthur Constant Lunn"</a> <span class="cs1-format">(PDF)</span>. <i>Communications in Mathematical and in Computer Chemistry</i>. <b>59</b> (3): 687–708.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Communications+in+Mathematical+and+in+Computer+Chemistry&rft.atitle=A+pioneer+remembered%3A+biographical+notes+about+Arthur+Constant+Lunn&rft.volume=59&rft.issue=3&rft.pages=687-708&rft.date=2008&rft.aulast=Weissman&rft.aufirst=M.+B.&rft.au=V.+V.+Iliev&rft.au=I.+Gutman&rft_id=https%3A%2F%2Fmatch.pmf.kg.ac.rs%2Felectronic_versions%2FMatch59%2Fn3%2Fmatch59n3_687-708.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuel_I._WeissmanMichael_Weissman1997" class="citation journal cs1">Samuel I. Weissman; Michael Weissman (1997). "Alan Sokal's Hoax and A. Lunn's Theory of Quantum Mechanics". <i>Physics Today</i>. <b>50</b> (6): 15. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1997PhT....50f..15W">1997PhT....50f..15W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.881789">10.1063/1.881789</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Physics+Today&rft.atitle=Alan+Sokal%27s+Hoax+and+A.+Lunn%27s+Theory+of+Quantum+Mechanics&rft.volume=50&rft.issue=6&rft.pages=15&rft.date=1997&rft_id=info%3Adoi%2F10.1063%2F1.881789&rft_id=info%3Abibcode%2F1997PhT....50f..15W&rft.au=Samuel+I.+Weissman&rft.au=Michael+Weissman&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKamen1985" class="citation book cs1">Kamen, Martin D. (1985). <a rel="nofollow" class="external text" href="https://archive.org/details/radiantscienceda00kame/page/29"><i>Radiant Science, Dark Politics</i></a>. Berkeley and Los Angeles, California: University of California Press. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/radiantscienceda00kame/page/29">29–32</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-520-04929-1" title="Special:BookSources/978-0-520-04929-1"><bdi>978-0-520-04929-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Radiant+Science%2C+Dark+Politics&rft.place=Berkeley+and+Los+Angeles%2C+California&rft.pages=29-32&rft.pub=University+of+California+Press&rft.date=1985&rft.isbn=978-0-520-04929-1&rft.aulast=Kamen&rft.aufirst=Martin+D.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fradiantscienceda00kame%2Fpage%2F29&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchrödinger1984" class="citation book cs1">Schrödinger, E. (1984). <i>Collected papers</i>. Friedrich Vieweg und Sohn. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-7001-0573-2" title="Special:BookSources/978-3-7001-0573-2"><bdi>978-3-7001-0573-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Collected+papers&rft.pub=Friedrich+Vieweg+und+Sohn&rft.date=1984&rft.isbn=978-3-7001-0573-2&rft.aulast=Schr%C3%B6dinger&rft.aufirst=E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span> See introduction to first 1926 paper.</span> </li> <li id="cite_note-verlagsgesellschaft1991-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-verlagsgesellschaft1991_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLernerTrigg1991" class="citation book cs1"><a href="/wiki/Rita_G._Lerner" title="Rita G. Lerner">Lerner, R. G.</a>; Trigg, G. L. (1991). <i>Encyclopaedia of Physics</i> (2nd ed.). VHC publishers. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-89573-752-3" title="Special:BookSources/0-89573-752-3"><bdi>0-89573-752-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopaedia+of+Physics&rft.edition=2nd&rft.pub=VHC+publishers&rft.date=1991&rft.isbn=0-89573-752-3&rft.aulast=Lerner&rft.aufirst=R.+G.&rft.au=Trigg%2C+G.+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSommerfeld1919" class="citation book cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Arnold_Sommerfeld" title="Arnold Sommerfeld">Sommerfeld, A.</a> (1919). <i>Atombau und Spektrallinien</i> (in German). Braunschweig: Friedrich Vieweg und Sohn. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-87144-484-5" title="Special:BookSources/978-3-87144-484-5"><bdi>978-3-87144-484-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Atombau+und+Spektrallinien&rft.place=Braunschweig&rft.pub=Friedrich+Vieweg+und+Sohn&rft.date=1919&rft.isbn=978-3-87144-484-5&rft.aulast=Sommerfeld&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">For an English source, see <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaar1967" class="citation book cs1">Haar, T. (1967). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/oldquantumtheory00haar"><i>The Old Quantum Theory</i></a></span>. Oxford, New York: Pergamon Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Old+Quantum+Theory&rft.place=Oxford%2C+New+York&rft.pub=Pergamon+Press&rft.date=1967&rft.aulast=Haar&rft.aufirst=T.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Foldquantumtheory00haar&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTeresi1990" class="citation news cs1">Teresi, Dick (7 January 1990). <a rel="nofollow" class="external text" href="https://www.nytimes.com/1990/01/07/books/the-lone-ranger-of-quantum-mechanics.html">"The Lone Ranger of Quantum Mechanics"</a>. <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0362-4331">0362-4331</a><span class="reference-accessdate">. Retrieved <span class="nowrap">13 October</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+New+York+Times&rft.atitle=The+Lone+Ranger+of+Quantum+Mechanics&rft.date=1990-01-07&rft.issn=0362-4331&rft.aulast=Teresi&rft.aufirst=Dick&rft_id=https%3A%2F%2Fwww.nytimes.com%2F1990%2F01%2F07%2Fbooks%2Fthe-lone-ranger-of-quantum-mechanics.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Schrödinger1982-46"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schrödinger1982_46-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schrödinger1982_46-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchrödinger1982" class="citation book cs1"><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Schrödinger, Erwin</a> (1982). <i>Collected Papers on Wave Mechanics</i> (3rd ed.). <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-3524-1" title="Special:BookSources/978-0-8218-3524-1"><bdi>978-0-8218-3524-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Collected+Papers+on+Wave+Mechanics&rft.edition=3rd&rft.pub=American+Mathematical+Society&rft.date=1982&rft.isbn=978-0-8218-3524-1&rft.aulast=Schr%C3%B6dinger&rft.aufirst=Erwin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchrödinger1926" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Schrödinger, E.</a> (1926). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="http://gallica.bnf.fr/ark:/12148/bpt6k153811.image.langFR.f373.pagination">"Quantisierung als Eigenwertproblem; von Erwin Schrödinger"</a></span>. <i><a href="/wiki/Annalen_der_Physik" title="Annalen der Physik">Annalen der Physik</a></i> (in German). <b>384</b> (4): 361–377. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1926AnP...384..361S">1926AnP...384..361S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fandp.19263840404">10.1002/andp.19263840404</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annalen+der+Physik&rft.atitle=Quantisierung+als+Eigenwertproblem%3B+von+Erwin+Schr%C3%B6dinger&rft.volume=384&rft.issue=4&rft.pages=361-377&rft.date=1926&rft_id=info%3Adoi%2F10.1002%2Fandp.19263840404&rft_id=info%3Abibcode%2F1926AnP...384..361S&rft.aulast=Schr%C3%B6dinger&rft.aufirst=E.&rft_id=http%3A%2F%2Fgallica.bnf.fr%2Fark%3A%2F12148%2Fbpt6k153811.image.langFR.f373.pagination&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Moore1992-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-Moore1992_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Moore1992_48-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoore1992" class="citation book cs1">Moore, W. J. (1992). <i>Schrödinger: Life and Thought</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-43767-7" title="Special:BookSources/978-0-521-43767-7"><bdi>978-0-521-43767-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schr%C3%B6dinger%3A+Life+and+Thought&rft.pub=Cambridge+University+Press&rft.date=1992&rft.isbn=978-0-521-43767-7&rft.aulast=Moore&rft.aufirst=W.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-jammer1974-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-jammer1974_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJammer1974" class="citation book cs1"><a href="/wiki/Max_Jammer" title="Max Jammer">Jammer, Max</a> (1974). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/philosophyofquan0000jamm"><i>Philosophy of Quantum Mechanics: The interpretations of quantum mechanics in historical perspective</i></a></span>. Wiley-Interscience. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780471439585" title="Special:BookSources/9780471439585"><bdi>9780471439585</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Philosophy+of+Quantum+Mechanics%3A+The+interpretations+of+quantum+mechanics+in+historical+perspective&rft.pub=Wiley-Interscience&rft.date=1974&rft.isbn=9780471439585&rft.aulast=Jammer&rft.aufirst=Max&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fphilosophyofquan0000jamm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaram2020" class="citation journal cs1">Karam, Ricardo (June 2020). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="http://aapt.scitation.org/doi/10.1119/10.0000852">"Schrödinger's original struggles with a complex wave function"</a></span>. <i><a href="/wiki/American_Journal_of_Physics" title="American Journal of Physics">American Journal of Physics</a></i>. <b>88</b> (6): 433–438. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020AmJPh..88..433K">2020AmJPh..88..433K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F10.0000852">10.1119/10.0000852</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0002-9505">0002-9505</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219513834">219513834</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=Schr%C3%B6dinger%27s+original+struggles+with+a+complex+wave+function&rft.volume=88&rft.issue=6&rft.pages=433-438&rft.date=2020-06&rft_id=info%3Adoi%2F10.1119%2F10.0000852&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219513834%23id-name%3DS2CID&rft.issn=0002-9505&rft_id=info%3Abibcode%2F2020AmJPh..88..433K&rft.aulast=Karam&rft.aufirst=Ricardo&rft_id=http%3A%2F%2Faapt.scitation.org%2Fdoi%2F10.1119%2F10.0000852&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">Erwin Schrödinger, "The Present situation in Quantum Mechanics", p. 9 of 22. The English version was translated by John D. Trimmer. The translation first appeared first in <i>Proceedings of the American Philosophical Society</i>, 124, <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/986572">323–338</a>. It later appeared as Section I.11 of Part I of <i>Quantum Theory and Measurement</i> by J. A. Wheeler and W. H. Zurek, eds., Princeton University Press, New Jersey 1983, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0691083169" title="Special:BookSources/0691083169">0691083169</a>.</span> </li> <li id="cite_note-omnes-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-omnes_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOmnès1994" class="citation book cs1"><a href="/wiki/Roland_Omn%C3%A8s" title="Roland Omnès">Omnès, R.</a> (1994). <i>The Interpretation of Quantum Mechanics</i>. Princeton University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-691-03669-4" title="Special:BookSources/978-0-691-03669-4"><bdi>978-0-691-03669-4</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/439453957">439453957</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Interpretation+of+Quantum+Mechanics&rft.pub=Princeton+University+Press&rft.date=1994&rft_id=info%3Aoclcnum%2F439453957&rft.isbn=978-0-691-03669-4&rft.aulast=Omn%C3%A8s&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-Faye-Stanford-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-Faye-Stanford_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFaye2019" class="citation book cs1"><a href="/wiki/Jan_Faye" title="Jan Faye">Faye, Jan</a> (2019). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/qm-copenhagen/">"Copenhagen Interpretation of Quantum Mechanics"</a>. In Zalta, Edward N. (ed.). <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>. Metaphysics Research Lab, Stanford University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Copenhagen+Interpretation+of+Quantum+Mechanics&rft.btitle=Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2019&rft.aulast=Faye&rft.aufirst=Jan&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fqm-copenhagen%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-chevalley1999-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-chevalley1999_55-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChevalley1999" class="citation book cs1">Chevalley, Catherine (1999). "Why Do We Find Bohr Obscure?". In Greenberger, Daniel; Reiter, Wolfgang L.; Zeilinger, Anton (eds.). <i>Epistemological and Experimental Perspectives on Quantum Physics</i>. Springer Science+Business Media. pp. 59–74. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-017-1454-9">10.1007/978-94-017-1454-9</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-9-04815-354-1" title="Special:BookSources/978-9-04815-354-1"><bdi>978-9-04815-354-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Why+Do+We+Find+Bohr+Obscure%3F&rft.btitle=Epistemological+and+Experimental+Perspectives+on+Quantum+Physics&rft.pages=59-74&rft.pub=Springer+Science%2BBusiness+Media&rft.date=1999&rft_id=info%3Adoi%2F10.1007%2F978-94-017-1454-9&rft.isbn=978-9-04815-354-1&rft.aulast=Chevalley&rft.aufirst=Catherine&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvan_Fraassen2010" class="citation journal cs1"><a href="/wiki/Bas_van_Fraassen" title="Bas van Fraassen">van Fraassen, Bas C.</a> (April 2010). <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="http://link.springer.com/10.1007/s10701-009-9326-5">"Rovelli's World"</a></span>. <i><a href="/wiki/Foundations_of_Physics" title="Foundations of Physics">Foundations of Physics</a></i>. <b>40</b> (4): 390–417. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010FoPh...40..390V">2010FoPh...40..390V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10701-009-9326-5">10.1007/s10701-009-9326-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0015-9018">0015-9018</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17217776">17217776</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=Rovelli%27s+World&rft.volume=40&rft.issue=4&rft.pages=390-417&rft.date=2010-04&rft_id=info%3Adoi%2F10.1007%2Fs10701-009-9326-5&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17217776%23id-name%3DS2CID&rft.issn=0015-9018&rft_id=info%3Abibcode%2F2010FoPh...40..390V&rft.aulast=van+Fraassen&rft.aufirst=Bas+C.&rft_id=http%3A%2F%2Flink.springer.com%2F10.1007%2Fs10701-009-9326-5&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHealey2016" class="citation book cs1">Healey, Richard (2016). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/quantum-bayesian/">"Quantum-Bayesian and Pragmatist Views of Quantum Theory"</a>. In Zalta, Edward N. (ed.). <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>. Metaphysics Research Lab, Stanford University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Quantum-Bayesian+and+Pragmatist+Views+of+Quantum+Theory&rft.btitle=Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2016&rft.aulast=Healey&rft.aufirst=Richard&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fquantum-bayesian%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeutsch2010" class="citation book cs1">Deutsch, David (2010). "Apart from Universes". In S. Saunders; J. Barrett; A. Kent; D. Wallace (eds.). <i>Many Worlds? Everett, Quantum Theory and Reality</i>. Oxford University Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Apart+from+Universes&rft.btitle=Many+Worlds%3F+Everett%2C+Quantum+Theory+and+Reality&rft.pub=Oxford+University+Press&rft.date=2010&rft.aulast=Deutsch&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchrödinger1996" class="citation book cs1">Schrödinger, Erwin (1996). Bitbol, Michel (ed.). <i>The Interpretation of Quantum Mechanics: Dublin Seminars (1949–1955) and other unpublished essays</i>. OxBow Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Interpretation+of+Quantum+Mechanics%3A+Dublin+Seminars+%281949%E2%80%931955%29+and+other+unpublished+essays&rft.pub=OxBow+Press&rft.date=1996&rft.aulast=Schr%C3%B6dinger&rft.aufirst=Erwin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBitbol1996" class="citation book cs1"><a href="/wiki/Michel_Bitbol" title="Michel Bitbol">Bitbol, Michel</a> (1996). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/851376153"><i>Schrödinger's Philosophy of Quantum Mechanics</i></a>. Dordrecht: Springer Netherlands. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-94-009-1772-9" title="Special:BookSources/978-94-009-1772-9"><bdi>978-94-009-1772-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/851376153">851376153</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schr%C3%B6dinger%27s+Philosophy+of+Quantum+Mechanics&rft.place=Dordrecht&rft.pub=Springer+Netherlands&rft.date=1996&rft_id=info%3Aoclcnum%2F851376153&rft.isbn=978-94-009-1772-9&rft.aulast=Bitbol&rft.aufirst=Michel&rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F851376153&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarrett2018" class="citation book cs1">Barrett, Jeffrey (2018). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/qm-everett/">"Everett's Relative-State Formulation of Quantum Mechanics"</a>. In Zalta, Edward N. (ed.). <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>. Metaphysics Research Lab, Stanford University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Everett%27s+Relative-State+Formulation+of+Quantum+Mechanics&rft.btitle=Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2018&rft.aulast=Barrett&rft.aufirst=Jeffrey&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fqm-everett%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-wallace2003-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-wallace2003_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWallace2003" class="citation journal cs1">Wallace, David (2003). "Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation". <i>Stud. Hist. Phil. Mod. Phys</i>. <b>34</b> (3): 415–438. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0303050">quant-ph/0303050</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003SHPMP..34..415W">2003SHPMP..34..415W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS1355-2198%2803%2900036-4">10.1016/S1355-2198(03)00036-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1921913">1921913</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Stud.+Hist.+Phil.+Mod.+Phys.&rft.atitle=Everettian+Rationality%3A+defending+Deutsch%27s+approach+to+probability+in+the+Everett+interpretation&rft.volume=34&rft.issue=3&rft.pages=415-438&rft.date=2003&rft_id=info%3Aarxiv%2Fquant-ph%2F0303050&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1921913%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1016%2FS1355-2198%2803%2900036-4&rft_id=info%3Abibcode%2F2003SHPMP..34..415W&rft.aulast=Wallace&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-ballentine1973-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-ballentine1973_65-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBallentine1973" class="citation journal cs1">Ballentine, L. E. (1973). "Can the statistical postulate of quantum theory be derived?—A critique of the many-universes interpretation". <i>Foundations of Physics</i>. <b>3</b> (2): 229–240. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1973FoPh....3..229B">1973FoPh....3..229B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00708440">10.1007/BF00708440</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121747282">121747282</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Foundations+of+Physics&rft.atitle=Can+the+statistical+postulate+of+quantum+theory+be+derived%3F%E2%80%94A+critique+of+the+many-universes+interpretation&rft.volume=3&rft.issue=2&rft.pages=229-240&rft.date=1973&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121747282%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2FBF00708440&rft_id=info%3Abibcode%2F1973FoPh....3..229B&rft.aulast=Ballentine&rft.aufirst=L.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLandsman2008" class="citation book cs1">Landsman, N. P. (2008). <a rel="nofollow" class="external text" href="http://www.math.ru.nl/~landsman/Born.pdf">"The Born rule and its interpretation"</a> <span class="cs1-format">(PDF)</span>. In Weinert, F.; Hentschel, K.; Greenberger, D.; Falkenburg, B. (eds.). <i>Compendium of Quantum Physics</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-70622-9" title="Special:BookSources/978-3-540-70622-9"><bdi>978-3-540-70622-9</bdi></a>. <q>The conclusion seems to be that no generally accepted derivation of the Born rule has been given to date, but this does not imply that such a derivation is impossible in principle.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Born+rule+and+its+interpretation&rft.btitle=Compendium+of+Quantum+Physics&rft.pub=Springer&rft.date=2008&rft.isbn=978-3-540-70622-9&rft.aulast=Landsman&rft.aufirst=N.+P.&rft_id=http%3A%2F%2Fwww.math.ru.nl%2F~landsman%2FBorn.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-kent2009-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-kent2009_67-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKent2010" class="citation book cs1"><a href="/wiki/Adrian_Kent" title="Adrian Kent">Kent, Adrian</a> (2010). "One world versus many: The inadequacy of Everettian accounts of evolution, probability, and scientific confirmation". In S. Saunders; J. Barrett; A. Kent; D. Wallace (eds.). <i>Many Worlds? Everett, Quantum Theory and Reality</i>. Oxford University Press. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0905.0624">0905.0624</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009arXiv0905.0624K">2009arXiv0905.0624K</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=One+world+versus+many%3A+The+inadequacy+of+Everettian+accounts+of+evolution%2C+probability%2C+and+scientific+confirmation&rft.btitle=Many+Worlds%3F+Everett%2C+Quantum+Theory+and+Reality&rft.pub=Oxford+University+Press&rft.date=2010&rft_id=info%3Aarxiv%2F0905.0624&rft_id=info%3Abibcode%2F2009arXiv0905.0624K&rft.aulast=Kent&rft.aufirst=Adrian&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldstein2017" class="citation book cs1">Goldstein, Sheldon (2017). <a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/qm-bohm/">"Bohmian Mechanics"</a>. In Zalta, Edward N. (ed.). <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>. Metaphysics Research Lab, Stanford University.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Bohmian+Mechanics&rft.btitle=Stanford+Encyclopedia+of+Philosophy&rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&rft.date=2017&rft.aulast=Goldstein&rft.aufirst=Sheldon&rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fqm-bohm%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dinger_equation&action=edit&section=26" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Schr%C3%B6dinger_equation" class="extiw" title="q:Special:Search/Schrödinger equation">Schrödinger equation</a></b></i>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs1"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Schrödinger_equation">"Schrödinger equation"</a>. <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>. <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>. 2001 [1994].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Schr%C3%B6dinger+equation&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DSchr%C3%B6dinger_equation&rfr_id=info%3Asid%2Fen.wikipedia.org%3ASchr%C3%B6dinger+equation" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://oyc.yale.edu/sites/default/files/notes_quantum_cookbook.pdf">Quantum Cook Book</a> (PDF) and <a rel="nofollow" class="external text" href="http://oyc.yale.edu/physics/phys-201#sessions">PHYS 201: Fundamentals of Physics II</a> by <a href="/wiki/Ramamurti_Shankar" title="Ramamurti Shankar">Ramamurti Shankar</a>, Yale OpenCourseware</li> <li><a rel="nofollow" class="external text" href="http://www.lightandmatter.com/lm/">The Modern Revolution in Physics</a> – an online textbook.</li> <li><a rel="nofollow" class="external text" href="https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/">Quantum Physics I</a> at <a href="/wiki/MIT_OpenCourseWare" title="MIT OpenCourseWare">MIT OpenCourseWare</a></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_electrodynamics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_electrodynamics" title="Template:Quantum electrodynamics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_electrodynamics" title="Template talk:Quantum electrodynamics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_electrodynamics" title="Special:EditPage/Template:Quantum electrodynamics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_electrodynamics" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">Quantum electrodynamics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formalism</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euler%E2%80%93Heisenberg_Lagrangian" title="Euler–Heisenberg Lagrangian">Euler–Heisenberg Lagrangian</a></li> <li><a href="/wiki/Feynman_diagram" title="Feynman diagram">Feynman diagram</a></li> <li><a href="/wiki/Gupta%E2%80%93Bleuler_formalism" title="Gupta–Bleuler formalism">Gupta–Bleuler formalism</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Path integral formulation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Particles</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_photon" title="Dual photon">Dual photon</a></li> <li><a href="/wiki/Electron" title="Electron">Electron</a></li> <li><a href="/wiki/Faddeev%E2%80%93Popov_ghost" title="Faddeev–Popov ghost">Faddeev–Popov ghost</a></li> <li><a href="/wiki/Photon" title="Photon">Photon</a></li> <li><a href="/wiki/Positron" title="Positron">Positron</a></li> <li><a href="/wiki/Positronium" title="Positronium">Positronium</a></li> <li><a href="/wiki/Virtual_particle" title="Virtual particle">Virtual particles</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Concepts</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anomalous_magnetic_dipole_moment" title="Anomalous magnetic dipole moment">Anomalous magnetic dipole moment</a></li> <li><a href="/wiki/Furry%27s_theorem" title="Furry's theorem">Furry's theorem</a></li> <li><a href="/wiki/Klein%E2%80%93Nishina_formula" title="Klein–Nishina formula">Klein–Nishina formula</a></li> <li><a href="/wiki/Landau_pole" title="Landau pole">Landau pole</a></li> <li><a href="/wiki/QED_vacuum" title="QED vacuum">QED vacuum</a></li> <li><a href="/wiki/Self-energy" title="Self-energy">Self-energy</a></li> <li><a href="/wiki/Schwinger_limit" title="Schwinger limit">Schwinger limit</a></li> <li><a href="/wiki/Uehling_potential" title="Uehling potential">Uehling potential</a></li> <li><a href="/wiki/Vacuum_polarization" title="Vacuum polarization">Vacuum polarization</a></li> <li><a href="/wiki/Vertex_function" title="Vertex function">Vertex function</a></li> <li><a href="/wiki/Ward%E2%80%93Takahashi_identity" title="Ward–Takahashi identity">Ward–Takahashi identity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Processes</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bhabha_scattering" title="Bhabha scattering">Bhabha scattering</a></li> <li><a href="/wiki/Breit%E2%80%93Wheeler_process" title="Breit–Wheeler process">Breit–Wheeler process</a></li> <li><a href="/wiki/Bremsstrahlung" title="Bremsstrahlung">Bremsstrahlung</a></li> <li><a href="/wiki/Compton_scattering" title="Compton scattering">Compton scattering</a></li> <li><a href="/wiki/Delbr%C3%BCck_scattering" title="Delbrück scattering">Delbrück scattering</a></li> <li><a href="/wiki/Lamb_shift" title="Lamb shift">Lamb shift</a></li> <li><a href="/wiki/M%C3%B8ller_scattering" title="Møller scattering">Møller scattering</a></li> <li><a href="/wiki/Schwinger_effect" title="Schwinger effect">Schwinger effect</a></li> <li><a href="/wiki/Two-photon_physics" title="Two-photon physics">Photon-photon scattering</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>See also:</i> <span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Template:Quantum mechanics topics</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_information_science" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_information" title="Template:Quantum information"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_information" title="Template talk:Quantum information"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_information" title="Special:EditPage/Template:Quantum information"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_information_science" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo's criteria">DiVincenzo's criteria</a></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ era</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">timeline</a></li></ul></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulation</a></li> <li><a href="/wiki/Qubit" title="Qubit">Qubit</a> <ul><li><a href="/wiki/Physical_and_logical_qubits" title="Physical and logical qubits">physical vs. logical</a></li></ul></li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">Quantum processors</a> <ul><li><a href="/wiki/Cloud-based_quantum_computing" title="Cloud-based quantum computing">cloud-based</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell%27s_theorem" title="Bell's theorem">Bell's</a></li> <li><a href="/wiki/Eastin%E2%80%93Knill_theorem" title="Eastin–Knill theorem">Eastin–Knill</a></li> <li><a href="/wiki/Gleason%27s_theorem" title="Gleason's theorem">Gleason's</a></li> <li><a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill</a></li> <li><a href="/wiki/Holevo%27s_theorem" title="Holevo's theorem">Holevo's</a></li> <li><a href="/wiki/No-broadcasting_theorem" title="No-broadcasting theorem">No-broadcasting</a></li> <li><a href="/wiki/No-cloning_theorem" title="No-cloning theorem">No-cloning</a></li> <li><a href="/wiki/No-communication_theorem" title="No-communication theorem">No-communication</a></li> <li><a href="/wiki/No-deleting_theorem" title="No-deleting theorem">No-deleting</a></li> <li><a href="/wiki/No-hiding_theorem" title="No-hiding theorem">No-hiding</a></li> <li><a href="/wiki/No-teleportation_theorem" title="No-teleportation theorem">No-teleportation</a></li> <li><a href="/wiki/PBR_theorem" class="mw-redirect" title="PBR theorem">PBR</a></li> <li><a href="/wiki/Quantum_speed_limit_theorems" class="mw-redirect" title="Quantum speed limit theorems">Quantum speed limit</a></li> <li><a href="/wiki/Threshold_theorem" title="Threshold theorem">Threshold</a></li> <li><a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev</a></li> <li><a href="/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem" title="Schrödinger–HJW theorem">Purification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br />communication</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_capacity" title="Classical capacity">Classical capacity</a> <ul><li><a href="/wiki/Entanglement-assisted_classical_capacity" title="Entanglement-assisted classical capacity">entanglement-assisted</a></li> <li><a href="/wiki/Quantum_capacity" title="Quantum capacity">quantum capacity</a></li></ul></li> <li><a href="/wiki/Entanglement_distillation" title="Entanglement distillation">Entanglement distillation</a></li> <li><a href="/wiki/Monogamy_of_entanglement" title="Monogamy of entanglement">Monogamy of entanglement</a></li> <li><a href="/wiki/LOCC" title="LOCC">LOCC</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a> <ul><li><a href="/wiki/Quantum_network" title="Quantum network">quantum network</a></li></ul></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a> <ul><li><a href="/wiki/Quantum_gate_teleportation" title="Quantum gate teleportation">quantum gate teleportation</a></li></ul></li> <li><a href="/wiki/Superdense_coding" title="Superdense coding">Superdense coding</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Quantum_cryptography" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">Post-quantum cryptography</a></li> <li><a href="/wiki/Quantum_coin_flipping" title="Quantum coin flipping">Quantum coin flipping</a></li> <li><a href="/wiki/Quantum_money" title="Quantum money">Quantum money</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a> <ul><li><a href="/wiki/BB84" title="BB84">BB84</a></li> <li><a href="/wiki/SARG04" title="SARG04">SARG04</a></li> <li><a href="/wiki/List_of_quantum_key_distribution_protocols" title="List of quantum key distribution protocols">other protocols</a></li></ul></li> <li><a href="/wiki/Quantum_secret_sharing" title="Quantum secret sharing">Quantum secret sharing</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amplitude_amplification" title="Amplitude amplification">Amplitude amplification</a></li> <li><a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani</a></li> <li><a href="/wiki/BHT_algorithm" title="BHT algorithm">BHT</a></li> <li><a href="/wiki/Boson_sampling" title="Boson sampling">Boson sampling</a></li> <li><a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa</a></li> <li><a href="/wiki/Grover%27s_algorithm" title="Grover's algorithm">Grover's</a></li> <li><a href="/wiki/HHL_algorithm" title="HHL algorithm">HHL</a></li> <li><a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">Hidden subgroup</a></li> <li><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></li> <li><a href="/wiki/Quantum_counting_algorithm" title="Quantum counting algorithm">Quantum counting</a></li> <li><a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Quantum Fourier transform</a></li> <li><a href="/wiki/Quantum_optimization_algorithms" title="Quantum optimization algorithms">Quantum optimization</a></li> <li><a href="/wiki/Quantum_phase_estimation_algorithm" title="Quantum phase estimation algorithm">Quantum phase estimation</a></li> <li><a href="/wiki/Shor%27s_algorithm" title="Shor's algorithm">Shor's</a></li> <li><a href="/wiki/Simon%27s_problem" title="Simon's problem">Simon's</a></li> <li><a href="/wiki/Variational_quantum_eigensolver" title="Variational quantum eigensolver">VQE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum<br />complexity theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BQP" title="BQP">BQP</a></li> <li><a href="/wiki/Exact_quantum_polynomial_time" title="Exact quantum polynomial time">EQP</a></li> <li><a href="/wiki/QIP_(complexity)" title="QIP (complexity)">QIP</a></li> <li><a href="/wiki/QMA" title="QMA">QMA</a></li> <li><a href="/wiki/PostBQP" title="PostBQP">PostBQP</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum <br /> processor benchmarks</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_supremacy" title="Quantum supremacy">Quantum supremacy</a></li> <li><a href="/wiki/Quantum_volume" title="Quantum volume">Quantum volume</a></li> <li><a href="/wiki/Randomized_benchmarking" title="Randomized benchmarking">Randomized benchmarking</a> <ul><li><a href="/wiki/Cross-entropy_benchmarking" title="Cross-entropy benchmarking">XEB</a></li></ul></li> <li><a href="/wiki/Relaxation_(NMR)" title="Relaxation (NMR)">Relaxation times</a> <ul><li><a href="/wiki/Spin%E2%80%93lattice_relaxation" title="Spin–lattice relaxation"><i>T</i><sub>1</sub></a></li> <li><a href="/wiki/Spin%E2%80%93spin_relaxation" title="Spin–spin relaxation"><i>T</i><sub>2</sub></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br /><a href="/wiki/Model_of_computation" title="Model of computation">computing models</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">Adiabatic quantum computation</a></li> <li><a href="/wiki/Continuous-variable_quantum_information" title="Continuous-variable quantum information">Continuous-variable quantum information</a></li> <li><a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">One-way quantum computer</a> <ul><li><a href="/wiki/Cluster_state" title="Cluster state">cluster state</a></li></ul></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a> <ul><li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">quantum logic gate</a></li></ul></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a> <ul><li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural network</a></li></ul></li> <li><a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">Quantum Turing machine</a></li> <li><a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">Topological quantum computer</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum<br />error correction</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Codes <ul><li><a href="/wiki/CSS_code" title="CSS code">CSS</a></li> <li><a href="/wiki/Quantum_convolutional_code" title="Quantum convolutional code">quantum convolutional</a></li> <li><a href="/wiki/Stabilizer_code" title="Stabilizer code">stabilizer</a></li> <li><a href="/wiki/Shor_code" class="mw-redirect" title="Shor code">Shor</a></li> <li><a href="/wiki/Bacon%E2%80%93Shor_code" title="Bacon–Shor code">Bacon–Shor</a></li> <li><a href="/wiki/Steane_code" title="Steane code">Steane</a></li> <li><a href="/wiki/Toric_code" title="Toric code">Toric</a></li> <li><a href="/wiki/Gnu_code" title="Gnu code"><i>gnu</i></a></li></ul></li> <li><a href="/wiki/Entanglement-assisted_stabilizer_formalism" title="Entanglement-assisted stabilizer formalism">Entanglement-assisted</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Physical<br />implementations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cavity_quantum_electrodynamics" title="Cavity quantum electrodynamics">Cavity QED</a></li> <li><a href="/wiki/Circuit_quantum_electrodynamics" title="Circuit quantum electrodynamics">Circuit QED</a></li> <li><a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">Linear optical QC</a></li> <li><a href="/wiki/KLM_protocol" title="KLM protocol">KLM protocol</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ultracold_atom" title="Ultracold atom">Ultracold atoms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Neutral_atom_quantum_computer" title="Neutral atom quantum computer">Neutral atom QC</a></li> <li><a href="/wiki/Trapped-ion_quantum_computer" title="Trapped-ion quantum computer">Trapped-ion QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spin_(physics)" title="Spin (physics)">Spin</a>-based</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">Kane QC</a></li> <li><a href="/wiki/Spin_qubit_quantum_computer" title="Spin qubit quantum computer">Spin qubit QC</a></li> <li><a href="/wiki/Nitrogen-vacancy_center" title="Nitrogen-vacancy center">NV center</a></li> <li><a href="/wiki/Nuclear_magnetic_resonance_quantum_computer" title="Nuclear magnetic resonance quantum computer">NMR QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">Superconducting</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Charge_qubit" title="Charge qubit">Charge qubit</a></li> <li><a href="/wiki/Flux_qubit" title="Flux qubit">Flux qubit</a></li> <li><a href="/wiki/Phase_qubit" title="Phase qubit">Phase qubit</a></li> <li><a href="/wiki/Transmon" title="Transmon">Transmon</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum<br />programming</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/OpenQASM" title="OpenQASM">OpenQASM</a>–<a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>–<a href="/wiki/IBM_Quantum_Experience" class="mw-redirect" title="IBM Quantum Experience">IBM QX</a></li> <li><a href="/wiki/Quil_(instruction_set_architecture)" title="Quil (instruction set architecture)">Quil</a>–<a href="/wiki/Rigetti_Computing" title="Rigetti Computing">Forest/Rigetti QCS</a></li> <li><a href="/wiki/Cirq" title="Cirq">Cirq</a></li> <li><a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a></li> <li><a href="/wiki/Libquantum" title="Libquantum">libquantum</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">many others...</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Quantum mechanics topics</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_mechanics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_mechanics_topics" title="Template talk:Quantum mechanics topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_mechanics_topics" title="Special:EditPage/Template:Quantum mechanics topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_mechanics" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_mechanics" title="Quantum mechanics">Quantum mechanics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Introduction_to_quantum_mechanics" title="Introduction to quantum mechanics">Introduction</a></li> <li><a href="/wiki/History_of_quantum_mechanics" title="History of quantum mechanics">History</a> <ul><li><a href="/wiki/Timeline_of_quantum_mechanics" title="Timeline of quantum mechanics">Timeline</a></li></ul></li> <li><a href="/wiki/Classical_mechanics" title="Classical mechanics">Classical mechanics</a></li> <li><a href="/wiki/Old_quantum_theory" title="Old quantum theory">Old quantum theory</a></li> <li><a href="/wiki/Glossary_of_elementary_quantum_mechanics" title="Glossary of elementary quantum mechanics">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Fundamentals</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born_rule" title="Born rule">Born rule</a></li> <li><a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">Bra–ket notation</a></li> <li><a href="/wiki/Complementarity_(physics)" title="Complementarity (physics)"> Complementarity</a></li> <li><a href="/wiki/Density_matrix" title="Density matrix">Density matrix</a></li> <li><a href="/wiki/Energy_level" title="Energy level">Energy level</a> <ul><li><a href="/wiki/Ground_state" title="Ground state">Ground state</a></li> <li><a href="/wiki/Excited_state" title="Excited state">Excited state</a></li> <li><a href="/wiki/Degenerate_energy_levels" title="Degenerate energy levels">Degenerate levels</a></li> <li><a href="/wiki/Zero-point_energy" title="Zero-point energy">Zero-point energy</a></li></ul></li> <li><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">Entanglement</a></li> <li><a href="/wiki/Hamiltonian_(quantum_mechanics)" title="Hamiltonian (quantum mechanics)">Hamiltonian</a></li> <li><a href="/wiki/Wave_interference" title="Wave interference">Interference</a></li> <li><a href="/wiki/Quantum_decoherence" title="Quantum decoherence">Decoherence</a></li> <li><a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement</a></li> <li><a href="/wiki/Quantum_nonlocality" title="Quantum nonlocality">Nonlocality</a></li> <li><a href="/wiki/Quantum_state" title="Quantum state">Quantum state</a></li> <li><a href="/wiki/Quantum_superposition" title="Quantum superposition">Superposition</a></li> <li><a href="/wiki/Quantum_tunnelling" title="Quantum tunnelling">Tunnelling</a></li> <li><a href="/wiki/Scattering_theory" class="mw-redirect" title="Scattering theory">Scattering theory</a></li> <li><a href="/wiki/Symmetry_in_quantum_mechanics" title="Symmetry in quantum mechanics">Symmetry in quantum mechanics</a></li> <li><a href="/wiki/Uncertainty_principle" title="Uncertainty principle">Uncertainty</a></li> <li><a href="/wiki/Wave_function" title="Wave function">Wave function</a> <ul><li><a href="/wiki/Wave_function_collapse" title="Wave function collapse">Collapse</a></li> <li><a href="/wiki/Wave%E2%80%93particle_duality" title="Wave–particle duality">Wave–particle duality</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Formulations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">Formulations</a></li> <li><a href="/wiki/Heisenberg_picture" title="Heisenberg picture">Heisenberg</a></li> <li><a href="/wiki/Interaction_picture" title="Interaction picture">Interaction</a></li> <li><a href="/wiki/Matrix_mechanics" title="Matrix mechanics">Matrix mechanics</a></li> <li><a href="/wiki/Schr%C3%B6dinger_picture" title="Schrödinger picture">Schrödinger</a></li> <li><a href="/wiki/Path_integral_formulation" title="Path integral formulation">Path integral formulation</a></li> <li><a href="/wiki/Phase-space_formulation" title="Phase-space formulation">Phase space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Equations</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Klein%E2%80%93Gordon_equation" title="Klein–Gordon equation">Klein–Gordon</a></li> <li><a href="/wiki/Dirac_equation" title="Dirac equation">Dirac</a></li> <li><a href="/wiki/Weyl_equation" title="Weyl equation">Weyl</a></li> <li><a href="/wiki/Majorana_equation" title="Majorana equation">Majorana</a></li> <li><a href="/wiki/Rarita%E2%80%93Schwinger_equation" title="Rarita–Schwinger equation">Rarita–Schwinger</a></li> <li><a href="/wiki/Pauli_equation" title="Pauli equation">Pauli</a></li> <li><a href="/wiki/Rydberg_formula" title="Rydberg formula">Rydberg</a></li> <li><a class="mw-selflink selflink">Schrödinger</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">Interpretations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_Bayesianism" title="Quantum Bayesianism">Bayesian</a></li> <li><a href="/wiki/Consistent_histories" title="Consistent histories">Consistent histories</a></li> <li><a href="/wiki/Copenhagen_interpretation" title="Copenhagen interpretation">Copenhagen</a></li> <li><a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">de Broglie–Bohm</a></li> <li><a href="/wiki/Ensemble_interpretation" title="Ensemble interpretation">Ensemble</a></li> <li><a href="/wiki/Hidden-variable_theory" title="Hidden-variable theory">Hidden-variable</a> <ul><li><a href="/wiki/Local_hidden-variable_theory" title="Local hidden-variable theory">Local</a> <ul><li><a href="/wiki/Superdeterminism" title="Superdeterminism">Superdeterminism</a></li></ul></li></ul></li> <li><a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">Many-worlds</a></li> <li><a href="/wiki/Objective-collapse_theory" title="Objective-collapse theory">Objective collapse</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Relational_quantum_mechanics" title="Relational quantum mechanics">Relational</a></li> <li><a href="/wiki/Transactional_interpretation" title="Transactional interpretation">Transactional</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Wigner_interpretation" title="Von Neumann–Wigner interpretation">Von Neumann–Wigner</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Experiments</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_test" title="Bell test">Bell test</a></li> <li><a href="/wiki/Davisson%E2%80%93Germer_experiment" title="Davisson–Germer experiment">Davisson–Germer</a></li> <li><a href="/wiki/Delayed-choice_quantum_eraser" title="Delayed-choice quantum eraser">Delayed-choice quantum eraser</a></li> <li><a href="/wiki/Double-slit_experiment" title="Double-slit experiment">Double-slit</a></li> <li><a href="/wiki/Franck%E2%80%93Hertz_experiment" title="Franck–Hertz experiment">Franck–Hertz</a></li> <li><a href="/wiki/Mach%E2%80%93Zehnder_interferometer" title="Mach–Zehnder interferometer">Mach–Zehnder interferometer</a></li> <li><a href="/wiki/Elitzur%E2%80%93Vaidman_bomb_tester" title="Elitzur–Vaidman bomb tester">Elitzur–Vaidman</a></li> <li><a href="/wiki/Popper%27s_experiment" title="Popper's experiment">Popper</a></li> <li><a href="/wiki/Quantum_eraser_experiment" title="Quantum eraser experiment">Quantum eraser</a></li> <li><a href="/wiki/Stern%E2%80%93Gerlach_experiment" title="Stern–Gerlach experiment">Stern–Gerlach</a></li> <li><a href="/wiki/Wheeler%27s_delayed-choice_experiment" title="Wheeler's delayed-choice experiment">Wheeler's delayed choice</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_nanoscience" class="mw-redirect" title="Quantum nanoscience">Science</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_biology" title="Quantum biology">Quantum biology</a></li> <li><a href="/wiki/Quantum_chemistry" title="Quantum chemistry">Quantum chemistry</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a></li> <li><a href="/wiki/Quantum_differential_calculus" title="Quantum differential calculus">Quantum differential calculus</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_geometry" title="Quantum geometry">Quantum geometry</a></li> <li><a href="/wiki/Measurement_problem" title="Measurement problem">Quantum measurement problem</a></li> <li><a href="/wiki/Quantum_mind" title="Quantum mind">Quantum mind</a></li> <li><a href="/wiki/Quantum_stochastic_calculus" title="Quantum stochastic calculus">Quantum stochastic calculus</a></li> <li><a href="/wiki/Quantum_spacetime" title="Quantum spacetime">Quantum spacetime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">Quantum amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">Quantum bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automata</a> <ul><li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">Quantum finite automata</a></li></ul></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum complexity theory</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">Timeline</a></li></ul></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">Quantum electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum error correction</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">Quantum imaging</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">Quantum image processing</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_logic_gate" title="Quantum logic gate">Quantum logic gates</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">Quantum machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">Quantum metamaterial</a></li> <li><a href="/wiki/Quantum_metrology" title="Quantum metrology">Quantum metrology</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">Quantum network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">Quantum neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">Quantum sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Extensions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuation</a></li> <li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Quantum_statistical_mechanics" title="Quantum statistical mechanics">Quantum statistical mechanics</a></li> <li><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theory</a> <ul><li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></li> <li><a href="/wiki/Relativistic_quantum_mechanics" title="Relativistic quantum mechanics">Relativistic quantum mechanics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat" title="Schrödinger's cat">Schrödinger's cat</a> <ul><li><a href="/wiki/Schr%C3%B6dinger%27s_cat_in_popular_culture" title="Schrödinger's cat in popular culture">in popular culture</a></li></ul></li> <li><a href="/wiki/Wigner%27s_friend" title="Wigner's friend">Wigner's friend</a></li> <li><a href="/wiki/Einstein%E2%80%93Podolsky%E2%80%93Rosen_paradox" title="Einstein–Podolsky–Rosen paradox">EPR paradox</a></li> <li><a href="/wiki/Quantum_mysticism" title="Quantum mysticism">Quantum mysticism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_mechanics" title="Category:Quantum mechanics">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_field_theories" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_field_theories" title="Template:Quantum field theories"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_field_theories" title="Template talk:Quantum field theories"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_field_theories" title="Special:EditPage/Template:Quantum field theories"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_field_theories" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_field_theory" title="Quantum field theory">Quantum field theories</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theories</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_quantum_field_theory" title="Algebraic quantum field theory">Algebraic QFT</a></li> <li><a href="/wiki/Axiomatic_quantum_field_theory" title="Axiomatic quantum field theory">Axiomatic QFT</a></li> <li><a href="/wiki/Conformal_field_theory" title="Conformal field theory">Conformal field theory</a></li> <li><a href="/wiki/Lattice_field_theory" title="Lattice field theory">Lattice field theory</a></li> <li><a href="/wiki/Noncommutative_quantum_field_theory" title="Noncommutative quantum field theory">Noncommutative QFT</a></li> <li><a href="/wiki/Gauge_theory" title="Gauge theory">Gauge theory</a></li> <li><a href="/wiki/Quantum_field_theory_in_curved_spacetime" title="Quantum field theory in curved spacetime">QFT in curved spacetime</a></li> <li><a href="/wiki/String_theory" title="String theory">String theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Thermal_quantum_field_theory" title="Thermal quantum field theory">Thermal QFT</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological QFT</a></li> <li><a href="/wiki/Two-dimensional_conformal_field_theory" title="Two-dimensional conformal field theory">Two-dimensional conformal field theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Models</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Regular</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Born%E2%80%93Infeld_model" title="Born–Infeld model">Born–Infeld</a></li> <li><a href="/wiki/Euler%E2%80%93Heisenberg_Lagrangian" title="Euler–Heisenberg Lagrangian">Euler–Heisenberg</a></li> <li><a href="/wiki/Ginzburg%E2%80%93Landau_theory" title="Ginzburg–Landau theory">Ginzburg–Landau</a></li> <li><a href="/wiki/Non-linear_sigma_model" title="Non-linear sigma model">Non-linear sigma</a></li> <li><a href="/wiki/Proca_action" title="Proca action">Proca</a></li> <li><a href="/wiki/Quantum_electrodynamics" title="Quantum electrodynamics">Quantum electrodynamics</a></li> <li><a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">Quantum chromodynamics</a></li> <li><a href="/wiki/Quartic_interaction" title="Quartic interaction">Quartic interaction</a></li> <li><a href="/wiki/Scalar_electrodynamics" title="Scalar electrodynamics">Scalar electrodynamics</a></li> <li><a href="/wiki/Scalar_chromodynamics" title="Scalar chromodynamics">Scalar chromodynamics</a></li> <li><a href="/wiki/Soler_model" title="Soler model">Soler</a></li> <li><a href="/wiki/Yang%E2%80%93Mills_theory" title="Yang–Mills theory">Yang–Mills</a></li> <li><a href="/wiki/Yang%E2%80%93Mills%E2%80%93Higgs_equations" title="Yang–Mills–Higgs equations">Yang–Mills–Higgs</a></li> <li><a href="/wiki/Yukawa_interaction" title="Yukawa interaction">Yukawa</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Low dimensional</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Two-dimensional_Yang%E2%80%93Mills_theory" title="Two-dimensional Yang–Mills theory">2D Yang–Mills</a></li> <li><a href="/wiki/Bullough%E2%80%93Dodd_model" title="Bullough–Dodd model">Bullough–Dodd</a></li> <li><a href="/wiki/Gross%E2%80%93Neveu_model" title="Gross–Neveu model">Gross–Neveu</a></li> <li><a href="/wiki/Schwinger_model" title="Schwinger model">Schwinger</a></li> <li><a href="/wiki/Sine-Gordon_equation" title="Sine-Gordon equation">Sine-Gordon</a></li> <li><a href="/wiki/Thirring_model" title="Thirring model">Thirring</a></li> <li><a href="/wiki/Thirring%E2%80%93Wess_model" title="Thirring–Wess model">Thirring–Wess</a></li> <li><a href="/wiki/Toda_field_theory" title="Toda field theory">Toda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Conformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Massless_free_scalar_bosons_in_two_dimensions" title="Massless free scalar bosons in two dimensions">2D free massless scalar</a></li> <li><a href="/wiki/Liouville_field_theory" title="Liouville field theory">Liouville</a></li> <li><a href="/wiki/Minimal_model_(physics)" title="Minimal model (physics)">Minimal</a></li> <li><a href="/wiki/Polyakov_action" title="Polyakov action">Polyakov</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino%E2%80%93Witten_model" title="Wess–Zumino–Witten model">Wess–Zumino–Witten</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supersymmetric</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/4D_N_%3D_1_global_supersymmetry" title="4D N = 1 global supersymmetry">4D N = 1</a></li> <li><a href="/wiki/N_%3D_1_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 1 supersymmetric Yang–Mills theory">N = 1 super Yang–Mills</a></li> <li><a href="/wiki/Seiberg%E2%80%93Witten_theory" title="Seiberg–Witten theory">Seiberg–Witten</a></li> <li><a href="/wiki/Super_QCD" title="Super QCD">Super QCD</a></li> <li><a href="/wiki/Wess%E2%80%93Zumino_model" title="Wess–Zumino model">Wess–Zumino</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Superconformal</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/6D_(2,0)_superconformal_field_theory" title="6D (2,0) superconformal field theory">6D (2,0)</a></li> <li><a href="/wiki/ABJM_superconformal_field_theory" title="ABJM superconformal field theory">ABJM</a></li> <li><a href="/wiki/N_%3D_4_supersymmetric_Yang%E2%80%93Mills_theory" title="N = 4 supersymmetric Yang–Mills theory">N = 4 super Yang–Mills</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Supergravity</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pure_4D_N_%3D_1_supergravity" title="Pure 4D N = 1 supergravity">Pure 4D N = 1</a></li> <li><a href="/wiki/4D_N_%3D_1_supergravity" title="4D N = 1 supergravity">4D N = 1</a></li> <li><a href="/wiki/N_%3D_8_supergravity" title="N = 8 supergravity">4D N = 8</a></li> <li><a href="/wiki/Higher-dimensional_supergravity" title="Higher-dimensional supergravity">Higher dimensional</a></li> <li><a href="/wiki/Type_I_supergravity" title="Type I supergravity">Type I</a></li> <li><a href="/wiki/Type_IIA_supergravity" title="Type IIA supergravity">Type IIA</a></li> <li><a href="/wiki/Type_IIB_supergravity" title="Type IIB supergravity">Type IIB</a></li> <li><a href="/wiki/Eleven-dimensional_supergravity" title="Eleven-dimensional supergravity">11D</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Topological</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BF_model" title="BF model">BF</a></li> <li><a href="/wiki/Chern%E2%80%93Simons_theory" title="Chern–Simons theory">Chern–Simons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Particle theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chiral_model" title="Chiral model">Chiral</a></li> <li><a href="/wiki/Fermi%27s_interaction" title="Fermi's interaction">Fermi</a></li> <li><a href="/wiki/Minimal_Supersymmetric_Standard_Model" title="Minimal Supersymmetric Standard Model">MSSM</a></li> <li><a href="/wiki/Nambu%E2%80%93Jona-Lasinio_model" title="Nambu–Jona-Lasinio model">Nambu–Jona-Lasinio</a></li> <li><a href="/wiki/Next-to-Minimal_Supersymmetric_Standard_Model" title="Next-to-Minimal Supersymmetric Standard Model">NMSSM</a></li> <li><a href="/wiki/Standard_Model" title="Standard Model">Standard Model</a></li> <li><a href="/wiki/Stueckelberg_action" title="Stueckelberg action">Stueckelberg</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Casimir_effect" title="Casimir effect">Casimir effect</a></li> <li><a href="/wiki/Cosmic_string" title="Cosmic string">Cosmic string</a></li> <li><a href="/wiki/History_of_quantum_field_theory" title="History of quantum field theory">History</a></li> <li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Loop_quantum_cosmology" title="Loop quantum cosmology">Loop quantum cosmology</a></li> <li><a href="/wiki/On_shell_and_off_shell" title="On shell and off shell">On shell and off shell</a></li> <li><a href="/wiki/Quantum_chaos" title="Quantum chaos">Quantum chaos</a></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">Quantum dynamics</a></li> <li><a href="/wiki/Quantum_foam" title="Quantum foam">Quantum foam</a></li> <li><a href="/wiki/Quantum_fluctuation" title="Quantum fluctuation">Quantum fluctuations</a> <ul><li><a href="/wiki/Template:Quantum_electrodynamics" title="Template:Quantum electrodynamics">links</a></li></ul></li> <li><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a> <ul><li><a href="/wiki/Template:Quantum_gravity" title="Template:Quantum gravity">links</a></li></ul></li> <li><a href="/wiki/Quantum_hadrodynamics" title="Quantum hadrodynamics">Quantum hadrodynamics</a></li> <li><a href="/wiki/Quantum_hydrodynamics" title="Quantum hydrodynamics">Quantum hydrodynamics</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a> <ul><li><a href="/wiki/Template:Quantum_information" title="Template:Quantum information">links</a></li></ul></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_thermodynamics" title="Quantum thermodynamics">Quantum thermodynamics</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>See also:</i> <span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Template:Quantum mechanics topics</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Quantum_gravity" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_gravity" title="Template:Quantum gravity"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_gravity" title="Template talk:Quantum gravity"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_gravity" title="Special:EditPage/Template:Quantum gravity"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_gravity" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_gravity" title="Quantum gravity">Quantum gravity</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Central concepts</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/AdS/CFT_correspondence" title="AdS/CFT correspondence">AdS/CFT correspondence</a></li> <li><a href="/wiki/Batalin%E2%80%93Vilkovisky_formalism" title="Batalin–Vilkovisky formalism">Batalin–Vilkovisky formalism</a></li> <li><a href="/wiki/CA-duality" title="CA-duality">CA-duality</a></li> <li><a href="/wiki/Causal_patch" title="Causal patch">Causal patch</a></li> <li><a href="/wiki/Faddeev%E2%80%93Popov_ghost" title="Faddeev–Popov ghost">Faddeev–Popov ghost</a></li> <li><a href="/wiki/Gravitational_anomaly" title="Gravitational anomaly">Gravitational anomaly</a></li> <li><a href="/wiki/Graviton" title="Graviton">Graviton</a></li> <li><a href="/wiki/Holographic_principle" title="Holographic principle">Holographic principle</a></li> <li><a href="/wiki/IR/UV_mixing" title="IR/UV mixing">IR/UV mixing</a></li> <li><a href="/wiki/Planck_units" title="Planck units">Planck units</a></li> <li><a href="/wiki/Quantum_foam" title="Quantum foam">Quantum foam</a></li> <li><a href="/wiki/Ryu%E2%80%93Takayanagi_conjecture" title="Ryu–Takayanagi conjecture">Ryu–Takayanagi conjecture</a></li> <li><a href="/wiki/Trans-Planckian_problem" title="Trans-Planckian problem">Trans-Planckian problem</a></li> <li><a href="/wiki/Weinberg%E2%80%93Witten_theorem" title="Weinberg–Witten theorem">Weinberg–Witten theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Toy_model" title="Toy model">Toy models</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/(2%2B1)-dimensional_topological_gravity" title="(2+1)-dimensional topological gravity">2+1D topological gravity</a></li> <li><a href="/wiki/CGHS_model" title="CGHS model">CGHS model</a></li> <li><a href="/wiki/Jackiw%E2%80%93Teitelboim_gravity" title="Jackiw–Teitelboim gravity">Jackiw–Teitelboim gravity</a></li> <li><a href="/wiki/Liouville_gravity" class="mw-redirect" title="Liouville gravity">Liouville gravity</a></li> <li><a href="/wiki/RST_model" title="RST model">RST model</a></li> <li><a href="/wiki/Topological_quantum_field_theory" title="Topological quantum field theory">Topological quantum field theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_field_theory_in_curved_spacetime" title="Quantum field theory in curved spacetime">Quantum field theory<br />in curved spacetime</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bunch%E2%80%93Davies_vacuum" title="Bunch–Davies vacuum">Bunch–Davies vacuum</a></li> <li><a href="/wiki/Hawking_radiation" title="Hawking radiation">Hawking radiation</a></li> <li><a href="/wiki/Semiclassical_gravity" title="Semiclassical gravity">Semiclassical gravity</a></li> <li><a href="/wiki/Unruh_effect" title="Unruh effect">Unruh effect</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Black_hole" title="Black hole">Black holes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Black_hole_complementarity" title="Black hole complementarity">Black hole complementarity</a></li> <li><a href="/wiki/Black_hole_information_paradox" title="Black hole information paradox">Black hole information paradox</a></li> <li><a href="/wiki/Black_hole_thermodynamics" title="Black hole thermodynamics">Black-hole thermodynamics</a></li> <li><a href="/wiki/Bekenstein_bound" title="Bekenstein bound">Bekenstein bound</a></li> <li><a href="/wiki/Bousso%27s_holographic_bound" title="Bousso's holographic bound">Bousso's holographic bound</a></li> <li><a href="/wiki/Cosmic_censorship_hypothesis" title="Cosmic censorship hypothesis">Cosmic censorship hypothesis</a></li> <li><a href="/wiki/ER_%3D_EPR" title="ER = EPR">ER = EPR</a></li> <li><a href="/wiki/Firewall_(physics)" title="Firewall (physics)">Firewall (physics)</a></li> <li><a href="/wiki/Gravitational_singularity" title="Gravitational singularity">Gravitational singularity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Approaches</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/String_theory" title="String theory">String theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bosonic_string_theory" title="Bosonic string theory">Bosonic string theory</a></li> <li><a href="/wiki/M-theory" title="M-theory">M-theory</a></li> <li><a href="/wiki/Supergravity" title="Supergravity">Supergravity</a></li> <li><a href="/wiki/Superstring_theory" title="Superstring theory">Superstring theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Canonical_quantum_gravity" title="Canonical quantum gravity">Canonical quantum gravity</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Loop_quantum_gravity" title="Loop quantum gravity">Loop quantum gravity</a></li> <li><a href="/wiki/Wheeler%E2%80%93DeWitt_equation" title="Wheeler–DeWitt equation">Wheeler–DeWitt equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Euclidean_quantum_gravity" title="Euclidean quantum gravity">Euclidean quantum gravity</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hartle%E2%80%93Hawking_state" title="Hartle–Hawking state">Hartle–Hawking state</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Others</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Causal_dynamical_triangulation" title="Causal dynamical triangulation">Causal dynamical triangulation</a></li> <li><a href="/wiki/Causal_sets" title="Causal sets">Causal sets</a></li> <li><a href="/wiki/Dual_graviton" title="Dual graviton">Dual graviton</a></li> <li><a href="/wiki/Group_field_theory" title="Group field theory">Group field theory</a></li> <li><a href="/wiki/Noncommutative_geometry" title="Noncommutative geometry">Noncommutative geometry</a></li> <li><a href="/wiki/Spin_foam" title="Spin foam">Spin foam</a></li> <li><a href="/wiki/Superfluid_vacuum_theory" title="Superfluid vacuum theory">Superfluid vacuum theory</a></li> <li><a href="/wiki/Twistor_theory" title="Twistor theory">Twistor theory</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_cosmology" title="Quantum cosmology">Quantum cosmology</a> <ul><li><a href="/wiki/Eternal_inflation" title="Eternal inflation">Eternal inflation</a></li> <li><a href="/wiki/FRW/CFT_duality" title="FRW/CFT duality">FRW/CFT duality</a></li> <li><a href="/wiki/Multiverse" title="Multiverse">Multiverse</a></li></ul></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>See also:</i> <span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Template:Quantum mechanics topics</a></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q165498#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4053332-3">Germany</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Schrödinger equation"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85118495">United States</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Schrödinger, Équation de"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119702345">France</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Schrödinger, Équation de"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119702345">BnF data</a></span></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Schrödingerova rovnice"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph195849&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007560881205171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐4xwft Cached time: 20241122140425 Cache expiry: 21600 Reduced expiry: true Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.460 seconds Real time usage: 1.748 seconds Preprocessor visited node count: 14220/1000000 Post‐expand include size: 313303/2097152 bytes Template argument size: 8266/2097152 bytes Highest expansion depth: 21/100 Expensive parser function count: 12/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 361813/5000000 bytes Lua time usage: 0.629/10.000 seconds Lua memory usage: 7060513/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1194.990 1 -total 38.26% 457.170 2 Template:Reflist 23.54% 281.296 46 Template:Cite_book 13.20% 157.739 26 Template:Rp 12.31% 147.102 26 Template:R/superscript 9.82% 117.331 2 Template:Sidebar_with_collapsible_lists 9.44% 112.846 1 Template:Quantum_mechanics 9.30% 111.153 1 Template:Short_description 6.08% 72.708 9 Template:Navbox 6.07% 72.572 15 Template:Cite_journal --> <!-- Saved in parser cache with key enwiki:pcache:idhash:59874-0!canonical and timestamp 20241122140425 and revision id 1258465434. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Schrödinger_equation&oldid=1258465434">https://en.wikipedia.org/w/index.php?title=Schrödinger_equation&oldid=1258465434</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Schr%C3%B6dinger_equation" title="Category:Schrödinger equation">Schrödinger equation</a></li><li><a href="/wiki/Category:Differential_equations" title="Category:Differential equations">Differential equations</a></li><li><a href="/wiki/Category:Partial_differential_equations" title="Category:Partial differential equations">Partial differential equations</a></li><li><a href="/wiki/Category:Wave_mechanics" title="Category:Wave mechanics">Wave mechanics</a></li><li><a href="/wiki/Category:Functions_of_space_and_time" title="Category:Functions of space and time">Functions of space and time</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_June_2016" title="Category:Use dmy dates from June 2016">Use dmy dates from June 2016</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 November 2024, at 22:06<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Schr%C3%B6dinger_equation&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-2z5zb","wgBackendResponseTime":138,"wgPageParseReport":{"limitreport":{"cputime":"1.460","walltime":"1.748","ppvisitednodes":{"value":14220,"limit":1000000},"postexpandincludesize":{"value":313303,"limit":2097152},"templateargumentsize":{"value":8266,"limit":2097152},"expansiondepth":{"value":21,"limit":100},"expensivefunctioncount":{"value":12,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":361813,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1194.990 1 -total"," 38.26% 457.170 2 Template:Reflist"," 23.54% 281.296 46 Template:Cite_book"," 13.20% 157.739 26 Template:Rp"," 12.31% 147.102 26 Template:R/superscript"," 9.82% 117.331 2 Template:Sidebar_with_collapsible_lists"," 9.44% 112.846 1 Template:Quantum_mechanics"," 9.30% 111.153 1 Template:Short_description"," 6.08% 72.708 9 Template:Navbox"," 6.07% 72.572 15 Template:Cite_journal"]},"scribunto":{"limitreport-timeusage":{"value":"0.629","limit":"10.000"},"limitreport-memusage":{"value":7060513,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-4xwft","timestamp":"20241122140425","ttl":21600,"transientcontent":true}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Schr\u00f6dinger equation","url":"https:\/\/en.wikipedia.org\/wiki\/Schr%C3%B6dinger_equation","sameAs":"http:\/\/www.wikidata.org\/entity\/Q165498","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q165498","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-28T17:43:38Z","dateModified":"2024-11-19T22:06:13Z","headline":"partial differential equation describing how the quantum state of a non-relativistic physical system changes with time"}</script> </body> </html>