CINXE.COM

Ideal (teoría de anillos) - Wikipedia, la enciclopedia libre

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="es" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ideal (teoría de anillos) - Wikipedia, la enciclopedia libre</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )eswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","enero","febrero","marzo","abril","mayo","junio","julio","agosto","septiembre","octubre","noviembre","diciembre"],"wgRequestId":"5d8f1287-4a82-42aa-b56b-e37b6b489fa7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ideal_(teoría_de_anillos)","wgTitle":"Ideal (teoría de anillos)","wgCurRevisionId":156446996,"wgRevisionId":156446996,"wgArticleId":2097189,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipedia:Artículos con identificadores BNF","Wikipedia:Artículos con identificadores GND","Wikipedia:Artículos con identificadores LCCN","Álgebra","Teoría de anillos","Estructuras algebraicas","Álgebra conmutativa"],"wgPageViewLanguage":"es","wgPageContentLanguage":"es","wgPageContentModel":"wikitext","wgRelevantPageName":"Ideal_(teoría_de_anillos)","wgRelevantArticleId":2097189,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"es","pageLanguageDir":"ltr","pageVariantFallbacks":"es"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q44649","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled": false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.imagenesinfobox":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.a-commons-directo","ext.gadget.ReferenceTooltips","ext.gadget.refToolbar","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap", "ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=es&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=ext.gadget.imagenesinfobox&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <noscript><link rel="stylesheet" href="/w/load.php?lang=es&amp;modules=noscript&amp;only=styles&amp;skin=vector-2022"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ideal (teoría de anillos) - Wikipedia, la enciclopedia libre"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//es.m.wikipedia.org/wiki/Ideal_(teor%C3%ADa_de_anillos)"> <link rel="alternate" type="application/x-wiki" title="Editar" href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (es)"> <link rel="EditURI" type="application/rsd+xml" href="//es.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://es.wikipedia.org/wiki/Ideal_(teor%C3%ADa_de_anillos)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.es"> <link rel="alternate" type="application/atom+xml" title="Canal Atom de Wikipedia" href="/w/index.php?title=Especial:CambiosRecientes&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ideal_teoría_de_anillos rootpage-Ideal_teoría_de_anillos skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ir al contenido</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menú principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menú principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menú principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ocultar</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegación </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Portada" title="Visitar la página principal [z]" accesskey="z"><span>Portada</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Comunidad" title="Acerca del proyecto, lo que puedes hacer, dónde encontrar información"><span>Portal de la comunidad</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Actualidad" title="Encuentra información de contexto sobre acontecimientos actuales"><span>Actualidad</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:CambiosRecientes" title="Lista de cambios recientes en la wiki [r]" accesskey="r"><span>Cambios recientes</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasNuevas"><span>Páginas nuevas</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Aleatoria" title="Cargar una página al azar [x]" accesskey="x"><span>Página aleatoria</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ayuda:Contenidos" title="El lugar para aprender"><span>Ayuda</span></a></li><li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Wikipedia:Informes_de_error"><span>Notificar un error</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:Portada" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="La enciclopedia libre" src="/static/images/mobile/copyright/wikipedia-tagline-es.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Buscar" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Buscar en este wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Buscar</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Buscar en Wikipedia" aria-label="Buscar en Wikipedia" autocapitalize="sentences" title="Buscar en este wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Buscar"> </div> <button class="cdx-button cdx-search-input__end-button">Buscar</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Herramientas personales"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apariencia" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apariencia</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_es.wikipedia.org&amp;uselang=es" class=""><span>Donaciones</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Crear_una_cuenta&amp;returnto=Ideal+%28teor%C3%ADa+de+anillos%29" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio" class=""><span>Crear una cuenta</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Entrar&amp;returnto=Ideal+%28teor%C3%ADa+de+anillos%29" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o" class=""><span>Acceder</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Más opciones" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas personales" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Herramientas personales</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menú de usuario" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_es.wikipedia.org&amp;uselang=es"><span>Donaciones</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Crear_una_cuenta&amp;returnto=Ideal+%28teor%C3%ADa+de+anillos%29" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Crear una cuenta</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Entrar&amp;returnto=Ideal+%28teor%C3%ADa+de+anillos%29" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Acceder</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Páginas para editores desconectados <a href="/wiki/Ayuda:Introducci%C3%B3n" aria-label="Obtenga más información sobre editar"><span>más información</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:MisContribuciones" title="Una lista de modificaciones hechas desde esta dirección IP [y]" accesskey="y"><span>Contribuciones</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:MiDiscusi%C3%B3n" title="Discusión sobre ediciones hechas desde esta dirección IP [n]" accesskey="n"><span>Discusión</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contenidos" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contenidos</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ocultar</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inicio</div> </a> </li> <li id="toc-Aspecto_histórico" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Aspecto_histórico"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Aspecto histórico</span> </div> </a> <ul id="toc-Aspecto_histórico-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definición" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definición"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definición</span> </div> </a> <button aria-controls="toc-Definición-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar subsección Definición</span> </button> <ul id="toc-Definición-sublist" class="vector-toc-list"> <li id="toc-Ejemplos" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ejemplos"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Ejemplos</span> </div> </a> <ul id="toc-Ejemplos-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Operaciones_con_ideales" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Operaciones_con_ideales"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Operaciones con ideales</span> </div> </a> <button aria-controls="toc-Operaciones_con_ideales-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar subsección Operaciones con ideales</span> </button> <ul id="toc-Operaciones_con_ideales-sublist" class="vector-toc-list"> <li id="toc-Suma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Suma"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Suma</span> </div> </a> <ul id="toc-Suma-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Intersección" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Intersección"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Intersección</span> </div> </a> <ul id="toc-Intersección-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Producto" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Producto"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Producto</span> </div> </a> <ul id="toc-Producto-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Anillo_cociente" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Anillo_cociente"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Anillo cociente</span> </div> </a> <ul id="toc-Anillo_cociente-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Casos_particulares" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Casos_particulares"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Casos particulares</span> </div> </a> <ul id="toc-Casos_particulares-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referencias" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referencias"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Referencias</span> </div> </a> <ul id="toc-Referencias-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Véase_también" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Véase_también"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Véase también</span> </div> </a> <ul id="toc-Véase_también-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Enlaces_externos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Enlaces_externos"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Enlaces externos</span> </div> </a> <ul id="toc-Enlaces_externos-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contenidos" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Cambiar a la tabla de contenidos" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Cambiar a la tabla de contenidos</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ideal (teoría de anillos)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ir a un artículo en otro idioma. Disponible en 40 idiomas" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-40" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">40 idiomas</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AB%D8%A7%D9%84%D9%8A_(%D9%86%D8%B8%D8%B1%D9%8A%D8%A9_%D8%A7%D9%84%D8%AD%D9%84%D9%82%D8%A7%D8%AA)" title="مثالي (نظرية الحلقات) (árabe)" lang="ar" hreflang="ar" data-title="مثالي (نظرية الحلقات)" data-language-autonym="العربية" data-language-local-name="árabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%BF%D1%80%D1%8A%D1%81%D1%82%D0%B5%D0%BD%D0%B8%D1%82%D0%B5)" title="Идеал (теория на пръстените) (búlgaro)" lang="bg" hreflang="bg" data-title="Идеал (теория на пръстените)" data-language-autonym="Български" data-language-local-name="búlgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Ideal_(matem%C3%A0tiques)" title="Ideal (matemàtiques) (catalán)" lang="ca" hreflang="ca" data-title="Ideal (matemàtiques)" data-language-autonym="Català" data-language-local-name="catalán" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ide%C3%A1l_(teorie_okruh%C5%AF)" title="Ideál (teorie okruhů) (checo)" lang="cs" hreflang="cs" data-title="Ideál (teorie okruhů)" data-language-autonym="Čeština" data-language-local-name="checo" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Идеал (алгебра) (chuvasio)" lang="cv" hreflang="cv" data-title="Идеал (алгебра)" data-language-autonym="Чӑвашла" data-language-local-name="chuvasio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ideal_(ringteori)" title="Ideal (ringteori) (danés)" lang="da" hreflang="da" data-title="Ideal (ringteori)" data-language-autonym="Dansk" data-language-local-name="danés" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Ideal_(Ringtheorie)" title="Ideal (Ringtheorie) (alemán)" lang="de" hreflang="de" data-title="Ideal (Ringtheorie)" data-language-autonym="Deutsch" data-language-local-name="alemán" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%99%CE%B4%CE%B5%CF%8E%CE%B4%CE%B5%CF%82_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC)" title="Ιδεώδες (μαθηματικά) (griego)" lang="el" hreflang="el" data-title="Ιδεώδες (μαθηματικά)" data-language-autonym="Ελληνικά" data-language-local-name="griego" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Ideal_(ring_theory)" title="Ideal (ring theory) (inglés)" lang="en" hreflang="en" data-title="Ideal (ring theory)" data-language-autonym="English" data-language-local-name="inglés" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Idealo_(algebro)" title="Idealo (algebro) (esperanto)" lang="eo" hreflang="eo" data-title="Idealo (algebro)" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Ringi_ideaal" title="Ringi ideaal (estonio)" lang="et" hreflang="et" data-title="Ringi ideaal" data-language-autonym="Eesti" data-language-local-name="estonio" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%DB%8C%D8%AF%D9%87%E2%80%8C%D8%A2%D9%84_(%D9%86%D8%B8%D8%B1%DB%8C%D9%87_%D8%AD%D9%84%D9%82%D9%87%E2%80%8C%D9%87%D8%A7)" title="ایده‌آل (نظریه حلقه‌ها) (persa)" lang="fa" hreflang="fa" data-title="ایده‌آل (نظریه حلقه‌ها)" data-language-autonym="فارسی" data-language-local-name="persa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ideaali_(rengasteoria)" title="Ideaali (rengasteoria) (finés)" lang="fi" hreflang="fi" data-title="Ideaali (rengasteoria)" data-language-autonym="Suomi" data-language-local-name="finés" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Id%C3%A9al" title="Idéal (francés)" lang="fr" hreflang="fr" data-title="Idéal" data-language-autonym="Français" data-language-local-name="francés" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ideal_(teor%C3%ADa_dos_aneis)" title="Ideal (teoría dos aneis) (gallego)" lang="gl" hreflang="gl" data-title="Ideal (teoría dos aneis)" data-language-autonym="Galego" data-language-local-name="gallego" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%99%D7%93%D7%99%D7%90%D7%9C_(%D7%90%D7%9C%D7%92%D7%91%D7%A8%D7%94)" title="אידיאל (אלגברה) (hebreo)" lang="he" hreflang="he" data-title="אידיאל (אלגברה)" data-language-autonym="עברית" data-language-local-name="hebreo" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Ide%C3%A1l_(gy%C5%B1r%C5%B1elm%C3%A9let)" title="Ideál (gyűrűelmélet) (húngaro)" lang="hu" hreflang="hu" data-title="Ideál (gyűrűelmélet)" data-language-autonym="Magyar" data-language-local-name="húngaro" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Ideal_(theoria_de_anellos)" title="Ideal (theoria de anellos) (interlingua)" lang="ia" hreflang="ia" data-title="Ideal (theoria de anellos)" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Ideal_(teori_gelanggang)" title="Ideal (teori gelanggang) (indonesio)" lang="id" hreflang="id" data-title="Ideal (teori gelanggang)" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesio" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Ideale_(matematica)" title="Ideale (matematica) (italiano)" lang="it" hreflang="it" data-title="Ideale (matematica)" data-language-autonym="Italiano" data-language-local-name="italiano" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%A4%E3%83%87%E3%82%A2%E3%83%AB_(%E7%92%B0%E8%AB%96)" title="イデアル (環論) (japonés)" lang="ja" hreflang="ja" data-title="イデアル (環論)" data-language-autonym="日本語" data-language-local-name="japonés" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0%D0%B4%D0%B0)" title="Идеал (математикада) (kazajo)" lang="kk" hreflang="kk" data-title="Идеал (математикада)" data-language-autonym="Қазақша" data-language-local-name="kazajo" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%95%84%EC%9D%B4%EB%94%94%EC%96%BC" title="아이디얼 (coreano)" lang="ko" hreflang="ko" data-title="아이디얼" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Ideaal_(matem%C3%A0tica)" title="Ideaal (matemàtica) (lombardo)" lang="lmo" hreflang="lmo" data-title="Ideaal (matemàtica)" data-language-autonym="Lombard" data-language-local-name="lombardo" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Ideaal_(ringtheorie)" title="Ideaal (ringtheorie) (neerlandés)" lang="nl" hreflang="nl" data-title="Ideaal (ringtheorie)" data-language-autonym="Nederlands" data-language-local-name="neerlandés" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ideal_i_matematikk" title="Ideal i matematikk (noruego nynorsk)" lang="nn" hreflang="nn" data-title="Ideal i matematikk" data-language-autonym="Norsk nynorsk" data-language-local-name="noruego nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ideal_(matematikk)" title="Ideal (matematikk) (noruego bokmal)" lang="nb" hreflang="nb" data-title="Ideal (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="noruego bokmal" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Idea%C5%82_(teoria_pier%C5%9Bcieni)" title="Ideał (teoria pierścieni) (polaco)" lang="pl" hreflang="pl" data-title="Ideał (teoria pierścieni)" data-language-autonym="Polski" data-language-local-name="polaco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Ideal_(teoria_dos_an%C3%A9is)" title="Ideal (teoria dos anéis) (portugués)" lang="pt" hreflang="pt" data-title="Ideal (teoria dos anéis)" data-language-autonym="Português" data-language-local-name="portugués" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ideal_(teoria_inelelor)" title="Ideal (teoria inelelor) (rumano)" lang="ro" hreflang="ro" data-title="Ideal (teoria inelelor)" data-language-autonym="Română" data-language-local-name="rumano" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Идеал (алгебра) (ruso)" lang="ru" hreflang="ru" data-title="Идеал (алгебра)" data-language-autonym="Русский" data-language-local-name="ruso" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Ide%C3%A1l_(okruhu)" title="Ideál (okruhu) (eslovaco)" lang="sk" hreflang="sk" data-title="Ideál (okruhu)" data-language-autonym="Slovenčina" data-language-local-name="eslovaco" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Ideal_(teorija_kolobarjev)" title="Ideal (teorija kolobarjev) (esloveno)" lang="sl" hreflang="sl" data-title="Ideal (teorija kolobarjev)" data-language-autonym="Slovenščina" data-language-local-name="esloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Идеал (математика) (serbio)" lang="sr" hreflang="sr" data-title="Идеал (математика)" data-language-autonym="Српски / srpski" data-language-local-name="serbio" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ideal_(ringteori)" title="Ideal (ringteori) (sueco)" lang="sv" hreflang="sv" data-title="Ideal (ringteori)" data-language-autonym="Svenska" data-language-local-name="sueco" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%B3%E0%AF%88%E0%AE%AF%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%BF%E0%AE%B2%E0%AF%8D_%E0%AE%9A%E0%AF%80%E0%AE%B0%E0%AF%8D%E0%AE%AE%E0%AE%AE%E0%AF%8D_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="வளையத்தில் சீர்மம் (கணிதம்) (tamil)" lang="ta" hreflang="ta" data-title="வளையத்தில் சீர்மம் (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%86%D0%B4%D0%B5%D0%B0%D0%BB_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Ідеал (алгебра) (ucraniano)" lang="uk" hreflang="uk" data-title="Ідеал (алгебра)" data-language-autonym="Українська" data-language-local-name="ucraniano" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/I-%C4%91%C3%AA-an" title="I-đê-an (vietnamita)" lang="vi" hreflang="vi" data-title="I-đê-an" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%90%86%E6%83%B3_(%E7%8E%AF%E8%AE%BA)" title="理想 (环论) (chino)" lang="zh" hreflang="zh" data-title="理想 (环论)" data-language-autonym="中文" data-language-local-name="chino" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%92%B0%E5%80%8D%E6%95%B8" title="環倍數 (cantonés)" lang="yue" hreflang="yue" data-title="環倍數" data-language-autonym="粵語" data-language-local-name="cantonés" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44649#sitelinks-wikipedia" title="Editar enlaces interlingüísticos" class="wbc-editpage">Editar enlaces</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espacios de nombres"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ideal_(teor%C3%ADa_de_anillos)" title="Ver la página de contenido [c]" accesskey="c"><span>Artículo</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Discusi%C3%B3n:Ideal_(teor%C3%ADa_de_anillos)" rel="discussion" title="Discusión acerca de la página [t]" accesskey="t"><span>Discusión</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambiar variante de idioma" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">español</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistas"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ideal_(teor%C3%ADa_de_anillos)"><span>Leer</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=history" title="Versiones anteriores de esta página [h]" accesskey="h"><span>Ver historial</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Herramientas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Herramientas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ocultar</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Más opciones" > <div class="vector-menu-heading"> Acciones </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ideal_(teor%C3%ADa_de_anillos)"><span>Leer</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=history"><span>Ver historial</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:LoQueEnlazaAqu%C3%AD/Ideal_(teor%C3%ADa_de_anillos)" title="Lista de todas las páginas de la wiki que enlazan aquí [j]" accesskey="j"><span>Lo que enlaza aquí</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:CambiosEnEnlazadas/Ideal_(teor%C3%ADa_de_anillos)" rel="nofollow" title="Cambios recientes en las páginas que enlazan con esta [k]" accesskey="k"><span>Cambios en enlazadas</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=es" title="Subir archivos [u]" accesskey="u"><span>Subir archivo</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasEspeciales" title="Lista de todas las páginas especiales [q]" accesskey="q"><span>Páginas especiales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;oldid=156446996" title="Enlace permanente a esta versión de la página"><span>Enlace permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=info" title="Más información sobre esta página"><span>Información de la página</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citar&amp;page=Ideal_%28teor%C3%ADa_de_anillos%29&amp;id=156446996&amp;wpFormIdentifier=titleform" title="Información sobre cómo citar esta página"><span>Citar esta página</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:Acortador_de_URL&amp;url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FIdeal_%28teor%25C3%25ADa_de_anillos%29"><span>Obtener URL acortado</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&amp;url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FIdeal_%28teor%25C3%25ADa_de_anillos%29"><span>Descargar código QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimir/exportar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Libro&amp;bookcmd=book_creator&amp;referer=Ideal+%28teor%C3%ADa+de+anillos%29"><span>Crear un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&amp;page=Ideal_%28teor%C3%ADa_de_anillos%29&amp;action=show-download-screen"><span>Descargar como PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;printable=yes" title="Versión imprimible de esta página [p]" accesskey="p"><span>Versión para imprimir</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> En otros proyectos </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Ideal_(ring_theory)" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44649" title="Enlace al elemento conectado del repositorio de datos [g]" accesskey="g"><span>Elemento de Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apariencia</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ocultar</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De Wikipedia, la enciclopedia libre</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="es" dir="ltr"><p>En <a href="/wiki/%C3%81lgebra_moderna" class="mw-redirect" title="Álgebra moderna">álgebra moderna</a>, un <b>ideal</b> es una <a href="/wiki/Estructura_algebraica" title="Estructura algebraica">subestructura algebraica</a> definida en la teoría de <a href="/wiki/Anillo_(matem%C3%A1ticas)" class="mw-redirect" title="Anillo (matemáticas)">anillos</a>. Los ideales generalizan, de manera fecunda, el estudio de la <a href="/wiki/Divisibilidad" title="Divisibilidad">divisibilidad</a> entre los números enteros hacia otros <a href="/wiki/Objeto_matem%C3%A1tico" title="Objeto matemático">objetos matemáticos</a>. De este modo, es posible enunciar versiones muy generales de teoremas de la aritmética elemental, tales como el <a href="/wiki/Teorema_chino_del_resto#resultado_para_los_anillos_generales" title="Teorema chino del resto">teorema chino del resto</a> o el <a href="/wiki/Teorema_fundamental_de_la_aritm%C3%A9tica" title="Teorema fundamental de la aritmética">teorema fundamental de la aritmética</a>, válidos para los ideales. Se puede comparar también esta noción con la de <a href="/wiki/Subgrupo_normal" title="Subgrupo normal">subgrupo normal</a> para la estructura algebraica de <a href="/wiki/Grupo_(matem%C3%A1ticas)" class="mw-redirect" title="Grupo (matemáticas)">grupo</a> en el sentido de que facilita definir la noción de <a href="/wiki/Anillo_cociente" title="Anillo cociente">anillo cociente</a> como una extensión natural de la noción de <a href="/wiki/Grupo_cociente" title="Grupo cociente">grupo cociente</a>.<sup id="cite_ref-1" class="reference separada"><a href="#cite_note-1"><span class="corchete-llamada">[</span>1<span class="corchete-llamada">]</span></a></sup>&#8203; </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Aspecto_histórico"><span id="Aspecto_hist.C3.B3rico"></span>Aspecto histórico</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=1" title="Editar sección: Aspecto histórico"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>La teoría de los ideales es relativamente reciente, puesto que fue creada por el matemático alemán, <a href="/wiki/Richard_Dedekind" title="Richard Dedekind">Richard Dedekind</a>, a fines del siglo&#160;<span style="font-variant:small-caps;text-transform:lowercase">XIX</span>. En dicha época, una parte de la comunidad matemática se interesó en los <a href="/wiki/N%C3%BAmero_algebraico" title="Número algebraico">números algebraicos</a> y, más concretamente, en los <a href="/wiki/Entero_algebraico" class="mw-redirect" title="Entero algebraico">enteros algebraicos</a>. </p><p>La cuestión consiste en saber si los enteros algebraicos se comportan como los <a href="/wiki/Primos_relativos" class="mw-redirect" title="Primos relativos">enteros relativos</a>, particularmente, en lo que respecta a su <a href="/wiki/Descomposici%C3%B3n_en_factores_primos" class="mw-redirect" title="Descomposición en factores primos">descomposición en factores primos</a>. Parecía claro, desde el comienzo del siglo&#160;<span style="font-variant:small-caps;text-transform:lowercase">XIX</span> que este no era siempre el caso. Por ejemplo, el entero 6 puede descomponerse, en el anillo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} [i{\sqrt {5}}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo stretchy="false">[</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} [i{\sqrt {5}}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00d2f0f809f3e7ad192658c61cc1ae46e2a1901d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.745ex; height:3.009ex;" alt="{\displaystyle \mathbb {Z} [i{\sqrt {5}}]}"></span>, en la forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\times 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\times 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b74d5a424cfb56b99e1060910dbfed284314da0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.165ex; height:2.176ex;" alt="{\displaystyle 2\times 3}"></span> o en la forma <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+i{\sqrt {5}})(1-i{\sqrt {5}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+i{\sqrt {5}})(1-i{\sqrt {5}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b757c6f95cb4b248f42bd14bfa1b7e0635781bba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.426ex; height:3.009ex;" alt="{\displaystyle (1+i{\sqrt {5}})(1-i{\sqrt {5}})}"></span>. </p><p><a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Ernst Kummer</a> señaló entonces que la cuestión anterior va a depender de los números en cuestión, e inventó la noción de complejos ideales. </p><p>La idea es hacer que sea única la descomposición en factores primos añadiendo artificialmente otros números (del mismo modo que se añade <i>i</i> a los <a href="/wiki/N%C3%BAmero_real" title="Número real">números reales</a> siendo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{2}=-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{2}=-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e98a401d352e5037d5043028e2d7f449e83fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.926ex; height:2.843ex;" alt="{\displaystyle i^{2}=-1}"></span> con el fin de disponer de números para los cuadrados negativos). Para el ejemplo de más arriba, se van a "inventar" cuatro números "ideales" <i>a</i>, <i>b</i>, <i>c</i> y <i>d</i> tales que: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2=a\cdot b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2=a\cdot b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4db1029d991ea5498efa16e5e7dc8d87c09fa237" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.167ex; height:2.176ex;" alt="{\displaystyle 2=a\cdot b}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3=c\cdot d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>=</mo> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3=c\cdot d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690a1e214b4212481d176207339cbffb3b3a5b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.163ex; height:2.176ex;" alt="{\displaystyle 3=c\cdot d}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+i{\sqrt {5}}=a\cdot c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+i{\sqrt {5}}=a\cdot c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37ee5edb9cec7b3cec66db61eed4aab66973bcf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.918ex; height:2.843ex;" alt="{\displaystyle 1+i{\sqrt {5}}=a\cdot c}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-i{\sqrt {5}}=b\cdot d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>5</mn> </msqrt> </mrow> <mo>=</mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-i{\sqrt {5}}=b\cdot d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8d3ed7c7ee1f1afb2f481746063787f274c6b52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.895ex; height:2.843ex;" alt="{\displaystyle 1-i{\sqrt {5}}=b\cdot d}"></span></dd></dl> <p>Así, 6 se descompondrá de manera única en: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6=a\cdot b\cdot c\cdot d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>b</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>c</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6=a\cdot b\cdot c\cdot d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b53b132e1954bbe99a65104931c8aed6c0ccb43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:13.748ex; height:2.176ex;" alt="{\displaystyle 6=a\cdot b\cdot c\cdot d}"></span></dd></dl> <p>Dedekind en 1871 vuelve a usar la noción de número ideal de Kummer y crea la noción de ideal en un anillo. Se interesa principalmente por los anillos de los enteros algebraicos, es decir, anillos conmutativos unitarios e íntegros. En este dominio se encuentran los resultados más interesantes sobre los ideales. Creó el conjunto de los ideales de un <a href="/wiki/Anillo_conmutativo" title="Anillo conmutativo">anillo conmutativo</a>, unitario e íntegro para operaciones semejantes a la adición y a la multiplicación de los enteros relativos. </p><p>La teoría de los ideales no solo permitió un avance significativo en el <a href="/wiki/%C3%81lgebra_abstracta" title="Álgebra abstracta">álgebra general</a>, sino también en el estudio de las curvas algebraicas (<a href="/wiki/Geometr%C3%ADa_algebraica" title="Geometría algebraica">geometría algebraica</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Definición"><span id="Definici.C3.B3n"></span>Definición</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=2" title="Editar sección: Definición"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un subconjunto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> no vacío de un anillo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,+,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>+</mo> <mo>,</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,+,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/933ada95d5707c0af8a812755d316c22280dc4a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.075ex; height:2.843ex;" alt="{\displaystyle (A,+,\cdot )}"></span> es un <b>ideal por la izquierda de <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span></i></b> si: </p> <ol><li><i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span></i> es un <a href="/wiki/Subgrupo" title="Subgrupo">subgrupo</a> aditivo de <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span></i>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall (a,x)\in A\times I:a\cdot x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mi>I</mi> <mo>:</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall (a,x)\in A\times I:a\cdot x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd86696e56533233116021afa2489943b64e4df2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.479ex; height:2.843ex;" alt="{\displaystyle \forall (a,x)\in A\times I:a\cdot x\in I}"></span> (El producto por la izquierda de un elemento de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> por un elemento de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> pertenece a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>).</li></ol> <p>y es un <b>ideal por la derecha de <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span></i></b> si: </p> <ol><li><i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span></i> es un <a href="/wiki/Subgrupo" title="Subgrupo">subgrupo</a> aditivo de <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span></i>.</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall (x,a)\in I\times A:x\cdot a\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>&#x00D7;<!-- × --></mo> <mi>A</mi> <mo>:</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall (x,a)\in I\times A:x\cdot a\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/530745d07f811efaf2f961817a95219fbde8901e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.479ex; height:2.843ex;" alt="{\displaystyle \forall (x,a)\in I\times A:x\cdot a\in I}"></span> (El producto por la derecha de un elemento de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> por un elemento de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> pertenece a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>).</li></ol> <p>Un <b>ideal bilátero</b> es un ideal por la derecha y por la izquierda. En un anillo conmutativo, las nociones de ideal por la derecha, de ideal por la izquierda y de ideal bilátero coinciden y simplemente se habla de ideal. </p> <div class="mw-heading mw-heading3"><h3 id="Ejemplos">Ejemplos</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=3" title="Editar sección: Ejemplos"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Para todo entero relativo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2a8bd454ad5fdd9f5d8c65f819be8d40e34d604" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.762ex; height:2.176ex;" alt="{\displaystyle k\mathbb {Z} }"></span> es un ideal de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>.</li> <li>Si <i>A</i> es un anillo, {0} y A son ideales triviales de <i>A</i>. Estos dos ideales tienen un interés muy limitado. Por esta razón se llamará <b>ideal propio</b> a todo ideal no trivial.</li> <li>Si <i>A</i> es un anillo unitario y si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> es un ideal que contiene a 1 entonces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5221fb0b1e8c870866291f0eee96f02b91851e55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.013ex; height:2.176ex;" alt="{\displaystyle I=A}"></span>. De modo más general, si, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> contiene un elemento inversible, entonces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5221fb0b1e8c870866291f0eee96f02b91851e55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.013ex; height:2.176ex;" alt="{\displaystyle I=A}"></span></li> <li>Los únicos ideales en un <a href="/wiki/Cuerpo_(matem%C3%A1ticas)" title="Cuerpo (matemáticas)">cuerpo</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> son los ideales triviales.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Operaciones_con_ideales">Operaciones con ideales</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=4" title="Editar sección: Operaciones con ideales"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Suma">Suma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=5" title="Editar sección: Suma"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si <i>I</i> y <i>J</i> son dos ideales de un anillo <i>A</i>, entonces se puede comprobar que el conjunto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I+J=\{x+y:x\in I\ e\ y\in J\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>:</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mtext>&#xA0;</mtext> <mi>e</mi> <mtext>&#xA0;</mtext> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>J</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I+J=\{x+y:x\in I\ e\ y\in J\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fda609df091fa2a662f9fcf5562b7c128da8e23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.224ex; height:2.843ex;" alt="{\displaystyle I+J=\{x+y:x\in I\ e\ y\in J\}}"></span> es un ideal. </p> <table class="mw-collapsible wikitable mw-collapsed" width="75%" style="text-align:left; padding:0px; background-color: var(--background-color-neutral-subtle, #f9f9f9); color: var(--color-base, #202122);"> <tbody><tr> <td style="text-align:left; font-weight:bold;">Demostración </td></tr> <tr> <td style="background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align:left; font-size:95%; padding:6px"> <p>Para comprobar que el aserto es correcto, debemos comprobar en primer lugar que <i>I+J</i> es subgrupo del grupo aditivo de <i>A</i>, i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1aea157994289d7d45060934d3815375eab3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.394ex; height:2.843ex;" alt="{\displaystyle (A,+)}"></span>, y en segundo lugar tendremos que comprobar que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle za\in (I+J),~\forall a\in A,\forall z\in (I+J)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle za\in (I+J),~\forall a\in A,\forall z\in (I+J)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08e7512353f6aba05cfef974d72f27222a3a1f37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.72ex; height:2.843ex;" alt="{\displaystyle za\in (I+J),~\forall a\in A,\forall z\in (I+J)}"></span>. </p> <dl><dd><dl><dd><ul><li>En primer lugar, sea <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1},z_{2}\in (I+J)\Rightarrow \exists (x_{1},y_{1}),(x_{2},y_{2})\in I\times J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>&#x00D7;<!-- × --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1},z_{2}\in (I+J)\Rightarrow \exists (x_{1},y_{1}),(x_{2},y_{2})\in I\times J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d781fce7ee624f1cee4c3a535d69fd39ff8272fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:44.544ex; height:2.843ex;" alt="{\displaystyle z_{1},z_{2}\in (I+J)\Rightarrow \exists (x_{1},y_{1}),(x_{2},y_{2})\in I\times J}"></span> tales que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{i}=x_{i}+y_{i}~(i=1,2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{i}=x_{i}+y_{i}~(i=1,2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bb74311e1f9f8c8ce5fef024fe13fb02e9f058b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.538ex; height:2.843ex;" alt="{\displaystyle z_{i}=x_{i}+y_{i}~(i=1,2)}"></span>. Como <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I,J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>,</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I,J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67646f95bd53d6dc4fdd22233a30ffc358c69248" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.677ex; height:2.509ex;" alt="{\displaystyle I,J}"></span> son ideales, entonces son subgrupos de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> y por ende, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{1}-x_{2},y_{1}-y_{2})\in I\times J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>&#x00D7;<!-- × --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{1}-x_{2},y_{1}-y_{2})\in I\times J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa775204b4a055f15d01ab89c97dd7148112251f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.003ex; height:2.843ex;" alt="{\displaystyle (x_{1}-x_{2},y_{1}-y_{2})\in I\times J}"></span>, de manera que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1}+(-z_{2})=(x_{1}-x_{2})+(y_{1}-y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1}+(-z_{2})=(x_{1}-x_{2})+(y_{1}-y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2933f09d4cd8b5405aa8b2bc97108673c0b38953" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.122ex; height:2.843ex;" alt="{\displaystyle z_{1}+(-z_{2})=(x_{1}-x_{2})+(y_{1}-y_{2})}"></span> es un elemento del conjunto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I+J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>+</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I+J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff0e36f3880c3eae9b440c7e412a0f02664b8624" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.484ex; height:2.343ex;" alt="{\displaystyle I+J}"></span>. Ergo, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall z_{1},z_{2}\in I+J,~(z_{1}-z_{2})\in I+J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>+</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall z_{1},z_{2}\in I+J,~(z_{1}-z_{2})\in I+J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1d99f3c9cbd4ac952b92a9d5643f996c0d32347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.781ex; height:2.843ex;" alt="{\displaystyle \forall z_{1},z_{2}\in I+J,~(z_{1}-z_{2})\in I+J}"></span>, por lo tanto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I+J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>+</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I+J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff0e36f3880c3eae9b440c7e412a0f02664b8624" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.484ex; height:2.343ex;" alt="{\displaystyle I+J}"></span> es subgrupo de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1aea157994289d7d45060934d3815375eab3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.394ex; height:2.843ex;" alt="{\displaystyle (A,+)}"></span>.</li> <li>En segundo lugar, sea <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z=(x+y)\in I+J,a\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo>,</mo> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z=(x+y)\in I+J,a\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28cc06ac0f52c2729e382588babb04e1b65b371f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.493ex; height:2.843ex;" alt="{\displaystyle z=(x+y)\in I+J,a\in A}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot z=a\cdot (x+y)=a\cdot x+a\cdot y=(a\cdot x)+(a\cdot y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>z</mi> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot z=a\cdot (x+y)=a\cdot x+a\cdot y=(a\cdot x)+(a\cdot y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bbcb5498c7ebc0a4b0f9feaf615d8846cb456ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.242ex; height:2.843ex;" alt="{\displaystyle a\cdot z=a\cdot (x+y)=a\cdot x+a\cdot y=(a\cdot x)+(a\cdot y)}"></span>. Por ser <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I,J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>,</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I,J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67646f95bd53d6dc4fdd22233a30ffc358c69248" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.677ex; height:2.509ex;" alt="{\displaystyle I,J}"></span> ideales de <i>A</i> se tiene que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a\cdot x)\in I,~(a\cdot y)\in J~\forall a\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2208;<!-- ∈ --></mo> <mi>J</mi> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a\cdot x)\in I,~(a\cdot y)\in J~\forall a\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0216be5a01d5fa51b09b669aa73e8fa229bf967" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.547ex; height:2.843ex;" alt="{\displaystyle (a\cdot x)\in I,~(a\cdot y)\in J~\forall a\in A}"></span>. De este modo, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot z\in I+J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>z</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>+</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot z\in I+J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e63db6a96599c11365de254df42e2529cbfc945" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.321ex; height:2.343ex;" alt="{\displaystyle a\cdot z\in I+J}"></span>.</li></ul></dd></dl></dd></dl> <dl><dd><dl><dd>Con esto queda demostrado que era correcta la afirmación enunciada.</dd></dl></dd></dl> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Intersección"><span id="Intersecci.C3.B3n"></span>Intersección</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=6" title="Editar sección: Intersección"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Toda intersección de ideales es un ideal. </p> <table class="mw-collapsible wikitable mw-collapsed" width="75%" style="text-align:left; padding:0px; background-color: var(--background-color-neutral-subtle, #f9f9f9); color: var(--color-base, #202122);"> <tbody><tr> <td style="text-align:left; font-weight:bold;">Demostración </td></tr> <tr> <td style="background-color: var(--background-color-base, #fff); color: var(--color-base, #202122); text-align:left; font-size:95%; padding:6px"> <p>Sea una familia de ideales <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{I_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{I_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c9ff34d10c2fe0ebb38724a9a80f2545be858de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.437ex; height:2.843ex;" alt="{\displaystyle \{I_{k}\}}"></span>, queremos comprobar que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=\bigcap _{k}I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=\bigcap _{k}I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2b9d1bdd6fcd67dc72809c2ca9e91dddbdd9197" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.351ex; height:5.509ex;" alt="{\displaystyle I=\bigcap _{k}I_{k}}"></span> es ideal: </p> <dl><dd><dl><dd><ul><li>Comprobemos que es subgrupo del grupo aditivo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1aea157994289d7d45060934d3815375eab3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.394ex; height:2.843ex;" alt="{\displaystyle (A,+)}"></span>. Sean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in \bigcap _{k}I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in \bigcap _{k}I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bd46be115ca93e9c262080c7baa1ab860953c3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:11.44ex; height:5.509ex;" alt="{\displaystyle x,y\in \bigcap _{k}I_{k}}"></span>, entonces se tiene que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y\in I_{k},\forall k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y\in I_{k},\forall k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dcf1ffac694931c7ced76cfbd69bd0b41ccb71a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.009ex; height:2.509ex;" alt="{\displaystyle x,y\in I_{k},\forall k}"></span>. Como los <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"></span> son ideales, entonces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-y\in I_{k},\forall k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-y\in I_{k},\forall k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/129dc67131f9e8bc2cab7feebc27549302efb76e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.816ex; height:2.509ex;" alt="{\displaystyle x-y\in I_{k},\forall k}"></span>, por lo que a su vez se tiene que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x-y\in \bigcap _{k}I_{k}=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x-y\in \bigcap _{k}I_{k}=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e97222c074d23d8e09897e274e709943c7fde9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:17.517ex; height:5.509ex;" alt="{\displaystyle x-y\in \bigcap _{k}I_{k}=I}"></span>. Por consiguiente <i>I</i> es subgrupo de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A,+)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>+</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A,+)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1aea157994289d7d45060934d3815375eab3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.394ex; height:2.843ex;" alt="{\displaystyle (A,+)}"></span>.</li> <li>Comprobemos ahora que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot x\in I,\forall a\in A,x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot x\in I,\forall a\in A,x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/213de4b098052b896efa33ff4fdd9078dd81bb7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.767ex; height:2.509ex;" alt="{\displaystyle a\cdot x\in I,\forall a\in A,x\in I}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in I\Rightarrow x\in \bigcap _{k}I_{k}\Rightarrow x\in I_{k},\forall k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in I\Rightarrow x\in \bigcap _{k}I_{k}\Rightarrow x\in I_{k},\forall k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0841e2471c4ed2b1360c8b32e8951c9756067de7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:31.641ex; height:5.509ex;" alt="{\displaystyle x\in I\Rightarrow x\in \bigcap _{k}I_{k}\Rightarrow x\in I_{k},\forall k}"></span>. Ahora bien, como los <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d658e7f6b34dd1d3025a7c9a72efba5b9f46475d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.112ex; height:2.509ex;" alt="{\displaystyle I_{k}}"></span> son ideales, sabemos que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot x\in I_{k},\forall a\in A,\forall k\Rightarrow a\cdot x\in \bigcap _{k}I_{k},\forall a\in A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>k</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot x\in I_{k},\forall a\in A,\forall k\Rightarrow a\cdot x\in \bigcap _{k}I_{k},\forall a\in A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b6618d3cf60efec2a2c483ab66bbcd1df5fd420" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.783ex; height:5.509ex;" alt="{\displaystyle a\cdot x\in I_{k},\forall a\in A,\forall k\Rightarrow a\cdot x\in \bigcap _{k}I_{k},\forall a\in A}"></span>. Por consiguiente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\cdot x\in I,\forall a\in A,x\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> <mo>,</mo> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>a</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\cdot x\in I,\forall a\in A,x\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/213de4b098052b896efa33ff4fdd9078dd81bb7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.767ex; height:2.509ex;" alt="{\displaystyle a\cdot x\in I,\forall a\in A,x\in I}"></span>.</li></ul></dd></dl></dd></dl> <dl><dd><dl><dd>Queda con esto demostrado el aserto anterior, i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigcap _{k}I_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigcap _{k}I_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50422fe03e136510ae3a0a9b8b0f999225f4a48c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:5.08ex; height:5.509ex;" alt="{\displaystyle \bigcap _{k}I_{k}}"></span> es ideal, siendo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{I_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{I_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c9ff34d10c2fe0ebb38724a9a80f2545be858de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.437ex; height:2.843ex;" alt="{\displaystyle \{I_{k}\}}"></span> una familia arbitraria de ideales de <i>A</i>.</dd></dl></dd></dl> </td></tr></tbody></table> <p>El conjunto de los ideales de <i>A</i> con estas dos operaciones forma una <a href="/wiki/Orden_total#Cadenas" title="Orden total">cadena</a>. De esta segunda ley se permite la noción de <b><a href="/wiki/Generador_de_un_ideal" title="Generador de un ideal">ideal generado</a></b>. Si <i>P</i> es un <a href="/wiki/Subconjunto" title="Subconjunto">subconjunto</a> de un anillo <i>A</i>, se llama <i>ideal generado por P</i> a la intersección de todos los ideales de <i>A</i> que contienen a <i>P</i>, notado usualmente como <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle P\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>P</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle P\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ff17f7d77ac58536892ce5ce8f323e316c641cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.555ex; height:2.843ex;" alt="{\displaystyle \langle P\rangle }"></span>. Se puede comprobar que: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle P\rangle =\{a_{1}x_{1}+\dots +a_{n}x_{n}:a_{1},\dots ,a_{n}\in P,~x_{1},\dots ,x_{n}\in A\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>P</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle P\rangle =\{a_{1}x_{1}+\dots +a_{n}x_{n}:a_{1},\dots ,a_{n}\in P,~x_{1},\dots ,x_{n}\in A\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7a22368b5371bc19f38fcf862f9b27ca4dd17ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.789ex; height:2.843ex;" alt="{\displaystyle \langle P\rangle =\{a_{1}x_{1}+\dots +a_{n}x_{n}:a_{1},\dots ,a_{n}\in P,~x_{1},\dots ,x_{n}\in A\}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I+J=\langle I\cup J\rangle =\bigcap _{k}\{G_{k}:G_{k}{\textrm {~es~ideal~en~}}A{\textrm {~y~}}(I\cup J)\subseteq G_{k}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>+</mo> <mi>J</mi> <mo>=</mo> <mo fence="false" stretchy="false">&#x27E8;<!-- ⟨ --></mo> <mi>I</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>J</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <mo fence="false" stretchy="false">{</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>:</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>~es~ideal~en~</mtext> </mrow> </mrow> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>~y~</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>J</mi> <mo stretchy="false">)</mo> <mo>&#x2286;<!-- ⊆ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I+J=\langle I\cup J\rangle =\bigcap _{k}\{G_{k}:G_{k}{\textrm {~es~ideal~en~}}A{\textrm {~y~}}(I\cup J)\subseteq G_{k}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f89cef3761371111be4ecc64d7d24a63cc0822db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:63.439ex; height:5.509ex;" alt="{\displaystyle I+J=\langle I\cup J\rangle =\bigcap _{k}\{G_{k}:G_{k}{\textrm {~es~ideal~en~}}A{\textrm {~y~}}(I\cup J)\subseteq G_{k}\}}"></span></li></ol> <p>Ejemplos: </p> <ul><li>Para un anillo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, <i>a</i> ∈ <i>A</i> engendra el ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0d5ef9a4c8d9cf3a91c6e55730f191f2a92a0fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.973ex; height:2.176ex;" alt="{\displaystyle aA}"></span> (por ejemplo <i>n</i> engendra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33e5e8bd9b24ba5d0b31eda653b78a63e1af831d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.945ex; height:2.176ex;" alt="{\displaystyle n\mathbb {Z} }"></span>, ideal de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li>Si <i>I</i> y <i>J</i> son dos ideales de <i>A</i>, el ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I+J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>+</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I+J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff0e36f3880c3eae9b440c7e412a0f02664b8624" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.484ex; height:2.343ex;" alt="{\displaystyle I+J}"></span> está engendrado por el subconjunto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\cup J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\cup J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e679e62d6bb336c5cf1de79a29584a2367548503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.226ex; height:2.176ex;" alt="{\displaystyle I\cup J}"></span> de <i>A</i>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Producto">Producto</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=7" title="Editar sección: Producto"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si <i>I</i> y <i>J</i> son dos ideales de un anillo, se llama producto de <i>I</i> y <i>J</i> al ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle IJ}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>I</mi> <mi>J</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle IJ}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ec350b2ec674af5e6cbeb16d6715cba70ec86b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.643ex; height:2.176ex;" alt="{\displaystyle \textstyle IJ}"></span> constituido por todos los elementos de la forma <i>xy</i> donde <i>x</i> pertenece a <i>I</i> e <i>y</i> pertenece a <i>J</i>. Se tiene que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle IJ\subset I\cap J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mi>J</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi>I</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle IJ\subset I\cap J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aec8a1ef1cb5b263fc1d9e4ed79599ad05c3c843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.967ex; height:2.176ex;" alt="{\displaystyle IJ\subset I\cap J}"></span>. </p><p>Como ejemplo, en el anillo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span> , el producto de los ideales <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33e5e8bd9b24ba5d0b31eda653b78a63e1af831d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.945ex; height:2.176ex;" alt="{\displaystyle n\mathbb {Z} }"></span> y <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f28bf16b40b47b6da6f2649085c5dde23fb24e3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:2.809ex; height:2.509ex;" alt="{\displaystyle p\mathbb {Z} }"></span> es el ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f6b0ca6d763677c007f51206b21e9c3fc5f6c83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.114ex; height:2.509ex;" alt="{\displaystyle np\mathbb {Z} }"></span> y este último está incluido en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\mathbb {Z} \cap p\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\mathbb {Z} \cap p\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b922885203f5c8af5a733c39a91c76d4a058fe95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.247ex; height:2.509ex;" alt="{\displaystyle n\mathbb {Z} \cap p\mathbb {Z} }"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Anillo_cociente">Anillo cociente</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=8" title="Editar sección: Anillo cociente"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si <i>I</i> es un ideal bilátero del anillo A, la relación <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x{\mathcal {R}}y\Leftrightarrow x-y\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">R</mi> </mrow> </mrow> <mi>y</mi> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x{\mathcal {R}}y\Leftrightarrow x-y\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f69abb07ea88809994f39cbed1615585b564cd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.408ex; height:2.509ex;" alt="{\displaystyle x{\mathcal {R}}y\Leftrightarrow x-y\in I}"></span> es una <a href="/wiki/Relaci%C3%B3n_de_equivalencia" title="Relación de equivalencia">relación de equivalencia</a> compatible con las dos leyes del anillo. Se puede crear entonces, sobre el conjunto de las clases <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {x}}=x+I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {x}}=x+I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/723d3b8deead1e92e4371bc79f0aff198fd43d7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.77ex; height:2.343ex;" alt="{\displaystyle {\dot {x}}=x+I}"></span> una estructura de anillo denominada anillo cociente A/ I del anillo A por el ideal I. La construcción se realiza sobre la base del grupo aditivo del anillo. Cabe tomar como elementos de A/I las clases adjuntas a + I( llamadas «clases de restos respecto al módulo del ideal I»). </p><p>Como suma de clases se define por (a +I) +<sup>º</sup> (b+ I) =(a+b) + L; el opuesto -<sup>º</sup>(a+I) = -a + I. </p><p>Como producto de clases (a+I) ×<sup>º</sup> (b+I)= ab + I.<sup id="cite_ref-2" class="reference separada"><a href="#cite_note-2"><span class="corchete-llamada">[</span>2<span class="corchete-llamada">]</span></a></sup>&#8203; </p> <div class="mw-heading mw-heading2"><h2 id="Casos_particulares">Casos particulares</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=9" title="Editar sección: Casos particulares"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b><a href="/wiki/Ideal_principal" title="Ideal principal">Ideal principal</a></b>: es un ideal generado por <i>un único</i> elemento. </p><p><b>Ideal primario</b>: en un anillo conmutativo unitario, un ideal <i>I</i> es primario <a href="/wiki/Si_y_solo_si" class="mw-redirect" title="Si y solo si">si y solo si</a> para todo <i>a</i> y <i>b</i> tales que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/533185e2e516453773cb2204c35bb2ee14f81552" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.24ex; height:2.176ex;" alt="{\displaystyle ab\in I}"></span> , si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\notin I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\notin I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a7f5baec4edb65107ff229a41acae360f0f8ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.242ex; height:2.676ex;" alt="{\displaystyle a\notin I}"></span> entonces existe un entero natural <i>n</i> tal que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{n}\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{n}\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68a2b0a837c3402a2ae518a3511b25e596cfe0b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.228ex; height:2.343ex;" alt="{\displaystyle b^{n}\in I}"></span>. </p><p><b><a href="/wiki/Ideal_primo" title="Ideal primo">Ideal primo</a></b>: en un anillo conmutativo unitario, <i>I</i> es un ideal primo si y solo si <i>I</i> es distinto de <i>A</i> y, para todo <i>a</i> y <i>b</i> pertenecientes a A tales que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ab\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ab\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/533185e2e516453773cb2204c35bb2ee14f81552" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.24ex; height:2.176ex;" alt="{\displaystyle ab\in I}"></span>, si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\notin I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\notin I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a7f5baec4edb65107ff229a41acae360f0f8ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.242ex; height:2.676ex;" alt="{\displaystyle a\notin I}"></span> entonces <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4535d2ecfbd140eb8908c10eba1d79f17bd7c0ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.01ex; height:2.176ex;" alt="{\displaystyle b\in I}"></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> es un ideal primo de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c563026ff91220a9c922d1c566f32515bcf0df1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.712ex; height:2.176ex;" alt="{\displaystyle A\Leftrightarrow }"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f696502e0b1229767b0e553a85b5cb70dda49e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.651ex; height:2.843ex;" alt="{\displaystyle A/P}"></span> es <a href="/wiki/Dominio_de_integridad" title="Dominio de integridad">dominio de integridad</a>.</dd></dl> <p><b>Ideal irreducible</b>&#160;: en un anillo conmutativo unitario, un ideal <i>I</i> es irreducible si no se puede escribir como intersección de dos ideales <i>J</i> y <i>K</i> diferentes de <i>I</i>. </p><p><b><a href="/wiki/Ideal_maximal" title="Ideal maximal">Ideal maximal</a></b>&#160;: Un ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> es maximal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></span> existen exactamente dos ideales que contienen a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>, a saber, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> y el mismo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>. </p> <dl><dd>En un anillo conmutativo unitario, un ideal maximal es necesariamente primo.</dd> <dd>El ideal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span> es un ideal maximal de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> si y solo si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A/M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A/M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42317ad001a9c394b804fa8c662f86f5fa8135a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.348ex; height:2.843ex;" alt="{\displaystyle A/M}"></span> es un <a href="/wiki/Cuerpo_(matem%C3%A1ticas)" title="Cuerpo (matemáticas)">cuerpo</a>.</dd></dl> <p><b><a href="/wiki/Radical_de_un_ideal" title="Radical de un ideal">Radical de un ideal</a></b>: Si <i>I</i> es un ideal de un anillo conmutativo <i>A</i>, se llama <a href="/wiki/Radical_de_un_ideal" title="Radical de un ideal">radical</a> de <i>I</i>, y se escribe <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>I</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84930d16ca4b945cc8d757cac5691bf82fbb2895" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.108ex; height:3.009ex;" alt="{\displaystyle {\sqrt {I}}}"></span> , al conjunto de los elementos <i>x</i> de <i>A</i> tales que existe un entero natural <i>n</i> para el cual <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{n}\in I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2208;<!-- ∈ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{n}\in I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d19a2f92aae6c34fddd785685c724715bba6d62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.561ex; height:2.343ex;" alt="{\displaystyle x^{n}\in I}"></span>. Es un ideal de <i>A</i>. </p> <dl><dd>Ejemplo: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 30\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>30</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 30\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87b0cb9f9006251ed4b39411bfc40b2c118d7f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.875ex; height:2.176ex;" alt="{\displaystyle 30\mathbb {Z} }"></span> es el radical de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 360\mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>360</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 360\mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e56692461764cd63bed5636ac041ccf3abf3960c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.038ex; height:2.176ex;" alt="{\displaystyle 360\mathbb {Z} }"></span></dd> <dd>Si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> es un anillo conmutativo, entonces tiene las propiedades siguientes:</dd></dl> <dl><dd><ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {I}}\supset I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>I</mi> </msqrt> </mrow> <mo>&#x2283;<!-- ⊃ --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {I}}\supset I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bfe9f0cee8a0cdae32df1ba5c0986ebd40ccad0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.378ex; height:3.009ex;" alt="{\displaystyle {\sqrt {I}}\supset I}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\sqrt {I}}}={\sqrt {I}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msqrt> <mi>I</mi> </msqrt> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>I</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\sqrt {I}}}={\sqrt {I}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10b349e55be1fd609019255998ed78dfab7d6f78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:11.637ex; height:4.843ex;" alt="{\displaystyle {\sqrt {\sqrt {I}}}={\sqrt {I}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {IJ}}={\sqrt {I\cap J}}={\sqrt {I}}\cap {\sqrt {J}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>I</mi> <mi>J</mi> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>I</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>J</mi> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>I</mi> </msqrt> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>J</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {IJ}}={\sqrt {I\cap J}}={\sqrt {I}}\cap {\sqrt {J}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aea33f5e980dbd7f9b5d2c4d4b35998a62419041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.035ex; height:3.009ex;" alt="{\displaystyle {\sqrt {IJ}}={\sqrt {I\cap J}}={\sqrt {I}}\cap {\sqrt {J}}}"></span></li> <li>Si, además, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> es unitario, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {I}}=A\Leftrightarrow I=A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>I</mi> </msqrt> </mrow> <mo>=</mo> <mi>A</mi> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mi>I</mi> <mo>=</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {I}}=A\Leftrightarrow I=A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc18261c9b2d414d4a1d259d8f72d47b8c879d80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.577ex; height:3.009ex;" alt="{\displaystyle {\sqrt {I}}=A\Leftrightarrow I=A}"></span></li></ul></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Referencias">Referencias</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=10" title="Editar sección: Referencias"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="listaref" style="list-style-type: decimal;"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">A.I. Kostrikin. «Introducción al álgebra» Editorial Mir, Moscú (1983)</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Kostrikin. Op. cit.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Véase_también"><span id="V.C3.A9ase_tambi.C3.A9n"></span>Véase también</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=11" title="Editar sección: Véase también"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Estructura_algebraica" title="Estructura algebraica">Estructura algebraica</a></li> <li><a href="/wiki/Anillo_(matem%C3%A1ticas)" class="mw-redirect" title="Anillo (matemáticas)">Anillo</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Enlaces_externos">Enlaces externos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;action=edit&amp;section=12" title="Editar sección: Enlaces externos"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span typeof="mw:File"><a href="/wiki/Archivo:Nuvola_apps_edu_mathematics-p.svg" class="mw-file-description" title="Ver el portal sobre Matemática"><img alt="Ver el portal sobre Matemática" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/20px-Nuvola_apps_edu_mathematics-p.svg.png" decoding="async" width="20" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/30px-Nuvola_apps_edu_mathematics-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Nuvola_apps_edu_mathematics-p.svg/40px-Nuvola_apps_edu_mathematics-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> <a href="/wiki/Portal:Matem%C3%A1tica" title="Portal:Matemática">Portal:Matemática</a>. Contenido relacionado con <b><a href="/wiki/Matem%C3%A1tica" class="mw-redirect" title="Matemática">Matemática</a></b>.</li> <li><span id="Reference-Mathworld-Ideal" class="citation web"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W</a>. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Ideal.html">«Ideal»</a>. En Weisstein, Eric W, ed. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i> <span style="color:var(--color-subtle, #555 );">(en inglés)</span>. <a href="/wiki/Wolfram_Research" title="Wolfram Research">Wolfram Research</a>.</span><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fes.wikipedia.org%3AIdeal+%28teor%C3%ADa+de+anillos%29&amp;rft.atitle=Ideal&amp;rft.au=Weisstein%2C+Eric+W&amp;rft.aulast=Weisstein%2C+Eric+W&amp;rft.genre=article&amp;rft.jtitle=MathWorld&amp;rft.pub=Wolfram+Research&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FIdeal.html&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r161257576">.mw-parser-output .mw-authority-control{margin-top:1.5em}.mw-parser-output .mw-authority-control .navbox table{margin:0}.mw-parser-output .mw-authority-control .navbox hr:last-child{display:none}.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projects{display:none}.mw-parser-output .mw-authority-control .mw-mf-linked-projects{display:flex;padding:0.5em;border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral,#eaecf0);color:var(--color-base,#202122)}.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul li{margin-bottom:0}.mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .mw-authority-control .navbox-list{border-color:#f8f9fa}.mw-parser-output .mw-authority-control .navbox th{background-color:#eeeeff}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d);background-color:var(--background-color-neutral,#27292d);color:var(--color-base,#eaecf0)}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral,#27292d)!important;color:var(--color-base,#eaecf0)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}}</style><div class="mw-authority-control"><div role="navigation" class="navbox" aria-label="Navbox" style="width: inherit;padding:3px"><table class="hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width: 12%; text-align:center;"><a href="/wiki/Control_de_autoridades" title="Control de autoridades">Control de autoridades</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><b>Proyectos Wikimedia</b></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q44649" class="extiw" title="wikidata:Q44649">Q44649</a></span></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Commonscat"><img alt="Commonscat" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Multimedia:</span> <span class="uid"><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Ideal_(ring_theory)">Ideal (ring theory)</a></span> / <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Special:MediaSearch?type=image&amp;search=%22Q44649%22">Q44649</a></span></span></li></ul> <hr /> <ul><li><b>Identificadores</b></li> <li><span style="white-space:nowrap;"><a href="/wiki/Biblioteca_Nacional_de_Francia" title="Biblioteca Nacional de Francia">BNF</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119794357">119794357</a> <a rel="nofollow" class="external text" href="http://data.bnf.fr/ark:/12148/cb119794357">(data)</a></span></li> <li><span style="white-space:nowrap;"><a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4161198-6">4161198-6</a></span></li> <li><span style="white-space:nowrap;"><a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85064134">sh85064134</a></span></li> <li><span style="white-space:nowrap;"><a href="/wiki/Biblioteca_Nacional_de_Israel" title="Biblioteca Nacional de Israel">NLI</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007538412305171">987007538412305171</a></span></li> <li><b>Diccionarios y enciclopedias</b></li> <li><span style="white-space:nowrap;"><a href="/wiki/Enciclopedia_Brit%C3%A1nica" title="Enciclopedia Británica">Britannica</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/ideal-mathematics">url</a></span></li></ul> </div></td></tr></tbody></table></div><div class="mw-mf-linked-projects hlist"> <ul><li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q44649" class="extiw" title="wikidata:Q44649">Q44649</a></span></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Commonscat"><img alt="Commonscat" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Multimedia:</span> <span class="uid"><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Ideal_(ring_theory)">Ideal (ring theory)</a></span> / <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Special:MediaSearch?type=image&amp;search=%22Q44649%22">Q44649</a></span></span></li></ul> </div></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐6f96f97888‐4s94d Cached time: 20241113133122 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.263 seconds Real time usage: 0.501 seconds Preprocessor visited node count: 1558/1000000 Post‐expand include size: 11920/2097152 bytes Template argument size: 2158/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 7/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 7323/5000000 bytes Lua time usage: 0.126/10.000 seconds Lua memory usage: 4280724/52428800 bytes Number of Wikibase entities loaded: 7/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 225.145 1 -total 70.14% 157.910 1 Plantilla:Control_de_autoridades 19.71% 44.371 1 Plantilla:MathWorld 18.14% 40.850 1 Plantilla:Cita_web 5.01% 11.277 1 Plantilla:Portal 3.43% 7.716 2 Plantilla:Iconos 1.55% 3.480 2 Plantilla:Demostración 1.29% 2.897 1 Plantilla:Listaref 1.00% 2.256 2 Plantilla:Siglo --> <!-- Saved in parser cache with key eswiki:pcache:idhash:2097189-0!canonical and timestamp 20241113133122 and revision id 156446996. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtenido de «<a dir="ltr" href="https://es.wikipedia.org/w/index.php?title=Ideal_(teoría_de_anillos)&amp;oldid=156446996">https://es.wikipedia.org/w/index.php?title=Ideal_(teoría_de_anillos)&amp;oldid=156446996</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categor%C3%ADas" title="Especial:Categorías">Categorías</a>: <ul><li><a href="/wiki/Categor%C3%ADa:%C3%81lgebra" title="Categoría:Álgebra">Álgebra</a></li><li><a href="/wiki/Categor%C3%ADa:Teor%C3%ADa_de_anillos" title="Categoría:Teoría de anillos">Teoría de anillos</a></li><li><a href="/wiki/Categor%C3%ADa:Estructuras_algebraicas" title="Categoría:Estructuras algebraicas">Estructuras algebraicas</a></li><li><a href="/wiki/Categor%C3%ADa:%C3%81lgebra_conmutativa" title="Categoría:Álgebra conmutativa">Álgebra conmutativa</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Categorías ocultas: <ul><li><a href="/wiki/Categor%C3%ADa:Wikipedia:Art%C3%ADculos_con_identificadores_BNF" title="Categoría:Wikipedia:Artículos con identificadores BNF">Wikipedia:Artículos con identificadores BNF</a></li><li><a href="/wiki/Categor%C3%ADa:Wikipedia:Art%C3%ADculos_con_identificadores_GND" title="Categoría:Wikipedia:Artículos con identificadores GND">Wikipedia:Artículos con identificadores GND</a></li><li><a href="/wiki/Categor%C3%ADa:Wikipedia:Art%C3%ADculos_con_identificadores_LCCN" title="Categoría:Wikipedia:Artículos con identificadores LCCN">Wikipedia:Artículos con identificadores LCCN</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Esta página se editó por última vez el 28 dic 2023 a las 00:19.</li> <li id="footer-info-copyright">El texto está disponible bajo la <a href="/wiki/Wikipedia:Texto_de_la_Licencia_Creative_Commons_Atribuci%C3%B3n-CompartirIgual_4.0_Internacional" title="Wikipedia:Texto de la Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional">Licencia Creative Commons Atribución-CompartirIgual 4.0</a>; pueden aplicarse cláusulas adicionales. Al usar este sitio aceptas nuestros <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/es">términos de uso</a> y nuestra <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/es">política de privacidad</a>.<br />Wikipedia&#174; es una marca registrada de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/es/">Fundación Wikimedia</a>, una organización sin ánimo de lucro.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/es">Política de privacidad</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Acerca_de">Acerca de Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Limitaci%C3%B3n_general_de_responsabilidad">Limitación de responsabilidad</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Código de conducta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Desarrolladores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/es.wikipedia.org">Estadísticas</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement/es">Declaración de cookies</a></li> <li id="footer-places-mobileview"><a href="//es.m.wikipedia.org/w/index.php?title=Ideal_(teor%C3%ADa_de_anillos)&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versión para móviles</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-mtwll","wgBackendResponseTime":152,"wgPageParseReport":{"limitreport":{"cputime":"0.263","walltime":"0.501","ppvisitednodes":{"value":1558,"limit":1000000},"postexpandincludesize":{"value":11920,"limit":2097152},"templateargumentsize":{"value":2158,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":7323,"limit":5000000},"entityaccesscount":{"value":7,"limit":400},"timingprofile":["100.00% 225.145 1 -total"," 70.14% 157.910 1 Plantilla:Control_de_autoridades"," 19.71% 44.371 1 Plantilla:MathWorld"," 18.14% 40.850 1 Plantilla:Cita_web"," 5.01% 11.277 1 Plantilla:Portal"," 3.43% 7.716 2 Plantilla:Iconos"," 1.55% 3.480 2 Plantilla:Demostración"," 1.29% 2.897 1 Plantilla:Listaref"," 1.00% 2.256 2 Plantilla:Siglo"]},"scribunto":{"limitreport-timeusage":{"value":"0.126","limit":"10.000"},"limitreport-memusage":{"value":4280724,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-6f96f97888-4s94d","timestamp":"20241113133122","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ideal (teor\u00eda de anillos)","url":"https:\/\/es.wikipedia.org\/wiki\/Ideal_(teor%C3%ADa_de_anillos)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q44649","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q44649","author":{"@type":"Organization","name":"Colaboradores de los proyectos Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-05-03T18:04:15Z","dateModified":"2023-12-28T00:19:52Z","headline":"subestructura algebraica"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10