CINXE.COM

nth root - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>nth root - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"5fec6486-04c0-4946-98cc-ded67243fbc2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Nth_root","wgTitle":"Nth root","wgCurRevisionId":1272993136,"wgRevisionId":1272993136,"wgArticleId":235029,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from October 2022","All articles needing additional references","Articles containing Arabic-language text","Articles containing Latin-language text","Wikipedia articles with style issues from April 2022","All articles with style issues","Elementary algebra","Operations on numbers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext", "wgRelevantPageName":"Nth_root","wgRelevantArticleId":235029,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q601053","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="nth root - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Nth_root"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Nth_root&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Nth_root"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Nth_root rootpage-Nth_root skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Nth+root" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Nth+root" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Nth+root" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Nth+root" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition_and_notation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition_and_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition and notation</span> </div> </a> <button aria-controls="toc-Definition_and_notation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition and notation subsection</span> </button> <ul id="toc-Definition_and_notation-sublist" class="vector-toc-list"> <li id="toc-Square_roots" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Square_roots"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Square roots</span> </div> </a> <ul id="toc-Square_roots-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cube_roots" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cube_roots"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Cube roots</span> </div> </a> <ul id="toc-Cube_roots-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Identities_and_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Identities_and_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Identities and properties</span> </div> </a> <ul id="toc-Identities_and_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Simplified_form_of_a_radical_expression" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Simplified_form_of_a_radical_expression"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Simplified form of a radical expression</span> </div> </a> <ul id="toc-Simplified_form_of_a_radical_expression-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Infinite_series" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Infinite_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Infinite series</span> </div> </a> <ul id="toc-Infinite_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computing_principal_roots" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computing_principal_roots"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Computing principal roots</span> </div> </a> <button aria-controls="toc-Computing_principal_roots-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Computing principal roots subsection</span> </button> <ul id="toc-Computing_principal_roots-sublist" class="vector-toc-list"> <li id="toc-Using_Newton&#039;s_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Using_Newton&#039;s_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Using Newton's method</span> </div> </a> <ul id="toc-Using_Newton&#039;s_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Digit-by-digit_calculation_of_principal_roots_of_decimal_(base_10)_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Digit-by-digit_calculation_of_principal_roots_of_decimal_(base_10)_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Digit-by-digit calculation of principal roots of decimal (base 10) numbers</span> </div> </a> <ul id="toc-Digit-by-digit_calculation_of_principal_roots_of_decimal_(base_10)_numbers-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Logarithmic_calculation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logarithmic_calculation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Logarithmic calculation</span> </div> </a> <ul id="toc-Logarithmic_calculation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Geometric_constructibility" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Geometric_constructibility"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Geometric constructibility</span> </div> </a> <ul id="toc-Geometric_constructibility-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complex_roots" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Complex_roots"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Complex roots</span> </div> </a> <button aria-controls="toc-Complex_roots-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Complex roots subsection</span> </button> <ul id="toc-Complex_roots-sublist" class="vector-toc-list"> <li id="toc-Square_roots_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Square_roots_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Square roots</span> </div> </a> <ul id="toc-Square_roots_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Roots_of_unity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Roots_of_unity"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Roots of unity</span> </div> </a> <ul id="toc-Roots_of_unity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-nth_roots" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#nth_roots"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span><i>n</i>th roots</span> </div> </a> <ul id="toc-nth_roots-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Solving_polynomials" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Solving_polynomials"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Solving polynomials</span> </div> </a> <ul id="toc-Solving_polynomials-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof_of_irrationality_for_non-perfect_nth_power_x" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proof_of_irrationality_for_non-perfect_nth_power_x"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Proof of irrationality for non-perfect <i>n</i>th power <i>x</i></span> </div> </a> <ul id="toc-Proof_of_irrationality_for_non-perfect_nth_power_x-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="texhtml mvar" style="font-style:italic;">n</span>th root</h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 70 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-70" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">70 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Wortelgetal" title="Wortelgetal – Afrikaans" lang="af" hreflang="af" data-title="Wortelgetal" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AC%D8%B0%D8%B1_%D9%86%D9%88%D9%86%D9%8A" title="جذر نوني – Arabic" lang="ar" hreflang="ar" data-title="جذر نوني" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/K%C3%B6kalt%C4%B1" title="Kökaltı – Azerbaijani" lang="az" hreflang="az" data-title="Kökaltı" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/N-%E0%A6%A4%E0%A6%AE_%E0%A6%AE%E0%A7%82%E0%A6%B2" title="N-তম মূল – Bangla" lang="bn" hreflang="bn" data-title="N-তম মূল" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B0%D0%BD%D1%8C_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Корань (матэматыка) – Belarusian" lang="be" hreflang="be" data-title="Корань (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Gamot_(matematika)" title="Gamot (matematika) – Central Bikol" lang="bcl" hreflang="bcl" data-title="Gamot (matematika)" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D1%83%D0%B2%D0%B0%D0%BD%D0%B5" title="Коренуване – Bulgarian" lang="bg" hreflang="bg" data-title="Коренуване" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D0%98%D0%B7%D0%B0%D0%B3%D1%83%D1%83%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Изагуур (математика) – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Изагуур (математика)" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Arrel_en%C3%A8sima" title="Arrel enèsima – Catalan" lang="ca" hreflang="ca" data-title="Arrel enèsima" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D1%8B%D0%BC%D0%B0%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Тымар (математика) – Chuvash" lang="cv" hreflang="cv" data-title="Тымар (математика)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Odmocnina" title="Odmocnina – Czech" lang="cs" hreflang="cs" data-title="Odmocnina" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Mudzi_wenhamba" title="Mudzi wenhamba – Shona" lang="sn" hreflang="sn" data-title="Mudzi wenhamba" data-language-autonym="ChiShona" data-language-local-name="Shona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/N%27te_rod" title="N&#039;te rod – Danish" lang="da" hreflang="da" data-title="N&#039;te rod" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Wurzel_(Mathematik)" title="Wurzel (Mathematik) – German" lang="de" hreflang="de" data-title="Wurzel (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Juur_(matemaatika)" title="Juur (matemaatika) – Estonian" lang="et" hreflang="et" data-title="Juur (matemaatika)" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9D%CE%B9%CE%BF%CF%83%CF%84%CE%AE_%CF%81%CE%AF%CE%B6%CE%B1" title="Νιοστή ρίζα – Greek" lang="el" hreflang="el" data-title="Νιοστή ρίζα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Radicaci%C3%B3n" title="Radicación – Spanish" lang="es" hreflang="es" data-title="Radicación" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Erroketa" title="Erroketa – Basque" lang="eu" hreflang="eu" data-title="Erroketa" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%DB%8C%D8%B4%D9%87_%D8%B9%D8%AF%D8%AF" title="ریشه عدد – Persian" lang="fa" hreflang="fa" data-title="ریشه عدد" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Racine_d%27un_nombre" title="Racine d&#039;un nombre – French" lang="fr" hreflang="fr" data-title="Racine d&#039;un nombre" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gv mw-list-item"><a href="https://gv.wikipedia.org/wiki/Noo_fraue" title="Noo fraue – Manx" lang="gv" hreflang="gv" data-title="Noo fraue" data-language-autonym="Gaelg" data-language-local-name="Manx" class="interlanguage-link-target"><span>Gaelg</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ra%C3%ADz_(matem%C3%A1ticas)" title="Raíz (matemáticas) – Galician" lang="gl" hreflang="gl" data-title="Raíz (matemáticas)" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B1%B0%EB%93%AD%EC%A0%9C%EA%B3%B1%EA%B7%BC" title="거듭제곱근 – Korean" lang="ko" hreflang="ko" data-title="거듭제곱근" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B1%D6%80%D5%B4%D5%A1%D5%BF_(%D5%B4%D5%A1%D5%A9%D5%A5%D5%B4%D5%A1%D5%BF%D5%AB%D5%AF%D5%A1)" title="Արմատ (մաթեմատիկա) – Armenian" lang="hy" hreflang="hy" data-title="Արմատ (մաթեմատիկա)" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AE%E0%A5%82%E0%A4%B2_(%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE_%E0%A4%95%E0%A4%BE)" title="मूल (संख्या का) – Hindi" lang="hi" hreflang="hi" data-title="मूल (संख्या का)" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Korijen_(funkcija)" title="Korijen (funkcija) – Croatian" lang="hr" hreflang="hr" data-title="Korijen (funkcija)" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Radikifo" title="Radikifo – Ido" lang="io" hreflang="io" data-title="Radikifo" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Akar_bilangan" title="Akar bilangan – Indonesian" lang="id" hreflang="id" data-title="Akar bilangan" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/R%C3%B3tarv%C3%ADsir" title="Rótarvísir – Icelandic" lang="is" hreflang="is" data-title="Rótarvísir" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Radicale_(matematica)" title="Radicale (matematica) – Italian" lang="it" hreflang="it" data-title="Radicale (matematica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%95%D7%A8%D7%A9_%D7%A9%D7%9C_%D7%9E%D7%A1%D7%A4%D7%A8" title="שורש של מספר – Hebrew" lang="he" hreflang="he" data-title="שורש של מספר" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B3%82%E0%B2%B2" title="ಮೂಲ – Kannada" lang="kn" hreflang="kn" data-title="ಮೂಲ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A4%E1%83%94%E1%83%A1%E1%83%95%E1%83%98_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="ფესვი (მათემატიკა) – Georgian" lang="ka" hreflang="ka" data-title="ფესვი (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D2%AF%D0%B1%D1%96%D1%80_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Түбір (математика) – Kazakh" lang="kk" hreflang="kk" data-title="Түбір (математика)" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D0%BA%D0%B0%D0%BB%D1%8B%D0%BA_%D1%82%D0%B0%D0%BC%D1%8B%D1%80" title="Арифметикалык тамыр – Kyrgyz" lang="ky" hreflang="ky" data-title="Арифметикалык тамыр" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Sakne_(matem%C4%81tika)" title="Sakne (matemātika) – Latvian" lang="lv" hreflang="lv" data-title="Sakne (matemātika)" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/N_%C5%A1aknis" title="N šaknis – Lithuanian" lang="lt" hreflang="lt" data-title="N šaknis" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Wortel_(wiskunde)" title="Wortel (wiskunde) – Limburgish" lang="li" hreflang="li" data-title="Wortel (wiskunde)" data-language-autonym="Limburgs" data-language-local-name="Limburgish" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Gy%C3%B6kvon%C3%A1s" title="Gyökvonás – Hungarian" lang="hu" hreflang="hu" data-title="Gyökvonás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D1%83%D0%B2%D0%B0%D1%9A%D0%B5" title="Коренување – Macedonian" lang="mk" hreflang="mk" data-title="Коренување" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Wortel_(wiskunde)" title="Wortel (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Wortel (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%86%AA%E6%A0%B9" title="冪根 – Japanese" lang="ja" hreflang="ja" data-title="冪根" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/N-te-rot" title="N-te-rot – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="N-te-rot" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/N-te-rot" title="N-te-rot – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="N-te-rot" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Caaroo_N" title="Caaroo N – Oromo" lang="om" hreflang="om" data-title="Caaroo N" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://uz.wikipedia.org/wiki/Arifmetik_ildiz" title="Arifmetik ildiz – Uzbek" lang="uz" hreflang="uz" data-title="Arifmetik ildiz" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/W%C3%B6rtel_(Mathematik)" title="Wörtel (Mathematik) – Low German" lang="nds" hreflang="nds" data-title="Wörtel (Mathematik)" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Pierwiastkowanie" title="Pierwiastkowanie – Polish" lang="pl" hreflang="pl" data-title="Pierwiastkowanie" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Radicia%C3%A7%C3%A3o" title="Radiciação – Portuguese" lang="pt" hreflang="pt" data-title="Radiciação" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Radical_(matematic%C4%83)" title="Radical (matematică) – Romanian" lang="ro" hreflang="ro" data-title="Radical (matematică)" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Yupay_saphi" title="Yupay saphi – Quechua" lang="qu" hreflang="qu" data-title="Yupay saphi" data-language-autonym="Runa Simi" data-language-local-name="Quechua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ru badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D1%8C_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Корень (математика) – Russian" lang="ru" hreflang="ru" data-title="Корень (математика)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Nth_root" title="Nth root – Simple English" lang="en-simple" hreflang="en-simple" data-title="Nth root" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Odmocnina" title="Odmocnina – Slovak" lang="sk" hreflang="sk" data-title="Odmocnina" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Korenjenje" title="Korenjenje – Slovenian" lang="sl" hreflang="sl" data-title="Korenjenje" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%95%DB%95%DA%AF%DB%8C_n%DB%95%D9%85" title="ڕەگی nەم – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ڕەگی nەم" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D0%B5%D0%BD%D0%BE%D0%B2%D0%B0%D1%9A%D0%B5" title="Кореновање – Serbian" lang="sr" hreflang="sr" data-title="Кореновање" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Juuri_(laskutoimitus)" title="Juuri (laskutoimitus) – Finnish" lang="fi" hreflang="fi" data-title="Juuri (laskutoimitus)" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Rot_av_tal" title="Rot av tal – Swedish" lang="sv" hreflang="sv" data-title="Rot av tal" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Ugat_(matematika)" title="Ugat (matematika) – Tagalog" lang="tl" hreflang="tl" data-title="Ugat (matematika)" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/N%E0%AE%86%E0%AE%AE%E0%AF%8D_%E0%AE%AA%E0%AE%9F%E0%AE%BF_%E0%AE%AE%E0%AF%82%E0%AE%B2%E0%AE%AE%E0%AF%8D" title="Nஆம் படி மூலம் – Tamil" lang="ta" hreflang="ta" data-title="Nஆம் படி மூலம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B2%E0%B8%81%E0%B8%97%E0%B8%B5%E0%B9%88_n" title="รากที่ n – Thai" lang="th" hreflang="th" data-title="รากที่ n" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%96%D0%BD%D1%8C_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Корінь (математика) – Ukrainian" lang="uk" hreflang="uk" data-title="Корінь (математика)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D8%B5%D9%85" title="اصم – Urdu" lang="ur" hreflang="ur" data-title="اصم" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-ug mw-list-item"><a href="https://ug.wikipedia.org/wiki/%D9%8A%D9%89%D9%84%D8%AA%D9%89%D8%B2_(%D9%85%D8%A7%D8%AA%DB%90%D9%85%D8%A7%D8%AA%D9%89%D9%83%D8%A7)" title="يىلتىز (ماتېماتىكا) – Uyghur" lang="ug" hreflang="ug" data-title="يىلتىز (ماتېماتىكا)" data-language-autonym="ئۇيغۇرچە / Uyghurche" data-language-local-name="Uyghur" class="interlanguage-link-target"><span>ئۇيغۇرچە / Uyghurche</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C4%83n_b%E1%BA%ADc_n" title="Căn bậc n – Vietnamese" lang="vi" hreflang="vi" data-title="Căn bậc n" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Gamot_(matematika)" title="Gamot (matematika) – Waray" lang="war" hreflang="war" data-title="Gamot (matematika)" data-language-autonym="Winaray" data-language-local-name="Waray" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%96%B9%E6%A0%B9" title="方根 – Wu" lang="wuu" hreflang="wuu" data-title="方根" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%A0%B9%E5%BC%8F" title="根式 – Cantonese" lang="yue" hreflang="yue" data-title="根式" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%96%B9%E6%A0%B9" title="方根 – Chinese" lang="zh" hreflang="zh" data-title="方根" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q601053#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nth_root" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Nth_root" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Nth_root"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nth_root&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Nth_root&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Nth_root"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nth_root&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Nth_root&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Nth_root" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Nth_root" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Nth_root&amp;oldid=1272993136" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Nth_root&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Nth_root&amp;id=1272993136&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNth_root"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNth_root"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Nth_root&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Nth_root&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/A_Guide_to_the_GRE/Radicals" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q601053" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Arithmetic operation, inverse of nth power</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about nth-roots of real and complex numbers. For other uses, see <a href="/wiki/Root_(disambiguation)#Mathematics" class="mw-disambig" title="Root (disambiguation)">Root (disambiguation) §&#160;Mathematics</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Nth_root" title="Special:EditPage/Nth root">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i>&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&amp;q=%22Nth+root%22">"Nth root"</a>&#160;–&#160;<a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&amp;q=%22Nth+root%22+-wikipedia&amp;tbs=ar:1">news</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&amp;q=%22Nth+root%22&amp;tbs=bkt:s&amp;tbm=bks">newspapers</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&amp;q=%22Nth+root%22+-wikipedia">books</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Nth+root%22">scholar</a>&#160;<b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Nth+root%22&amp;acc=on&amp;wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">October 2022</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, an <b><span class="texhtml mvar" style="font-style:italic;">n</span>th root</b> of a <a href="/wiki/Number" title="Number">number</a> <span class="texhtml mvar" style="font-style:italic;">x</span> is a number <span class="texhtml mvar" style="font-style:italic;">r</span> which, when <a href="/wiki/Exponentiation" title="Exponentiation">raised to the power</a> of <span class="texhtml mvar" style="font-style:italic;">n</span>, yields&#160;<span class="texhtml mvar" style="font-style:italic;">x</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{n}=\underbrace {r\times r\times \dotsb \times r} _{n{\text{ factors}}}=x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>r</mi> <mo>&#x00D7;<!-- × --></mo> <mi>r</mi> <mo>&#x00D7;<!-- × --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x00D7;<!-- × --></mo> <mi>r</mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;factors</mtext> </mrow> </mrow> </munder> <mo>=</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{n}=\underbrace {r\times r\times \dotsb \times r} _{n{\text{ factors}}}=x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ea81f2d1fdc6db966e9c8ab9b6607dcc72032c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:24.831ex; height:5.843ex;" alt="{\displaystyle r^{n}=\underbrace {r\times r\times \dotsb \times r} _{n{\text{ factors}}}=x.}"></span> </p><p>The <a href="/wiki/Positive_integer" class="mw-redirect" title="Positive integer">positive integer</a> <span class="texhtml mvar" style="font-style:italic;">n</span> is called the <i>index</i> or <i>degree</i>, and the number <span class="texhtml mvar" style="font-style:italic;">x</span> of which the root is taken is the <i>radicand.</i> A root of degree 2 is called a <i><a href="/wiki/Square_root" title="Square root">square root</a></i> and a root of degree 3, a <i><a href="/wiki/Cube_root" title="Cube root">cube root</a></i>. Roots of higher degree are referred by using <a href="/wiki/Ordinal_numeral" title="Ordinal numeral">ordinal numbers</a>, as in <i>fourth root</i>, <i>twentieth root</i>, etc. The computation of an <span class="texhtml mvar" style="font-style:italic;">n</span>th root is a <b>root extraction</b>. </p><p>For example, <span class="texhtml">3</span> is a square root of <span class="texhtml">9</span>, since <span class="texhtml">3<sup>2</sup> = 9</span>, and <span class="texhtml">−3</span> is also a square root of <span class="texhtml">9</span>, since <span class="texhtml">(−3)<sup>2</sup> = 9</span>. </p><p>The <span class="texhtml mvar" style="font-style:italic;">n</span>th root of <span class="texhtml mvar" style="font-style:italic;">x</span> is written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3ba2638d05cd9ed8dafae7e34986399e48ea99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}}"></span> using the <a href="/wiki/Radical_symbol" title="Radical symbol">radical symbol</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\phantom {x}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mphantom> <mi>x</mi> </mphantom> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\phantom {x}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f3297b4c8819ba4e37691292362bbaf312906a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt {\phantom {x}}}}"></span>. The square root is usually written as <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d62b24be305beff66cba9bfbcc01a362ba390f44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt {x}}}"></span>&#8288;</span>, with the degree omitted. Taking the <span class="texhtml mvar" style="font-style:italic;">n</span>th root of a number, for fixed <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>&#8288;</span>, is the <a href="/wiki/Inverse_function#Squaring_and_square_root_functions" title="Inverse function">inverse</a> of raising a number to the <span class="texhtml mvar" style="font-style:italic;">n</span>th power,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> and can be written as a <a href="/wiki/Fraction_(mathematics)" class="mw-redirect" title="Fraction (mathematics)">fractional</a> exponent: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}=x^{1/n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}=x^{1/n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0c6b20525f408db495858a62f88ed231ef66dd5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.203ex; height:3.509ex;" alt="{\displaystyle {\sqrt[{n}]{x}}=x^{1/n}.}"></span> </p><p>For a positive real number <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d62b24be305beff66cba9bfbcc01a362ba390f44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt {x}}}"></span> denotes the positive square root of <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3ba2638d05cd9ed8dafae7e34986399e48ea99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}}"></span> denotes the positive real <span class="texhtml mvar" style="font-style:italic;">n</span>th root. A negative real number <span class="texhtml">−<i>x</i></span> has no real-valued square roots, but when <span class="texhtml mvar" style="font-style:italic;">x</span> is treated as a complex number it has two <a href="/wiki/Imaginary_number" title="Imaginary number">imaginary</a> square roots, <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +i{\sqrt {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +i{\sqrt {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9481b44f7e22368b5b8c2a284f3c5a80e3e954cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.876ex; height:3.009ex;" alt="{\displaystyle +i{\sqrt {x}}}"></span>&#8288;</span> and <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i{\sqrt {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i{\sqrt {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acb49ee97737a5c4a425b013b2117d0b04891dae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.876ex; height:3.009ex;" alt="{\displaystyle -i{\sqrt {x}}}"></span>&#8288;</span>, where <span class="texhtml mvar" style="font-style:italic;">i</span> is the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>. </p><p>In general, any non-zero <a href="/wiki/Complex_number" title="Complex number">complex number</a> has <span class="texhtml mvar" style="font-style:italic;">n</span> distinct complex-valued <span class="texhtml mvar" style="font-style:italic;">n</span>th roots, equally distributed around a complex circle of constant <a href="/wiki/Absolute_value#Complex_numbers" title="Absolute value">absolute value</a>. (The <span class="texhtml mvar" style="font-style:italic;">n</span>th root of <span class="texhtml">0</span> is zero with <a href="/wiki/Multiple_root" class="mw-redirect" title="Multiple root">multiplicity</a> <span class="texhtml mvar" style="font-style:italic;">n</span>, and this circle degenerates to a point.) Extracting the <span class="texhtml mvar" style="font-style:italic;">n</span>th roots of a complex number <span class="texhtml mvar" style="font-style:italic;">x</span> can thus be taken to be a <a href="/wiki/Multivalued_function" title="Multivalued function">multivalued function</a>. By convention the <a href="/wiki/Principal_value" title="Principal value">principal value</a> of this function, called the <b>principal root</b> and denoted <span class="nowrap">&#8288;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3ba2638d05cd9ed8dafae7e34986399e48ea99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}}"></span>&#8288;</span>, is taken to be the <span class="texhtml mvar" style="font-style:italic;">n</span>th root with the greatest real part and in the special case when <span class="texhtml mvar" style="font-style:italic;">x</span> is a negative real number, the one with a positive <a href="/wiki/Imaginary_part" class="mw-redirect" title="Imaginary part">imaginary part</a>. The principal root of a positive real number is thus also a positive real number. As a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>, the principal root is <a href="/wiki/Continuous_function" title="Continuous function">continuous</a> in the whole <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a>, except along the negative real axis. </p><p>An unresolved root, especially one using the radical symbol, is sometimes referred to as a <b>surd</b><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> or a <b>radical</b>.<sup id="cite_ref-silver_3-0" class="reference"><a href="#cite_note-silver-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a <i><b>radical expression</b></i>, and if it contains no <a href="/wiki/Transcendental_functions" class="mw-redirect" title="Transcendental functions">transcendental functions</a> or <a href="/wiki/Transcendental_numbers" class="mw-redirect" title="Transcendental numbers">transcendental numbers</a> it is called an <i><a href="/wiki/Algebraic_expression" title="Algebraic expression">algebraic expression</a></i>. </p> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><table class="sidebar nomobile nowraplinks"><tbody><tr><td class="sidebar-above" style="background:#efefef;"> <span style="font-size:130%;"><a href="/wiki/Arithmetic_operations" class="mw-redirect" title="Arithmetic operations">Arithmetic operations</a></span><div class="navbar plainlinks hlist navbar-mini" style="float:right"><ul><li class="nv-view"><a href="/wiki/Template:Arithmetic_operations" title="Template:Arithmetic operations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Arithmetic_operations" title="Template talk:Arithmetic operations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Arithmetic_operations" title="Special:EditPage/Template:Arithmetic operations"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr><tr><td class="sidebar-content" style="font-size:130%;"> <table class="infobox-subbox infobox-3cols-child infobox-table"><tbody><tr><th colspan="4" class="infobox-header"><a href="/wiki/Addition" title="Addition">Addition</a> (+)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,+\,{\text{term}}\\\scriptstyle {\text{summand}}\,+\,{\text{summand}}\\\scriptstyle {\text{addend}}\,+\,{\text{addend}}\\\scriptstyle {\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>summand</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>summand</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>addend</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>addend</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>augend</mtext> </mrow> <mspace width="thinmathspace" /> <mo>+</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>addend</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,+\,{\text{term}}\\\scriptstyle {\text{summand}}\,+\,{\text{summand}}\\\scriptstyle {\text{addend}}\,+\,{\text{addend}}\\\scriptstyle {\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea99a27b5a763ef48889c450ac8157083ea97118" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:20.217ex; height:9.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,+\,{\text{term}}\\\scriptstyle {\text{summand}}\,+\,{\text{summand}}\\\scriptstyle {\text{addend}}\,+\,{\text{addend}}\\\scriptstyle {\text{augend}}\,+\,{\text{addend}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{sum}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>sum</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{sum}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8609baca9fdbc4c529f5894884a08122d695dad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.931ex; height:1.343ex;" alt="{\displaystyle \scriptstyle {\text{sum}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Subtraction" title="Subtraction">Subtraction</a> (−)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,-\,{\text{term}}\\\scriptstyle {\text{minuend}}\,-\,{\text{subtrahend}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>term</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>minuend</mtext> </mrow> <mspace width="thinmathspace" /> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>subtrahend</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,-\,{\text{term}}\\\scriptstyle {\text{minuend}}\,-\,{\text{subtrahend}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2780b756445a5f8f95b16c33e3b924f976958ea0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.356ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{term}}\,-\,{\text{term}}\\\scriptstyle {\text{minuend}}\,-\,{\text{subtrahend}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{difference}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>difference</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{difference}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac22c4e24eef2036cff5bfea924cc0dbb30c5d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.857ex; height:1.676ex;" alt="{\displaystyle \scriptstyle {\text{difference}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Multiplication" title="Multiplication">Multiplication</a> (×)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{factor}}\,\times \,{\text{factor}}\\\scriptstyle {\text{multiplier}}\,\times \,{\text{multiplicand}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>factor</mtext> </mrow> <mspace width="thinmathspace" /> <mo>&#x00D7;<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>factor</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>multiplier</mtext> </mrow> <mspace width="thinmathspace" /> <mo>&#x00D7;<!-- × --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>multiplicand</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{factor}}\,\times \,{\text{factor}}\\\scriptstyle {\text{multiplier}}\,\times \,{\text{multiplicand}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93f7b476e32221c7b05d356289c8085aef54059b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:22.176ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{factor}}\,\times \,{\text{factor}}\\\scriptstyle {\text{multiplier}}\,\times \,{\text{multiplicand}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <a href="/wiki/Product_(mathematics)" title="Product (mathematics)"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{product}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>product</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{product}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5c8b7509b8be1043622cb7b1b9a36ca8bfc2616" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.578ex; height:1.843ex;" alt="{\displaystyle \scriptstyle {\text{product}}}"></span></a></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Division_(mathematics)" title="Division (mathematics)">Division</a> (÷)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividend}}}{\scriptstyle {\text{divisor}}}}\\[1ex]\scriptstyle {\frac {\scriptstyle {\text{numerator}}}{\scriptstyle {\text{denominator}}}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="0.83em 0.4em" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>dividend</mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>divisor</mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>numerator</mtext> </mrow> </mstyle> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>denominator</mtext> </mrow> </mstyle> </mfrac> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividend}}}{\scriptstyle {\text{divisor}}}}\\[1ex]\scriptstyle {\frac {\scriptstyle {\text{numerator}}}{\scriptstyle {\text{denominator}}}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d5d22ff59234f0d437be740306e8dd905991e1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:14.15ex; height:8.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\frac {\scriptstyle {\text{dividend}}}{\scriptstyle {\text{divisor}}}}\\[1ex]\scriptstyle {\frac {\scriptstyle {\text{numerator}}}{\scriptstyle {\text{denominator}}}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <a href="/wiki/Quotient" title="Quotient"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left\{{\begin{matrix}\scriptstyle {\text{fraction}}\\\scriptstyle {\text{quotient}}\\\scriptstyle {\text{ratio}}\end{matrix}}\right.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>fraction</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>quotient</mtext> </mrow> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>ratio</mtext> </mrow> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left\{{\begin{matrix}\scriptstyle {\text{fraction}}\\\scriptstyle {\text{quotient}}\\\scriptstyle {\text{ratio}}\end{matrix}}\right.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2359c3ca6e50e7ae8065baa710440b3c79895023" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:8.197ex; height:7.176ex;" alt="{\displaystyle \scriptstyle \left\{{\begin{matrix}\scriptstyle {\text{fraction}}\\\scriptstyle {\text{quotient}}\\\scriptstyle {\text{ratio}}\end{matrix}}\right.}"></span></a></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Exponentiation" title="Exponentiation">Exponentiation</a> (^)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{base}}^{\text{exponent}}\\\scriptstyle {\text{base}}^{\text{power}}\end{matrix}}\right\}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>base</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>exponent</mtext> </mrow> </msup> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mtext>base</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>power</mtext> </mrow> </msup> </mstyle> </mtd> </mtr> </mtable> </mrow> <mo>}</mo> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{base}}^{\text{exponent}}\\\scriptstyle {\text{base}}^{\text{power}}\end{matrix}}\right\}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb107371002b62a60fcbd13e742f4d81f872b67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.618ex; height:4.843ex;" alt="{\displaystyle \scriptstyle \left.{\begin{matrix}\scriptstyle {\text{base}}^{\text{exponent}}\\\scriptstyle {\text{base}}^{\text{power}}\end{matrix}}\right\}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{power}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>power</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{power}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0d0a9fbffb659c0055d5ee6fde3f7f28e96f45c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.297ex; height:1.509ex;" alt="{\displaystyle \scriptstyle {\text{power}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a class="mw-selflink selflink"><i>n</i>th root</a> (√)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\sqrt[{\text{degree}}]{\scriptstyle {\text{radicand}}}}\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>radicand</mtext> </mrow> </mstyle> <mrow class="MJX-TeXAtom-ORD"> <mtext>degree</mtext> </mrow> </mroot> </mrow> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\sqrt[{\text{degree}}]{\scriptstyle {\text{radicand}}}}\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5582d567e7e7fbcdb728291770905e09beb0ea18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.422ex; height:2.676ex;" alt="{\displaystyle \scriptstyle {\sqrt[{\text{degree}}]{\scriptstyle {\text{radicand}}}}\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{root}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>root</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{root}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a015c1122190da3f1f1732d88b8bb03a8d7eb91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.928ex; height:1.676ex;" alt="{\displaystyle \scriptstyle {\text{root}}}"></span></td></tr><tr><th colspan="4" class="infobox-header"><a href="/wiki/Logarithm" title="Logarithm">Logarithm</a> (log)</th></tr><tr><th scope="row" class="infobox-label" style="display:none;"></th><td class="infobox-data infobox-data-a" style="text-align:right; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle \log _{\text{base}}({\text{anti-logarithm}})\,=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>base</mtext> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>anti-logarithm</mtext> </mrow> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle \log _{\text{base}}({\text{anti-logarithm}})\,=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2435266fcae4aa91d3d70a74bb91b5b35ef52edd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.454ex; height:2.176ex;" alt="{\displaystyle \scriptstyle \log _{\text{base}}({\text{anti-logarithm}})\,=\,}"></span></td><td class="infobox-data infobox-data-b" style="text-align:left; vertical-align:middle;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\text{logarithm}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <mtext>logarithm</mtext> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\text{logarithm}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe5d50baa86b950ff6d15760b7a38df1f8d8c868" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.948ex; height:2.009ex;" alt="{\displaystyle \scriptstyle {\text{logarithm}}}"></span></td></tr></tbody></table></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Arithmetic_operations" title="Template:Arithmetic operations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Arithmetic_operations" title="Template talk:Arithmetic operations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Arithmetic_operations" title="Special:EditPage/Template:Arithmetic operations"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>Roots are used for determining the <a href="/wiki/Radius_of_convergence" title="Radius of convergence">radius of convergence</a> of a <a href="/wiki/Power_series" title="Power series">power series</a> with the <a href="/wiki/Root_test" title="Root test">root test</a>. The <span class="texhtml mvar" style="font-style:italic;">n</span>th roots of 1 are called <a href="/wiki/Roots_of_unity" class="mw-redirect" title="Roots of unity">roots of unity</a> and play a fundamental role in various areas of mathematics, such as <a href="/wiki/Number_theory" title="Number theory">number theory</a>, <a href="/wiki/Theory_of_equations" title="Theory of equations">theory of equations</a>, and <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Square_root#History" title="Square root">Square root §&#160;History</a>, and <a href="/wiki/Cube_root#History" title="Cube root">Cube root §&#160;History</a></div> <p>An archaic term for the operation of taking <i>n</i>th roots is <i>radication</i>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Definition_and_notation">Definition and notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=2" title="Edit section: Definition and notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NegativeOne4Root.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/NegativeOne4Root.svg/220px-NegativeOne4Root.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/NegativeOne4Root.svg/330px-NegativeOne4Root.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/NegativeOne4Root.svg/440px-NegativeOne4Root.svg.png 2x" data-file-width="480" data-file-height="480" /></a><figcaption>The four 4th roots of −1,<br /> none of which are real</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:NegativeOne3Root.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/NegativeOne3Root.svg/220px-NegativeOne3Root.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/NegativeOne3Root.svg/330px-NegativeOne3Root.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/NegativeOne3Root.svg/440px-NegativeOne3Root.svg.png 2x" data-file-width="480" data-file-height="480" /></a><figcaption>The three 3rd roots of −1,<br /> one of which is a negative real</figcaption></figure> <p>An <i><span class="texhtml mvar" style="font-style:italic;">n</span>th root</i> of a number <i>x</i>, where <i>n</i> is a positive integer, is any of the <i>n</i> real or complex numbers <i>r</i> whose <i>n</i>th power is <i>x</i>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{n}=x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{n}=x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e193fe7a53ebc7310d4ca7c0b9bbdb6b262af50f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.342ex; height:2.343ex;" alt="{\displaystyle r^{n}=x.}"></span> </p><p>Every positive <a href="/wiki/Real_number" title="Real number">real number</a> <i>x</i> has a single positive <i>n</i>th root, called the <a href="/wiki/Principal_value" title="Principal value">principal <i>n</i>th root</a>, which is written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3ba2638d05cd9ed8dafae7e34986399e48ea99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}}"></span>. For <i>n</i> equal to 2 this is called the principal square root and the <i>n</i> is omitted. The <i>n</i>th root can also be represented using <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a> as <i>x</i><sup>1/n</sup>. </p><p>For even values of <i>n</i>, positive numbers also have a negative <i>n</i>th root, while negative numbers do not have a real <i>n</i>th root. For odd values of <i>n</i>, every negative number <i>x</i> has a real negative <i>n</i>th root. For example, −2 has a real 5th root, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{5}]{-2}}=-1.148698354\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </mroot> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1.148698354</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{5}]{-2}}=-1.148698354\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d22c0a8f77736a738e9566bd1ebd1b46438ffb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.195ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{5}]{-2}}=-1.148698354\ldots }"></span> but −2 does not have any real 6th roots. </p><p>Every non-zero number <i>x</i>, real or <a href="/wiki/Complex_number" title="Complex number">complex</a>, has <i>n</i> different complex number <i>n</i>th roots. (In the case <i>x</i> is real, this count includes any real <i>n</i>th roots.) The only complex root of 0 is 0. </p><p>The <i>n</i>th roots of almost all numbers (all integers except the <i>n</i>th powers, and all rationals except the quotients of two <i>n</i>th powers) are <a href="/wiki/Irrational_number" title="Irrational number">irrational</a>. For example, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}=1.414213562\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>=</mo> <mn>1.414213562</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}=1.414213562\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d273e2a591fe737313334b80105a307e6db5553d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.579ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}=1.414213562\ldots }"></span> </p><p>All <i>n</i>th roots of rational numbers are <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic numbers</a>, and all <i>n</i>th roots of integers are <a href="/wiki/Algebraic_integer" title="Algebraic integer">algebraic integers</a>. </p><p>The term "surd" traces back to <a href="/wiki/Al-Khwarizmi" title="Al-Khwarizmi">Al-Khwarizmi</a> (<abbr title="circa">c.</abbr><span style="white-space:nowrap;">&#8201;825</span>), who referred to rational and irrational numbers as <i>audible</i> and <i>inaudible</i>, respectively. This later led to the Arabic word <span title="Arabic-language text"><span lang="ar" dir="rtl">أصم</span></span> (<span title="Arabic-language text"><i lang="ar-Latn">asamm</i></span>, meaning "deaf" or "dumb") for <i>irrational number</i> being translated into Latin as <span title="Latin-language text"><i lang="la">surdus</i></span> (meaning "deaf" or "mute"). <a href="/wiki/Gerard_of_Cremona" title="Gerard of Cremona">Gerard of Cremona</a> (<abbr title="circa">c.</abbr><span style="white-space:nowrap;">&#8201;1150</span>), <a href="/wiki/Fibonacci" title="Fibonacci">Fibonacci</a> (1202), and then <a href="/wiki/Robert_Recorde" title="Robert Recorde">Robert Recorde</a> (1551) all used the term to refer to <i>unresolved irrational roots</i>, that is, expressions of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{r}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{r}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10eb7386bd8efe4c5b5beafe05848fbd923e1413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.985ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{r}}}"></span>, in which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> are integer numerals and the whole expression denotes an irrational number.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> Irrational numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm {\sqrt {a}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>a</mi> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm {\sqrt {a}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/502ee72ef0c6df79861cb698b43ec75c8580a50c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.621ex; height:3.009ex;" alt="{\displaystyle \pm {\sqrt {a}},}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is rational, are called <i>pure quadratic surds</i>; irrational numbers of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\pm {\sqrt {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>b</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\pm {\sqrt {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4489180f5f56df7467de36d3af2903961317b93f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.004ex; height:3.009ex;" alt="{\displaystyle a\pm {\sqrt {b}}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> are rational, are called <i><a href="/wiki/Quadratic_irrational_number" title="Quadratic irrational number">mixed quadratic surds</a></i>.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Square_roots">Square roots</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=3" title="Edit section: Square roots"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Square_root" title="Square root">Square root</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Square-root_function.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Square-root_function.svg/220px-Square-root_function.svg.png" decoding="async" width="220" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Square-root_function.svg/330px-Square-root_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Square-root_function.svg/440px-Square-root_function.svg.png 2x" data-file-width="440" data-file-height="520" /></a><figcaption>The graph <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=\pm {\sqrt {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>x</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=\pm {\sqrt {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f65592780916b5eb3c41a21a66ee26ed7de05a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.328ex; height:3.009ex;" alt="{\displaystyle y=\pm {\sqrt {x}}}"></span>.</figcaption></figure> <p>A <b>square root</b> of a number <i>x</i> is a number <i>r</i> which, when <a href="/wiki/Square_(algebra)" title="Square (algebra)">squared</a>, becomes <i>x</i>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{2}=x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{2}=x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97566cd6d91da0b946484c06ce8b2fe741664c02" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.178ex; height:2.676ex;" alt="{\displaystyle r^{2}=x.}"></span> </p><p>Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the <b>principal square root</b>, and is denoted with a radical sign: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {25}}=5.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>25</mn> </msqrt> </mrow> <mo>=</mo> <mn>5.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {25}}=5.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21ccdc1d8170229d7025384971da4ad211d7c25f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.169ex; height:2.843ex;" alt="{\displaystyle {\sqrt {25}}=5.}"></span> </p><p>Since the square of every real number is nonnegative, negative numbers do not have real square roots. However, for every negative real number there are two <a href="/wiki/Imaginary_number" title="Imaginary number">imaginary</a> square roots. For example, the square roots of −25 are 5<i>i</i> and −5<i>i</i>, where <i><a href="/wiki/Imaginary_unit" title="Imaginary unit">i</a></i> represents a number whose square is <span class="texhtml">−1</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Cube_roots">Cube roots</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=4" title="Edit section: Cube roots"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Cube_root" title="Cube root">Cube root</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Cube-root_function.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Cube-root_function.svg/220px-Cube-root_function.svg.png" decoding="async" width="220" height="186" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/Cube-root_function.svg/330px-Cube-root_function.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/Cube-root_function.svg/440px-Cube-root_function.svg.png 2x" data-file-width="520" data-file-height="440" /></a><figcaption>The graph <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y={\sqrt[{3}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y={\sqrt[{3}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be50c0a49b200fb46800951d0268b0a9d4e3fdda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.52ex; height:3.009ex;" alt="{\displaystyle y={\sqrt[{3}]{x}}}"></span>.</figcaption></figure> <p>A <b>cube root</b> of a number <i>x</i> is a number <i>r</i> whose <a href="/wiki/Cube_(algebra)" title="Cube (algebra)">cube</a> is <i>x</i>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{3}=x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{3}=x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2ac05166dc4eef4955b7938f057bc5028ad543" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.178ex; height:2.676ex;" alt="{\displaystyle r^{3}=x.}"></span> </p><p>Every real number <i>x</i> has exactly one real cube root, written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a55f866116e7a86823816615dd98fcccde75473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{x}}}"></span>. For example, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\sqrt[{3}]{8}}&amp;=2\\{\sqrt[{3}]{-8}}&amp;=-2.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>8</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>2.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\sqrt[{3}]{8}}&amp;=2\\{\sqrt[{3}]{-8}}&amp;=-2.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b05a3c2c8ff3d54b1f72cfc1c2172436b5e2840" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.374ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}{\sqrt[{3}]{8}}&amp;=2\\{\sqrt[{3}]{-8}}&amp;=-2.\end{aligned}}}"></span> </p><p>Every real number has two additional <a href="/wiki/Complex_number" title="Complex number">complex</a> cube roots. </p> <div class="mw-heading mw-heading2"><h2 id="Identities_and_properties">Identities and properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=5" title="Edit section: Identities and properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Expressing the degree of an <i>n</i>th root in its exponent form, as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0acb961738e6ffb034db9b37250579f700c49d8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.192ex; height:2.843ex;" alt="{\displaystyle x^{1/n}}"></span>, makes it easier to manipulate powers and roots. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is a <a href="/wiki/Non-negative_number" class="mw-redirect" title="Non-negative number">non-negative real number</a>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a^{m}}}=(a^{m})^{1/n}=a^{m/n}=(a^{1/n})^{m}=({\sqrt[{n}]{a}})^{m}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a^{m}}}=(a^{m})^{1/n}=a^{m/n}=(a^{1/n})^{m}=({\sqrt[{n}]{a}})^{m}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db6ea037832c3df199f25395b7043ea18927905b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:44.398ex; height:3.509ex;" alt="{\displaystyle {\sqrt[{n}]{a^{m}}}=(a^{m})^{1/n}=a^{m/n}=(a^{1/n})^{m}=({\sqrt[{n}]{a}})^{m}.}"></span> </p><p>Every non-negative number has exactly one non-negative real <i>n</i>th root, and so the rules for operations with surds involving non-negative radicands <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> are straightforward within the real numbers: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\sqrt[{n}]{ab}}&amp;={\sqrt[{n}]{a}}{\sqrt[{n}]{b}}\\{\sqrt[{n}]{\frac {a}{b}}}&amp;={\frac {\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\sqrt[{n}]{ab}}&amp;={\sqrt[{n}]{a}}{\sqrt[{n}]{b}}\\{\sqrt[{n}]{\frac {a}{b}}}&amp;={\frac {\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1b645cc98d9626d9b49b01acfb20f4a5efb3abf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:14.339ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}{\sqrt[{n}]{ab}}&amp;={\sqrt[{n}]{a}}{\sqrt[{n}]{b}}\\{\sqrt[{n}]{\frac {a}{b}}}&amp;={\frac {\sqrt[{n}]{a}}{\sqrt[{n}]{b}}}\end{aligned}}}"></span> </p><p>Subtleties can occur when taking the <i>n</i>th roots of negative or <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>. For instance: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {-1}}\times {\sqrt {-1}}\neq {\sqrt {-1\times -1}}=1,\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>&#x00D7;<!-- × --></mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {-1}}\times {\sqrt {-1}}\neq {\sqrt {-1\times -1}}=1,\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6be11b6fc4d5f1a2f32834cd343e536d0de7b0cc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.7ex; height:3.009ex;" alt="{\displaystyle {\sqrt {-1}}\times {\sqrt {-1}}\neq {\sqrt {-1\times -1}}=1,\quad }"></span> </p><p>but, rather, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \quad {\sqrt {-1}}\times {\sqrt {-1}}=i\times i=i^{2}=-1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>=</mo> <mi>i</mi> <mo>&#x00D7;<!-- × --></mo> <mi>i</mi> <mo>=</mo> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \quad {\sqrt {-1}}\times {\sqrt {-1}}=i\times i=i^{2}=-1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad88cc07b8edb6d639b0580109bdee4f87784907" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.191ex; height:3.176ex;" alt="{\displaystyle \quad {\sqrt {-1}}\times {\sqrt {-1}}=i\times i=i^{2}=-1.}"></span> </p><p>Since the rule <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{a}}\times {\sqrt[{n}]{b}}={\sqrt[{n}]{ab}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{a}}\times {\sqrt[{n}]{b}}={\sqrt[{n}]{ab}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d0a49ffbfd95598ffe89e29489a3d475de5fb58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.201ex; height:3.343ex;" alt="{\displaystyle {\sqrt[{n}]{a}}\times {\sqrt[{n}]{b}}={\sqrt[{n}]{ab}}}"></span> strictly holds for non-negative real radicands only, its application leads to the inequality in the first step above. </p> <div class="mw-heading mw-heading2"><h2 id="Simplified_form_of_a_radical_expression">Simplified form of a radical expression</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=6" title="Edit section: Simplified form of a radical expression"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Nested_radical" title="Nested radical">non-nested radical expression</a> is said to be in <b>simplified form</b> if no factor of the radicand can be written as a power greater than or equal to the index; there are no fractions inside the radical sign; and there are no radicals in the denominator.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, to write the radical expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle {\sqrt {32/5}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>32</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>5</mn> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle {\sqrt {32/5}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97aac1b44ece0660ca49b97fe73fbe93487c1c89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.974ex; height:3.343ex;" alt="{\displaystyle \textstyle {\sqrt {32/5}}}"></span> in simplified form, we can proceed as follows. First, look for a perfect square under the square root sign and remove it: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {32}{5}}}={\sqrt {\frac {16\cdot 2}{5}}}={\sqrt {16}}\cdot {\sqrt {\frac {2}{5}}}=4{\sqrt {\frac {2}{5}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>32</mn> <mn>5</mn> </mfrac> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <mn>16</mn> <mo>&#x22C5;<!-- ⋅ --></mo> <mn>2</mn> </mrow> <mn>5</mn> </mfrac> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>16</mn> </msqrt> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </msqrt> </mrow> <mo>=</mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\frac {32}{5}}}={\sqrt {\frac {16\cdot 2}{5}}}={\sqrt {16}}\cdot {\sqrt {\frac {2}{5}}}=4{\sqrt {\frac {2}{5}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c554dc01c546345baba67977118a30348275cdd8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:38.854ex; height:6.176ex;" alt="{\displaystyle {\sqrt {\frac {32}{5}}}={\sqrt {\frac {16\cdot 2}{5}}}={\sqrt {16}}\cdot {\sqrt {\frac {2}{5}}}=4{\sqrt {\frac {2}{5}}}}"></span> </p><p>Next, there is a fraction under the radical sign, which we change as follows: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4{\sqrt {\frac {2}{5}}}={\frac {4{\sqrt {2}}}{\sqrt {5}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn>2</mn> <mn>5</mn> </mfrac> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> <msqrt> <mn>5</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4{\sqrt {\frac {2}{5}}}={\frac {4{\sqrt {2}}}{\sqrt {5}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1d0b7050ad2f7ba5a87503512dad8883c79ffd7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:13.68ex; height:6.843ex;" alt="{\displaystyle 4{\sqrt {\frac {2}{5}}}={\frac {4{\sqrt {2}}}{\sqrt {5}}}}"></span> </p><p>Finally, we remove the radical from the denominator as follows: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {4{\sqrt {2}}}{\sqrt {5}}}={\frac {4{\sqrt {2}}}{\sqrt {5}}}\cdot {\frac {\sqrt {5}}{\sqrt {5}}}={\frac {4{\sqrt {10}}}{5}}={\frac {4}{5}}{\sqrt {10}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> <msqrt> <mn>5</mn> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> <msqrt> <mn>5</mn> </msqrt> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>5</mn> </msqrt> <msqrt> <mn>5</mn> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> </mrow> <mn>5</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>5</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>10</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {4{\sqrt {2}}}{\sqrt {5}}}={\frac {4{\sqrt {2}}}{\sqrt {5}}}\cdot {\frac {\sqrt {5}}{\sqrt {5}}}={\frac {4{\sqrt {10}}}{5}}={\frac {4}{5}}{\sqrt {10}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed5ee317fc7d537a0d1adeafd93a9f7846c77c8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:37.622ex; height:6.843ex;" alt="{\displaystyle {\frac {4{\sqrt {2}}}{\sqrt {5}}}={\frac {4{\sqrt {2}}}{\sqrt {5}}}\cdot {\frac {\sqrt {5}}{\sqrt {5}}}={\frac {4{\sqrt {10}}}{5}}={\frac {4}{5}}{\sqrt {10}}}"></span> </p><p>When there is a denominator involving surds it is always possible to find a factor to multiply both numerator and denominator by to simplify the expression.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> For instance using the <a href="/wiki/Factorization#Sum/difference_of_two_cubes" title="Factorization">factorization of the sum of two cubes</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{{\sqrt[{3}]{a}}+{\sqrt[{3}]{b}}}}={\frac {{\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}}{\left({\sqrt[{3}]{a}}+{\sqrt[{3}]{b}}\right)\left({\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}\right)}}={\frac {{\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}}{a+b}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mrow> <mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>a</mi> <mi>b</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mrow> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{{\sqrt[{3}]{a}}+{\sqrt[{3}]{b}}}}={\frac {{\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}}{\left({\sqrt[{3}]{a}}+{\sqrt[{3}]{b}}\right)\left({\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}\right)}}={\frac {{\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}}{a+b}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4432a6ac651c0cc085a2d15cf3b00d4a9a895ca6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:69.273ex; height:8.509ex;" alt="{\displaystyle {\frac {1}{{\sqrt[{3}]{a}}+{\sqrt[{3}]{b}}}}={\frac {{\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}}{\left({\sqrt[{3}]{a}}+{\sqrt[{3}]{b}}\right)\left({\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}\right)}}={\frac {{\sqrt[{3}]{a^{2}}}-{\sqrt[{3}]{ab}}+{\sqrt[{3}]{b^{2}}}}{a+b}}.}"></span> </p><p>Simplifying radical expressions involving <a href="/wiki/Nested_radical" title="Nested radical">nested radicals</a> can be quite difficult. In particular, denesting is not always possible, and when possible, it may involve advanced <a href="/wiki/Galois_theory" title="Galois theory">Galois theory</a>. Moreover, when complete denesting is impossible, there is no general <a href="/wiki/Canonical_form" title="Canonical form">canonical form</a> such that the equality of two numbers can be tested by simply looking at their canonical expressions. </p><p>For example, it is not obvious that </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3+2{\sqrt {2}}}}=1+{\sqrt {2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </msqrt> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3+2{\sqrt {2}}}}=1+{\sqrt {2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f0e6b8e40e6eb1c86f833cb78bc585cf227b79d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:21.434ex; height:4.843ex;" alt="{\displaystyle {\sqrt {3+2{\sqrt {2}}}}=1+{\sqrt {2}}.}"></span> </p><p>The above can be derived through: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {3+2{\sqrt {2}}}}={\sqrt {1+2{\sqrt {2}}+2}}={\sqrt {1^{2}+2{\sqrt {2}}+{\sqrt {2}}^{2}}}={\sqrt {\left(1+{\sqrt {2}}\right)^{2}}}=1+{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>+</mo> <mn>2</mn> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {3+2{\sqrt {2}}}}={\sqrt {1+2{\sqrt {2}}+2}}={\sqrt {1^{2}+2{\sqrt {2}}+{\sqrt {2}}^{2}}}={\sqrt {\left(1+{\sqrt {2}}\right)^{2}}}=1+{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed3f71d5b31fb86298cda20f5fcaa2f56b35917b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:75.916ex; height:5.176ex;" alt="{\displaystyle {\sqrt {3+2{\sqrt {2}}}}={\sqrt {1+2{\sqrt {2}}+2}}={\sqrt {1^{2}+2{\sqrt {2}}+{\sqrt {2}}^{2}}}={\sqrt {\left(1+{\sqrt {2}}\right)^{2}}}=1+{\sqrt {2}}}"></span> </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=p/q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=p/q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1696e05a9fb034877500b9f7a2ff6c3a0c2564a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.549ex; height:2.843ex;" alt="{\displaystyle r=p/q}"></span>, with <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span> coprime and positive integers. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{r}}={\sqrt[{n}]{p}}/{\sqrt[{n}]{q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{r}}={\sqrt[{n}]{p}}/{\sqrt[{n}]{q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32f9eceaf6392a34ca84e490204f6eef56b4a7be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.356ex; height:3.176ex;" alt="{\displaystyle {\sqrt[{n}]{r}}={\sqrt[{n}]{p}}/{\sqrt[{n}]{q}}}"></span> is rational if and only if both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dac134c13bde44d42060499220adf6949490f40e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.105ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{p}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dfc3fcfbe3811c3e980414f3a6c90ca7c286ef6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.005ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{q}}}"></span> are integers, which means that both <span class="texhtml mvar" style="font-style:italic;">p</span> and <span class="texhtml mvar" style="font-style:italic;">q</span> are <i>n</i>th powers of some integer. </p> <div class="mw-heading mw-heading2"><h2 id="Infinite_series">Infinite series</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=7" title="Edit section: Infinite series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The radical or root may be represented by the <a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">infinite series</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+x)^{\frac {s}{t}}=\sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(s-kt)}{n!t^{n}}}x^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>s</mi> <mi>t</mi> </mfrac> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>k</mi> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>!</mo> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+x)^{\frac {s}{t}}=\sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(s-kt)}{n!t^{n}}}x^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec5bb95748f261639ef5778c580e6f0af8d0880b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.365ex; height:7.343ex;" alt="{\displaystyle (1+x)^{\frac {s}{t}}=\sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(s-kt)}{n!t^{n}}}x^{n}}"></span> </p><p>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x|&lt;1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&lt;</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x|&lt;1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f9498d60b2319a4ae7c5607794b537c559a976d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.884ex; height:2.843ex;" alt="{\displaystyle |x|&lt;1}"></span>. This expression can be derived from the <a href="/wiki/Binomial_series" title="Binomial series">binomial series</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Computing_principal_roots">Computing principal roots</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=8" title="Edit section: Computing principal roots"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Using_Newton's_method"><span id="Using_Newton.27s_method"></span>Using Newton's method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=9" title="Edit section: Using Newton&#039;s method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <span class="texhtml mvar" style="font-style:italic;">n</span>th root of a number <span class="texhtml"><i>A</i></span> can be computed with <a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton's method</a>, which starts with an initial guess <span class="texhtml"><i>x</i><sub>0</sub></span> and then iterates using the <a href="/wiki/Recurrence_relation" title="Recurrence relation">recurrence relation</a> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k+1}=x_{k}-{\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mrow> <mrow> <mi>n</mi> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k+1}=x_{k}-{\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d31f4bc6367f18903b64976c99afec01f1ea5363" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:20.844ex; height:7.009ex;" alt="{\displaystyle x_{k+1}=x_{k}-{\frac {x_{k}^{n}-A}{nx_{k}^{n-1}}}}"></span> </p><p>until the desired precision is reached. For computational efficiency, the recurrence relation is commonly rewritten </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{k+1}={\frac {n-1}{n}}\,x_{k}+{\frac {A}{n}}\,{\frac {1}{x_{k}^{n-1}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mi>n</mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{k+1}={\frac {n-1}{n}}\,x_{k}+{\frac {A}{n}}\,{\frac {1}{x_{k}^{n-1}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b4cc95fe4db62eb0624a6e622f720662f9606cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.595ex; height:6.676ex;" alt="{\displaystyle x_{k+1}={\frac {n-1}{n}}\,x_{k}+{\frac {A}{n}}\,{\frac {1}{x_{k}^{n-1}}}.}"></span> </p><p>This allows to have only one <a href="/wiki/Exponentiation" title="Exponentiation">exponentiation</a>, and to compute once for all the first factor of each term. </p><p>For example, to find the fifth root of 34, we plug in <span class="texhtml"><i>n</i> = 5, <i>A</i> = 34</span> and <span class="texhtml"><i>x</i><sub>0</sub> = 2</span> (initial guess). The first 5 iterations are, approximately: </p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style><div class="block-indent"><span class="texhtml"><i>x</i><sub>0</sub> = 2</span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml"><i>x</i><sub>1</sub> = 2.025</span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml"><i>x</i><sub>2</sub> = 2.02439 7...</span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml"><i>x</i><sub>3</sub> = 2.02439 7458...</span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml"><i>x</i><sub>4</sub> = 2.02439 74584 99885 04251 08172...</span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"><div class="block-indent"><span class="texhtml"><i>x</i><sub>5</sub> = 2.02439 74584 99885 04251 08172 45541 93741 91146 21701 07311 8...</span></div> <p>(All correct digits shown.) </p><p>The approximation <span class="texhtml"><i>x</i><sub>4</sub></span> is accurate to 25 decimal places and <span class="texhtml"><i>x</i><sub>5</sub></span> is good for 51. </p><p>Newton's method can be modified to produce various <a href="/wiki/Generalized_continued_fraction#Roots_of_positive_numbers" class="mw-redirect" title="Generalized continued fraction">generalized continued fractions</a> for the <i>n</i>th root. For example, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{z}}={\sqrt[{n}]{x^{n}+y}}=x+{\cfrac {y}{nx^{n-1}+{\cfrac {(n-1)y}{2x+{\cfrac {(n+1)y}{3nx^{n-1}+{\cfrac {(2n-1)y}{2x+{\cfrac {(2n+1)y}{5nx^{n-1}+{\cfrac {(3n-1)y}{2x+\ddots }}}}}}}}}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>y</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>y</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mi>n</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>y</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>y</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> <mi>n</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>3</mn> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>y</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>x</mi> <mo>+</mo> <mo>&#x22F1;<!-- ⋱ --></mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{z}}={\sqrt[{n}]{x^{n}+y}}=x+{\cfrac {y}{nx^{n-1}+{\cfrac {(n-1)y}{2x+{\cfrac {(n+1)y}{3nx^{n-1}+{\cfrac {(2n-1)y}{2x+{\cfrac {(2n+1)y}{5nx^{n-1}+{\cfrac {(3n-1)y}{2x+\ddots }}}}}}}}}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eda4375d928606c0aa597ff64902c6fcc45f364" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -22.505ex; width:77.089ex; height:26.676ex;" alt="{\displaystyle {\sqrt[{n}]{z}}={\sqrt[{n}]{x^{n}+y}}=x+{\cfrac {y}{nx^{n-1}+{\cfrac {(n-1)y}{2x+{\cfrac {(n+1)y}{3nx^{n-1}+{\cfrac {(2n-1)y}{2x+{\cfrac {(2n+1)y}{5nx^{n-1}+{\cfrac {(3n-1)y}{2x+\ddots }}}}}}}}}}}}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Digit-by-digit_calculation_of_principal_roots_of_decimal_(base_10)_numbers"><span id="Digit-by-digit_calculation_of_principal_roots_of_decimal_.28base_10.29_numbers"></span>Digit-by-digit calculation of principal roots of decimal (base 10) numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=10" title="Edit section: Digit-by-digit calculation of principal roots of decimal (base 10) numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:PascalForDecimalRoots.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c6/PascalForDecimalRoots.svg/220px-PascalForDecimalRoots.svg.png" decoding="async" width="220" height="110" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c6/PascalForDecimalRoots.svg/330px-PascalForDecimalRoots.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c6/PascalForDecimalRoots.svg/440px-PascalForDecimalRoots.svg.png 2x" data-file-width="240" data-file-height="120" /></a><figcaption><a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a> showing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(4,1)=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(4,1)=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b841cdb2c861763e0e9f09d28d568adbecbbab0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.174ex; height:2.843ex;" alt="{\displaystyle P(4,1)=4}"></span>.</figcaption></figure> <p>Building on the <a href="/wiki/Methods_of_computing_square_roots#Decimal_(base_10)" title="Methods of computing square roots">digit-by-digit calculation of a square root</a>, it can be seen that the formula used there, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x(20p+x)\leq c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo stretchy="false">(</mo> <mn>20</mn> <mi>p</mi> <mo>+</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2264;<!-- ≤ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x(20p+x)\leq c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfe39e34c2c6ee28294d1ff2195e3dfbca33cac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.909ex; height:2.843ex;" alt="{\displaystyle x(20p+x)\leq c}"></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+20xp\leq c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>20</mn> <mi>x</mi> <mi>p</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+20xp\leq c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd3b37b91f0f08498167cb382c372e2944e55892" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.154ex; height:3.009ex;" alt="{\displaystyle x^{2}+20xp\leq c}"></span>, follows a pattern involving Pascal's triangle. For the <i>n</i>th root of a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(n,i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(n,i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2315f4ec75ea3037b5cf5c71ab7c4f88004c12e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.786ex; height:2.843ex;" alt="{\displaystyle P(n,i)}"></span> is defined as the value of element <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span> in row <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> of Pascal's Triangle such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(4,1)=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(4,1)=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b841cdb2c861763e0e9f09d28d568adbecbbab0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.174ex; height:2.843ex;" alt="{\displaystyle P(4,1)=4}"></span>, we can rewrite the expression as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=0}^{n-1}10^{i}P(n,i)p^{i}x^{n-i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mi>P</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>i</mi> <mo stretchy="false">)</mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=0}^{n-1}10^{i}P(n,i)p^{i}x^{n-i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/000d6d39fce76fabc686702ebea16892d10b5028" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.016ex; height:7.343ex;" alt="{\displaystyle \sum _{i=0}^{n-1}10^{i}P(n,i)p^{i}x^{n-i}}"></span>. For convenience, call the result of this expression <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span>. Using this more general expression, any positive principal root can be computed, digit-by-digit, as follows. </p><p>Write the original number in decimal form. The numbers are written similar to the <a href="/wiki/Long_division" title="Long division">long division</a> algorithm, and, as in long division, the root will be written on the line above. Now separate the digits into groups of digits equating to the root being taken, starting from the decimal point and going both left and right. The decimal point of the root will be above the decimal point of the radicand. One digit of the root will appear above each group of digits of the original number. </p><p>Beginning with the left-most group of digits, do the following procedure for each group: </p> <ol><li>Starting on the left, bring down the most significant (leftmost) group of digits not yet used (if all the digits have been used, write "0" the number of times required to make a group) and write them to the right of the remainder from the previous step (on the first step, there will be no remainder). In other words, multiply the remainder by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeff06a7c9ad9455cb809047cfc97a92c51e1bf7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle 10^{n}}"></span> and add the digits from the next group. This will be the <b>current value <i>c</i></b>.</li> <li>Find <i>p</i> and <i>x</i>, as follows: <ul><li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> be the <b>part of the root found so far</b>, ignoring any decimal point. (For the first step, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3e6ac10fa45fb984d886065f959a6bdd467b5e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.52ex; height:2.509ex;" alt="{\displaystyle p=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0^{0}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0^{0}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/478100bc5766c6af537439ef9309f9ddf2f9a6ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.478ex; height:2.676ex;" alt="{\displaystyle 0^{0}=1}"></span>).</li> <li>Determine the greatest digit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\leq c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\leq c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/602c121cbacae4c9b48807a3baf4dece313dca2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.261ex; height:2.343ex;" alt="{\displaystyle y\leq c}"></span>.</li> <li>Place the digit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> as the next digit of the root, i.e., above the group of digits you just brought down. Thus the next <i>p</i> will be the old <i>p</i> times 10 plus <i>x</i>.</li></ul></li> <li>Subtract <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> to form a new remainder.</li> <li>If the remainder is zero and there are no more digits to bring down, then the algorithm has terminated. Otherwise go back to step 1 for another iteration.</li></ol> <div class="mw-heading mw-heading4"><h4 id="Examples">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=11" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-MOS plainlinks metadata ambox ambox-style ambox-mos" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section needs editing to <b>comply with Wikipedia's <a href="/wiki/Wikipedia:Manual_of_Style" title="Wikipedia:Manual of Style">Manual of Style</a>.</b><span class="hide-when-compact"> Please help <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Nth_root&amp;action=edit">improve the content</a>.</span> <span class="date-container"><i>(<span class="date">April 2022</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p><b>Find the square root of 152.2756.</b> </p> <pre> <u> 1 2. 3 4 </u> <u> </u> / \/ 01 52.27 56 (Results) (Explanations) &#160; 01 x = 1 10<sup>0</sup>·1·0<sup>0</sup>·<b>1</b><sup>2</sup> + 10<sup>1</sup>·2·0<sup>1</sup>·<b>1</b><sup>1</sup> ≤ 1 &lt; 10<sup>0</sup>·1·0<sup>0</sup>·2<sup>2</sup> + 10<sup>1</sup>·2·0<sup>1</sup>·2<sup>1</sup> <u> 01 </u> y = 1 y = 10<sup>0</sup>·1·0<sup>0</sup>·1<sup>2</sup> + 10<sup>1</sup>·2·0<sup>1</sup>·1<sup>1</sup> = 1 + 0 = <b>1</b> 00 52 x = 2 10<sup>0</sup>·1·1<sup>0</sup>·<b>2</b><sup>2</sup> + 10<sup>1</sup>·2·1<sup>1</sup>·<b>2</b><sup>1</sup> ≤ 52 &lt; 10<sup>0</sup>·1·1<sup>0</sup>·3<sup>2</sup> + 10<sup>1</sup>·2·1<sup>1</sup>·3<sup>1</sup> <u> 00 44 </u> y = 44 y = 10<sup>0</sup>·1·1<sup>0</sup>·2<sup>2</sup> + 10<sup>1</sup>·2·1<sup>1</sup>·2<sup>1</sup> = 4 + 40 = <b>44</b> 08 27 x = 3 10<sup>0</sup>·1·12<sup>0</sup>·<b>3</b><sup>2</sup> + 10<sup>1</sup>·2·12<sup>1</sup>·<b>3</b><sup>1</sup> ≤ 827 &lt; 10<sup>0</sup>·1·12<sup>0</sup>·4<sup>2</sup> + 10<sup>1</sup>·2·12<sup>1</sup>·4<sup>1</sup> <u> 07 29 </u> y = 729 y = 10<sup>0</sup>·1·12<sup>0</sup>·3<sup>2</sup> + 10<sup>1</sup>·2·12<sup>1</sup>·3<sup>1</sup> = 9 + 720 = <b>729</b> 98 56 x = 4 10<sup>0</sup>·1·123<sup>0</sup>·<b>4</b><sup>2</sup> + 10<sup>1</sup>·2·123<sup>1</sup>·<b>4</b><sup>1</sup> ≤ 9856 &lt; 10<sup>0</sup>·1·123<sup>0</sup>·5<sup>2</sup> + 10<sup>1</sup>·2·123<sup>1</sup>·5<sup>1</sup> <u> 98 56 </u> y = 9856 y = 10<sup>0</sup>·1·123<sup>0</sup>·4<sup>2</sup> + 10<sup>1</sup>·2·123<sup>1</sup>·4<sup>1</sup> = 16 + 9840 = <b>9856</b> 00 00 </pre> <p>Algorithm terminates: Answer is 12.34 </p><p><b>Find the cube root of 4192 truncated to the nearest thousandth.</b> </p> <pre> <u> 1 6. 1 2 4</u> <u>3</u> / \/ 004 192.000 000 000 (Results) (Explanations) &#160; 004 x = 1 10<sup>0</sup>·1·0<sup>0</sup>·<b>1</b><sup>3</sup> + 10<sup>1</sup>·3·0<sup>1</sup>·<b>1</b><sup>2</sup> + 10<sup>2</sup>·3·0<sup>2</sup>·<b>1</b><sup>1</sup> ≤ 4 &lt; 10<sup>0</sup>·1·0<sup>0</sup>·2<sup>3</sup> + 10<sup>1</sup>·3·0<sup>1</sup>·2<sup>2</sup> + 10<sup>2</sup>·3·0<sup>2</sup>·2<sup>1</sup> <u> 001 </u> y = 1 y = 10<sup>0</sup>·1·0<sup>0</sup>·1<sup>3</sup> + 10<sup>1</sup>·3·0<sup>1</sup>·1<sup>2</sup> + 10<sup>2</sup>·3·0<sup>2</sup>·1<sup>1</sup> = 1 + 0 + 0 = <b>1</b> 003 192 x = 6 10<sup>0</sup>·1·1<sup>0</sup>·<b>6</b><sup>3</sup> + 10<sup>1</sup>·3·1<sup>1</sup>·<b>6</b><sup>2</sup> + 10<sup>2</sup>·3·1<sup>2</sup>·<b>6</b><sup>1</sup> ≤ 3192 &lt; 10<sup>0</sup>·1·1<sup>0</sup>·7<sup>3</sup> + 10<sup>1</sup>·3·1<sup>1</sup>·7<sup>2</sup> + 10<sup>2</sup>·3·1<sup>2</sup>·7<sup>1</sup> <u> 003 096 </u> y = 3096 y = 10<sup>0</sup>·1·1<sup>0</sup>·6<sup>3</sup> + 10<sup>1</sup>·3·1<sup>1</sup>·6<sup>2</sup> + 10<sup>2</sup>·3·1<sup>2</sup>·6<sup>1</sup> = 216 + 1,080 + 1,800 = <b>3,096</b> 096 000 x = 1 10<sup>0</sup>·1·16<sup>0</sup>·<b>1</b><sup>3</sup> + 10<sup>1</sup>·3·16<sup>1</sup>·<b>1</b><sup>2</sup> + 10<sup>2</sup>·3·16<sup>2</sup>·<b>1</b><sup>1</sup> ≤ 96000 &lt; 10<sup>0</sup>·1·16<sup>0</sup>·2<sup>3</sup> + 10<sup>1</sup>·3·16<sup>1</sup>·2<sup>2</sup> + 10<sup>2</sup>·3·16<sup>2</sup>·2<sup>1</sup> <u> 077 281 </u> y = 77281 y = 10<sup>0</sup>·1·16<sup>0</sup>·1<sup>3</sup> + 10<sup>1</sup>·3·16<sup>1</sup>·1<sup>2</sup> + 10<sup>2</sup>·3·16<sup>2</sup>·1<sup>1</sup> = 1 + 480 + 76,800 = <b>77,281</b> 018 719 000 x = 2 10<sup>0</sup>·1·161<sup>0</sup>·<b>2</b><sup>3</sup> + 10<sup>1</sup>·3·161<sup>1</sup>·<b>2</b><sup>2</sup> + 10<sup>2</sup>·3·161<sup>2</sup>·<b>2</b><sup>1</sup> ≤ 18719000 &lt; 10<sup>0</sup>·1·161<sup>0</sup>·3<sup>3</sup> + 10<sup>1</sup>·3·161<sup>1</sup>·3<sup>2</sup> + 10<sup>2</sup>·3·161<sup>2</sup>·3<sup>1</sup> <u> 015 571 928 </u> y = 15571928 y = 10<sup>0</sup>·1·161<sup>0</sup>·2<sup>3</sup> + 10<sup>1</sup>·3·161<sup>1</sup>·2<sup>2</sup> + 10<sup>2</sup>·3·161<sup>2</sup>·2<sup>1</sup> = 8 + 19,320 + 15,552,600 = <b>15,571,928</b> 003 147 072 000 x = 4 10<sup>0</sup>·1·1612<sup>0</sup>·<b>4</b><sup>3</sup> + 10<sup>1</sup>·3·1612<sup>1</sup>·<b>4</b><sup>2</sup> + 10<sup>2</sup>·3·1612<sup>2</sup>·<b>4</b><sup>1</sup> ≤ 3147072000 &lt; 10<sup>0</sup>·1·1612<sup>0</sup>·5<sup>3</sup> + 10<sup>1</sup>·3·1612<sup>1</sup>·5<sup>2</sup> + 10<sup>2</sup>·3·1612<sup>2</sup>·5<sup>1</sup> </pre> <p>The desired precision is achieved. The cube root of 4192 is 16.124... </p> <div class="mw-heading mw-heading3"><h3 id="Logarithmic_calculation">Logarithmic calculation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=12" title="Edit section: Logarithmic calculation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The principal <i>n</i>th root of a positive number can be computed using <a href="/wiki/Logarithm" title="Logarithm">logarithms</a>. Starting from the equation that defines <i>r</i> as an <i>n</i>th root of <i>x</i>, namely <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r^{n}=x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r^{n}=x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c22cbcdc8f114887cf0ceeb723bb9624c6f132e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.342ex; height:2.676ex;" alt="{\displaystyle r^{n}=x,}"></span> with <i>x</i> positive and therefore its principal root <i>r</i> also positive, one takes logarithms of both sides (any <a href="/wiki/Logarithm#Particular_bases" title="Logarithm">base of the logarithm</a> will do) to obtain </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\log _{b}r=\log _{b}x\quad \quad {\text{hence}}\quad \quad \log _{b}r={\frac {\log _{b}x}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>r</mi> <mo>=</mo> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mspace width="1em" /> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>hence</mtext> </mrow> <mspace width="1em" /> <mspace width="1em" /> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\log _{b}r=\log _{b}x\quad \quad {\text{hence}}\quad \quad \log _{b}r={\frac {\log _{b}x}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4179e4d37709a4daead660119bcc56ba783fd630" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:46.764ex; height:5.509ex;" alt="{\displaystyle n\log _{b}r=\log _{b}x\quad \quad {\text{hence}}\quad \quad \log _{b}r={\frac {\log _{b}x}{n}}.}"></span> </p><p>The root <i>r</i> is recovered from this by taking the <a href="/wiki/Antilog" class="mw-redirect" title="Antilog">antilog</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r=b^{{\frac {1}{n}}\log _{b}x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r=b^{{\frac {1}{n}}\log _{b}x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/731ba9105c64bbe834160c9dd59a97441227e949" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.213ex; height:3.343ex;" alt="{\displaystyle r=b^{{\frac {1}{n}}\log _{b}x}.}"></span> </p><p>(Note: That formula shows <i>b</i> raised to the power of the result of the division, not <i>b</i> multiplied by the result of the division.) </p><p>For the case in which <i>x</i> is negative and <i>n</i> is odd, there is one real root <i>r</i> which is also negative. This can be found by first multiplying both sides of the defining equation by −1 to obtain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |r|^{n}=|x|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>r</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |r|^{n}=|x|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/070955f8d31c41a72920225b4da754731e240c4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.929ex; height:3.009ex;" alt="{\displaystyle |r|^{n}=|x|,}"></span> then proceeding as before to find |<i>r</i>|, and using <span class="nowrap"><i>r</i> = −|<i>r</i>|</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Geometric_constructibility">Geometric constructibility</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=13" title="Edit section: Geometric constructibility"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Ancient_Greek_mathematicians" class="mw-redirect" title="Ancient Greek mathematicians">ancient Greek mathematicians</a> knew how to <a href="/wiki/Compass-and-straightedge_construction" class="mw-redirect" title="Compass-and-straightedge construction">use compass and straightedge</a> to construct a length equal to the square root of a given length, when an auxiliary line of unit length is given. In 1837 <a href="/wiki/Pierre_Wantzel" title="Pierre Wantzel">Pierre Wantzel</a> proved that an <i>n</i>th root of a given length cannot be constructed if <i>n</i> is not a power of 2.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Complex_roots">Complex roots</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=14" title="Edit section: Complex roots"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Every <a href="/wiki/Complex_number" title="Complex number">complex number</a> other than 0 has <i>n</i> different <i>n</i>th roots. </p> <div class="mw-heading mw-heading3"><h3 id="Square_roots_2">Square roots</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=15" title="Edit section: Square roots"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Imaginary2Root.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Imaginary2Root.svg/220px-Imaginary2Root.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Imaginary2Root.svg/330px-Imaginary2Root.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Imaginary2Root.svg/440px-Imaginary2Root.svg.png 2x" data-file-width="480" data-file-height="480" /></a><figcaption>The square roots of <i><b>i</b></i></figcaption></figure> <p>The two square roots of a complex number are always negatives of each other. For example, the square roots of <span class="texhtml">−4</span> are <span class="texhtml">2<i>i</i></span> and <span class="texhtml">−2<i>i</i></span>, and the square roots of <span class="texhtml"><i>i</i></span> are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{\sqrt {2}}}(1+i)\quad {\text{and}}\quad -{\tfrac {1}{\sqrt {2}}}(1+i).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{\sqrt {2}}}(1+i)\quad {\text{and}}\quad -{\tfrac {1}{\sqrt {2}}}(1+i).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ced00d17190f5262c017f914c458ef0a5262ff6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.163ex; height:4.176ex;" alt="{\displaystyle {\tfrac {1}{\sqrt {2}}}(1+i)\quad {\text{and}}\quad -{\tfrac {1}{\sqrt {2}}}(1+i).}"></span> </p><p>If we express a complex number in <a href="/wiki/Polar_form" class="mw-redirect" title="Polar form">polar form</a>, then the square root can be obtained by taking the square root of the radius and halving the angle: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {re^{i\theta }}}=\pm {\sqrt {r}}\cdot e^{i\theta /2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>r</mi> </msqrt> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {re^{i\theta }}}=\pm {\sqrt {r}}\cdot e^{i\theta /2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88e1ecd0332ccf3f056f85efa8bbc3da9c7d6799" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.542ex; height:3.843ex;" alt="{\displaystyle {\sqrt {re^{i\theta }}}=\pm {\sqrt {r}}\cdot e^{i\theta /2}.}"></span> </p><p>A <i>principal</i> root of a complex number may be chosen in various ways, for example </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {re^{i\theta }}}={\sqrt {r}}\cdot e^{i\theta /2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>r</mi> </msqrt> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {re^{i\theta }}}={\sqrt {r}}\cdot e^{i\theta /2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a74b519683b73b9267728782e3b0dc2c956e1099" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.087ex; height:3.843ex;" alt="{\displaystyle {\sqrt {re^{i\theta }}}={\sqrt {r}}\cdot e^{i\theta /2}}"></span> </p><p>which introduces a <a href="/wiki/Branch_cut" class="mw-redirect" title="Branch cut">branch cut</a> in the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> along the <a href="/wiki/Positive_real_axis" class="mw-redirect" title="Positive real axis">positive real axis</a> with the condition <span class="texhtml">0&#160;≤&#160;<i>θ</i>&#160;&lt;&#160;2<span class="texhtml mvar" style="font-style:italic;">π</span></span>, or along the negative real axis with <span class="texhtml">−<span class="texhtml mvar" style="font-style:italic;">π</span>&#160;&lt;&#160;<i>θ</i>&#160;≤&#160;<span class="texhtml mvar" style="font-style:italic;">π</span></span>. </p><p>Using the first(last) branch cut the principal square root <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle {\sqrt {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>z</mi> </msqrt> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle {\sqrt {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4822ea5fba80988907cf54af2c4c5e51ceffadd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.138ex; height:2.176ex;" alt="{\displaystyle \scriptstyle {\sqrt {z}}}"></span> maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \scriptstyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="1"> <mi>z</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \scriptstyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea1aac04b6044a6bc2aa0ca36b4580a19019d46e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.769ex; height:1.343ex;" alt="{\displaystyle \scriptstyle z}"></span> to the half plane with non-negative imaginary(real) part. The last branch cut is presupposed in mathematical software like <a href="/wiki/Matlab" class="mw-redirect" title="Matlab">Matlab</a> or <a href="/wiki/Scilab" title="Scilab">Scilab</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Roots_of_unity">Roots of unity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=16" title="Edit section: Roots of unity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Root_of_unity" title="Root of unity">Root of unity</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:3rd_roots_of_unity.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/3rd_roots_of_unity.svg/220px-3rd_roots_of_unity.svg.png" decoding="async" width="220" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/3rd_roots_of_unity.svg/330px-3rd_roots_of_unity.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/39/3rd_roots_of_unity.svg/440px-3rd_roots_of_unity.svg.png 2x" data-file-width="610" data-file-height="500" /></a><figcaption>The three 3rd roots of 1</figcaption></figure> <p>The number 1 has <i>n</i> different <i>n</i>th roots in the complex plane, namely </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1,\;\omega ,\;\omega ^{2},\;\ldots ,\;\omega ^{n-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>,</mo> <mspace width="thickmathspace" /> <mi>&#x03C9;<!-- ω --></mi> <mo>,</mo> <mspace width="thickmathspace" /> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="thickmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thickmathspace" /> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1,\;\omega ,\;\omega ^{2},\;\ldots ,\;\omega ^{n-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86eb8ce839ebeec831e1136374401b9c7f1ee043" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.347ex; height:3.009ex;" alt="{\displaystyle 1,\;\omega ,\;\omega ^{2},\;\ldots ,\;\omega ^{n-1},}"></span> </p><p>where </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =e^{\frac {2\pi i}{n}}=\cos \left({\frac {2\pi }{n}}\right)+i\sin \left({\frac {2\pi }{n}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>i</mi> </mrow> <mi>n</mi> </mfrac> </mrow> </msup> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =e^{\frac {2\pi i}{n}}=\cos \left({\frac {2\pi }{n}}\right)+i\sin \left({\frac {2\pi }{n}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7be9f476cfa88fd4d971625f767044ef73fbd40b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.834ex; height:6.176ex;" alt="{\displaystyle \omega =e^{\frac {2\pi i}{n}}=\cos \left({\frac {2\pi }{n}}\right)+i\sin \left({\frac {2\pi }{n}}\right).}"></span> </p><p>These roots are evenly spaced around the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> in the complex plane, at angles which are multiples of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi /n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi /n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3deb2c1b3bc6edccdf1be853df40c7d21b0fc57b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.052ex; height:2.843ex;" alt="{\displaystyle 2\pi /n}"></span>. For example, the square roots of unity are 1 and −1, and the fourth roots of unity are 1, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"></span>, −1, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91fddb9f89a520937db3a8821575068cdcc76f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.611ex; height:2.343ex;" alt="{\displaystyle -i}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="nth_roots"><i>n</i>th roots</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=17" title="Edit section: nth roots"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Visualisation_complex_number_roots.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Visualisation_complex_number_roots.svg/250px-Visualisation_complex_number_roots.svg.png" decoding="async" width="250" height="333" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Visualisation_complex_number_roots.svg/375px-Visualisation_complex_number_roots.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Visualisation_complex_number_roots.svg/500px-Visualisation_complex_number_roots.svg.png 2x" data-file-width="512" data-file-height="683" /></a><figcaption>Geometric representation of the 2nd to 6th roots of a complex number <span class="texhtml mvar" style="font-style:italic;">z</span>, in polar form <span class="nowrap"><span class="texhtml"><i>re</i><sup><i>i&#966;</i></sup></span>&#8201;</span> where <span class="nowrap"><span class="texhtml"><i>r</i> = |<i>z</i>&#8201;|</span></span> and <span class="nowrap"><span class="texhtml"><i>&#966;</i> = arg <i>z</i></span></span>. If <span class="texhtml mvar" style="font-style:italic;">z</span> is real, <span class="nowrap"><span class="texhtml"><i>&#966;</i> = 0</span> or <span class="texhtml mvar" style="font-style:italic;">π</span></span>. Principal roots are shown in black.</figcaption></figure> <p>Every complex number has <i>n</i> different <i>n</i>th roots in the complex plane. These are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \eta ,\;\eta \omega ,\;\eta \omega ^{2},\;\ldots ,\;\eta \omega ^{n-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B7;<!-- η --></mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>&#x03B7;<!-- η --></mi> <mi>&#x03C9;<!-- ω --></mi> <mo>,</mo> <mspace width="thickmathspace" /> <mi>&#x03B7;<!-- η --></mi> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="thickmathspace" /> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mspace width="thickmathspace" /> <mi>&#x03B7;<!-- η --></mi> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \eta ,\;\eta \omega ,\;\eta \omega ^{2},\;\ldots ,\;\eta \omega ^{n-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f370f737910b00dd0d33c784b7c305cc28d3e4c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.862ex; height:3.176ex;" alt="{\displaystyle \eta ,\;\eta \omega ,\;\eta \omega ^{2},\;\ldots ,\;\eta \omega ^{n-1},}"></span> </p><p>where <i>η</i> is a single <i>n</i>th root, and 1,&#160;<i>ω</i>,&#160;<i>ω</i><sup>2</sup>,&#160;...&#160;<i>ω</i><sup><i>n</i>−1</sup> are the <i>n</i>th roots of unity. For example, the four different fourth roots of 2 are </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{4}]{2}},\quad i{\sqrt[{4}]{2}},\quad -{\sqrt[{4}]{2}},\quad {\text{and}}\quad -i{\sqrt[{4}]{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> <mo>,</mo> <mspace width="1em" /> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> <mo>,</mo> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{4}]{2}},\quad i{\sqrt[{4}]{2}},\quad -{\sqrt[{4}]{2}},\quad {\text{and}}\quad -i{\sqrt[{4}]{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/634ba9f9880a52a0ebdd648e6cf1d8979c3f63ca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:35.433ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{4}]{2}},\quad i{\sqrt[{4}]{2}},\quad -{\sqrt[{4}]{2}},\quad {\text{and}}\quad -i{\sqrt[{4}]{2}}.}"></span> </p><p>In <a href="/wiki/Polar_form" class="mw-redirect" title="Polar form">polar form</a>, a single <i>n</i>th root may be found by the formula </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{re^{i\theta }}}={\sqrt[{n}]{r}}\cdot e^{i\theta /n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mrow> <mi>r</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{re^{i\theta }}}={\sqrt[{n}]{r}}\cdot e^{i\theta /n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb634da6a458c0fdff9deb78d393ff2791ab3b7c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.898ex; height:3.843ex;" alt="{\displaystyle {\sqrt[{n}]{re^{i\theta }}}={\sqrt[{n}]{r}}\cdot e^{i\theta /n}.}"></span> </p><p>Here <i>r</i> is the magnitude (the modulus, also called the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a>) of the number whose root is to be taken; if the number can be written as <i>a+bi</i> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r={\sqrt {a^{2}+b^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r={\sqrt {a^{2}+b^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c06427751d7f71ba70ddfae47fb47e6386324ae6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.647ex; height:3.509ex;" alt="{\displaystyle r={\sqrt {a^{2}+b^{2}}}}"></span>. Also, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> is the angle formed as one pivots on the origin counterclockwise from the positive horizontal axis to a ray going from the origin to the number; it has the properties that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta =a/r,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta =a/r,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b521e513e1d910ee3d8771ae7f8115c571bbca8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.775ex; height:2.843ex;" alt="{\displaystyle \cos \theta =a/r,}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \theta =b/r,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>r</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \theta =b/r,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2942e6cbe7ef79f8cbc5851f1c8960528102dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.287ex; height:2.843ex;" alt="{\displaystyle \sin \theta =b/r,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \theta =b/a.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>a</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \theta =b/a.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99629f56d9f2784dac6f3c31c4b782b772e906d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.972ex; height:2.843ex;" alt="{\displaystyle \tan \theta =b/a.}"></span> </p><p>Thus finding <i>n</i>th roots in the complex plane can be segmented into two steps. First, the magnitude of all the <i>n</i>th roots is the <i>n</i>th root of the magnitude of the original number. Second, the angle between the positive horizontal axis and a ray from the origin to one of the <i>n</i>th roots is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta /n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta /n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20905d7e366eec7ab5418bec2cfc043584f32369" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.648ex; height:2.843ex;" alt="{\displaystyle \theta /n}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> is the angle defined in the same way for the number whose root is being taken. Furthermore, all <i>n</i> of the <i>n</i>th roots are at equally spaced angles from each other. </p><p>If <i>n</i> is even, a complex number's <i>n</i>th roots, of which there are an even number, come in <a href="/wiki/Additive_inverse" title="Additive inverse">additive inverse</a> pairs, so that if a number <i>r</i><sub>1</sub> is one of the <i>n</i>th roots then <i>r</i><sub>2</sub> = –<i>r</i><sub>1</sub> is another. This is because raising the latter's coefficient –1 to the <i>n</i>th power for even <i>n</i> yields 1: that is, (–<i>r</i><sub>1</sub>)<sup><i>n</i></sup> = (–1)<sup><i>n</i></sup> × <i>r</i><sub>1</sub><sup><i>n</i></sup> = <i>r</i><sub>1</sub><sup><i>n</i></sup>. </p><p>As with square roots, the formula above does not define a <a href="/wiki/Continuous_function" title="Continuous function">continuous function</a> over the entire complex plane, but instead has a <a href="/wiki/Branch_cut" class="mw-redirect" title="Branch cut">branch cut</a> at points where <i>θ</i>&#160;/&#160;<i>n</i> is discontinuous. </p> <div class="mw-heading mw-heading2"><h2 id="Solving_polynomials">Solving polynomials</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=18" title="Edit section: Solving polynomials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Root-finding_algorithms" class="mw-redirect" title="Root-finding algorithms">Root-finding algorithms</a></div> <p>It was once <a href="/wiki/Conjecture" title="Conjecture">conjectured</a> that all <a href="/wiki/Polynomial_equation" class="mw-redirect" title="Polynomial equation">polynomial equations</a> could be <a href="/wiki/Algebraic_solution" class="mw-redirect" title="Algebraic solution">solved algebraically</a> (that is, that all roots of a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> could be expressed in terms of a finite number of radicals and <a href="/wiki/Elementary_arithmetic" title="Elementary arithmetic">elementary operations</a>). However, while this is true for third degree polynomials (<a href="/wiki/Cubic_function" title="Cubic function">cubics</a>) and fourth degree polynomials (<a href="/wiki/Quartic_function" title="Quartic function">quartics</a>), the <a href="/wiki/Abel%E2%80%93Ruffini_theorem" title="Abel–Ruffini theorem">Abel–Ruffini theorem</a> (1824) shows that this is not true in general when the degree is 5 or greater. For example, the solutions of the equation </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{5}=x+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{5}=x+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbb2478d09e89d1fc0370c2d3fa8488c9a5e84d4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.815ex; height:2.843ex;" alt="{\displaystyle x^{5}=x+1}"></span> </p><p>cannot be expressed in terms of radicals. (<i>cf.</i> <a href="/wiki/Quintic_equation" class="mw-redirect" title="Quintic equation">quintic equation</a>) </p> <div class="mw-heading mw-heading2"><h2 id="Proof_of_irrationality_for_non-perfect_nth_power_x">Proof of irrationality for non-perfect <i>n</i>th power <i>x</i></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=19" title="Edit section: Proof of irrationality for non-perfect nth power x"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3ba2638d05cd9ed8dafae7e34986399e48ea99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}}"></span> is rational. That is, it can be reduced to a fraction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a}{b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mi>b</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a}{b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fbb66e57f89debc3cde3213de12228971148a93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.066ex; height:4.843ex;" alt="{\displaystyle {\frac {a}{b}}}"></span>, where <span class="texhtml mvar" style="font-style:italic;">a</span> and <span class="texhtml mvar" style="font-style:italic;">b</span> are integers without a common factor. </p><p>This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {a^{n}}{b^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {a^{n}}{b^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a17612d66adec36e70a10cbe6afc1bea7669b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.713ex; height:5.343ex;" alt="{\displaystyle x={\frac {a^{n}}{b^{n}}}}"></span>. </p><p>Since <i>x</i> is an integer, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2687184a7698e75db65a25bea7afd207bff3d03b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.448ex; height:2.343ex;" alt="{\displaystyle a^{n}}"></span>and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f8f52cd26bb201e02c8d1b3619a3a682f44dbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.216ex; height:2.343ex;" alt="{\displaystyle b^{n}}"></span>must share a common factor if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\neq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\neq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32a55c3a4b8eca743088b70c7c4d63c773f43c2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.258ex; height:2.676ex;" alt="{\displaystyle b\neq 1}"></span>. This means that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b\neq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b\neq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32a55c3a4b8eca743088b70c7c4d63c773f43c2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.258ex; height:2.676ex;" alt="{\displaystyle b\neq 1}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a^{n}}{b^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a^{n}}{b^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fafb316a65779077635b65898ad30f07f45c363" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.284ex; height:5.343ex;" alt="{\displaystyle {\frac {a^{n}}{b^{n}}}}"></span> is not in simplest form. Thus <i>b</i> should equal 1. </p><p>Since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{n}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{n}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93f80fba3de21e4d0bae42b0e9bbc88f3abbdcdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.642ex; height:2.343ex;" alt="{\displaystyle 1^{n}=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n}{1}}=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>1</mn> </mfrac> </mrow> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n}{1}}=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b9c183ef2f1ffc5f7f09b3ec7c3d7ade7af9cb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.724ex; height:4.676ex;" alt="{\displaystyle {\frac {n}{1}}=n}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a^{n}}{b^{n}}}=a^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a^{n}}{b^{n}}}=a^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05b2df4ed68facd9cc6e41861103dfdcf5dff2df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.831ex; height:5.343ex;" alt="{\displaystyle {\frac {a^{n}}{b^{n}}}=a^{n}}"></span>. </p><p>This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=a^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=a^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/407e45335787b25bf78954908ec685cfb6b23622" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.876ex; height:2.343ex;" alt="{\displaystyle x=a^{n}}"></span> and thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c0048b93aee48d4f00d14b120a98c1fbbcc67d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.594ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}=a}"></span>. This implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3ba2638d05cd9ed8dafae7e34986399e48ea99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}}"></span> is an integer. Since <span class="texhtml mvar" style="font-style:italic;">x</span> is not a perfect <span class="texhtml mvar" style="font-style:italic;">n</span>th power, this is impossible. Thus <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{n}]{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{n}]{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b3ba2638d05cd9ed8dafae7e34986399e48ea99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.266ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{n}]{x}}}"></span> is irrational. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=20" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Geometric_mean" title="Geometric mean">Geometric mean</a></li> <li><a href="/wiki/Twelfth_root_of_two" title="Twelfth root of two">Twelfth root of two</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=21" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nagwa.com/en/explainers/985195836913">"Lesson Explainer: nth Roots: Integers"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">22 July</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lesson+Explainer%3A+nth+Roots%3A+Integers&amp;rft_id=https%3A%2F%2Fwww.nagwa.com%2Fen%2Fexplainers%2F985195836913&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBansal2006" class="citation book cs1">Bansal, R.K. (2006). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=1C4iQNUWLBwC&amp;pg=PA25"><i>New Approach to CBSE Mathematics IX</i></a>. Laxmi Publications. p.&#160;25. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-81-318-0013-3" title="Special:BookSources/978-81-318-0013-3"><bdi>978-81-318-0013-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=New+Approach+to+CBSE+Mathematics+IX&amp;rft.pages=25&amp;rft.pub=Laxmi+Publications&amp;rft.date=2006&amp;rft.isbn=978-81-318-0013-3&amp;rft.aulast=Bansal&amp;rft.aufirst=R.K.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D1C4iQNUWLBwC%26pg%3DPA25&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-silver-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-silver_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSilver1986" class="citation book cs1">Silver, Howard A. (1986). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/algebratrigonome00silv"><i>Algebra and trigonometry</i></a></span>. Englewood Cliffs, New Jersey: Prentice-Hall. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-13-021270-2" title="Special:BookSources/978-0-13-021270-2"><bdi>978-0-13-021270-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Algebra+and+trigonometry&amp;rft.place=Englewood+Cliffs%2C+New+Jersey&amp;rft.pub=Prentice-Hall&amp;rft.date=1986&amp;rft.isbn=978-0-13-021270-2&amp;rft.aulast=Silver&amp;rft.aufirst=Howard+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Falgebratrigonome00silv&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.merriam-webster.com/dictionary/radication">"Definition of RADICATION"</a>. <i>www.merriam-webster.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.merriam-webster.com&amp;rft.atitle=Definition+of+RADICATION&amp;rft_id=https%3A%2F%2Fwww.merriam-webster.com%2Fdictionary%2Fradication&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180403112348/https://en.oxforddictionaries.com/definition/radication">"radication – Definition of radication in English by Oxford Dictionaries"</a>. <i>Oxford Dictionaries</i>. Archived from <a rel="nofollow" class="external text" href="https://en.oxforddictionaries.com/definition/radication">the original</a> on April 3, 2018.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Oxford+Dictionaries&amp;rft.atitle=radication+%E2%80%93+Definition+of+radication+in+English+by+Oxford+Dictionaries&amp;rft_id=https%3A%2F%2Fen.oxforddictionaries.com%2Fdefinition%2Fradication&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller" class="citation web cs1">Miller, Jeff. <a rel="nofollow" class="external text" href="http://jeff560.tripod.com/s.html">"Earliest Known Uses of Some of the Words of Mathematics"</a>. <i>Mathematics Pages</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2008-11-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Mathematics+Pages&amp;rft.atitle=Earliest+Known+Uses+of+Some+of+the+Words+of+Mathematics&amp;rft.aulast=Miller&amp;rft.aufirst=Jeff&amp;rft_id=http%3A%2F%2Fjeff560.tripod.com%2Fs.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHardy1921" class="citation book cs1"><a href="/wiki/G._H._Hardy" title="G. H. Hardy">Hardy, G. H.</a> (1921). <a rel="nofollow" class="external text" href="https://archive.org/details/coursepuremath00hardrich/page/n36/mode/2up"><i>A Course of Pure Mathematics</i></a> (3rd&#160;ed.). Cambridge. §1.13 "Quadratic Surds" – §1.14, pp.&#160;19–23.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Course+of+Pure+Mathematics&amp;rft.pages=%C2%A71.13+%22Quadratic+Surds%22+-+%C2%A71.14%2C+pp.-19-23&amp;rft.edition=3rd&amp;rft.pub=Cambridge&amp;rft.date=1921&amp;rft.aulast=Hardy&amp;rft.aufirst=G.+H.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcoursepuremath00hardrich%2Fpage%2Fn36%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcKeague2011" class="citation book cs1">McKeague, Charles P. (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=etTbP0rItQ4C&amp;q=editions:q0hGn6PkOxsC"><i>Elementary algebra</i></a>. Cengage Learning. p.&#160;470. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8400-6421-9" title="Special:BookSources/978-0-8400-6421-9"><bdi>978-0-8400-6421-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elementary+algebra&amp;rft.pages=470&amp;rft.pub=Cengage+Learning&amp;rft.date=2011&amp;rft.isbn=978-0-8400-6421-9&amp;rft.aulast=McKeague&amp;rft.aufirst=Charles+P.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DetTbP0rItQ4C%26q%3Deditions%3Aq0hGn6PkOxsC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCavinessFateman" class="citation conference cs1">Caviness, B. F.; Fateman, R. J. <a rel="nofollow" class="external text" href="http://www.eecs.berkeley.edu/~fateman/papers/radcan.pdf">"Simplification of Radical Expressions"</a> <span class="cs1-format">(PDF)</span>. <i>Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation</i>. p.&#160;329.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Simplification+of+Radical+Expressions&amp;rft.btitle=Proceedings+of+the+1976+ACM+Symposium+on+Symbolic+and+Algebraic+Computation&amp;rft.pages=329&amp;rft.aulast=Caviness&amp;rft.aufirst=B.+F.&amp;rft.au=Fateman%2C+R.+J.&amp;rft_id=http%3A%2F%2Fwww.eecs.berkeley.edu%2F~fateman%2Fpapers%2Fradcan.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRichard1985" class="citation journal cs1">Richard, Zippel (1985). "Simplification of Expressions Involving Radicals". <i>Journal of Symbolic Computation</i>. <b>1</b> (<span class="nowrap">189–</span>210): <span class="nowrap">189–</span>210. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0747-7171%2885%2980014-6">10.1016/S0747-7171(85)80014-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Symbolic+Computation&amp;rft.atitle=Simplification+of+Expressions+Involving+Radicals&amp;rft.volume=1&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E189%E2%80%93%3C%2Fspan%3E210&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E189-%3C%2Fspan%3E210&amp;rft.date=1985&amp;rft_id=info%3Adoi%2F10.1016%2FS0747-7171%2885%2980014-6&amp;rft.aulast=Richard&amp;rft.aufirst=Zippel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWantzel1837" class="citation cs1">Wantzel, <a href="/wiki/Monsieur" title="Monsieur">M.</a> L. (1837). <a rel="nofollow" class="external text" href="http://visualiseur.bnf.fr/ConsulterElementNum?O=NUMM-16381&amp;Deb=374&amp;Fin=380&amp;E=PDF">"Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compas"</a>. <i>Journal de Mathématiques Pures et Appliquées</i>. <b>1</b> (2): <span class="nowrap">366–</span>372.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+de+Math%C3%A9matiques+Pures+et+Appliqu%C3%A9es&amp;rft.atitle=Recherches+sur+les+moyens+de+reconna%C3%AEtre+si+un+Probl%C3%A8me+de+G%C3%A9om%C3%A9trie+peut+se+r%C3%A9soudre+avec+la+r%C3%A8gle+et+le+compas&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E366-%3C%2Fspan%3E372&amp;rft.date=1837&amp;rft.aulast=Wantzel&amp;rft.aufirst=M.+L.&amp;rft_id=http%3A%2F%2Fvisualiseur.bnf.fr%2FConsulterElementNum%3FO%3DNUMM-16381%26Deb%3D374%26Fin%3D380%26E%3DPDF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANth+root" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Nth_root&amp;action=edit&amp;section=22" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wiktionary-logo-en-v2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/surd" class="extiw" title="wiktionary:surd">surd</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Wiktionary-logo-en-v2.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></a></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/radical" class="extiw" title="wiktionary:radical">radical</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Hyperoperations129" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Hyperoperations" title="Template:Hyperoperations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Hyperoperations" title="Template talk:Hyperoperations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Hyperoperations" title="Special:EditPage/Template:Hyperoperations"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Hyperoperations129" style="font-size:114%;margin:0 4em"><a href="/wiki/Hyperoperation" title="Hyperoperation">Hyperoperations</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Primary</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Successor_function" title="Successor function">Successor (0)</a></li> <li><a href="/wiki/Addition" title="Addition">Addition (1)</a></li> <li><a href="/wiki/Multiplication" title="Multiplication">Multiplication (2)</a></li> <li><a href="/wiki/Exponentiation" title="Exponentiation">Exponentiation (3)</a></li> <li><a href="/wiki/Tetration" title="Tetration">Tetration (4)</a></li> <li><a href="/wiki/Pentation" title="Pentation">Pentation (5)</a></li> <li><a href="/wiki/Hexation" class="mw-redirect" title="Hexation">Hexation (6)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Inverse_function" title="Inverse function">Inverse</a> for left argument</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Primitive_recursive_function#Predecessor" title="Primitive recursive function">Predecessor (0)</a></li> <li><a href="/wiki/Subtraction" title="Subtraction">Subtraction (1)</a></li> <li><a href="/wiki/Division_(mathematics)" title="Division (mathematics)">Division (2)</a></li> <li><a class="mw-selflink selflink">Root extraction (3)</a></li> <li><a href="/wiki/Super-root" class="mw-redirect" title="Super-root">Super-root (4)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inverse for right argument</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Primitive_recursive_function#Predecessor" title="Primitive recursive function">Predecessor (0)</a></li> <li><a href="/wiki/Subtraction" title="Subtraction">Subtraction (1)</a></li> <li><a href="/wiki/Division_(mathematics)" title="Division (mathematics)">Division (2)</a></li> <li><a href="/wiki/Logarithm" title="Logarithm">Logarithm (3)</a></li> <li><a href="/wiki/Super-logarithm" class="mw-redirect" title="Super-logarithm">Super-logarithm (4)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related articles</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ackermann_function" title="Ackermann function">Ackermann function</a></li> <li><a href="/wiki/Conway_chained_arrow_notation" title="Conway chained arrow notation">Conway chained arrow notation</a></li> <li><a href="/wiki/Grzegorczyk_hierarchy" title="Grzegorczyk hierarchy">Grzegorczyk hierarchy</a></li> <li><a href="/wiki/Knuth%27s_up-arrow_notation" title="Knuth&#39;s up-arrow notation">Knuth's up-arrow notation</a></li> <li><a href="/wiki/Steinhaus%E2%80%93Moser_notation" title="Steinhaus–Moser notation">Steinhaus–Moser notation</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐654b9d4bd7‐9hs5p Cached time: 20250210051709 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.868 seconds Real time usage: 1.152 seconds Preprocessor visited node count: 5475/1000000 Post‐expand include size: 74005/2097152 bytes Template argument size: 4818/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 75434/5000000 bytes Lua time usage: 0.500/10.000 seconds Lua memory usage: 23378281/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 793.963 1 -total 22.66% 179.923 1 Template:Reflist 16.72% 132.776 3 Template:Lang 14.62% 116.055 1 Template:Arithmetic_operations 11.32% 89.898 4 Template:Cite_web 10.31% 81.826 1 Template:Short_description 7.37% 58.530 1 Template:More_citations_needed 7.34% 58.274 2 Template:Pagetype 7.07% 56.110 2 Template:Ambox 6.52% 51.734 1 Template:Navbar --> <!-- Saved in parser cache with key enwiki:pcache:235029:|#|:idhash:canonical and timestamp 20250210051709 and revision id 1272993136. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Nth_root&amp;oldid=1272993136">https://en.wikipedia.org/w/index.php?title=Nth_root&amp;oldid=1272993136</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Elementary_algebra" title="Category:Elementary algebra">Elementary algebra</a></li><li><a href="/wiki/Category:Operations_on_numbers" title="Category:Operations on numbers">Operations on numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_October_2022" title="Category:Articles needing additional references from October 2022">Articles needing additional references from October 2022</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_containing_Arabic-language_text" title="Category:Articles containing Arabic-language text">Articles containing Arabic-language text</a></li><li><a href="/wiki/Category:Articles_containing_Latin-language_text" title="Category:Articles containing Latin-language text">Articles containing Latin-language text</a></li><li><a href="/wiki/Category:Wikipedia_articles_with_style_issues_from_April_2022" title="Category:Wikipedia articles with style issues from April 2022">Wikipedia articles with style issues from April 2022</a></li><li><a href="/wiki/Category:All_articles_with_style_issues" title="Category:All articles with style issues">All articles with style issues</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 31 January 2025, at 05:30<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Nth_root&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="texhtml mvar" style="font-style:italic;">n</span>th root</div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>70 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-9664bf54d-qp8rk","wgBackendResponseTime":146,"wgPageParseReport":{"limitreport":{"cputime":"0.868","walltime":"1.152","ppvisitednodes":{"value":5475,"limit":1000000},"postexpandincludesize":{"value":74005,"limit":2097152},"templateargumentsize":{"value":4818,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":75434,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 793.963 1 -total"," 22.66% 179.923 1 Template:Reflist"," 16.72% 132.776 3 Template:Lang"," 14.62% 116.055 1 Template:Arithmetic_operations"," 11.32% 89.898 4 Template:Cite_web"," 10.31% 81.826 1 Template:Short_description"," 7.37% 58.530 1 Template:More_citations_needed"," 7.34% 58.274 2 Template:Pagetype"," 7.07% 56.110 2 Template:Ambox"," 6.52% 51.734 1 Template:Navbar"]},"scribunto":{"limitreport-timeusage":{"value":"0.500","limit":"10.000"},"limitreport-memusage":{"value":23378281,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-654b9d4bd7-9hs5p","timestamp":"20250210051709","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Nth root","url":"https:\/\/en.wikipedia.org\/wiki\/Nth_root","sameAs":"http:\/\/www.wikidata.org\/entity\/Q601053","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q601053","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-05-27T18:58:31Z","dateModified":"2025-01-31T05:30:26Z","headline":"function"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10