CINXE.COM

Search results for: vertical shear-link

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vertical shear-link</title> <meta name="description" content="Search results for: vertical shear-link"> <meta name="keywords" content="vertical shear-link"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vertical shear-link" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vertical shear-link"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1159</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vertical shear-link</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1159</span> Analysis of Building Response from Vertical Ground Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Yao">George C. Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Yu%20Tu"> Chao-Yu Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chung%20Chen"> Wei-Chung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Wen%20Kuo"> Fung-Wen Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Chang"> Yu-Shan Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building structures are subjected to both horizontal and vertical ground motions during earthquakes, but only the horizontal ground motion has been extensively studied and considered in design. Most of the prevailing seismic codes assume the vertical component to be 1/2 to 2/3 of the horizontal one. In order to understand the building responses from vertical ground motions, many earthquakes records are studied in this paper. System identification methods (ARX Model) are used to analyze the strong motions and to find out the characteristics of the vertical amplification factors and the natural frequencies of buildings. Analysis results show that the vertical amplification factors for high-rise buildings and low-rise building are 1.78 and 2.52 respectively, and the average vertical amplification factor of all buildings is about 2. The relationship between the vertical natural frequency and building height was regressed to a suggested formula in this study. The result points out an important message; the taller the building is, the greater chance of resonance of vertical vibration on the building will be. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20ground%20motion" title="vertical ground motion">vertical ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20amplification%20factor" title=" vertical amplification factor"> vertical amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=component" title=" component"> component</a> </p> <a href="https://publications.waset.org/abstracts/73421/analysis-of-building-response-from-vertical-ground-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1158</span> Residents’ Perceptions towards the Application of Vertical Landscape in Cairo, Egypt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yomna%20Amr%20Ahmed%20Lotfi%20Koraim">Yomna Amr Ahmed Lotfi Koraim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Moati%20Rasmi%20Elkhateeb"> Dalia Moati Rasmi Elkhateeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertical landscape is introduced in this study as an alternative innovative technology for urban sustainable developments for its diverse environmental, economic, and psycho-social advantages. The main aim is to investigate the social acceptance of vertical landscape in Cairo, Egypt. The study objectives were to explore the perceptions of residents concerning this certain phenomenon and their opinions about its implementation. Survey questionnaires were administrated to 60 male and female residents from the Greater Cairo area. Despite the various concerns expressed about the application of vertical landscape, there was a clear majority of approval about its suitability. This is quite encouraging for the prospect of vertical landscape implementation in Cairo, Egypt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20landscape" title="vertical landscape">vertical landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20facades" title=" green facades"> green facades</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20greening" title=" vertical greening"> vertical greening</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20acceptance" title=" social acceptance"> social acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20development" title=" sustainable urban development"> sustainable urban development</a> </p> <a href="https://publications.waset.org/abstracts/72224/residents-perceptions-towards-the-application-of-vertical-landscape-in-cairo-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1157</span> The Simultaneous Effect of Horizontal and Vertical Earthquake Components on the Seismic Response of Buckling-Restrained Braced Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shokrollahi">Mahdi Shokrollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past years, much research has been conducted on the vulnerability of structures to earthquakes, which only horizontal components of the earthquake were considered in their seismic analysis and vertical earthquake acceleration especially in near-fault area was less considered. The investigation of the mappings shows that vertical earthquake acceleration can be significantly closer to the maximum horizontal earthquake acceleration, and even exceeds it in some cases. This study has compared the behavior of different members of three steel moment frame with a buckling-restrained brace (BRB), one time only by considering the horizontal component and again by considering simultaneously the horizontal and vertical components under the three mappings of the near-fault area and the effect of vertical acceleration on structural responses is investigated. Finally, according to the results, the vertical component of the earthquake has a greater effect on the axial force of the columns and the vertical displacement of the middle of the beams of the different classes and less on the lateral displacement of the classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20earthquake%20acceleration" title="vertical earthquake acceleration">vertical earthquake acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20area" title=" near-fault area"> near-fault area</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame" title=" steel frame"> steel frame</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20and%20vertical%20component%20of%20earthquake" title=" horizontal and vertical component of earthquake"> horizontal and vertical component of earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling-restrained%20brace" title=" buckling-restrained brace"> buckling-restrained brace</a> </p> <a href="https://publications.waset.org/abstracts/91326/the-simultaneous-effect-of-horizontal-and-vertical-earthquake-components-on-the-seismic-response-of-buckling-restrained-braced-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1156</span> Study of the Vertical Handoff in Heterogeneous Networks and Implement Based on Opnet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Benaatou">Wafa Benaatou</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Latif"> Adnane Latif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS and WiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20handoff" title="vertical handoff">vertical handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=UMTS" title=" UMTS"> UMTS</a>, <a href="https://publications.waset.org/abstracts/search?q=WIMAX" title=" WIMAX"> WIMAX</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous" title=" heterogeneous"> heterogeneous</a> </p> <a href="https://publications.waset.org/abstracts/12140/study-of-the-vertical-handoff-in-heterogeneous-networks-and-implement-based-on-opnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1155</span> Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Yoneda">Masahiro Yoneda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simplified%20method" title="simplified method">simplified method</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20walking%20vertical%20force" title=" human walking vertical force"> human walking vertical force</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20component" title=" higher component"> higher component</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20bridge%20vibration" title=" pedestrian bridge vibration"> pedestrian bridge vibration</a> </p> <a href="https://publications.waset.org/abstracts/28100/human-walking-vertical-force-and-vertical-vibration-of-pedestrian-bridge-induced-by-its-higher-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1154</span> Social Sustainability Quotient of Vertical Habitats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Mohamed">Abdullah Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Raipat%20Vaidehi"> Raipat Vaidehi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With increasing immigration to urban areas, every city is experiencing shortage of housing. Vertical habitats are the only solution to this problem, it is hence important to make sure that these habitats are environmentally, socially and economically sustainable. A lot of work on vertical habitats has already been carried out in terms of environmental and economic sustainability, hence this research aims to study the aspects of social sustainability of the vertical habitats. It being the least studied topic, opens many reals of novelty and uniqueness. In this Research, user perception survey and various mapping methods have been used to study the social sustainability of the existing vertical habitats in the selected cities. The various aspects that can be used to define social sustainability of any place include; safety, equity, accessibility, legibility, imagibility, readability, memorability and ease of movement. This research would help to evolve new strategies in form of design and/or guidelines to make the existing vertical habitats socially sustainable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=user%20lifestyle" title="user lifestyle">user lifestyle</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20perception" title=" user perception"> user perception</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20sustainability" title=" social sustainability"> social sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20habitats" title=" vertical habitats"> vertical habitats</a> </p> <a href="https://publications.waset.org/abstracts/74022/social-sustainability-quotient-of-vertical-habitats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1153</span> Horizontal and Vertical Illuminance Correlations in a Case Study for Shaded South Facing Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Matour">S. Matour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahdavinejad"> M. Mahdavinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Fayaz"> R. Fayaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Daylight utilization is a key factor in achieving visual and thermal comfort, and energy savings in integrated building design. However, lack of measured data related to this topic has become a major challenge with the increasing need for integrating lighting concepts and simulations in the early stages of design procedures. The current paper deals with the values of daylight illuminance on horizontal and south facing vertical surfaces; the data are estimated using IESNA model and measured values of the horizontal and vertical illuminance, and a regression model with an acceptable linear correlation is obtained. The resultant illuminance frequency curves are useful for estimating daylight availability on south facing surfaces in Tehran. In addition, the relationship between indirect vertical illuminance and the corresponding global horizontal illuminance is analyzed. A simple parametric equation is proposed in order to predict the vertical illumination on a shaded south facing surface. The equation correlates the ratio between the vertical and horizontal illuminance to the solar altitude and is used with another relationship for prediction of the vertical illuminance. Both equations show good agreement, which allows for calculation of indirect vertical illuminance on a south facing surface at any time throughout the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tehran%20daylight%20availability" title="Tehran daylight availability">Tehran daylight availability</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20illuminance" title=" horizontal illuminance"> horizontal illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20illuminance" title=" vertical illuminance"> vertical illuminance</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuse%20illuminance" title=" diffuse illuminance"> diffuse illuminance</a> </p> <a href="https://publications.waset.org/abstracts/73872/horizontal-and-vertical-illuminance-correlations-in-a-case-study-for-shaded-south-facing-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1152</span> Behaviour of Laterally Loaded Pile Groups in Cohesionless Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Arora">V. K. Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Suraj%20Prakash"> Suraj Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile foundations are provided to transfer the vertical and horizontal loads of superstructures like high rise buildings, bridges, offshore structures etc. to the deep strata in the soil. These vertical and horizontal loads are due to the loads coming from the superstructure and wind, water thrust, earthquake, and earth pressure, respectively. In a pile foundation, piles are used in groups. Vertical piles in a group of piles are more efficient to take vertical loads as compared to horizontal loads and when the horizontal load per pile exceeds the bearing capacity of the vertical piles in that case batter piles are used with vertical piles because batter piles can take more lateral loads than vertical piles. In this paper, a model study was conducted on three vertical pile group with single positive and negative battered pile subjected to lateral loads. The batter angle for battered piles was ±35◦ with the vertical axis. Piles were spaced at 2.5d (d=diameter of pile) to each other. The soil used for model test was cohesionless soil. Lateral loads were applied in three stages on all the pile groups individually and it was found that under the repeated action of lateral loading, the deflection of the piles increased under the same loading. After comparing the results, it was found that the pile group with positive batter pile fails at 28 kgf and the pile group with negative batter pile fails at 24 kgf so it shows that positive battered piles are stronger than the negative battered piles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20piles" title="vertical piles">vertical piles</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20battered%20piles" title=" positive battered piles"> positive battered piles</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20battered%20piles" title=" negative battered piles"> negative battered piles</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionless%20soil" title=" cohesionless soil"> cohesionless soil</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20loads" title=" lateral loads"> lateral loads</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20test" title=" model test"> model test</a> </p> <a href="https://publications.waset.org/abstracts/8428/behaviour-of-laterally-loaded-pile-groups-in-cohesionless-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1151</span> Analyzing Time Lag in Seismic Waves and Its Effects on Isolated Structures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faizan%20Ahmad">Faizan Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenna%20Wong"> Jenna Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time lag between peak values of horizontal and vertical seismic waves is a well-known phenomenon. Horizontal and vertical seismic waves, secondary and primary waves in nature respectively, travel through different layers of soil and the travel time is dependent upon the medium of wave transmission. In seismic analysis, many standardized codes do not require the actual vertical acceleration to be part of the analysis procedure. Instead, a factor load addition for a particular site is used to capture strength demands in case of vertical excitation. This study reviews the effects of vertical accelerations to analyze the behavior of a linearly rubber isolated structure in different time lag situations and frequency content by application of historical and simulated ground motions using SAP2000. The response of the structure is reviewed under multiple sets of ground motions and trends based on time lag and frequency variations are drawn. The accuracy of these results is discussed and evaluated to provide reasoning for use of real vertical excitations in seismic analysis procedures, especially for isolated structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title="seismic analysis">seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20accelerations" title=" vertical accelerations"> vertical accelerations</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20lag" title=" time lag"> time lag</a>, <a href="https://publications.waset.org/abstracts/search?q=isolated%20structures" title=" isolated structures"> isolated structures</a> </p> <a href="https://publications.waset.org/abstracts/77961/analyzing-time-lag-in-seismic-waves-and-its-effects-on-isolated-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1150</span> Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shidrokh%20Goudarzi">Shidrokh Goudarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Haslina%20Hassan"> Wan Haslina Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20wireless%20networks" title="heterogeneous wireless networks">heterogeneous wireless networks</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20handovers" title=" vertical handovers"> vertical handovers</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20handover%20metric" title=" vertical handover metric"> vertical handover metric</a>, <a href="https://publications.waset.org/abstracts/search?q=decision-making%20algorithms" title=" decision-making algorithms"> decision-making algorithms</a> </p> <a href="https://publications.waset.org/abstracts/19433/proposed-framework-based-on-classification-of-vertical-handover-decision-strategies-in-heterogeneous-wireless-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1149</span> Optimal Number and Placement of Vertical Links in 3D Network-On-Chip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Toubaline">Nesrine Toubaline</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Bennouar"> Djamel Bennouar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mahdoum"> Ali Mahdoum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interconnect%20optimization" title="interconnect optimization">interconnect optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=monolithic%20inter-tier%20vias" title=" monolithic inter-tier vias"> monolithic inter-tier vias</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20on%20chip" title=" network on chip"> network on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20on%20chip" title=" system on chip"> system on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=through%20silicon%20vias" title=" through silicon vias"> through silicon vias</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20dimensional%20integration%20circuits" title=" three dimensional integration circuits"> three dimensional integration circuits</a> </p> <a href="https://publications.waset.org/abstracts/60164/optimal-number-and-placement-of-vertical-links-in-3d-network-on-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1148</span> Responding of Vertical Gardens and Green Facades in Urban Design to the Global Environmental Impacts and the Call for Greening in Urban Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esraa%20Mohamed%20Ezzat%20Ramadan%20Elkhaiary">Esraa Mohamed Ezzat Ramadan Elkhaiary</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayah%20Mohamed%20Ezzat%20Ramadan%20Elkhaiary"> Ayah Mohamed Ezzat Ramadan Elkhaiary</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Yehia%20Ismaiel"> Ahmed Yehia Ismaiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertical lawn is crucial for the development of the constructed surroundings’ sustainability. Their implementation is also ecologically and aesthetically ideal as a good enough architectural characteristic that enhancements facades. Furthermore, their exploitation ends in a power-conscious design that prevents densely populated city areas in Cairo from transforming right into a deteriorated natural environment. After collaborative studies and analysis, it concluded that installing the vertical garden will not simply enhance urban spaces and informal settlements’ homes aesthetically but also offer an excellent role version to the metropolis in how future buildings can be constructed with vertical gardens established. Most significantly, it will enhance the general public consciousness of the inexperienced functions of the vertical garden to the constructing customers and visitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20gardens" title="vertical gardens">vertical gardens</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20facades" title=" green facades"> green facades</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20rehabilitation" title=" urban rehabilitation"> urban rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20spaces" title=" urban spaces"> urban spaces</a> </p> <a href="https://publications.waset.org/abstracts/173737/responding-of-vertical-gardens-and-green-facades-in-urban-design-to-the-global-environmental-impacts-and-the-call-for-greening-in-urban-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1147</span> Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhasan%20Naeini">Seyed Abolhasan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Namaei"> Ali Namaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20drain" title="vertical drain">vertical drain</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated" title=" prefabricated"> prefabricated</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a> </p> <a href="https://publications.waset.org/abstracts/109050/effect-of-prefabricated-vertical-drain-system-properties-on-embankment-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1146</span> Behavior of a Vertical Pile under the Effect of an Inclined Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Elsayed%20Gaaver"> Khaled Elsayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundations" title="deep foundations">deep foundations</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145253/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1145</span> Issues in Implementation of Vertical Greenery System on Existing Government Building in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamilah%20Halina%20Abdul%20Halim">Jamilah Halina Abdul Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=Norsiah%20Hassan"> Norsiah Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Azlina%20Aziz"> Azlina Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhayati%20Mat%20Wajid"> Norhayati Mat Wajid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Saipul%20Asrafi"> Mohd Saipul Asrafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are various types of vertical greenery system (VGS) in Malaysia, but none is installed at government buildings, although the government is looking into energy efficient building design. This is due to lack of technical information that focus on the maintenance and care, issues, and challenges face by vertical greenery system under tropical climate conditions. This research aim to identify issues in implementation of vertical greenery system on existing government building in Malaysia. The methodology used are literature reviews (desktop study), observation on sites, and case studies. Initial findings indicates that design and maintenance issues of vertical greenery system are the main challenges faced mainly by designer, especially those who involved in decision-making process. It can be concluded that orientation, openings, maintenance, performance, longevity, structural load, access, wind resistance, design failure, system failure, and lack of maintenance foresight are the main factors that need to be considered. These factors should be holistically aligned towards the economic cost, effective time, and quality design in implementation of vertical greenery system on existing government building. A comprehensive implementation of vertical greenery system will lead to greater sustainable investment for government buildings and responsive action to climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=issues" title="issues">issues</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20building" title=" government building"> government building</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20greenery%20system" title=" vertical greenery system"> vertical greenery system</a> </p> <a href="https://publications.waset.org/abstracts/160626/issues-in-implementation-of-vertical-greenery-system-on-existing-government-building-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1144</span> Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingchen%20Yang">Yingchen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unidirectional%20rotation" title="unidirectional rotation">unidirectional rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis%20rotor" title=" vertical axis rotor"> vertical axis rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20conversion" title=" wave energy conversion"> wave energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-rotor%20interaction" title=" wave-rotor interaction"> wave-rotor interaction</a> </p> <a href="https://publications.waset.org/abstracts/121733/effect-of-blade-layout-on-unidirectional-rotation-of-a-vertical-axis-rotor-in-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1143</span> Study of the Benefit Analysis Using Vertical Farming Method in Urban Renewal within the Older City of Taichung </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsu%20Kuo-Wei">Hsu Kuo-Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Roon%20Fang"> Tan Roon Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Jen-chih"> Chao Jen-chih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cities face environmental challenges, including over-urbanization issues, air and water quality issues, lack of green space, excess heat capture, polluted storm water runoff and lack of ecological biodiversity. The vertical farming holds the condition of technology addressing these issues by enabling more food to be produced with finite less resources use and space. Most of the existing research regarding to technology Industry of agriculture between plant factory and vertical greening, which with high costs and high-technology. Relative research developed a sustainable model for construction and operation of the vertical farm in urban housing which aims to revolutionize our daily life of food production and urban development. However, those researches focused on quantitative analysis. This study utilized relative research for key variables of benefits of vertical farming. In the second stage, utilizes Fuzzy Delphi Method to obtain the critical factors of benefits of vertical farming using in Urban Renewal by interviewing the foregoing experts. Then, Analytic Hierarchy Process is applied to find the importance degree of each criterion as the measurable indices of the vertical farming method in urban renewal within the older city of Taichung. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20renewal" title="urban renewal">urban renewal</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20farming" title=" vertical farming"> vertical farming</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=benefit%20analysis" title=" benefit analysis"> benefit analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20older%20city%20of%20Taichung" title=" the older city of Taichung"> the older city of Taichung</a> </p> <a href="https://publications.waset.org/abstracts/20542/study-of-the-benefit-analysis-using-vertical-farming-method-in-urban-renewal-within-the-older-city-of-taichung" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1142</span> Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Song%20Gui">Jin Song Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Li"> Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Jin%20Zhang"> Rui Jin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Heng%20Jiang%20Cai"> Heng Jiang Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=overtopping%20wave" title="overtopping wave">overtopping wave</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20model%20experiment" title=" physical model experiment"> physical model experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20breakwater" title=" vertical breakwater"> vertical breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20forces" title=" wave forces"> wave forces</a> </p> <a href="https://publications.waset.org/abstracts/47386/experimental-investigation-for-the-overtopping-wave-force-of-the-vertical-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1141</span> Behavior of A Vertical Pile Under the Effect of an Inclined Load in Loose Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathi%20Mohamed%20Abdrabbo">Fathi Mohamed Abdrabbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Esayed%20Gaaver"> Khaled Esayed Gaaver</a>, <a href="https://publications.waset.org/abstracts/search?q=Musab%20Musa%20Eldooma"> Musab Musa Eldooma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements of pile head, as well as the deformation profiles along the pile and the pile stiffness, are significantly affected by α. It was observed that the P-Y curves of the pile-soil system are independent of α. Also, the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal load component of the applied load on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20foundation" title="deep foundation">deep foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=piles" title=" piles"> piles</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20load" title=" inclined load"> inclined load</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20deformations" title=" pile deformations"> pile deformations</a> </p> <a href="https://publications.waset.org/abstracts/145277/behavior-of-a-vertical-pile-under-the-effect-of-an-inclined-load-in-loose-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1140</span> Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milind%20Chaudhari">Milind Chaudhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhail%20Balasinor"> Suhail Balasinor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20farming" title=" vertical farming"> vertical farming</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20farming" title=" indoor farming"> indoor farming</a> </p> <a href="https://publications.waset.org/abstracts/148336/revolutionizing-traditional-farming-using-big-datacloud-computing-a-review-on-vertical-farming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1139</span> On the Seismic Response of Collided Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20D.%20Hatzigeorgiou">George D. Hatzigeorgiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikos%20G.%20Pnevmatikos"> Nikos G. Pnevmatikos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20seismic%20behavior" title="nonlinear seismic behavior">nonlinear seismic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structures" title=" reinforced concrete structures"> reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20pounding" title=" structural pounding"> structural pounding</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20ground%20motions" title=" vertical ground motions"> vertical ground motions</a> </p> <a href="https://publications.waset.org/abstracts/7892/on-the-seismic-response-of-collided-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1138</span> Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Missina">Svetlana Missina</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoliy%20Shipilov"> Anatoliy Shipilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Vavaev"> Alexandr Vavaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agility" title="agility">agility</a>, <a href="https://publications.waset.org/abstracts/search?q=female%20football%20players" title=" female football players"> female football players</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint%20performance" title=" sprint performance"> sprint performance</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20jump%20height" title=" vertical jump height"> vertical jump height</a> </p> <a href="https://publications.waset.org/abstracts/59039/correlation-between-sprint-performance-and-vertical-jump-height-in-elite-female-football-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1137</span> Vertical and Lateral Vibration Response for Corrugated Track Curves Supported on High-Density Polyethylene and Hytrel Rail Pads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.M.%20Balekwa">B.M. Balekwa</a>, <a href="https://publications.waset.org/abstracts/search?q=D.V.V.%20Kallon"> D.V.V. Kallon</a>, <a href="https://publications.waset.org/abstracts/search?q=D.J.%20Fourie"> D.J. Fourie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modal analysis is applied to establish the dynamic difference between vibration response of the rails supported on High Density Polyethylene (HDPE) and Hytrel/6358 rail pads. The experiment was conducted to obtain the results in the form of Frequency Response Functions (FRFs) in the vertical and lateral directions. Three antiresonance modes are seen in the vertical direction; one occurs at about 150 Hz when the rail resting on the Hytrel/6358 pad experiences a force mid-span. For the rail resting on this type of rail pad, no antiresonance occurs when the force is applied on the point of the rail that is resting on the pad and directly on top of a sleeper. The two antiresonance modes occur in a frequency range of 250 – 300 Hz in the vertical direction for the rail resting on HDPE pads. At resonance, the rail vibrates with a higher amplitude, but at antiresonance, the rail transmits vibration downwards to the sleepers. When the rail is at antiresonance, the stiffness of the rail pads play a vital role in terms of damping the vertical vibration to protect the sleepers. From the FRFs it is understood that the Hytrel/6358 rail pads perform better than the HDPE in terms of vertical response, given that at a lower frequency range of 0 – 300 Hz only one antiresonance mode was identified for vertical vibration of the rail supported on Hytrel/6358. This means the rail is at antiresonance only once within this frequency range and this is the only time when vibration is transmitted downwards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerance" title="accelerance">accelerance</a>, <a href="https://publications.waset.org/abstracts/search?q=FRF" title=" FRF"> FRF</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20corrugation" title=" rail corrugation"> rail corrugation</a>, <a href="https://publications.waset.org/abstracts/search?q=rail%20pad" title=" rail pad"> rail pad</a> </p> <a href="https://publications.waset.org/abstracts/125399/vertical-and-lateral-vibration-response-for-corrugated-track-curves-supported-on-high-density-polyethylene-and-hytrel-rail-pads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1136</span> Analytical and Numerical Study of Formation of Sporadic E Layer with Taking into Account Horizontal and Vertical In-Homogeneity of the Horizontal Wind </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Dalakishvili">Giorgi Dalakishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Goderdzi%20G.%20Didebulidze"> Goderdzi G. Didebulidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Todua"> Maya Todua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of sporadic E (Es) layer formation in the mid-latitude nighttime lower thermosphere by horizontal homogeneous and inhomogeneous (vertically and horizontally changing) winds is investigated in 3D by analytical and numerical solutions of continuity equation for dominant heavy metallic ions Fe+. The theory of influence of wind velocity direction, value, and its shear on formation of sporadic E is developed in case of presence the effect of horizontally changing wind (the effect of horizontal convergence). In this case, the horizontal wind with horizontal shear, characterized by compressibility and/or vortices, can provide an additional influence on heavy metallic ions Fe+ horizontal convergence and Es layers density, which can be formed by their vertical convergence caused as by wind direction and values and by its horizontal shear as well. The horizontal wind value and direction have significant influence on ion vertical drift velocity and its minimal negative values of divergence necessary for development of ion vertical convergence into sporadic E type layer. The horizontal wind horizontal shear, in addition to its vertical shear, also influences the ion drift velocity value and its vertical changes and correspondingly on formation of sporadic E layer and its density. The atmospheric gravity waves (AGWs), with relatively smaller horizontal wave length than planetary waves and tidal motion, can significantly influence location of ion vertical drift velocity nodes (where Es layers formation expectable) and its vertical and horizontal shear providing ion vertical convergence into thin layer. Horizontal shear can cause additional influence in the Es layers density than in the case of only wind value and vertical shear only. In this case, depending on wind direction and value in the height region of the lower thermosphere about 90-150 km occurs heavy metallic ions (Fe+) vertical convergence into thin sporadic E type layer. The horizontal wind horizontal shear also can influence on ions horizontal convergence and density and location Es layers. The AGWs modulate the horizontal wind direction and values and causes ion additional horizontal convergence, while the vertical changes (shear) causes additional vertical convergence than in the case without vertical shear. Influence of horizontal shear on sporadic E density and the importance of vertical compressibility of the lower thermosphere, which also can be influenced by AGWs, is demonstrated numerically. For the given wavelength and background wind, the predictability of formation Es layers and its possible location regions are shown. Acknowledgements: This study was funded by Georgian Shota Rustaveli National Science Foundation Grant no. FR17-357. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-homogeneous" title="in-homogeneous">in-homogeneous</a>, <a href="https://publications.waset.org/abstracts/search?q=sporadic%20E" title=" sporadic E"> sporadic E</a>, <a href="https://publications.waset.org/abstracts/search?q=thermosphere" title=" thermosphere"> thermosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/128943/analytical-and-numerical-study-of-formation-of-sporadic-e-layer-with-taking-into-account-horizontal-and-vertical-in-homogeneity-of-the-horizontal-wind" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1135</span> Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Bykalyuk">Anna Bykalyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Kuznik"> Frédéric Kuznik</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C3%A9vyn%20Johannes"> Kévyn Johannes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20modeling" title="CFD modeling">CFD modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductive%20plate" title=" thermal conductive plate"> thermal conductive plate</a>, <a href="https://publications.waset.org/abstracts/search?q=time-depending%20boundary%20conditions" title=" time-depending boundary conditions"> time-depending boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/1371/transient-free-laminar-convection-in-the-vicinity-of-a-thermal-conductive-vertical-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1134</span> Studying Frame-Resistant Steel Structures under Near Field Ground Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Hashemi">S. A. Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khoshraftar"> A. Khoshraftar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using Ram Perform-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of the ground motion may increase the axial load significantly in the interior columns and consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inelastic%20behavior" title="inelastic behavior">inelastic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20dynamic%20analysis" title=" non-linear dynamic analysis"> non-linear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20component" title=" vertical component"> vertical component</a> </p> <a href="https://publications.waset.org/abstracts/30902/studying-frame-resistant-steel-structures-under-near-field-ground-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1133</span> Semi-Natural Vertical Gardens and Urban Ecology, the Sample of Bartın City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeliz%20Sar%C4%B1%20Nayim">Yeliz Sarı Nayim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Nayim"> B. N. Nayim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vertical natural gardens encountered in urban ecosystems are important elements contributing to urban ecology by raising the quality of urban life. This research covers the investigation of the semi-natural plant walls of Bartın city which is located on the western Black Sea coast of Turkey. Landscape analysis and evaluation as a result of land and office work have resulted in vertical garden ecosystems that have been processed in the urban habitat map, mostly in natural stone walls, wooden garden fences, garden entrance doors, historical buildings and building walls. Structural surfaces on old building facades, especially with abandoned or still in use with natural stone walls, have been found to have many natural vertical gardens over time. Parietaria judaica, Cymbalaria longipes and Hedera helix species were dominant, and other types of content were recorded, providing information on the current biotope potential, human activities and effects on them. It has been emphasized that the described vertical gardens together with the species they contain should be protected in terms of Bartin urban ecology and biodiversity. It has been stated that sustainable urban planning, design and management should be considered as a compensation for open and green area losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-natural%20vertical%20gardens" title="semi-natural vertical gardens">semi-natural vertical gardens</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20ecology" title=" urban ecology"> urban ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20planning%20and%20design" title=" sustainable urban planning and design"> sustainable urban planning and design</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%C4%B1n" title=" Bartın"> Bartın</a> </p> <a href="https://publications.waset.org/abstracts/66259/semi-natural-vertical-gardens-and-urban-ecology-the-sample-of-bartin-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1132</span> Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Solimani%20Babarsad">Mohsen Solimani Babarsad</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20Taheri"> Payam Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slot%20Fish-way" title="slot Fish-way">slot Fish-way</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=k-%CE%B5%20model" title=" k-ε model"> k-ε model</a>, <a href="https://publications.waset.org/abstracts/search?q=St.-Venant%20equations%E2%80%99" title=" St.-Venant equations’"> St.-Venant equations’</a> </p> <a href="https://publications.waset.org/abstracts/31504/simulation-of-flow-patterns-in-vertical-slot-fishway-with-cylindrical-obstacles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1131</span> The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Baradaran">Mohammad Reza Baradaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Hamzezarghani"> Farhad Hamzezarghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Rastegari%20Ghiri"> Mehdi Rastegari Ghiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Mirsanjari"> Zahra Mirsanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link" title="vertical shear-link">vertical shear-link</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20analysis" title=" cyclic analysis"> cyclic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20beam" title=" honeycomb beam"> honeycomb beam</a> </p> <a href="https://publications.waset.org/abstracts/30924/the-effect-of-vertical-shear-link-in-improving-the-seismic-performance-of-structures-with-eccentrically-bracing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1130</span> Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Sun%20%28Sunny%29%20Choi">Hee Sun (Sunny) Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Bruyns"> Gerhard Bruyns</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Zhang"> Wang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sky%20Cheng"> Sky Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Saijal%20Sharma"> Saijal Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20urbanism" title="vertical urbanism">vertical urbanism</a>, <a href="https://publications.waset.org/abstracts/search?q=scientific%20research%20methods" title=" scientific research methods"> scientific research methods</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20cognition" title=" spatial cognition"> spatial cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20design%20guideline" title=" urban design guideline"> urban design guideline</a> </p> <a href="https://publications.waset.org/abstracts/174034/vertical-urban-design-guideline-and-its-application-to-measure-human-cognition-and-emotions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vertical%20shear-link&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10