CINXE.COM

MSU in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> MSU in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> MSU </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/11904/#Item_10" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="cobordism_theory">Cobordism theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/cobordism+theory">cobordism theory</a></strong> = <a class="existingWikiWord" href="/nlab/show/manifolds+and+cobordisms+-+contents">manifolds and cobordisms</a> + <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable homotopy theory</a>/<a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/equivariant+cobordism+theory">equivariant cobordism theory</a></li> </ul> <p><strong>Concepts of cobordism theory</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/manifold">manifold</a>, <a class="existingWikiWord" href="/nlab/show/differentiable+manifold">differentiable manifold</a>, <a class="existingWikiWord" href="/nlab/show/smooth+manifold">smooth manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tangential+structure">tangential structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism">cobordism</a>, <a class="existingWikiWord" href="/nlab/show/cobordism+class">cobordism class</a></p> <p><a class="existingWikiWord" href="/nlab/show/cobordism+ring">cobordism ring</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/submanifold">submanifold</a>,</p> <p><a class="existingWikiWord" href="/nlab/show/normal+bundle">normal bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pontrjagin%27s+theorem">Pontrjagin's theorem</a> (<a class="existingWikiWord" href="/nlab/show/equivariant+Pontrjagin+theorem">equivariant</a>, <a class="existingWikiWord" href="/nlab/show/twisted+Pontrjagin+theorem">twisted</a>):</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mo>↔</mo></mphantom></mrow><annotation encoding="application/x-tex">\phantom{\leftrightarrow}</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/Cohomotopy">Cohomotopy</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↔</mo></mrow><annotation encoding="application/x-tex">\leftrightarrow</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/cobordism+classes">cobordism classes</a> of <a class="existingWikiWord" href="/nlab/show/normally+framed+submanifolds">normally framed submanifolds</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Thom%27s+theorem">Thom's theorem</a>:</p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mphantom><mo>↔</mo></mphantom></mrow><annotation encoding="application/x-tex">\phantom{\leftrightarrow}</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/homotopy+classes">homotopy classes</a> of maps to <a class="existingWikiWord" href="/nlab/show/Thom+space">Thom space</a> <a class="existingWikiWord" href="/nlab/show/MO">MO</a></p> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>↔</mo></mrow><annotation encoding="application/x-tex">\leftrightarrow</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/cobordism+classes">cobordism classes</a> of <a class="existingWikiWord" href="/nlab/show/normally+oriented+submanifolds">normally oriented submanifolds</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/vector+bundle">vector bundle</a></p> <p><a class="existingWikiWord" href="/nlab/show/Thom+space">Thom space</a></p> <p><a class="existingWikiWord" href="/nlab/show/Thom+isomorphism">Thom isomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Thom+spectrum">Thom spectrum</a></p> <p><a class="existingWikiWord" href="/nlab/show/Pontryagin-Thom+collapse+construction">Pontryagin-Thom collapse construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theory">cobordism cohomology theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/complex+cobordism+cohomology+theory">complex cobordism cohomology theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/orientation+in+generalized+cohomology">orientation in generalized cohomology</a></p> <p><a class="existingWikiWord" href="/nlab/show/genus">genus</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2Cn%29-category+of+cobordisms">(∞,n)-category of cobordisms</a></p> <p><a class="existingWikiWord" href="/nlab/show/cobordism+hypothesis">cobordism hypothesis</a></p> </li> </ul> <div> <p><strong>flavors of <a class="existingWikiWord" href="/nlab/show/bordism+homology+theories">bordism homology theories</a>/<a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theories">cobordism cohomology theories</a>, their <a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">representing</a> <a class="existingWikiWord" href="/nlab/show/Thom+spectra">Thom spectra</a> and <a class="existingWikiWord" href="/nlab/show/cobordism+rings">cobordism rings</a></strong>:</p> <p><a class="existingWikiWord" href="/nlab/show/bordism+homology+theory">bordism theory</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thickmathspace"></mspace></mrow><annotation encoding="application/x-tex">\;</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/M%28B%2Cf%29">M(B,f)</a> (<a class="existingWikiWord" href="/nlab/show/B-bordism">B-bordism</a>):</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/MFr">MFr</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MO">MO</a>, <a class="existingWikiWord" href="/nlab/show/MSO">MSO</a>, <a class="existingWikiWord" href="/nlab/show/MSpin">MSpin</a>, <a class="existingWikiWord" href="/nlab/show/MString">MString</a>, …</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MU">MU</a>, <a class="existingWikiWord" href="/nlab/show/MSU">MSU</a>, …</p> <p><a class="existingWikiWord" href="/nlab/show/Ravenel%27s+spectrum">MΩΩSU(n)</a></p> <p><a class="existingWikiWord" href="/nlab/show/MP-theory">MP</a>, <a class="existingWikiWord" href="/nlab/show/MR-theory">MR</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MSpin%5Ec">MSpin<sup><i>c</i></sup></a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MSp">MSp</a></p> </li> </ul> <p>relative bordism theories:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/MOFr">MOFr</a>, <a class="existingWikiWord" href="/nlab/show/MUFr">MUFr</a>, <a class="existingWikiWord" href="/nlab/show/MSUFr">MSUFr</a></li> </ul> <p><a class="existingWikiWord" href="/nlab/show/equivariant+bordism+homology+theory">equivariant bordism theory</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+MFr">equivariant MFr</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+MO">equivariant MO</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+MU">equivariant MU</a></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/global+equivariant+bordism+homology+theory">global equivariant bordism theory</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/global+equivariant+mO">global equivariant mO</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/global+equivariant+mU">global equivariant mU</a></p> </li> </ul> <p>algebraic:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/algebraic+cobordism">algebraic cobordism</a></li> </ul> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#relation_to_'>Relation to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>MU</mi></mrow><annotation encoding="application/x-tex">MU</annotation></semantics></math></a></li> <li><a href='#RelationToCalabiYauManifolds'>Relation to Calabi-Yau manifolds</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The <a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theory">cobordism cohomology theory</a> for <a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a>-<a class="existingWikiWord" href="/nlab/show/G-structure">structure</a>.</p> <h2 id="properties">Properties</h2> <p>We write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mo>•</mo> <mi>SU</mi></msubsup></mrow><annotation encoding="application/x-tex">\Omega^{SU}_\bullet</annotation></semantics></math> for the <a class="existingWikiWord" href="/nlab/show/bordism+ring">bordism ring</a> for <a class="existingWikiWord" href="/nlab/show/stable+tangent+bundle">stable</a> <a class="existingWikiWord" href="/nlab/show/special+unitary+group">SU</a>-<a class="existingWikiWord" href="/nlab/show/G-structure">structure</a>.</p> <h3 id="relation_to_">Relation to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>MU</mi></mrow><annotation encoding="application/x-tex">MU</annotation></semantics></math></h3> <p>The canonical <a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a>-<a class="existingWikiWord" href="/nlab/show/subgroup">inclusions</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mn>1</mn><mspace width="thickmathspace"></mspace><mo>⊂</mo><mspace width="thickmathspace"></mspace><mi>Sp</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⊂</mo><mspace width="thickmathspace"></mspace><mi>SU</mi><mo stretchy="false">(</mo><mn>2</mn><mi>k</mi><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mo>⊂</mo><mspace width="thickmathspace"></mspace><mi>U</mi><mo stretchy="false">(</mo><mn>2</mn><mi>k</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> 1 \;\subset\; Sp(k) \;\subset\; SU(2k) \;\subset\; U(2k) </annotation></semantics></math></div> <p>(<a class="existingWikiWord" href="/nlab/show/trivial+group">trivial group</a> into <a class="existingWikiWord" href="/nlab/show/quaternionic+unitary+group">quaternionic unitary group</a> into <a class="existingWikiWord" href="/nlab/show/special+unitary+group">special unitary group</a> into <a class="existingWikiWord" href="/nlab/show/unitary+group">unitary group</a>) induce <a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a>-<a class="existingWikiWord" href="/nlab/show/homomorphism">homomorphism</a> of <a class="existingWikiWord" href="/nlab/show/Thom+spectra">Thom spectra</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>M</mi><mi>Fr</mi><mspace width="thickmathspace"></mspace><mo>⟶</mo><mspace width="thickmathspace"></mspace><mi>M</mi><mi>Sp</mi><mspace width="thickmathspace"></mspace><mo>⟶</mo><mspace width="thickmathspace"></mspace><mi>M</mi><mi>SU</mi><mspace width="thickmathspace"></mspace><mo>⟶</mo><mspace width="thickmathspace"></mspace><mi>M</mi><mi mathvariant="normal">U</mi></mrow><annotation encoding="application/x-tex"> M Fr \;\longrightarrow\; M Sp \;\longrightarrow\; M SU \;\longrightarrow\; M \mathrm{U} </annotation></semantics></math></div> <p>(from <a class="existingWikiWord" href="/nlab/show/MFr">MFr</a> to <a class="existingWikiWord" href="/nlab/show/MSp">MSp</a> to <a class="existingWikiWord" href="/nlab/show/MSU">MSU</a> to <a class="existingWikiWord" href="/nlab/show/MU">MU</a>)</p> <p>and hence corresponding <a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative cohomology theory</a>-<a class="existingWikiWord" href="/nlab/show/homomorphisms">homomorphisms</a> of <a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theories">cobordism cohomology theories</a>, so in particular <a class="existingWikiWord" href="/nlab/show/ring+homomorphisms">ring homomorphisms</a> of <a class="existingWikiWord" href="/nlab/show/bordism+rings">bordism rings</a></p> <div class="maruku-equation" id="eq:HomomorphismsOfCobordismRings"><span class="maruku-eq-number">(1)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mo>•</mo> <mi>fr</mi></msubsup><mo>⟶</mo><msubsup><mi>Ω</mi> <mo>•</mo> <mi>Sp</mi></msubsup><mo>⟶</mo><msubsup><mi>Ω</mi> <mo>•</mo> <mi>SU</mi></msubsup><mo>⟶</mo><msubsup><mi>Ω</mi> <mo>•</mo> <mi>U</mi></msubsup></mrow><annotation encoding="application/x-tex"> \Omega^{fr}_{\bullet} \longrightarrow \Omega^{Sp}_{\bullet} \longrightarrow \Omega^{SU}_{\bullet} \longrightarrow \Omega^{U}_{\bullet} </annotation></semantics></math></div> <p>(e.g. <a href="#ConnerFloyd66">Conner-Floyd 66, p. 27 (34 of 120)</a>)</p> <div class="num_prop" id="KernelOfMapFromSUBordismToUBordismIsTorsion"> <h6 id="proposition">Proposition</h6> <p>The <a class="existingWikiWord" href="/nlab/show/kernel">kernel</a> of the <a class="existingWikiWord" href="/nlab/show/forgetful+functor">forgetful</a> morphism <a class="maruku-eqref" href="#eq:HomomorphismsOfCobordismRings">(1)</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mo>•</mo> <mi>SU</mi></msubsup><mo>⟶</mo><msubsup><mi>Ω</mi> <mo>•</mo> <mi mathvariant="normal">U</mi></msubsup></mrow><annotation encoding="application/x-tex"> \Omega^{SU}_\bullet \longrightarrow \Omega^{\mathrm{U}}_\bullet </annotation></semantics></math></div> <p>from the <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> to the <a class="existingWikiWord" href="/nlab/show/complex+bordism+ring">complex bordism ring</a>, is pure <a class="existingWikiWord" href="/nlab/show/torsion+subgroup">torsion</a>.</p> </div> <p>(<a href="#CLP19">CLP 19, Thm. 5.8a</a>)</p> <div class="num_prop" id="TorsionInSUBordismConcentratedInDegrees1And2Mod8"> <h6 id="proposition_2">Proposition</h6> <p>The <a class="existingWikiWord" href="/nlab/show/torsion+subgroup">torsion subgroup</a> of the <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> is concentrated in degrees <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>8</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">8k+1</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>8</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">8k+2</annotation></semantics></math>, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">k \in \mathbb{N}</annotation></semantics></math>.</p> </div> <p>(<a href="#CLP19">CLP 19, Thm. 5.11a</a>)</p> <div class="num_prop"> <h6 id="proposition_3">Proposition</h6> <p>Every <a class="existingWikiWord" href="/nlab/show/torsion+element">torsion element</a> in the <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mo>•</mo> <mi>SU</mi></msubsup></mrow><annotation encoding="application/x-tex">\Omega^{SU}_\bullet</annotation></semantics></math> has <a class="existingWikiWord" href="/nlab/show/order+of+an+element">order</a> 2.</p> </div> <p>(<a href="#CLP19">CLP 19, Thm. 5.8b</a>)</p> <div class="num_prop" id="SUBordismRingAwayFromTwo"> <h6 id="proposition_4">Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> <a class="existingWikiWord" href="/nlab/show/localization+of+a+ring">away from 2</a> is <a class="existingWikiWord" href="/nlab/show/polynomial+algebra">polynomial algebra</a>)</strong></p> <p>The <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> with <a class="existingWikiWord" href="/nlab/show/localization+of+a+ring">2 inverted</a> is the <a class="existingWikiWord" href="/nlab/show/polynomial+algebra">polynomial algebra</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">[</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo maxsize="1.2em" minsize="1.2em">]</mo></mrow><annotation encoding="application/x-tex">\mathbb{Z}\big[\tfrac{1}{2}\big]</annotation></semantics></math> on one generator in every even degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≥</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">\geq 4</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>Ω</mi> <mi>SU</mi></msup><mo maxsize="1.2em" minsize="1.2em">[</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo maxsize="1.2em" minsize="1.2em">]</mo><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">[</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo maxsize="1.2em" minsize="1.2em">]</mo><mo maxsize="1.2em" minsize="1.2em">[</mo><mo stretchy="false">{</mo><msub><mi>y</mi> <mrow><mn>2</mn><mi>i</mi><mo>+</mo><mn>4</mn></mrow></msub><msub><mo stretchy="false">}</mo> <mrow><mi>i</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub><mo maxsize="1.2em" minsize="1.2em">]</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Omega^{SU}\big[\tfrac{1}{2}\big] \;\simeq\; \mathbb{Z} \big[ \tfrac{1}{2} \big] \big[ \{ y_{2i+4} \}_{i \in \mathbb{N}} \big] \,. </annotation></semantics></math></div></div> <p>(due to <a href="#Novikov62">Novikov 62</a>, review in <a href="#LLP17">LLP 17, Thm. 1.2</a>)</p> <h3 id="RelationToCalabiYauManifolds">Relation to Calabi-Yau manifolds</h3> <p>We discuss the classes of <a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifolds">Calabi-Yau manifolds</a> in the <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a>. For more see at <em><a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifolds+in+SU-bordism+theory">Calabi-Yau manifolds in SU-bordism theory</a></em>.</p> <div class="num_prop" id="K3SurfaceSpansSUBordismRingInDegree4"> <h6 id="proposition_5">Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/K3-surface">K3-surface</a> spans <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> in degree 4)</strong></p> <p>The degree-4 generator <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>y</mi> <mn>4</mn></msub><mo>∈</mo><msubsup><mi>Ω</mi> <mn>4</mn> <mi>SU</mi></msubsup></mrow><annotation encoding="application/x-tex">y_4 \in \Omega^{SU}_4</annotation></semantics></math> in the <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> (Prop. <a class="maruku-ref" href="#SUBordismRingAwayFromTwo"></a>) is represented by minus the class of any (non-<a class="existingWikiWord" href="/nlab/show/torus">torus</a>) <a class="existingWikiWord" href="/nlab/show/K3-surface">K3-surface</a>:</p> <div class="maruku-equation" id="eq:K3GeneratesNonTorsionSUBordimsRing"><span class="maruku-eq-number">(2)</span><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mn>4</mn> <mi>SU</mi></msubsup><mspace width="thickmathspace"></mspace><mo>≃</mo><mspace width="thickmathspace"></mspace><mi>ℤ</mi><mo maxsize="1.2em" minsize="1.2em">⟨</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">[</mo><mi>K</mi><mn>3</mn><mo stretchy="false">]</mo><mo maxsize="1.2em" minsize="1.2em">⟩</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Omega^{SU}_4 \;\simeq\; \mathbb{Z}\big\langle -[K3] \big\rangle \,. </annotation></semantics></math></div></div> <p>(<a href="#LLP17">LLP 17, Example 3.1</a>, <a href="#CLP19">CLP 19, Theorem 13.5a</a>)</p> <div class="num_cor" id="K3SurfaceInUBordismRing"> <h6 id="corollary">Corollary</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/K3-surface">K3-surface</a> represents non-trivial element in <a class="existingWikiWord" href="/nlab/show/U-bordism+ring">U-bordism ring</a>)</strong></p> <p>The image in the <a class="existingWikiWord" href="/nlab/show/MU">MU</a>-<a class="existingWikiWord" href="/nlab/show/cobordism+ring">cobordism ring</a> of the class of the <a class="existingWikiWord" href="/nlab/show/K3-surface">K3-surface</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>K</mi><mn>3</mn><mo stretchy="false">]</mo><mo>∈</mo><msubsup><mi>Ω</mi> <mn>4</mn> <mi>SU</mi></msubsup></mrow><annotation encoding="application/x-tex">[K3] \in \Omega^{SU}_4</annotation></semantics></math> <a class="maruku-eqref" href="#eq:K3GeneratesNonTorsionSUBordimsRing">(2)</a> under the canonical morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mn>4</mn> <mi>SU</mi></msubsup><mo>→</mo><msubsup><mi>Ω</mi> <mn>4</mn> <mi mathvariant="normal">U</mi></msubsup></mrow><annotation encoding="application/x-tex">\Omega^{SU}_4 \to \Omega^{\mathrm{U}}_4</annotation></semantics></math> <a class="maruku-eqref" href="#eq:HomomorphismsOfCobordismRings">(1)</a> is non-trivial.</p> <p>In fact, the canonical morphism is an <a class="existingWikiWord" href="/nlab/show/injection">injection</a> in this degree</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msubsup><mi>Ω</mi> <mn>4</mn> <mi>SU</mi></msubsup></mtd> <mtd><mo>↪</mo></mtd> <mtd><msubsup><mi>Ω</mi> <mn>4</mn> <mi mathvariant="normal">U</mi></msubsup></mtd></mtr> <mtr><mtd><mo stretchy="false">[</mo><mi>K</mi><mn>3</mn><mo stretchy="false">]</mo></mtd> <mtd><mo>↦</mo></mtd> <mtd><mo stretchy="false">[</mo><mi>K</mi><mn>3</mn><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \Omega^{SU}_4 &amp;\hookrightarrow&amp; \Omega^{\mathrm{U}}_4 \\ [K3] &amp;\mapsto&amp; [K3] \,. } </annotation></semantics></math></div></div> <p>(This is vaguely indicated in <a href="#Novikov86">Novikov 86, p. 216 (218 of 321)</a>.)</p> <p> <div class='proof'> <h6>Proof</h6> <p>By Prop. <a class="maruku-ref" href="#KernelOfMapFromSUBordismToUBordismIsTorsion"></a> the kernel of the map to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mn>4</mn> <mi mathvariant="normal">U</mi></msubsup></mrow><annotation encoding="application/x-tex">\Omega^{\mathrm{U}}_4</annotation></semantics></math> is torsion, but by Prop. <a class="maruku-ref" href="#K3SurfaceSpansSUBordismRingInDegree4"></a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>K</mi><mn>3</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[K3]</annotation></semantics></math> represents a non-torsion element. Since it is in fact a non-torsion generator, the kernel vanishes (as also implied by Prop. <a class="maruku-ref" href="#TorsionInSUBordismConcentratedInDegrees1And2Mod8"></a>).</p> <p></p> </div> </p> <div class="num_prop"> <h6 id="proposition_6">Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifolds">Calabi-Yau manifolds</a> generate the <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> <a class="existingWikiWord" href="/nlab/show/localization+of+a+ring">away from 2</a>)</strong></p> <p>The <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> <a class="existingWikiWord" href="/nlab/show/localization+of+a+ring">away from 2</a> is multiplicatively generated by <a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifolds">Calabi-Yau manifolds</a>.</p> </div> <p>(<a href="#LLP17">LLP 17, Theorem 2.4</a>)</p> <div class="num_prop"> <h6 id="proposition_7">Proposition</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifolds">Calabi-Yau manifolds</a> in complex dim <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>≤</mo><mn>4</mn></mrow><annotation encoding="application/x-tex">\leq 4</annotation></semantics></math> span the <a class="existingWikiWord" href="/nlab/show/SU-bordism+ring">SU-bordism ring</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>deg</mi><mo>≤</mo><mn>8</mn></mrow><annotation encoding="application/x-tex">deg \leq 8</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/localization+of+a+ring">away from 2</a>)</strong></p> <p>There are <a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifolds">Calabi-Yau manifolds</a> of complex dimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>3</mn></mrow><annotation encoding="application/x-tex">3</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>4</mn></mrow><annotation encoding="application/x-tex">4</annotation></semantics></math> whose whose SU-bordism classes equal the generators <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>±</mo><msub><mi>y</mi> <mn>6</mn></msub></mrow><annotation encoding="application/x-tex">\pm y_6</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>±</mo><msub><mi>y</mi> <mn>8</mn></msub></mrow><annotation encoding="application/x-tex">\pm y_8</annotation></semantics></math> in Prop. <a class="maruku-ref" href="#SUBordismRingAwayFromTwo"></a>.</p> <p>Together with the <a class="existingWikiWord" href="/nlab/show/K3+surface">K3 surface</a> representing <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>y</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">- y_4</annotation></semantics></math> (Prop. <a class="maruku-ref" href="#K3SurfaceSpansSUBordismRingInDegree4"></a>), this means that <a class="existingWikiWord" href="/nlab/show/CYs">CYs</a> <a class="existingWikiWord" href="/nlab/show/linear+space">span</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mrow><mo>≤</mo><mn>8</mn></mrow> <mi>SU</mi></msubsup><mo maxsize="1.2em" minsize="1.2em">[</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mo maxsize="1.2em" minsize="1.2em">]</mo></mrow><annotation encoding="application/x-tex">\Omega^{SU}_{\leq 8}\big[ \tfrac{1}{2}\big]</annotation></semantics></math>.</p> </div> <p>(<a href="#CLP19">CLP 19, Theorem 13.5</a>)</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifold">Calabi-Yau manifold</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+Calabi-Yau+manifold">generalized Calabi-Yau manifold</a></p> </li> </ul> <p><br /></p> <div> <p><strong>flavors of <a class="existingWikiWord" href="/nlab/show/bordism+homology+theories">bordism homology theories</a>/<a class="existingWikiWord" href="/nlab/show/cobordism+cohomology+theories">cobordism cohomology theories</a>, their <a class="existingWikiWord" href="/nlab/show/Brown+representability+theorem">representing</a> <a class="existingWikiWord" href="/nlab/show/Thom+spectra">Thom spectra</a> and <a class="existingWikiWord" href="/nlab/show/cobordism+rings">cobordism rings</a></strong>:</p> <p><a class="existingWikiWord" href="/nlab/show/bordism+homology+theory">bordism theory</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thickmathspace"></mspace></mrow><annotation encoding="application/x-tex">\;</annotation></semantics></math><a class="existingWikiWord" href="/nlab/show/M%28B%2Cf%29">M(B,f)</a> (<a class="existingWikiWord" href="/nlab/show/B-bordism">B-bordism</a>):</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/MFr">MFr</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MO">MO</a>, <a class="existingWikiWord" href="/nlab/show/MSO">MSO</a>, <a class="existingWikiWord" href="/nlab/show/MSpin">MSpin</a>, <a class="existingWikiWord" href="/nlab/show/MString">MString</a>, …</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MU">MU</a>, <a class="existingWikiWord" href="/nlab/show/MSU">MSU</a>, …</p> <p><a class="existingWikiWord" href="/nlab/show/Ravenel%27s+spectrum">MΩΩSU(n)</a></p> <p><a class="existingWikiWord" href="/nlab/show/MP-theory">MP</a>, <a class="existingWikiWord" href="/nlab/show/MR-theory">MR</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MSpin%5Ec">MSpin<sup><i>c</i></sup></a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/MSp">MSp</a></p> </li> </ul> <p>relative bordism theories:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/MOFr">MOFr</a>, <a class="existingWikiWord" href="/nlab/show/MUFr">MUFr</a>, <a class="existingWikiWord" href="/nlab/show/MSUFr">MSUFr</a></li> </ul> <p><a class="existingWikiWord" href="/nlab/show/equivariant+bordism+homology+theory">equivariant bordism theory</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+MFr">equivariant MFr</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+MO">equivariant MO</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivariant+MU">equivariant MU</a></p> </li> </ul> <p><a class="existingWikiWord" href="/nlab/show/global+equivariant+bordism+homology+theory">global equivariant bordism theory</a>:</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/global+equivariant+mO">global equivariant mO</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/global+equivariant+mU">global equivariant mU</a></p> </li> </ul> <p>algebraic:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/algebraic+cobordism">algebraic cobordism</a></li> </ul> </div> <h2 id="references">References</h2> <ul> <li id="ConnerFloyd66"><a class="existingWikiWord" href="/nlab/show/Pierre+Conner">Pierre Conner</a>, <a class="existingWikiWord" href="/nlab/show/Edwin+Floyd">Edwin Floyd</a>, Section 5 of: <em><a class="existingWikiWord" href="/nlab/show/The+Relation+of+Cobordism+to+K-Theories">The Relation of Cobordism to K-Theories</a></em>, Lecture Notes in Mathematics <strong>28</strong> Springer 1966 (<a href="https://link.springer.com/book/10.1007/BFb0071091">doi:10.1007/BFb0071091</a>, <a href="http://www.ams.org/mathscinet-getitem?mr=216511">MR216511</a>)</li> </ul> <p>On the SU-bordism ring structure away from 2:</p> <ul> <li id="Novikov62"> <p><a class="existingWikiWord" href="/nlab/show/Sergei+Novikov">Sergei Novikov</a>, <em>Homotopy properties of Thom complexes</em>, Mat. Sbornik 57 (1962), no. 4, 407–442, 407–442 (<a href="http://www.mi-ras.ru/~snovikov/6.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/NovikovThomComplexes.pdf" title="pdf">pdf</a>)</p> </li> <li id="Stong68"> <p><a class="existingWikiWord" href="/nlab/show/Robert+Stong">Robert Stong</a>, Chapter X of: <em>Notes on Cobordism theory</em>, Princeton University Press, 1968 (<a href="http://pi.math.virginia.edu/StongConf/Stongbookcontents.pdf">toc pdf</a>, <a href="http://press.princeton.edu/titles/6465.html">ISBN:9780691649016</a>, <a href="https://www.maths.ed.ac.uk/~v1ranick/papers/stongcob.pdf">pdf</a>)</p> </li> </ul> <p>Survey:</p> <ul> <li id="Novikov86"><a class="existingWikiWord" href="/nlab/show/Sergei+Novikov">Sergei Novikov</a>, p. 218 in: <em>Topology I – General survey</em>, in: Encyclopedia of Mathematical Sciences Vol. 12, Springer 1986 (<a href="https://link.springer.com/book/10.1007/978-3-662-10579-5">doi:10.1007/978-3-662-10579-5</a>, <a href="https://web.math.rochester.edu/people/faculty/doug/otherpapers/novikovsurv.pdf">pdf</a>)</li> </ul> <p>On its <a class="existingWikiWord" href="/nlab/show/torsion+subgroups">torsion subgroups</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Pierre+Conner">Pierre Conner</a>, <a class="existingWikiWord" href="/nlab/show/Edwin+Floyd">Edwin Floyd</a>, <em>Torsion in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SU</mi></mrow><annotation encoding="application/x-tex">SU</annotation></semantics></math>-bordism</em>, Memoirs of the American Mathematical Society 1966 (<a href="https://bookstore.ams.org/memo-1-60">ISBN:978-1-4704-0007-1</a>)</li> </ul> <p>Relation to <a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifolds">Calabi-Yau manifolds</a>:</p> <ul> <li id="LLP17"><a class="existingWikiWord" href="/nlab/show/Ivan+Limonchenko">Ivan Limonchenko</a>, <a class="existingWikiWord" href="/nlab/show/Zhi+Lu">Zhi Lu</a>, <a class="existingWikiWord" href="/nlab/show/Taras+Panov">Taras Panov</a>, <em>Calabi-Yau hypersurfaces and SU-bordism</em>, Proceedings of the Steklov Institute of Mathematics 302 (2018), 270-278 (<a href="https://arxiv.org/abs/1712.07350">arXiv:1712.07350</a>)</li> </ul> <p>On the (failure of) the <a class="existingWikiWord" href="/nlab/show/Conner-Floyd+isomorphism">Conner-Floyd isomorphism</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>MSU</mi><mo>→</mo></mrow><annotation encoding="application/x-tex">MSU \to </annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/KO">KO</a>:</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Serge+Ochanine">Serge Ochanine</a>, <em>Modules de SU-bordisme. Applications</em>, Bulletin de la Société Mathématique de France, Tome 115 (1987) , pp. 257-289 (<a href="https://doi.org/10.24033/bsmf.2078">doi:10.24033/bsmf.2078</a>)</li> </ul> <p>Survey:</p> <ul> <li id="CLP19"> <p>Georgy Chernykh, <a class="existingWikiWord" href="/nlab/show/Ivan+Limonchenko">Ivan Limonchenko</a>, <a class="existingWikiWord" href="/nlab/show/Taras+Panov">Taras Panov</a>, <em><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SU</mi></mrow><annotation encoding="application/x-tex">SU</annotation></semantics></math>-bordism: structure results and geometric representatives</em>, Russian Math. Surveys 74 (2019), no. 3, 461-524 (<a href="https://arxiv.org/abs/1903.07178">arXiv:1903.07178</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Taras+Panov">Taras Panov</a>, <em>A geometric view on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>SU</mi></mrow><annotation encoding="application/x-tex">SU</annotation></semantics></math>-bordism</em>, talk at Moscow State University 2020 (<a href="https://www.math.princeton.edu/events/geometric-view-su-bordism-2020-09-17t170000">webpage</a>, <a href="http://higeom.math.msu.su/people/taras/talks/2019SPb-Panov.pdf">pdf</a>, <a class="existingWikiWord" href="/nlab/files/PanovSU-Bordism.pdf" title="pdf">pdf</a>)</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on February 18, 2021 at 15:09:19. See the <a href="/nlab/history/MSU" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/MSU" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/11904/#Item_10">Discuss</a><span class="backintime"><a href="/nlab/revision/MSU/10" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/MSU" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/MSU" accesskey="S" class="navlink" id="history" rel="nofollow">History (10 revisions)</a> <a href="/nlab/show/MSU/cite" style="color: black">Cite</a> <a href="/nlab/print/MSU" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/MSU" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10