CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 1,130 results for author: <span class="mathjax">Zhang, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17083">arXiv:2411.17083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17083">pdf</a>, <a href="https://arxiv.org/format/2411.17083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A Haptic-Based Proximity Sensing System for Buried Object in Granular Material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zeqing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+R">Ruixing Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Y">Youcan Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+R">Ruihua Han</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+S">Shijie Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Q">Qian Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Liangjun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+J">Jia Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17083v1-abstract-short" style="display: inline;"> The proximity perception of objects in granular materials is significant, especially for applications like minesweeping. However, due to particles&#39; opacity and complex properties, existing proximity sensors suffer from high costs from sophisticated hardware and high user-cost from unintuitive results. In this paper, we propose a simple yet effective proximity sensing system for underground stuff b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17083v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17083v1-abstract-full" style="display: none;"> The proximity perception of objects in granular materials is significant, especially for applications like minesweeping. However, due to particles&#39; opacity and complex properties, existing proximity sensors suffer from high costs from sophisticated hardware and high user-cost from unintuitive results. In this paper, we propose a simple yet effective proximity sensing system for underground stuff based on the haptic feedback of the sensor-granules interaction. We study and employ the unique characteristic of particles -- failure wedge zone, and combine the machine learning method -- Gaussian process regression, to identify the force signal changes induced by the proximity of objects, so as to achieve near-field perception. Furthermore, we design a novel trajectory to control the probe searching in granules for a wide range of perception. Also, our proximity sensing system can adaptively determine optimal parameters for robustness operation in different particles. Experiments demonstrate our system can perceive underground objects over 0.5 to 7 cm in advance among various materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17083v1-abstract-full').style.display = 'none'; document.getElementById('2411.17083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The 40th International Symposium of Robotics Research (ISRR). Long Beach, California, USA, December 8-12 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16830">arXiv:2411.16830</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16830">pdf</a>, <a href="https://arxiv.org/format/2411.16830">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Cavity-Quantum Electrodynamics with Moir茅 Flatband Photonic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yu-Tong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Q">Qi-Hang Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+J">Jun-Yong Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Qiao%2C+Y">Yufei Qiao</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xiao-Tian Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chen-Hui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zi-Jian Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+C">Cheng-Nian Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Y">Yun Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Zou%2C+K">Kai Zou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhan%2C+W">Wen-Kang Zhan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+C">Chao Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+X">Xiaolong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Tee%2C+C+A+T+H">Clarence Augustine T H Tee</a>, <a href="/search/physics?searchtype=author&amp;query=Sha%2C+W+E+I">Wei E. I. Sha</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Z">Zhixiang Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Huiyun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+C">Chao-Yuan Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Ying%2C+L">Lei Ying</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Feng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16830v1-abstract-short" style="display: inline;"> Quantum emitters are a key component in photonic quantum technologies. Enhancing their single-photon emission by engineering the photonic environment using cavities can significantly improve the overall efficiency in quantum information processing. However, this enhancement is often constrained by the need for precise nanoscale control over the emitter&#39;s position within micro- or nano-cavities. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16830v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16830v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16830v1-abstract-full" style="display: none;"> Quantum emitters are a key component in photonic quantum technologies. Enhancing their single-photon emission by engineering the photonic environment using cavities can significantly improve the overall efficiency in quantum information processing. However, this enhancement is often constrained by the need for precise nanoscale control over the emitter&#39;s position within micro- or nano-cavities. Inspired by the fascinating physics of moir茅 patterns, we present an approach to strongly modify the spontaneous emission rate of a quantum emitter using a finely designed multilayer moir茅 photonic crystal with a robust isolated-flatband dispersion. Theoretical analysis reveals that, due to its nearly infinite photonic density of states, the moir茅 cavity can simultaneously achieve a high Purcell factor and exhibit large tolerance over the emitter&#39;s position. We experimentally demonstrate the coupling between this moir茅 cavity and a quantum dot through the cavity-determined polarization of the dot&#39;s emission. The radiative lifetime of the quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects. Our findings pave the way for moir茅 flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16830v1-abstract-full').style.display = 'none'; document.getElementById('2411.16830v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16777">arXiv:2411.16777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> Equivalence between the zero distributions of the Riemann zeta function and a two-dimensional Ising model with randomly distributed competing interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhidong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16777v1-abstract-short" style="display: inline;"> In this work, we prove the equivalence between the zero distributions of the Riemann zeta function 味(s) and a two-dimensional (2D) Ising model with a mixture of ferromagnetic and randomly distributed competing interactions. At first, we review briefly the characteristics of the Riemann hypothesis and its connections to physics, in particular, to statistical physics. Second, we build a 2D Ising mod&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16777v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16777v1-abstract-full" style="display: none;"> In this work, we prove the equivalence between the zero distributions of the Riemann zeta function 味(s) and a two-dimensional (2D) Ising model with a mixture of ferromagnetic and randomly distributed competing interactions. At first, we review briefly the characteristics of the Riemann hypothesis and its connections to physics, in particular, to statistical physics. Second, we build a 2D Ising model, M_(FI+SGI)^2D, in which interactions between the nearest neighboring spins are ferromagnetic along one crystallographic direction while competing ferromagnetic/antiferromagnetic interactions are randomly distributed along another direction. Third, we prove that all energy eigenvalues of this 2D Ising model M_(FI+SGI)^2D are real and randomly distributed as the M枚bius function 渭(n), the Dirichlet L(s,\c{hi}_k ) function as well as the Riemann zeta function 味(s). Fourth, we prove that the eigenvectors of the 2D Ising model M_(FI+SGI)^2D are constructed by the eigenvectors of the 1D Ising model with phases related to the Riemann zeta function 味(s), via the relation 蠅(纬_2j) between the angle 蠅 and the energy eigenvalues 纬_2j, which form the Hilbert-P贸lya space. Fifth, we prove that all the zeros of the partition function of the 2D Ising model M_(FI+SGI)^2D lie on an unit circle in a complex temperature plane (i.e. Fisher zeros), which can be mapped to the zero distribution of the Dirichlet L(s,\c{hi}_k ) function and also the Riemann zeta function 味(s) in the critical line. In a conclusion, we have proven the closure of the nontrivial zero distribution of the L(s,\c{hi}_k ) function (including the Riemann zeta function 味(s)). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16777v1-abstract-full').style.display = 'none'; document.getElementById('2411.16777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 0 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16247">arXiv:2411.16247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16247">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Dosimetry study of high repetition rate MeV electron beam from a continuous-wave photocathode gun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jianhan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+J">Jianfeng Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+S">Shang Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Juntao Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zihao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+H">Hang Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+L">Lin Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Senlin Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16247v1-abstract-short" style="display: inline;"> DC-SRF-II gun, a high-brightness continuous-wave photocathode gun, has greater potential in electron beam irradiation applications. This paper presents the in-vacuum and in-air irradiation dosimetry study of the high repetition rate electron beam from the DC-SRF-II gun with both Monte Carlo simulations and experiments. Especially, high-dose uniform irradiations with flexible and accurate tuning of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16247v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16247v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16247v1-abstract-full" style="display: none;"> DC-SRF-II gun, a high-brightness continuous-wave photocathode gun, has greater potential in electron beam irradiation applications. This paper presents the in-vacuum and in-air irradiation dosimetry study of the high repetition rate electron beam from the DC-SRF-II gun with both Monte Carlo simulations and experiments. Especially, high-dose uniform irradiations with flexible and accurate tuning of dose rate across orders of magnitude are demonstrated. Good stability and repeatability of the doses are also shown. The ultra-wide tuning range and precise control of irradiation time and dose rate are expected to pave the way for innovative applications across a wide range of fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16247v1-abstract-full').style.display = 'none'; document.getElementById('2411.16247v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16059">arXiv:2411.16059</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.16059">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> GHz fundamental mode-locking of a highly integrated Er-doped all-fiber ring laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Dai%2C+M">Maolin Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Bowen Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yifan Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+R">Ruoao Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhigang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Set%2C+S+Y">Sze Yun Set</a>, <a href="/search/physics?searchtype=author&amp;query=Yamashita%2C+S">Shinji Yamashita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16059v1-abstract-short" style="display: inline;"> High repetition rate ultrafast fiber lasers are important tools for both fundamental science and industry applications. However, achieving over GHz repetition rate in passively mode-locked fiber ring lasers is still challenging. Here, we demonstrate a novel all-integrated Er-doped fiber ring laser that achieves over GHz fundamental repetition rate, passively mode-locked by carbon nanotubes (CNTs).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16059v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16059v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16059v1-abstract-full" style="display: none;"> High repetition rate ultrafast fiber lasers are important tools for both fundamental science and industry applications. However, achieving over GHz repetition rate in passively mode-locked fiber ring lasers is still challenging. Here, we demonstrate a novel all-integrated Er-doped fiber ring laser that achieves over GHz fundamental repetition rate, passively mode-locked by carbon nanotubes (CNTs). To the best of our knowledge, this is the first passively mode-locked GHz all-fiber laser with ring cavity configuration. In the proposed laser oscillator, all functions are integrated into one device, making it an ultra-compact laser cavity. The laser produces ultrafast optical pulses at 1562 nm, with a pulse width of 682 fs and a fundamental repetition rate of 1.028 GHz. The stable mode-locking is characterized by high signal-to-noise ratio (SNR) radiofrequency signal and low relative intensity noise (RIN). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16059v1-abstract-full').style.display = 'none'; document.getElementById('2411.16059v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15911">arXiv:2411.15911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15911">pdf</a>, <a href="https://arxiv.org/format/2411.15911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.543996">10.1364/OE.543996 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable collective electromagnetic induced transparency-like effect due to coupling of dual-band bound states in the continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J">Jian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+R">Rixing Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+X">Xueqian Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Q">Qingxi Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+K">Kan Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhenrong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">Guangyuan Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15911v1-abstract-short" style="display: inline;"> The coupling between dual-band or multi-band quasi-bound states in the continuum (q-BICs) is of great interest for their rich physics and promising applications. Here, we report tunable collective electromagnetic induced transparency-like (EIT-like) phenomenon due to coupling between dual-band collective electric dipolar and magnetic quadrupolar q-BICs, which are supported by an all-dielectric met&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15911v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15911v1-abstract-full" style="display: none;"> The coupling between dual-band or multi-band quasi-bound states in the continuum (q-BICs) is of great interest for their rich physics and promising applications. Here, we report tunable collective electromagnetic induced transparency-like (EIT-like) phenomenon due to coupling between dual-band collective electric dipolar and magnetic quadrupolar q-BICs, which are supported by an all-dielectric metasurface composed of periodic tilted silicon quadrumers. We show that this collective EIT-like phenomenon with strong slow light effect can be realized by varying the nanodisk diameter or the tilt angle, and that the transparency window wavelength, the quality factor, and the group index can all be tuned by changing the nanodisk size. We further find that as the nanodisk size decreases, the slow light effect becomes stronger, and higher sensitivity can be obtained for the refractive index sensing. Interestingly, the sensitivity first increases exponentially and then reaches a plateau as the nanodisk size decreases, or equivalently as the group index increases. We therefore expect this work will advance the understanding of the collective EIT-like effect due to coupling between q-BICs, and the findings will have potential applications in slow-light enhanced biochemical sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15911v1-abstract-full').style.display = 'none'; document.getElementById('2411.15911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13448">arXiv:2411.13448</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13448">pdf</a>, <a href="https://arxiv.org/format/2411.13448">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Taylor Modeling and Comparative Research Containing Aspect-Ratio Dependent Optimization of Three-Dimensional Hk Superjunction MOSFETs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhentao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haimeng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zonghao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenxing Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13448v1-abstract-short" style="display: inline;"> This paper presents a comprehensive study on aspect-ratio dependent optimization for specific on-resistance of three-dimensional high-k superjunction MOSFETs. The research introduces a Taylor modeling method, overcoming the computational limitations of the Bessel method. It also employs the Chynoweth model for more accurate breakdown voltage determination. The study provides a comparative analysis&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13448v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13448v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13448v1-abstract-full" style="display: none;"> This paper presents a comprehensive study on aspect-ratio dependent optimization for specific on-resistance of three-dimensional high-k superjunction MOSFETs. The research introduces a Taylor modeling method, overcoming the computational limitations of the Bessel method. It also employs the Chynoweth model for more accurate breakdown voltage determination. The study provides a comparative analysis of four different superjunction structures, across five aspects: electric field, impact ionization integral, aspect ratio dependent optimization, charge imbalance effect and temperature. The findings offer valuable insights for the manufacturing guidance of superjunction structure selection <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13448v1-abstract-full').style.display = 'none'; document.getElementById('2411.13448v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13353">arXiv:2411.13353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13353">pdf</a>, <a href="https://arxiv.org/format/2411.13353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Miniaturized spectrometer enabled by end-to-end deep learning on large-scale radiative cavity array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+X">Xinyi Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaoyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zuo%2C+Y">Yi Zuo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zixuan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+F">Feifan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zihao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hongbin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+C">Chao Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13353v1-abstract-short" style="display: inline;"> Miniaturized (mini-) spectrometers are highly desirable tools for chemical, biological, and medical diagnostics because of their potential for portable and in situ spectral detection. In this work, we propose and demonstrate a mini-spectrometer that combines a large-scale radiative cavity array with end-to-end deep learning networks. Specifically, we utilize high-Q bound states in continuum caviti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13353v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13353v1-abstract-full" style="display: none;"> Miniaturized (mini-) spectrometers are highly desirable tools for chemical, biological, and medical diagnostics because of their potential for portable and in situ spectral detection. In this work, we propose and demonstrate a mini-spectrometer that combines a large-scale radiative cavity array with end-to-end deep learning networks. Specifically, we utilize high-Q bound states in continuum cavities with distinct radiation characteristics as the fundamental units to achieve parallel spectral detection. We realize a 36 $\times$ 30 cavity array that spans a wide spectral range from 1525 to 1605 nm with quality factors above 10^4. We further train a deep network with 8000 outputs to directly map arbitrary spectra to array responses excited by the out-of-plane incident. Experimental results demonstrate that the proposed mini-spectrometer can resolve unknown spectra with a resolution of 0.048 nm in a bandwidth of 80 nm and fidelity exceeding 95%, thus offering a promising method for compact, high resolution, and broadband spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13353v1-abstract-full').style.display = 'none'; document.getElementById('2411.13353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11365">arXiv:2411.11365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11365">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> ezyMRI: How to build an MRI machine from scratch -- Experience from a four-day hackathon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Shaoying Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Algar%C3%ADn%2C+J+M">Jos茅 Miguel Algar铆n</a>, <a href="/search/physics?searchtype=author&amp;query=Alonso%2C+J">Joseba Alonso</a>, <a href="/search/physics?searchtype=author&amp;query=R%2C+A">Anieyrudh R</a>, <a href="/search/physics?searchtype=author&amp;query=Borreguero%2C+J">Jose Borreguero</a>, <a href="/search/physics?searchtype=author&amp;query=Bschorr%2C+F">Fabian Bschorr</a>, <a href="/search/physics?searchtype=author&amp;query=Cassidy%2C+P">Paul Cassidy</a>, <a href="/search/physics?searchtype=author&amp;query=Choo%2C+W+M">Wei Ming Choo</a>, <a href="/search/physics?searchtype=author&amp;query=Corcos%2C+D">David Corcos</a>, <a href="/search/physics?searchtype=author&amp;query=Guallart-Naval%2C+T">Teresa Guallart-Naval</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+H+J">Heng Jing Han</a>, <a href="/search/physics?searchtype=author&amp;query=Igwe%2C+K+C">Kay Chioma Igwe</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+J">Jacob Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Joe Li</a>, <a href="/search/physics?searchtype=author&amp;query=Littin%2C+S">Sebastian Littin</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Rodriguez%2C+G+G">Gonzalo Gabriel Rodriguez</a>, <a href="/search/physics?searchtype=author&amp;query=Solomon%2C+E">Eddy Solomon</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+L">Li-Kuo Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+R">Rui Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Webb%2C+A">Andrew Webb</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+S">Susanna Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+D">Dan Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Minxuan Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+W">Wenwei Yu</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11365v1-abstract-short" style="display: inline;"> Nuclear magnetic resonance instruments are becoming available to the do-it-yourself community. The challenges encountered in the endeavor to build a magnetic resonance imaging instrument from scratch were confronted in a four-day hackathon at Singapore University of Technology and Design in spring 2024. One day was devoted to educational lectures and three days to system construction and testing.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11365v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11365v1-abstract-full" style="display: none;"> Nuclear magnetic resonance instruments are becoming available to the do-it-yourself community. The challenges encountered in the endeavor to build a magnetic resonance imaging instrument from scratch were confronted in a four-day hackathon at Singapore University of Technology and Design in spring 2024. One day was devoted to educational lectures and three days to system construction and testing. Seventy young researchers from all parts of the world formed six teams focusing on magnet, gradient coil, RF coil, console, system integration, and design, which together produced a working MRI instrument in three days. The different steps, encountered challenges, and their solutions are reported. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11365v1-abstract-full').style.display = 'none'; document.getElementById('2411.11365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages, 23 figures, comments welcome (this paper is meant to be useful to people constructing their own MRI systems)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10001">arXiv:2411.10001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10001">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Manufacturing carbon nanotube transistors using lift-off process: limitations and prospects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">Xilong Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+J">Jia Si</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10001v1-abstract-short" style="display: inline;"> Carbon nanotube field-effect transistors (CNT FETs) are regarded as promising candidates for next-generation energy-efficient computing systems. While research has employed the lift-off process to demonstrate the performance of CNT FETs, this method now poses challenges for enhancing individual FET performance and is not suitable for scalable fabrication. In this paper, we summarize the limitation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10001v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10001v1-abstract-full" style="display: none;"> Carbon nanotube field-effect transistors (CNT FETs) are regarded as promising candidates for next-generation energy-efficient computing systems. While research has employed the lift-off process to demonstrate the performance of CNT FETs, this method now poses challenges for enhancing individual FET performance and is not suitable for scalable fabrication. In this paper, we summarize the limitations of the lift-off process and point out that future advancements in manufacturing techniques should prioritize the development of etching processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10001v1-abstract-full').style.display = 'none'; document.getElementById('2411.10001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.09304">arXiv:2411.09304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.09304">pdf</a>, <a href="https://arxiv.org/format/2411.09304">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Design and Process Analysis of a Split-Gate Trench Power MOSFET with Bottom-Trench Hk-Pillar Superjunction for Enhanced Performance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yunteng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhentao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zonghao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Juncheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+W">Wenjun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haimeng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Aynul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hongqiang Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.09304v2-abstract-short" style="display: inline;"> In this paper, we propose a simulation-based novel Split-Gate Trench MOSFET structure with an optimized fabrication process to enhance power efficiency, switching speed, and thermal stability for high-performance semiconductor applications. Integrating high-k pillars with superjunction structures beneath the split gate enhancing breakdown performance by reducing critical field intensity by up to 3&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09304v2-abstract-full').style.display = 'inline'; document.getElementById('2411.09304v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.09304v2-abstract-full" style="display: none;"> In this paper, we propose a simulation-based novel Split-Gate Trench MOSFET structure with an optimized fabrication process to enhance power efficiency, switching speed, and thermal stability for high-performance semiconductor applications. Integrating high-k pillars with superjunction structures beneath the split gate enhancing breakdown performance by reducing critical field intensity by up to 35%, the device achieves a 15% improvement in Figures of Merit (FOMs) for BV2/Ron,sp. Dynamic testing reveals approximately a 25% reduction in both input and output capacitance, as well as gate-to-drain charge (QGD). This reduction, coupled with an approximately 40% improvement in Baliga&#39;s High-Frequency Figure of Merit (BHFFOM) and over 20% increase in the New High-Frequency Figure of Merit (NHFFOM), underscores the design&#39;s suitability for high-speed, high-efficiency power electronics. Simulations examining the effects of high-k pillar depth indicate that an optimal depth of 3.5 um achieves a balanced performance between BV and Ron,sp. The influence of high-k materials on BT-Hk-SJ MOSFET performance was investigated by comparing hafnium dioxide (HfO2), nitride, and oxynitride. Among these, HfO2 demonstrated optimal performance across static, dynamic, and diode characteristics due to its high dielectric constant, while material choice had minimal impact, with variations kept within 5%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.09304v2-abstract-full').style.display = 'none'; document.getElementById('2411.09304v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08538">arXiv:2411.08538</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08538">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Intelligent Adaptive Metasurface in Complex Wireless Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H+Q">Han Qing Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J+Y">Jun Yan Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L">Lijie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+M+Z">Meng Zhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Z+H">Zi Hang Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+R">Si Ran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z+X">Zheng Xing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+W">Wankai Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+S">Shi Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J+W">Jun Wei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08538v1-abstract-short" style="display: inline;"> The programmable metasurface is regarded as one of the most promising transformative technologies for next-generation wireless system applications. Due to the lack of effective perception ability of the external electromagnetic environment, there are numerous challenges in the intelligent regulation of wireless channels, and it still relies on external sensors to reshape electromagnetic environmen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08538v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08538v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08538v1-abstract-full" style="display: none;"> The programmable metasurface is regarded as one of the most promising transformative technologies for next-generation wireless system applications. Due to the lack of effective perception ability of the external electromagnetic environment, there are numerous challenges in the intelligent regulation of wireless channels, and it still relies on external sensors to reshape electromagnetic environment as desired. To address that problem, we propose an adaptive metasurface (AMS) which integrates the capabilities of acquiring wireless environment information and manipulating reflected electromagnetic (EM) waves in a programmable manner. The proposed design endows the metasurfaces with excellent capabilities to sense the complex electromagnetic field distributions around them and then dynamically manipulate the waves and signals in real time under the guidance of the sensed information, eliminating the need for prior knowledge or external inputs about the wireless environment. For verification, a prototype of the proposed AMS is constructed, and its dual capabilities of sensing and manipulation are experimentally validated. Additionally, different integrated sensing and communication (ISAC) scenarios with and without the aid of the AMS are established. The effectiveness of the AMS in enhancing communication quality is well demonstrated in complex electromagnetic environments, highlighting its beneficial application potential in future wireless systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08538v1-abstract-full').style.display = 'none'; document.getElementById('2411.08538v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05690">arXiv:2411.05690</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.05690">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Multiple-partition cross-modulation programmable metasurface empowering wireless communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+W">Jun Wei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+Z+J">Zhen Jie Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+L+J">Li Jie Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+W+W">Wan Wan Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+X">Xinxin Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+Z+H">Zhi Hui Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+J+Y">Jing Yu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+J+M">Jie Ming Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z+X">Zheng Xing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+S+R">Si Ran Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J+W">Jun Wei Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+N">Jia Nan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H+D">Hui Dong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+J+Y">Jun Yan Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qiang Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+T+J">Tie Jun Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05690v1-abstract-short" style="display: inline;"> With the versatile manipulation capability, programmable metasurfaces are rapidly advancing in their intelligence, integration, and commercialization levels. However, as the programmable metasurfaces scale up, their control configuration becomes increasingly complicated, posing significant challenges and limitations. Here, we propose a multiple-partition cross-modulation (MPCM) programmable metasu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05690v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05690v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05690v1-abstract-full" style="display: none;"> With the versatile manipulation capability, programmable metasurfaces are rapidly advancing in their intelligence, integration, and commercialization levels. However, as the programmable metasurfaces scale up, their control configuration becomes increasingly complicated, posing significant challenges and limitations. Here, we propose a multiple-partition cross-modulation (MPCM) programmable metasurface to enhance the wireless communication coverage with low hardware complexity. We firstly propose an innovative encoding scheme to multiply the control voltage vectors of row-column crossing, achieving high beamforming precision in free space while maintaining low control hardware complexity and reducing memory requirements for coding sequences. We then design and fabricate an MPCM programmable metasurface to confirm the effectiveness of the proposed encoding scheme. The simulated and experimental results show good agreements with the theoretically calculated outcomes in beam scanning across the E and H planes and in free-space beam pointing. The MPCM programmable metasurface offers strong flexibility and low complexity by allowing various numbers and combinations of partition items in modulation methods, catering to diverse precision demands in various scenarios. We demonstrate the performance of MPCM programmable metasurface in a realistic indoor setting, where the transmissions of videos to specific receiver positions are successfully achieved, surpassing the capabilities of traditional programmable metasurfaces. We believe that the proposed programmable metasurface has great potentials in significantly empowering the wireless communications while addressing the challenges associated with the programmable metasurface&#39;s design and implementation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05690v1-abstract-full').style.display = 'none'; document.getElementById('2411.05690v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04429">arXiv:2411.04429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04429">pdf</a>, <a href="https://arxiv.org/format/2411.04429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimizing Neon-based Gas Mixtures for Two-stage Amplification Fast-timing Micromegas Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Meng%2C+Y">Yue Meng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">Jianbei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Shao%2C+M">Ming Shao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Y">Yi Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04429v1-abstract-short" style="display: inline;"> Working gas components significantly impact the performance of gaseous detectors. A fast-timing Micromegas detector with two-stage amplification is prone to notable deterioration of uniformity when scaled up. This paper presents a simulation study based on Garfield++ that aims to enhance the performance of such detectors by exploring different gas mixtures. The properties of various gas compositio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04429v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04429v1-abstract-full" style="display: none;"> Working gas components significantly impact the performance of gaseous detectors. A fast-timing Micromegas detector with two-stage amplification is prone to notable deterioration of uniformity when scaled up. This paper presents a simulation study based on Garfield++ that aims to enhance the performance of such detectors by exploring different gas mixtures. The properties of various gas compositions and their impact on detector performance including gain uniformity and time resolution were investigated in the simulation study. The gain uniformity and single-photon time resolution of the detector were evaluated in tests using a multi-channel PICOSEC Micromegas (MM) prototype with different gas mixtures. The experimental results are consistent with the findings of the simulation. Both simulation and experimental results indicate that a higher concentration of neon improves the detector&#39;s gain uniformity, while the impact of gas mixtures on time resolution should also be considered as a critical performance indicator. The study presented in this paper offers valuable insights for improving uniformity in large-area PICOSEC MM detectors and optimizing overall performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04429v1-abstract-full').style.display = 'none'; document.getElementById('2411.04429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04210">arXiv:2411.04210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04210">pdf</a>, <a href="https://arxiv.org/format/2411.04210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Monochromatization interaction region optics design for direct s-channel Higgs production at FCC-ee </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Z. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Faus-Golfe%2C+A">A. Faus-Golfe</a>, <a href="/search/physics?searchtype=author&amp;query=Korsun%2C+A">A. Korsun</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+B">B. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">H. Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Oide%2C+K">K. Oide</a>, <a href="/search/physics?searchtype=author&amp;query=Raimondi%2C+P">P. Raimondi</a>, <a href="/search/physics?searchtype=author&amp;query=d%27Enterria%2C+D">D. d&#39;Enterria</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">S. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+Z">Z. Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Chi%2C+Y">Y. Chi</a>, <a href="/search/physics?searchtype=author&amp;query=Zimmermann%2C+F">F. Zimmermann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04210v1-abstract-short" style="display: inline;"> The FCC-ee offers the potential to measure the electron Yukawa coupling via direct s-channel Higgs production, e+ e- -&gt; H, at a centre-of-mass (CM) energy of 125 GeV. This measurement is significantly facilitated if the CM energy spread of e+ e- collisions can be reduced to a level comparable to the natural width of the Higgs boson, 螕_H = 4.1 MeV, without substantial loss in luminosity. Achieving&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04210v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04210v1-abstract-full" style="display: none;"> The FCC-ee offers the potential to measure the electron Yukawa coupling via direct s-channel Higgs production, e+ e- -&gt; H, at a centre-of-mass (CM) energy of 125 GeV. This measurement is significantly facilitated if the CM energy spread of e+ e- collisions can be reduced to a level comparable to the natural width of the Higgs boson, 螕_H = 4.1 MeV, without substantial loss in luminosity. Achieving this reduction in collision-energy spread is possible through the &#34;monochromatization&#34; concept. The basic idea is to create opposite correlations between spatial position and energy deviation within the colliding beams, which can be accomplished in beam optics by introducing a nonzero dispersion function with opposite signs for the two beams at the interaction point. Since the first proposal in 2016, the implementation of monochromatization at the FCC-ee has been continuously improved, starting from preliminary parametric studies. In this paper, we present a detailed study of the interaction region optics design for this newly proposed collision mode, exploring different potential configurations and their implementation in the FCC-ee global lattice, along with beam dynamics simulations and performance evaluations including the impact of &#34;beamstrahlung.&#34; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04210v1-abstract-full').style.display = 'none'; document.getElementById('2411.04210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02532">arXiv:2411.02532</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02532">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169920">10.1016/j.nima.2024.169920 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PICOSEC-Micromegas Detector, an innovative solution for Lepton Time Tagging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kallitsopoulou%2C+A">A. Kallitsopoulou</a>, <a href="/search/physics?searchtype=author&amp;query=Aleksan%2C+R">R. Aleksan</a>, <a href="/search/physics?searchtype=author&amp;query=Angelis%2C+Y">Y. Angelis</a>, <a href="/search/physics?searchtype=author&amp;query=Aune%2C+S">S. Aune</a>, <a href="/search/physics?searchtype=author&amp;query=Bortfeldt%2C+J">J. Bortfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Brunbauer%2C+F">F. Brunbauer</a>, <a href="/search/physics?searchtype=author&amp;query=Brunoldi%2C+M">M. Brunoldi</a>, <a href="/search/physics?searchtype=author&amp;query=Chatzianagnostou%2C+E">E. Chatzianagnostou</a>, <a href="/search/physics?searchtype=author&amp;query=Datta%2C+J">J. Datta</a>, <a href="/search/physics?searchtype=author&amp;query=Desforge%2C+D">D. Desforge</a>, <a href="/search/physics?searchtype=author&amp;query=Fanourakis%2C+G">G. Fanourakis</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorina%2C+D">D. Fiorina</a>, <a href="/search/physics?searchtype=author&amp;query=Floethner%2C+K+J">K. J. Floethner</a>, <a href="/search/physics?searchtype=author&amp;query=Gallinaro%2C+M">M. Gallinaro</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+F">F. Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=Giomataris%2C+I">I. Giomataris</a>, <a href="/search/physics?searchtype=author&amp;query=Gnanvo%2C+K">K. Gnanvo</a>, <a href="/search/physics?searchtype=author&amp;query=Iguaz%2C+F+J">F. J. Iguaz</a>, <a href="/search/physics?searchtype=author&amp;query=Janssens%2C+D">D. Janssens</a>, <a href="/search/physics?searchtype=author&amp;query=Kovacic%2C+M">M. Kovacic</a>, <a href="/search/physics?searchtype=author&amp;query=Kross%2C+B">B. Kross</a>, <a href="/search/physics?searchtype=author&amp;query=Legou%2C+P">P. Legou</a>, <a href="/search/physics?searchtype=author&amp;query=Lisowska%2C+M">M. Lisowska</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+J">J. Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lupberger%2C+M">M. Lupberger</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02532v1-abstract-short" style="display: inline;"> The PICOSEC-Micromegas (PICOSEC-MM) detector is a novel gaseous detector designed for precise timing resolution in experimental measurements. It eliminates time jitter from charged particles in ionization gaps by using extreme UV Cherenkov light emitted in a crystal, detected by a Micromegas photodetector with an appropriate photocathode. The first single-channel prototype tested in 150 GeV/c muon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02532v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02532v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02532v1-abstract-full" style="display: none;"> The PICOSEC-Micromegas (PICOSEC-MM) detector is a novel gaseous detector designed for precise timing resolution in experimental measurements. It eliminates time jitter from charged particles in ionization gaps by using extreme UV Cherenkov light emitted in a crystal, detected by a Micromegas photodetector with an appropriate photocathode. The first single-channel prototype tested in 150 GeV/c muon beams achieved a timing resolution below 25 ps, a significant improvement compared to standard Micropattern Gaseous Detectors (MPGDs). This work explores the specifications for applying these detectors in monitored neutrino beams for the ENUBET Project. Key aspects include exploring resistive technologies, resilient photocathodes, and scalable electronics. New 7-pad resistive detectors are designed to handle the particle flux. In this paper, two potential scenarios are briefly considered: tagging electromagnetic showers with a timing resolution below 30 ps in an electromagnetic calorimeter as well as individual particles (mainly muons) with about 20 ps respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02532v1-abstract-full').style.display = 'none'; document.getElementById('2411.02532v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,1069,169920,2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01885">arXiv:2411.01885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01885">pdf</a>, <a href="https://arxiv.org/format/2411.01885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Prediction of three-dimensional chemically reacting compressible turbulence based on implicit U-Net enhanced Fourier neural operator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Zhijie Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yunpeng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Huiyu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+W">Wenhui Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Teng%2C+J">Jian Teng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jianchun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01885v1-abstract-short" style="display: inline;"> The accurate and fast prediction of long-term dynamics of turbulence presents a significant challenge for both traditional numerical simulations and machine learning methods. In recent years, the emergence of neural operators has provided a promising approach to address this issue. The implicit U-Net enhanced Fourier neural operator (IU-FNO) has successfully demonstrated long-term stable predictio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01885v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01885v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01885v1-abstract-full" style="display: none;"> The accurate and fast prediction of long-term dynamics of turbulence presents a significant challenge for both traditional numerical simulations and machine learning methods. In recent years, the emergence of neural operators has provided a promising approach to address this issue. The implicit U-Net enhanced Fourier neural operator (IU-FNO) has successfully demonstrated long-term stable predictions for three-dimensional incompressible turbulence. In this study, we extend this method to the three-dimensional chemically reacting compressible turbulence. Numerical results show that the IU-FNO model predicts flow dynamics significantly faster than the traditional dynamic Smagorinsky model (DSM) used in large eddy simulation (LES). In terms of prediction accuracy, the IU-FNO framework outperforms the traditional DSM in predicting the energy spectra of velocity, temperature, and density, the probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of temperature. Therefore, the IU-FNO represents a highly promising approach for predicting chemically reacting compressible turbulence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01885v1-abstract-full').style.display = 'none'; document.getElementById('2411.01885v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01724">arXiv:2411.01724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01724">pdf</a>, <a href="https://arxiv.org/format/2411.01724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Fabrication of Ultra-Low-Loss, Dispersion-Engineered Silicon Nitride Photonic Integrated Circuits via Silicon Hardmask Etching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hariri%2C+A">Abdulkarim Hariri</a>, <a href="/search/physics?searchtype=author&amp;query=Al-Hallak%2C+A">Abdur-Raheem Al-Hallak</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zheshen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01724v1-abstract-short" style="display: inline;"> Silicon nitride (Si$_3$N$_4$) photonic integrated circuits (PICs) have emerged as a versatile platform for a wide range of applications, such as nonlinear optics, narrow-linewidth lasers, and quantum photonics. While thin-film Si$_3$N$_4$ processes have been extensively developed, many nonlinear and quantum optics applications require the use of thick Si$_3$N$_4$ films with engineered dispersion,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01724v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01724v1-abstract-full" style="display: none;"> Silicon nitride (Si$_3$N$_4$) photonic integrated circuits (PICs) have emerged as a versatile platform for a wide range of applications, such as nonlinear optics, narrow-linewidth lasers, and quantum photonics. While thin-film Si$_3$N$_4$ processes have been extensively developed, many nonlinear and quantum optics applications require the use of thick Si$_3$N$_4$ films with engineered dispersion, high mode confinement, and low optical loss. However, high tensile stress in thick Si$_3$N$_4$ films often leads to cracking, making the fabrication challenging to meet these requirements. In this work, we present a robust and reliable fabrication method for ultra-low-loss, dispersion-engineered Si$_3$N$_4$ PICs using amorphous silicon (a-Si) hardmask etching. This approach enables smooth etching of thick Si$_3$N$_4$ waveguides while ensuring long-term storage of crack-free Si$_3$N$_4$ wafers. We achieve intrinsic quality factors ($Q_i$) as high as $25.6 \times 10^6$, corresponding to a propagation loss of 1.6 dB/m. The introduction of a-Si hardmask etching and novel crack-isolation trenches offers notable advantages, including high etching selectivity, long-term wafer storage, high yield, and full compatibility with existing well-developed silicon-based semiconductor processes. We demonstrate frequency comb generation in the fabricated microring resonators, showcasing the platform&#39;s potential for applications in optical communication, nonlinear optics, metrology, and spectroscopy. This stable and efficient fabrication method offers high performance with significantly reduced fabrication complexity, representing a remarkable advancement toward mass production of Si$_3$N$_4$ PICs for a wide spectrum of applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01724v1-abstract-full').style.display = 'none'; document.getElementById('2411.01724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01700">arXiv:2411.01700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01700">pdf</a>, <a href="https://arxiv.org/format/2411.01700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond Coherent Electron Motion in a Photoionized Aromatic Molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Driver%2C+T">Taran Driver</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zhaoheng Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Isele%2C+E">Erik Isele</a>, <a href="/search/physics?searchtype=author&amp;query=Grell%2C+G">Gilbert Grell</a>, <a href="/search/physics?searchtype=author&amp;query=Ruberti%2C+M">Marco Ruberti</a>, <a href="/search/physics?searchtype=author&amp;query=ONeal%2C+J+T">Jordan T. ONeal</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+O">Oliver Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Beauvarlet%2C+S">Sandra Beauvarlet</a>, <a href="/search/physics?searchtype=author&amp;query=Cesar%2C+D">David Cesar</a>, <a href="/search/physics?searchtype=author&amp;query=Duris%2C+J">Joseph Duris</a>, <a href="/search/physics?searchtype=author&amp;query=Garratt%2C+D">Douglas Garratt</a>, <a href="/search/physics?searchtype=author&amp;query=Larsen%2C+K+A">Kirk A. Larsen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Koloren%C4%8D%2C+P">P艡emysl Koloren膷</a>, <a href="/search/physics?searchtype=author&amp;query=McCracken%2C+G+A">Gregory A. McCracken</a>, <a href="/search/physics?searchtype=author&amp;query=Tuthill%2C+D">Daniel Tuthill</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zifan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Berrah%2C+N">Nora Berrah</a>, <a href="/search/physics?searchtype=author&amp;query=Bostedt%2C+C">Christoph Bostedt</a>, <a href="/search/physics?searchtype=author&amp;query=Borne%2C+K">Kurtis Borne</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xinxin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=DiMauro%2C+L+F">Louis F. DiMauro</a>, <a href="/search/physics?searchtype=author&amp;query=Doumy%2C+G">Gilles Doumy</a>, <a href="/search/physics?searchtype=author&amp;query=Franz%2C+P+L">Paris L. Franz</a>, <a href="/search/physics?searchtype=author&amp;query=Kamalov%2C+A">Andrei Kamalov</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01700v1-abstract-short" style="display: inline;"> In molecular systems, the ultrafast motion of electrons initiates the process of chemical change. Tracking this electronic motion across molecules requires coupling attosecond time resolution to atomic-scale spatial sensitivity. In this work, we employ a pair of attosecond x-ray pulses from an x-ray free-electron laser to follow electron motion resulting from the sudden removal of an electron from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01700v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01700v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01700v1-abstract-full" style="display: none;"> In molecular systems, the ultrafast motion of electrons initiates the process of chemical change. Tracking this electronic motion across molecules requires coupling attosecond time resolution to atomic-scale spatial sensitivity. In this work, we employ a pair of attosecond x-ray pulses from an x-ray free-electron laser to follow electron motion resulting from the sudden removal of an electron from a prototypical aromatic system, para-aminophenol. X-ray absorption enables tracking this motion with atomic-site specificity. Our measurements are compared with state-of-the-art computational modeling, reproducing the observed response across multiple timescales. Sub-femtosecond dynamics are assigned to states undergoing non-radiative decay, while few-femtosecond oscillatory motion is associated with electronic wavepacket motion in stable cation states, that will eventually couple to nuclear motion. Our work provides insight on the ultrafast charge motion preceding and initiating chemical transformations in moderately complex systems, and provides a powerful benchmark for computational models of ultrafast charge motion in matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01700v1-abstract-full').style.display = 'none'; document.getElementById('2411.01700v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01278">arXiv:2411.01278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01278">pdf</a>, <a href="https://arxiv.org/format/2411.01278">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> A versatile framework for attitude tuning of beamlines at advanced light sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Peng-Cheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bi%2C+X">Xiao-Xue Bi</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+X">Xiao-Bao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+L">Li-Wen Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Gong-Fa Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+A">Ai-Yu Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01278v2-abstract-short" style="display: inline;"> Aside from regular beamline experiments at light sources, the preparation steps before these experiments are also worth systematic consideration in terms of automation; a representative category in these steps is attitude tuning, which typically appears in names like beam focusing, sample alignment etc. With the goal of saving time and manpower in both writing and using in mind, a Mamba-based atti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01278v2-abstract-full').style.display = 'inline'; document.getElementById('2411.01278v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01278v2-abstract-full" style="display: none;"> Aside from regular beamline experiments at light sources, the preparation steps before these experiments are also worth systematic consideration in terms of automation; a representative category in these steps is attitude tuning, which typically appears in names like beam focusing, sample alignment etc. With the goal of saving time and manpower in both writing and using in mind, a Mamba-based attitude-tuning framework is created. It supports flexible input/output ports, easy integration of diverse evaluation functions, and free selection of optimisation algorithms; with the help from Mamba&#39;s infrastructure, machine learning (ML) and artificial intelligence (AI) technologies can also be readily integrated. The tuning of a polycapillary lens and of an X-ray emission spectrometer are given as examples for the general use of this framework, featuring powerful command-line interfaces (CLIs) and friendly graphical user interfaces (GUIs) that allow comfortable human-in-the-loop control. The tuning of a Raman spectrometer demonstrates more specialised use of the framework with customised optimisation algorithms. With similar applications in mind, our framework is estimated to be capable of fulfilling a majority of attitude-tuning needs. Also reported is a virtual-beamline mechanism based on easily customisable simulated detectors and motors, which facilitates both testing for developers and training for users. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01278v2-abstract-full').style.display = 'none'; document.getElementById('2411.01278v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01196">arXiv:2411.01196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01196">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Scalable Miniature On-chip Fourier Transform Spectrometer For Raman Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kerman%2C+S">Sarp Kerman</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+X">Xiao Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Z">Zuoqin Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhewei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zhuo Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Qin%2C+X">Xiaofei Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuran Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhai%2C+S">Shuhua Zhai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chang Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01196v1-abstract-short" style="display: inline;"> Miniaturized spectrometers for Raman spectroscopy have the potential to open up a new chapter in sensing. Raman spectroscopy is essential for material characterization and biomedical diagnostics, however, its weak signal and the need for sub-nanometer resolution pose challenges. Conventional spectrometers, with footprints proportional to optical throughput and resolution, are difficult to integrat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01196v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01196v1-abstract-full" style="display: none;"> Miniaturized spectrometers for Raman spectroscopy have the potential to open up a new chapter in sensing. Raman spectroscopy is essential for material characterization and biomedical diagnostics, however, its weak signal and the need for sub-nanometer resolution pose challenges. Conventional spectrometers, with footprints proportional to optical throughput and resolution, are difficult to integrate into compact devices such as wearables. Waveguide-based Fourier Transform Spectrometers (FTS) enable compact spectrometers, and multi-aperture designs can achieve high throughput for applications such as Raman spectroscopy, however, experimental research in this domain remains limited. In this work, we present a multi-aperture SiN waveguide-based FTS overcoming these limitations and enabling Raman spectroscopy of isopropyl alcohol, glucose, Paracetamol, and Ibuprofen with enhanced throughput. Our spectrometer chip, fabricated on a 200 mm SiN wafer, with 160 edge-coupled waveguide apertures connected to an array of ultra-compact interferometers and a small footprint of just 1.6 mm x 4.8 mm, achieves a spectral range of 40 nm and a resolution of 0.5 nm. Experimental results demonstrate that least absolute shrinkage and selection operator (LASSO) regression significantly enhances Raman spectrum reconstruction. Our work on waveguide-based spectrometry paves the way for integrating accurate and compact Raman sensors into consumer electronics and space exploration instruments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01196v1-abstract-full').style.display = 'none'; document.getElementById('2411.01196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures, Corresponding Authors: Sarp Kerman (sarp.kerman@photonicview.com), Chang Chen (changchen@sjtu.edu.cn)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.23829">arXiv:2410.23829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.23829">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First Proof of Principle Experiment for Muon Production with Ultrashort High Intensity Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Feng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+L">Li Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Y">Yanjie Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+J">Jiaxing Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Cui%2C+B">Bo Cui</a>, <a href="/search/physics?searchtype=author&amp;query=Feng%2C+K">Ke Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hao Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+C">Chen Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Z">Ziwen Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hongjie Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zhigang Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zongxin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+L">Liangwen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+D">Duo Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Shan%2C+L">Lianqiang Shan</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zongqiang Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+C">Chao Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+J">Jiayi Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Jiacheng Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+Y">Yuhong Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xueheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+L">Lei Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+W">Weimin Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Y">Yuqiu Gu</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.23829v1-abstract-short" style="display: inline;"> Muons, which play a crucial role in both fundamental and applied physics, have traditionally been generated through proton accelerators or from cosmic rays. With the advent of ultra-short high-intensity lasers capable of accelerating electrons to GeV levels, it has become possible to generate muons in laser laboratories. In this work, we show the first proof of principle experiment for novel muon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23829v1-abstract-full').style.display = 'inline'; document.getElementById('2410.23829v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.23829v1-abstract-full" style="display: none;"> Muons, which play a crucial role in both fundamental and applied physics, have traditionally been generated through proton accelerators or from cosmic rays. With the advent of ultra-short high-intensity lasers capable of accelerating electrons to GeV levels, it has become possible to generate muons in laser laboratories. In this work, we show the first proof of principle experiment for novel muon production with an ultra-short, high-intensity laser device through GeV electron beam bombardment on a lead converter target. The muon physical signal is confirmed by measuring its lifetime which is the first clear demonstration of laser-produced muons. Geant4 simulations were employed to investigate the photo-production, electro-production, and Bethe-Heitler processes response for muon generation and their subsequent detection. The results show that the dominant contributions of muons are attributed to the photo-production/electro-production and a significant yield of muons up to 0.01 $渭$/$e^-$ out of the converter target could be achieved. This laser muon source features compact, ultra-short pulse and high flux. Moreover, its implementation in a small laser laboratory is relatively straightforward, significantly reducing the barriers to entry for research in areas such as muonic X-ray elemental analysis, muon spin spectroscopy and so on. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.23829v1-abstract-full').style.display = 'none'; document.getElementById('2410.23829v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20099">arXiv:2410.20099</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.20099">pdf</a>, <a href="https://arxiv.org/format/2410.20099">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Terahertz semiconductor laser chaos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+B">Binbin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Silvestri%2C+C">Carlo Silvestri</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+K">Kang Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xuhong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+S">Shumin Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Ziping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+W">Wenjian Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhenzhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Peng%2C+J">Junsong Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+H">Heping Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Cheng Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Brambilla%2C+M">Massimo Brambilla</a>, <a href="/search/physics?searchtype=author&amp;query=Columbo%2C+L">Lorenzo Columbo</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hua Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20099v1-abstract-short" style="display: inline;"> Chaos characterized by its irregularity and high sensitivity to initial conditions finds various applications in secure optical communications, random number generations, light detection and ranging systems, etc. Semiconductor lasers serve as ideal light platforms for chaos generations owing to the advantages in on-chip integration and complex nonlinear effects. In near-infrared wavelengths, semic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20099v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20099v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20099v1-abstract-full" style="display: none;"> Chaos characterized by its irregularity and high sensitivity to initial conditions finds various applications in secure optical communications, random number generations, light detection and ranging systems, etc. Semiconductor lasers serve as ideal light platforms for chaos generations owing to the advantages in on-chip integration and complex nonlinear effects. In near-infrared wavelengths, semiconductor laser based chaotic light sources have been extensively studied and experimentally demonstrated. However, in the terahertz (THz) spectral range, due to the lack of effective THz light sources and high-speed detectors, chaos generation in THz semiconductor lasers, e.g., quantum cascade lasers (QCLs), is particularly challenging. Due to the fast intersubband carrier transitions, single mode THz QCLs resemble Class A lasers, where chaos can be hardly excited, even with external perturbations. In this work, we experimentally show a THz chaos source based on a sole multimode THz QCL without any external perturbations. Such a dynamical regime is characterized by the largest Lyapunov exponent associated to the temporal traces of the measured radio frequency (intermode beatnote) signal of the laser. The experimental results and chaos validation are confirmed by simulations of our model based on effective semiconductor Maxwell-Bloch Equations. To further understand the physical mechanism of the chaos generation in THz QCLs, a reduced model based on two coupled complex Ginzburg-Landau equations is derived from the full model cited above to systematically investigate the effects of the linewidth enhancement factor and group velocity dispersion on the chaotic regime. This model allows us to show that the chaos generation in the THz QCL can be ascribed to the system attaining the defect mediated turbulence regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20099v1-abstract-full').style.display = 'none'; document.getElementById('2410.20099v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18817">arXiv:2410.18817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18817">pdf</a>, <a href="https://arxiv.org/format/2410.18817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the Muonium-to-Antimuonium Conversion Experiment (MACE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bai%2C+A">Ai-Yu Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+H">Hanjie Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chang-Lin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+S">Siyuan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xurong Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+W">Weibin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+L">Ling-Yun Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+R">Rui-Rui Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+L">Li Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+Z">Zihao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Y">Yuan He</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+Z">Zhilong Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+Y">Yinyuan Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+H">Huan Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+H">Han-Tao Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+X">Xiaoshen Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hai-Bo Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jincheng Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+G">Guihao Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+H">Han Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Ning%2C+Y">Yunsong Ning</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18817v1-abstract-short" style="display: inline;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18817v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18817v1-abstract-full" style="display: none;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detection system, MACE aims to discover or constrain this rare process at the conversion probability beyond the level of $10^{-13}$. This report provides an overview of the theoretical framework and detailed experimental design in the search for the muonium-to-antimuonium conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'none'; document.getElementById('2410.18817v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">115 pages, 59 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18101">arXiv:2410.18101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.18101">pdf</a>, <a href="https://arxiv.org/format/2410.18101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Molecular Dynamics and Machine Learning Unlock Possibilities in Beauty Design -- A Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yuzhi Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+H">Haowei Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Q">Qinhui Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+C">Chia-Hua Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Huo%2C+Y">Yanran Huo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+F">Fanyu Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+S">Shiyu Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yike Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Grovu%2C+R">Radu Grovu</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+M">Min He</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J+Z+H">John. Z. H. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yuanqing Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18101v2-abstract-short" style="display: inline;"> Computational molecular design -- the endeavor to design molecules, with various missions, aided by machine learning and molecular dynamics approaches, has been widely applied to create valuable new molecular entities, from small molecule therapeutics to protein biologics. In the small data regime, physics-based approaches model the interaction between the molecule being designed and proteins of k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18101v2-abstract-full').style.display = 'inline'; document.getElementById('2410.18101v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18101v2-abstract-full" style="display: none;"> Computational molecular design -- the endeavor to design molecules, with various missions, aided by machine learning and molecular dynamics approaches, has been widely applied to create valuable new molecular entities, from small molecule therapeutics to protein biologics. In the small data regime, physics-based approaches model the interaction between the molecule being designed and proteins of key physiological functions, providing structural insights into the mechanism. When abundant data has been collected, a quantitative structure-activity relationship (QSAR) can be more directly constructed from experimental data, from which machine learning can distill key insights to guide the design of the next round of experiment design. Machine learning methodologies can also facilitate physical modeling, from improving the accuracy of force fields and extending them to unseen chemical spaces, to more directly enhancing the sampling on the conformational spaces. We argue that these techniques are mature enough to be applied to not just extend the longevity of life, but the beauty it manifests. In this perspective, we review the current frontiers in the research \&amp; development of skin care products, as well as the statistical and physical toolbox applicable to addressing the challenges in this industry. Feasible interdisciplinary research projects are proposed to harness the power of machine learning tools to design innovative, effective, and inexpensive skin care products. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18101v2-abstract-full').style.display = 'none'; document.getElementById('2410.18101v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16807">arXiv:2410.16807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16807">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Barometric Altimeter Assisted SINS/DR Combined Land Vehicle Gravity Anomaly Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+K">Kefan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhili Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Junyang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+S">Shenhua Lv</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16807v1-abstract-short" style="display: inline;"> Traditional land vehicle gravity measurement heavily rely on high-precision satellite navigation positioning information. However, the operational range of satellite navigation is limited, and it cannot maintain the required level of accuracy in special environments. To address this issue, we propose a novel land vehicle gravity anomaly measurement method based on altimeter-assisted strapdown iner&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16807v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16807v1-abstract-full" style="display: none;"> Traditional land vehicle gravity measurement heavily rely on high-precision satellite navigation positioning information. However, the operational range of satellite navigation is limited, and it cannot maintain the required level of accuracy in special environments. To address this issue, we propose a novel land vehicle gravity anomaly measurement method based on altimeter-assisted strapdown inertial navigation system (SINS)/dead reckoning (DR) integration. Gravimetric measurement trials demonstrate that after low-pass filtering, the new method achieves a fit accuracy of 2.005 mGal, comparable to that of the traditional SINS/global navigation satellite system (GNSS) integration method. Compared with the SINS/DR integration method, the proposed method improves accuracy by approximately 11%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16807v1-abstract-full').style.display = 'none'; document.getElementById('2410.16807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14428">arXiv:2410.14428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14428">pdf</a>, <a href="https://arxiv.org/format/2410.14428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Beam dynamics induced by the quantum metric of exceptional rings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhaoyang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Septembre%2C+I">Isma毛l Septembre</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Z">Zhenzhi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Kokhanchik%2C+P">Pavel Kokhanchik</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+S">Shun Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Changbiao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hongxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Maochang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yanpeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+M">Min Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Malpuech%2C+G">Guillaume Malpuech</a>, <a href="/search/physics?searchtype=author&amp;query=Solnyshkov%2C+D">Dmitry Solnyshkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14428v1-abstract-short" style="display: inline;"> Topological physics has broadened its scope from the study of topological insulating phases to include nodal phases containing band structure singularities. The geometry of the corresponding quantum states is described by the quantum metric which provides a theoretical framework for explaining phenomena that conventional approaches fail to address. The field has become even broader by encompassing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14428v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14428v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14428v1-abstract-full" style="display: none;"> Topological physics has broadened its scope from the study of topological insulating phases to include nodal phases containing band structure singularities. The geometry of the corresponding quantum states is described by the quantum metric which provides a theoretical framework for explaining phenomena that conventional approaches fail to address. The field has become even broader by encompassing non-Hermitian singularities: in addition to Dirac, Weyl nodes, or nodal lines, it is now common to encounter exceptional points, exceptional or Weyl rings, and even Weyl spheres. They give access to fascinating effects that cannot be reached within the Hermitian picture. However, the quantum geometry of non-Hermitian singularities is not a straightforward extension of the Hermitian one, remaining far less understood. Here, we study experimentally and theoretically the dynamics of wave packets at exceptional rings stemming from Dirac points in a photonic honeycomb lattice. First, we demonstrate a transition between conical diffraction and non-Hermitian broadening in real space. Next, we predict and demonstrate a new non-Hermitian effect in the reciprocal space, induced by the non-orthogonality of the eigenstates. We call it transverse non-Hermitian drift, and its description requires biorthogonal quantum metric. The non-Hermitian drift can be used for applications in beam steering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14428v1-abstract-full').style.display = 'none'; document.getElementById('2410.14428v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14192">arXiv:2410.14192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14192">pdf</a>, <a href="https://arxiv.org/format/2410.14192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Optimizing the image projection of spatially incoherent light from a multimode fiber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Deng%2C+K">Ken Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhongchi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Huaichuan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zihan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jiazhong Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14192v2-abstract-short" style="display: inline;"> We study the spatially incoherent light generated by a multimode fiber(MMF) in the application of image projection designed for the ultracold-atom experiments. Inspired by previous half-analytic methods concerning the incoherent light, here a full-numerical model is established to provide more quantitative descriptions, and part of results is compared with experiments. Particularly, our model abou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14192v2-abstract-full').style.display = 'inline'; document.getElementById('2410.14192v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14192v2-abstract-full" style="display: none;"> We study the spatially incoherent light generated by a multimode fiber(MMF) in the application of image projection designed for the ultracold-atom experiments. Inspired by previous half-analytic methods concerning the incoherent light, here a full-numerical model is established to provide more quantitative descriptions, and part of results is compared with experiments. Particularly, our model about the MMF is also compatible with light propagation in free space. Based on this, we study both the intrinsic speckle and the perturbation robustness of a MMF light field, under the influence of light propagation and fiber parameters. We point out several guidelines about choosing the suitable MMF in creating a spatially incoherent light source, which is useful in the context of the ultracold-atom experiments associating with the optical potential projection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14192v2-abstract-full').style.display = 'none'; document.getElementById('2410.14192v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12449">arXiv:2410.12449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12449">pdf</a>, <a href="https://arxiv.org/format/2410.12449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Versatile Full-Field Optical Coherence Tomography with Adjustable Transmission-to-Reflection Ratio and Enhanced Signal-to-Noise Ratio </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fan%2C+Y">Youlong Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Q">Qingye Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhongping Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zengming Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+X">Xiantao Wei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12449v1-abstract-short" style="display: inline;"> Traditional full-field optical coherence tomography (FF-OCT) is effective for rapid cross-sectional imaging but often suffers from incoherent signals due to imbalanced light intensities between the sample and reference arms. While the high-throughput dark-field (HTDF) FF-OCT technique employs an asymmetric beamsplitter (BS) to achieve an asymmetric beam-splitting ratio and optimize the utilization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12449v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12449v1-abstract-full" style="display: none;"> Traditional full-field optical coherence tomography (FF-OCT) is effective for rapid cross-sectional imaging but often suffers from incoherent signals due to imbalanced light intensities between the sample and reference arms. While the high-throughput dark-field (HTDF) FF-OCT technique employs an asymmetric beamsplitter (BS) to achieve an asymmetric beam-splitting ratio and optimize the utilization of available light, the fixed beam-splitting ratio in the optical system limits HTDF FF-OCT to effectively measuring only specific types of samples with certain scattering intensities. To address this limitation, we propose a more versatile FF-OCT system with an adjustable transmission-to-reflection ratio. This system enables accurate measurement across a broader range of samples by optimizing the light source and finely tuning the polarization to achieve the ideal ratio for different materials. We also observed that both signal-to-noise ratio (SNR) and imaging depth are influenced by the beam-splitting ratio. By precisely adjusting the beam-splitting ratio, both SNR and imaging depth can be optimized to achieve their optimal values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12449v1-abstract-full').style.display = 'none'; document.getElementById('2410.12449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.10921">arXiv:2410.10921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.10921">pdf</a>, <a href="https://arxiv.org/format/2410.10921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> </div> <p class="title is-5 mathjax"> Cooperation in Public Goods Games: Leveraging Other-Regarding Reinforcement Learning on Hypergraphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+B">Bo-Ying Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen-Na Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+G">Guo-Zhong Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">Chao-Ran Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Ji-Qiang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chen Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.10921v1-abstract-short" style="display: inline;"> Cooperation as a self-organized collective behavior plays a significant role in the evolution of ecosystems and human society. Reinforcement learning (RL) offers a new perspective, distinct from imitation learning in evolutionary games, for exploring the mechanisms underlying its emergence. However, most existing studies with the public good game (PGG) employ a self-regarding setup or are on pairw&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10921v1-abstract-full').style.display = 'inline'; document.getElementById('2410.10921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.10921v1-abstract-full" style="display: none;"> Cooperation as a self-organized collective behavior plays a significant role in the evolution of ecosystems and human society. Reinforcement learning (RL) offers a new perspective, distinct from imitation learning in evolutionary games, for exploring the mechanisms underlying its emergence. However, most existing studies with the public good game (PGG) employ a self-regarding setup or are on pairwise interaction networks. Players in the real world, however, optimize their policies based not only on their histories but also on the histories of their co-players, and the game is played in a group manner. In the work, we investigate the evolution of cooperation in the PGG under the other-regarding reinforcement learning evolutionary game (OR-RLEG) on hypergraph by combining the Q-learning algorithm and evolutionary game framework, where other players&#39; action history is incorporated and the game is played on hypergraphs. Our results show that as the synergy factor increases, the parameter interval is divided into three distinct regions, the absence of cooperation (AC), medium cooperation (MC), and high cooperation (HC), accompanied by two abrupt transitions in the cooperation level near two transition points, respectively. Interestingly, we identify regular and anti-coordinated chessboard structures in the spatial pattern that positively contribute to the first cooperation transition but adversely affect the second. Furthermore, we provide a theoretical treatment for the first transition with an approximated first transition point and reveal that players with a long-sighted perspective and low exploration rate are more likely to reciprocate kindness with each other, thus facilitating the emergence of cooperation. Our findings contribute to understanding the evolution of human cooperation, where other-regarding information and group interactions are commonplace. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.10921v1-abstract-full').style.display = 'none'; document.getElementById('2410.10921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07907">arXiv:2410.07907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07907">pdf</a>, <a href="https://arxiv.org/format/2410.07907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> </div> <p class="title is-5 mathjax"> Long-Range Dipole-Dipole Interactions Enabled with Guided Plasmons of Matched Nanoparticle-on-Mirror Antenna Pairs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kang%2C+B">Bowen Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+H">Huatian Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Huan Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhenglong Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07907v1-abstract-short" style="display: inline;"> Ruling a wide range of phenomena, dipole-dipole interactions (DDI) are typically constrained to the short range due to their rapid decay with the increasing dipole separations, limiting the performance in long-range applications. By judiciously designing the photonic structures that control the two-point Green&#39;s functions of the electromagnetic environment, the spontaneous emission of quantum emit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07907v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07907v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07907v1-abstract-full" style="display: none;"> Ruling a wide range of phenomena, dipole-dipole interactions (DDI) are typically constrained to the short range due to their rapid decay with the increasing dipole separations, limiting the performance in long-range applications. By judiciously designing the photonic structures that control the two-point Green&#39;s functions of the electromagnetic environment, the spontaneous emission of quantum emitters (luminescence) and their interactions (e.g., F枚rster energy transfer) can be conveniently tuned. In this paper, we designed a matched nanoparticle-on-mirror antenna pair with enhanced DDI guided by surface plasmon polaritons confined to the metal substrate, which ensures concentrated and enhanced interaction over long ranges of tens of wavelengths. The long-range ($\sim 10 位$) DDI between donor-acceptor emitters is enhanced by $6\times 10^{3}$ times respective to bare gold film, and $4.4\times 10^{4}$ times respective to vacuum. Our result provides a promising testbed for investigating long-range DDI phenomena on the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07907v1-abstract-full').style.display = 'none'; document.getElementById('2410.07907v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06198">arXiv:2410.06198</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06198">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of polaronic state assisted sub-bandgap saturable absorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+L">Li Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yiduo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Kang%2C+J">Jianlong Kang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+Q">Quan Long</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+X">Xianming Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zhihui Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Tong%2C+C">Chuanjia Tong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+K">Keqiang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+Z">Zi-Lan Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhengwei Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shu%2C+C">Chuan-Cun Shu</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Y">Yongbo Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+X">Xiang Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+S">Si Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xiangping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yingwei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jun He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06198v1-abstract-short" style="display: inline;"> Polaronic effects involving stabilization of localized charge character by structural deformations and polarizations have attracted considerable investigations in soft lattice lead halide perovskites. However, the concept of polaron assisted nonlinear photonics remains largely unexplored, which has a wide range of applications from optoelectronics to telecommunications and quantum technologies. He&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06198v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06198v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06198v1-abstract-full" style="display: none;"> Polaronic effects involving stabilization of localized charge character by structural deformations and polarizations have attracted considerable investigations in soft lattice lead halide perovskites. However, the concept of polaron assisted nonlinear photonics remains largely unexplored, which has a wide range of applications from optoelectronics to telecommunications and quantum technologies. Here, we report the first observation of the polaronic state assisted saturable absorption through subbandgap excitation with a redshift exceeding 60 meV. By combining photoluminescence, transient absorption measurements and density functional theory calculations, we explicate that the anomalous nonlinear saturable absorption is caused by the transient picosecond timescale polaronic state formed by strong carrier exciton phonon coupling effect. The bandgap fluctuation can be further tuned through exciton phonon coupling of perovskites with different Young&#39;s modulus. This suggests that we can design targeted soft lattice lead halide perovskite with a specific structure to effectively manipulate exciton phonon coupling and exciton polaron formation. These findings profoundly expand our understanding of exciton polaronic nonlinear optics physics and provide an ideal platform for developing actively tunable nonlinear photonics applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06198v1-abstract-full').style.display = 'none'; document.getElementById('2410.06198v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06023">arXiv:2410.06023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.06023">pdf</a>, <a href="https://arxiv.org/ps/2410.06023">ps</a>, <a href="https://arxiv.org/format/2410.06023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Balancing chemical equations: form the perspective of Hilbert basis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zeying Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xueqin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y+X">Y. X. Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S+A">Shengyuan A. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06023v1-abstract-short" style="display: inline;"> The balancing of chemical equations is a basic problem in chemistry. A commonly employed method is to convert the task to a linear algebra problem, and then solve the null space of the constructed formula matrix. However, in this method, the directly obtained solution may be invalid, and there is no canonical choice of independent basis reactions. Here, we show that these drawbacks originate from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06023v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06023v1-abstract-full" style="display: none;"> The balancing of chemical equations is a basic problem in chemistry. A commonly employed method is to convert the task to a linear algebra problem, and then solve the null space of the constructed formula matrix. However, in this method, the directly obtained solution may be invalid, and there is no canonical choice of independent basis reactions. Here, we show that these drawbacks originate from the fact that the fundamental structure of solutions here is not a linear space but a positive affine monoid. This new understanding enables a systematic approach and a complete description of all possible reactions by a unique set of independent elementary reactions, called Hilbert-basis reactions. By clarifying its underlying mathematical structure, our work offers a new perspective on this old problem of balancing chemical equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06023v1-abstract-full').style.display = 'none'; document.getElementById('2410.06023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05541">arXiv:2410.05541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05541">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Dilated space-and-wavelength selective crosspoint optical switch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Ziyao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Minjia Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+R">Rui Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+B">Bohao Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Wonfor%2C+A">Adrian Wonfor</a>, <a href="/search/physics?searchtype=author&amp;query=Penty%2C+R">Richard Penty</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Q">Qixiang Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05541v1-abstract-short" style="display: inline;"> Photonic integrated switches that are both space and wavelength selective are a highly promising technology for data-intensive applications as they benefit from multi-dimensional manipulation of optical signals. However, scaling these switches normally poses stringent challenges such as increased fabrication complexity and control difficulties, due to the growing number of switching elements. In t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05541v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05541v1-abstract-full" style="display: none;"> Photonic integrated switches that are both space and wavelength selective are a highly promising technology for data-intensive applications as they benefit from multi-dimensional manipulation of optical signals. However, scaling these switches normally poses stringent challenges such as increased fabrication complexity and control difficulties, due to the growing number of switching elements. In this work, we propose a novel dilated crosspoint topology, which efficiently handles both space and wavelength selective switching, while reducing the required switching element count by an order of magnitude compared to reported designs. To the best of our knowledge, our design requires the fewest switching elements for an equivalent routing paths number and it fully cancels the first-order in-band crosstalk. We demonstrate such an ultra-compact space-and-wavelength-selective switch (SWSS) at a scale of 4{\times}4{\times}4位 on the silicon-on-insulator (SOI) platform. Experimental results reveal that the switch achieves an insertion loss ranging from 2.3 dB to 8.6 dB and crosstalk levels in between -35.3 dB and -59.7 dB. The add-drop microring-resonators (MRRs) are equipped with micro-heaters, exhibiting a rise and fall time of 46 渭s and 0.33 渭s, respectively. These performance characteristics highlight the switch&#39;s ultra-low element count and crosstalk with low insertion loss, making it a promising candidate for advanced data center applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05541v1-abstract-full').style.display = 'none'; document.getElementById('2410.05541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05155">arXiv:2410.05155</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05155">pdf</a>, <a href="https://arxiv.org/format/2410.05155">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Formation of Anisotropic Polarons in Antimony Selenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Shi%2C+Y">Yijie Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xi Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhong Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hua%2C+F">Fuyong Hua</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+C">Chao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+C">Chunlong Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jiang Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+W">Wenxi Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05155v1-abstract-short" style="display: inline;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05155v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05155v1-abstract-full" style="display: none;"> Antimony Selenide (Sb$_2$Se$_3$) is an attractive candidate of photovoltaics with not yet satisfying efficiency. Beside defects, polaron formation originated from lattice distortion was proposed to account for trapping free carriers, and the subsequent photoexcitation dynamics and optoelectronic properties, but such a mechanism is still lack of structural observations. Here we directly track the pathways of carrier and lattice evolutions after photoexcitation through optical and electron diffraction pump-probe methods, revealing the temporal correlations between dynamics of both degrees of freedom. The observed opposite separation changes of Se2-Sb2 and Sb2-Sb1 atom pairs in a few picoseconds, and the intermediate state induced by local structural distortions lasting several tens of picoseconds, coinciding with the optical phonons population and coupling, and the trapping process of carriers, respectively, together with the analyses of modulation on diffuse scattering by the atomic displacement fields of polaron model, indicate the formation of anisotropic polarons with large size. Our findings provide carrier and structural information for helping the elucidation of polaron scenario in Sb2Se3, and probably in materials with anisotropic structure and soft lattice which are popular in developing novel optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05155v1-abstract-full').style.display = 'none'; document.getElementById('2410.05155v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02452">arXiv:2410.02452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02452">pdf</a>, <a href="https://arxiv.org/format/2410.02452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Motion-Insensitive Time-Optimal Control of Optical Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Van+Damme%2C+L">L茅o Van Damme</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Devra%2C+A">Amit Devra</a>, <a href="/search/physics?searchtype=author&amp;query=Glaser%2C+S+J">Steffen J. Glaser</a>, <a href="/search/physics?searchtype=author&amp;query=Alberti%2C+A">Andrea Alberti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02452v1-abstract-short" style="display: inline;"> In trapped-atom quantum computers, high-fidelity control of optical qubits is challenging due to the motion of atoms in the trap. If not corrected, the atom motion gets entangled with the qubit degrees of freedom through two fundamental mechanisms, (i) photon recoil and (ii) thermal motion, both leading to a reduction of the gate fidelity. We develop motion-insensitive pulses that suppress both so&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02452v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02452v1-abstract-full" style="display: none;"> In trapped-atom quantum computers, high-fidelity control of optical qubits is challenging due to the motion of atoms in the trap. If not corrected, the atom motion gets entangled with the qubit degrees of freedom through two fundamental mechanisms, (i) photon recoil and (ii) thermal motion, both leading to a reduction of the gate fidelity. We develop motion-insensitive pulses that suppress both sources of infidelity by modulating the phase of the driving laser field in time. To eliminate photon recoil, we use bang-bang pulses$-$derived using time-optimal control$-$which shorten the gate duration by about 20 times compared to conventional pulses. However, even when photon recoil is eliminated, we find that the gate error does not vanish, but is rather limited by a bound arising from thermal motion-induced entanglement. Remarkably, this bound is independent of the Rabi frequency, meaning that, unlike for photon recoil, operating in the resolved sideband regime does not mitigate this source of infidelity. To overcome this bound, we derive smooth-phase pulses, which allow for a further reduction of the gate error by more than an order of magnitude for typical thermal atoms. Motion-insensitive pulses can be refined to compensate for laser inhomogeneities, enhancing the gate performance in practical situations. Our results are validated through simulations of one-qubit gates operating on the optical clock transition of ${}^{88}$Sr atoms trapped in an optical tweezers array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02452v1-abstract-full').style.display = 'none'; document.getElementById('2410.02452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 81Q93 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02256">arXiv:2410.02256</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02256">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSEN.2024.3419243">10.1109/JSEN.2024.3419243 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent Advances in Graphene-Based Pressure Sensors: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Quan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ke%2C+N">Ningfeng Ke</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02256v1-abstract-short" style="display: inline;"> In recent years, pressure sensors have been widely used as crucial technology components in industrial, healthcare, consumer electronics, and automotive safety applications. With the development of intelligent technologies, there is a growing demand for pressure sensors with higher sensitivity, smaller size, and wider detection range. Graphene and its derivatives, as novel emerging materials in re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02256v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02256v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02256v1-abstract-full" style="display: none;"> In recent years, pressure sensors have been widely used as crucial technology components in industrial, healthcare, consumer electronics, and automotive safety applications. With the development of intelligent technologies, there is a growing demand for pressure sensors with higher sensitivity, smaller size, and wider detection range. Graphene and its derivatives, as novel emerging materials in recent years, have received widespread attention from researchers due to their unique mechanical and electrical properties, and are considered as promising sensing materials for the high-performance pressure sensors. In general, graphene-based pressure sensors can be classified into flexible pressure sensors and gas pressure sensors. In this paper, we firstly introduce the basic properties of graphene and its derivatives and then review the research progress of both graphene-based flexible pressure sensors and graphene-based gas pressure sensors respectively, focusing on different sensing mechanisms. Finally, the application prospects of graphene-based pressure sensors as well as future challenges are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02256v1-abstract-full').style.display = 'none'; document.getElementById('2410.02256v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02255">arXiv:2410.02255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02255">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JSEN.2024.3398003">10.1109/JSEN.2024.3398003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recent Advances in Graphene-Based Humidity Sensors with the Focus of Structural Design: A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Hongliang Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+J">Jie Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Q">Qiang Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Q">Quan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Gaohan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">Wendong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+X">Xuge Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02255v1-abstract-short" style="display: inline;"> The advent of the 5G era means that the concepts of robot, VR/AR, UAV, smart home, smart healthcare based on IoT (Internet of Things) have gradually entered human life. Since then, intelligent life has become the dominant direction of social development. Humidity sensors, as humidity detection tools, not only convey the comfort of human living environment, but also display great significance in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02255v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02255v1-abstract-full" style="display: none;"> The advent of the 5G era means that the concepts of robot, VR/AR, UAV, smart home, smart healthcare based on IoT (Internet of Things) have gradually entered human life. Since then, intelligent life has become the dominant direction of social development. Humidity sensors, as humidity detection tools, not only convey the comfort of human living environment, but also display great significance in the fields of meteorology, medicine, agriculture and industry. Graphene-based materials exhibit tremendous potential in humidity sensing owing to their ultra-high specific surface area and excellent electron mobility under room temperature for application in humidity sensing. This review begins with the introduction of examples of various synthesis strategies of graphene, followed by the device structure and working mechanism of graphene-based humidity sensor. In addition, several different structural design methods of graphene are summarized, demonstrating the structural design of graphene can not only optimize the performance of graphene, but also bring significant advantages in humidity sensing. Finally, key challenges hindering the further development and practical application of high-performance graphene-based humidity sensors are discussed, followed by presenting the future perspectives. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02255v1-abstract-full').style.display = 'none'; document.getElementById('2410.02255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01237">arXiv:2410.01237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01237">pdf</a>, <a href="https://arxiv.org/format/2410.01237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Role of triad interactions in spectral evolution of surface gravity waves in deep water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhou Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+Y">Yulin Pan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01237v1-abstract-short" style="display: inline;"> It is generally accepted that the evolution of deep-water surface gravity wave spectrum is governed by quartet resonant and quasi-resonant interactions. However, it has also been reported in both experimental and computational studies that non-resonant triad interactions can play a role, e.g., generation of bound waves. In this study, we investigate the effects of triad and quartet interactions on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01237v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01237v1-abstract-full" style="display: none;"> It is generally accepted that the evolution of deep-water surface gravity wave spectrum is governed by quartet resonant and quasi-resonant interactions. However, it has also been reported in both experimental and computational studies that non-resonant triad interactions can play a role, e.g., generation of bound waves. In this study, we investigate the effects of triad and quartet interactions on the spectral evolution, by numerically tracking the contributions from quadratic and cubic terms in the dynamical equation. In a finite time interval, we find that the contribution from triad interactions follows the trend of that from quartet resonances (with comparable magnitude) for most wavenumbers, except that it peaks at low wavenumbers with very low initial energy. This result reveals two effects of triad interactions: (1) the non-resonant triad interactions can be connected to form quartet resonant interactions (hence exhibiting the comparable trend), which is a reflection of the normal form transformation applied in wave turbulence theory of surface gravity waves. (2) the triad interactions can fill energy into the low energy portion of the spectrum (low wavenumber part in this case) on a very fast time scale, with energy distributed in both bound and free modes at the same wavenumber. We further analyze the latter mechanism using a simple model with two initially active modes in the wavenumber domain. Analytical formulae are provided to describe the distribution of energy in free and bound modes with numerical validations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01237v1-abstract-full').style.display = 'none'; document.getElementById('2410.01237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00844">arXiv:2410.00844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00844">pdf</a>, <a href="https://arxiv.org/format/2410.00844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> </div> <p class="title is-5 mathjax"> Learning Stochastic Dynamics from Snapshots through Regularized Unbalanced Optimal Transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhenyi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tiejun Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+P">Peijie Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00844v1-abstract-short" style="display: inline;"> Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning. Here, we introduce a new deep learning approach for solving regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced stochastic dynamics from observed snapshots. Based on the RUOT form, our method models these dynamics without&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00844v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00844v1-abstract-full" style="display: none;"> Reconstructing dynamics using samples from sparsely time-resolved snapshots is an important problem in both natural sciences and machine learning. Here, we introduce a new deep learning approach for solving regularized unbalanced optimal transport (RUOT) and inferring continuous unbalanced stochastic dynamics from observed snapshots. Based on the RUOT form, our method models these dynamics without requiring prior knowledge of growth and death processes or additional information, allowing them to be learnt directly from data. Theoretically, we explore the connections between the RUOT and Schr枚dinger bridge problem and discuss the key challenges and potential solutions. The effectiveness of our method is demonstrated with a synthetic gene regulatory network. Compared with other methods, our approach accurately identifies growth and transition patterns, eliminates false transitions, and constructs the Waddington developmental landscape. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00844v1-abstract-full').style.display = 'none'; document.getElementById('2410.00844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00331">arXiv:2410.00331</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00331">pdf</a>, <a href="https://arxiv.org/ps/2410.00331">ps</a>, <a href="https://arxiv.org/format/2410.00331">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Topologically protected measurement of orbital angular momentum of light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+J">Junfan Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+A">An Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yurong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+F">Fuhua Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyou Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00331v1-abstract-short" style="display: inline;"> We develop a weak measurement scheme for measuring orbital angular momentum (OAM) of light based on the global topology in wave function. We introduce the spin-orbit coupling to transform the measurement of OAM to the pre- and postselected measurement of polarization. The OAM number can be precisely and promptly recognized using single-shot detection without the need for spatial resolution. More s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00331v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00331v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00331v1-abstract-full" style="display: none;"> We develop a weak measurement scheme for measuring orbital angular momentum (OAM) of light based on the global topology in wave function. We introduce the spin-orbit coupling to transform the measurement of OAM to the pre- and postselected measurement of polarization. The OAM number can be precisely and promptly recognized using single-shot detection without the need for spatial resolution. More significantly, the measurement results exhibit topological robustness under random phase perturbations. This scheme has the potential to be applied as a paradigm in the OAM-based optical computing, metrology and communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00331v1-abstract-full').style.display = 'none'; document.getElementById('2410.00331v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20346">arXiv:2409.20346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.20346">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> All-optical autoencoder machine learning framework using diffractive processors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Feng%2C+P">Peijie Feng</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yong Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Chong%2C+M">Mingzhe Chong</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Lintao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zongkun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+F">Fubei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+Y">Yunhua Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+Y">Yongzheng Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20346v1-abstract-short" style="display: inline;"> Diffractive deep neural network (D2NN), known for its high speed, low power consumption, and strong parallelism, has been widely applied across various fields, including pattern recognition, image processing, and image transmission. However, existing network architectures primarily focus on data representation within the original domain, with limited exploration of the latent space, thereby restri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20346v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20346v1-abstract-full" style="display: none;"> Diffractive deep neural network (D2NN), known for its high speed, low power consumption, and strong parallelism, has been widely applied across various fields, including pattern recognition, image processing, and image transmission. However, existing network architectures primarily focus on data representation within the original domain, with limited exploration of the latent space, thereby restricting the information mining capabilities and multifunctional integration of D2NNs. Here, we propose an all-optical autoencoder (OAE) framework that can encode the input wavefield into a prior shape distribution in the latent space and decode the encoded pattern back to the original wavefield. By leveraging the non-reciprocal property of D2NN, the OAE models function as encoders in one direction of wave propagation and as decoders in the opposite direction. We further apply the models to three key areas: image denoising, noise-resistant reconfigurable image classification, and image generation. Proof-of-concept experiments have been conducted to validate numerical simulations. Our OAE framework fully exploits the potential of latent space representations, enabling a single set of diffractive processors to simultaneously achieve image reconstruction, representation, and generation. It can be viewed as both a counterpart and an extension of the electronic autoencoder model. This work not only offers fresh insights into the design of optical generative models but also paves the way for developing and applying multifunctional, highly integrated, and general optical intelligent systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20346v1-abstract-full').style.display = 'none'; document.getElementById('2409.20346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19803">arXiv:2409.19803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.19803">pdf</a>, <a href="https://arxiv.org/format/2409.19803">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-molecule Automata: Harnessing Kinetic-Thermodynamic Discrepancy for Temporal Pattern Recognition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhongmin Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Z">Zhiyue Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19803v1-abstract-short" style="display: inline;"> Molecular-scale computation is crucial for smart materials and nanoscale devices, yet creating single-molecule systems capable of complex computations remains challenging. We present a theoretical framework for a single-molecule computer that performs temporal pattern recognition and complex information processing. Our approach introduces the concept of an energy seascape, extending traditional en&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19803v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19803v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19803v1-abstract-full" style="display: none;"> Molecular-scale computation is crucial for smart materials and nanoscale devices, yet creating single-molecule systems capable of complex computations remains challenging. We present a theoretical framework for a single-molecule computer that performs temporal pattern recognition and complex information processing. Our approach introduces the concept of an energy seascape, extending traditional energy landscapes by incorporating control parameter degrees of freedom. By engineering a kinetic-thermodynamic discrepancy in folding dynamics, we demonstrate that a linear polymer with $N$ binary-state foldable units can function as a deterministic finite automaton, processing $2^N$ configurations. The molecule&#39;s dominant configuration evolves deterministically in response to mechanical signals, enabling recognition of complex temporal patterns. This design allows complete state controllability through non-equilibrium driving protocols. Our model opens avenues for molecular-scale computation with applications in biosensing, smart drug delivery, and adaptive materials. We discuss potential experimental realizations using DNA nanotechnology. This work bridges the gap between information processing devices and stochastic molecular systems, paving the way for sophisticated molecular computers rivaling biological systems in complexity and adaptability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19803v1-abstract-full').style.display = 'none'; document.getElementById('2409.19803v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15015">arXiv:2409.15015</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.15015">pdf</a>, <a href="https://arxiv.org/format/2409.15015">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> TCAD Simulation of Novel Multi-Spacer HK/MG 28nm Planar MOSFET for Sub-threshold Swing and DIBL Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Z">Zhentao Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+Y">Yihao Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zonghao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+J">Jinhong Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenxing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yunteng Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+H">Haimeng Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Islam%2C+A">Aynul Islam</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hongqiang Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15015v2-abstract-short" style="display: inline;"> This study optimizes 28 nm planar MOSFET technology to reduce device leakage current and enhance switching speed. The specific aims are to decrease subthreshold swing (S.S.) and mitigate drain induced barrier lowering (DIBL) effect. Silvaco TCAD software is used for process (Athena) and device (Atlas) simulations. For the further development of MOSFET technology, we implemented our device (planar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15015v2-abstract-full').style.display = 'inline'; document.getElementById('2409.15015v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15015v2-abstract-full" style="display: none;"> This study optimizes 28 nm planar MOSFET technology to reduce device leakage current and enhance switching speed. The specific aims are to decrease subthreshold swing (S.S.) and mitigate drain induced barrier lowering (DIBL) effect. Silvaco TCAD software is used for process (Athena) and device (Atlas) simulations. For the further development of MOSFET technology, we implemented our device (planar 28 nm n-MOSFET) with high-k metal-gate (HK/MG), lightly doped drain (LDD), multiple spacers (mult-spacers), and silicide. Simulation validation shows improvements over other 28 nm devices, with lower static power consumption and notable optimizations in both S.S. (69.8 mV/dec) and DIBL effect (30.5 mV/V). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15015v2-abstract-full').style.display = 'none'; document.getElementById('2409.15015v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14699">arXiv:2409.14699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14699">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Laboratorial radiative shocks with multiple parameters and first quantifying verifications to core-collapse supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+L">Lu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jianhua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Z">Zhenghua Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+T">Tianming Song</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yunfeng Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Kuang%2C+L">Longyu Kuang</a>, <a href="/search/physics?searchtype=author&amp;query=Jing%2C+L">Longfei Jing</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zhiwei Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+L">Liling Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+J">Jinhua Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+P">Pin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yuxue Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhiyu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yang Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+Z">Zhibing He</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Ping Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+D">Dong Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jiamin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zongqing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yongkun Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14699v1-abstract-short" style="display: inline;"> We present experiments to reproduce the characteristics of core-collapse supernovae with different stellar masses and initial explosion energies in the laboratory. In the experiments, shocks are driven in 1.2 atm and 1.9 atm xenon gas by laser with energy from 1600J to 2800J on the SGIII prototype laser facility. The average shock velocities and shocked densities are obtained from experiments. Exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14699v1-abstract-full').style.display = 'inline'; document.getElementById('2409.14699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14699v1-abstract-full" style="display: none;"> We present experiments to reproduce the characteristics of core-collapse supernovae with different stellar masses and initial explosion energies in the laboratory. In the experiments, shocks are driven in 1.2 atm and 1.9 atm xenon gas by laser with energy from 1600J to 2800J on the SGIII prototype laser facility. The average shock velocities and shocked densities are obtained from experiments. Experimental results reveal that higher laser energy and lower Xe gas density led to higher shock velocity, and lower Xe gas initial density has a higher compression. Modeling of the experiments using the 2D radiation hydrodynamic codes Icefire shows excellent agreement with the experimental results and gives the temperature. These results will contribute to time-domain astrophysical systems, such as gravitational supernovae, where a strong radiative shock propagates outward from the center of the star after the core collapses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14699v1-abstract-full').style.display = 'none'; document.getElementById('2409.14699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures, 1 supplement (8 pages, 3 figures, 2 tables), accepted for publication in Science Bulletin</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10626">arXiv:2409.10626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10626">pdf</a>, <a href="https://arxiv.org/format/2409.10626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of Interface Piezoelectricity in Superconducting Devices on Silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+H">Haoxin Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+E">Eric Li</a>, <a href="/search/physics?searchtype=author&amp;query=Godeneli%2C+K">Kadircan Godeneli</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zi-Huai Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jahanbani%2C+S">Shahin Jahanbani</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+K">Kangdi Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Odeh%2C+M">Mutasem Odeh</a>, <a href="/search/physics?searchtype=author&amp;query=Aloni%2C+S">Shaul Aloni</a>, <a href="/search/physics?searchtype=author&amp;query=Griffin%2C+S">Sin茅ad Griffin</a>, <a href="/search/physics?searchtype=author&amp;query=Sipahigil%2C+A">Alp Sipahigil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10626v1-abstract-short" style="display: inline;"> The evolution of superconducting quantum processors is driven by the need to reduce errors and scale for fault-tolerant computation. Reducing physical qubit error rates requires further advances in the microscopic modeling and control of decoherence mechanisms in superconducting qubits. Piezoelectric interactions contribute to decoherence by mediating energy exchange between microwave photons and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10626v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10626v1-abstract-full" style="display: none;"> The evolution of superconducting quantum processors is driven by the need to reduce errors and scale for fault-tolerant computation. Reducing physical qubit error rates requires further advances in the microscopic modeling and control of decoherence mechanisms in superconducting qubits. Piezoelectric interactions contribute to decoherence by mediating energy exchange between microwave photons and acoustic phonons. Centrosymmetric materials like silicon and sapphire do not display piezoelectricity and are the preferred substrates for superconducting qubits. However, the broken centrosymmetry at material interfaces may lead to piezoelectric losses in qubits. While this loss mechanism was predicted two decades ago, interface piezoelectricity has not been experimentally observed in superconducting devices. Here, we report the observation of interface piezoelectricity at an aluminum-silicon junction and show that it constitutes an important loss channel for superconducting devices. We fabricate aluminum interdigital surface acoustic wave transducers on silicon and demonstrate piezoelectric transduction from room temperature to millikelvin temperatures. We find an effective electromechanical coupling factor of $K^2\approx 2 \times 10^{-5}\%$ comparable to weakly piezoelectric substrates. We model the impact of the measured interface piezoelectric response on superconducting qubits and find that the piezoelectric surface loss channel limits qubit quality factors to $Q\sim10^4-10^8$ for designs with different surface participation ratios and electromechanical mode matching. These results identify electromechanical surface losses as a significant dissipation channel for superconducting qubits, and show the need for heterostructure and phononic engineering to minimize errors in next-generation superconducting qubits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10626v1-abstract-full').style.display = 'none'; document.getElementById('2409.10626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09811">arXiv:2409.09811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09811">pdf</a>, <a href="https://arxiv.org/format/2409.09811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yuxuan Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+J">Jingmin Sun</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+X">Xinjie He</a>, <a href="/search/physics?searchtype=author&amp;query=Pinney%2C+G">Griffin Pinney</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zecheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Schaeffer%2C+H">Hayden Schaeffer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09811v1-abstract-short" style="display: inline;"> We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09811v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09811v1-abstract-full" style="display: none;"> We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new transformer-based multi-operator learning approach that fuses symbolic information to perform operator-based data prediction, i.e. non-autoregressive. By incorporating multiple modalities in the inputs, the PDE foundation model builds in a pathway for including mathematical descriptions of the physical behavior. We pre-train our foundation model on 6 parametric families of equations collected from 13 datasets, including over 60K trajectories. Our model outperforms popular operator learning, computer vision, and multi-physics models, in benchmark forward prediction tasks. We test our architecture choices with ablation studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09811v1-abstract-full').style.display = 'none'; document.getElementById('2409.09811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09600">arXiv:2409.09600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09600">pdf</a>, <a href="https://arxiv.org/format/2409.09600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> High-order accurate structure-preserving finite volume schemes on adaptive moving meshes for shallow water equations: Well-balancedness and positivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhihao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Huazhong Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+K">Kailiang Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09600v1-abstract-short" style="display: inline;"> This paper develops high-order accurate, well-balanced (WB), and positivity-preserving (PP) finite volume schemes for shallow water equations on adaptive moving structured meshes. The mesh movement poses new challenges in maintaining the WB property, which not only depends on the balance between flux gradients and source terms but is also affected by the mesh movement. To address these complexitie&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09600v1-abstract-full').style.display = 'inline'; document.getElementById('2409.09600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09600v1-abstract-full" style="display: none;"> This paper develops high-order accurate, well-balanced (WB), and positivity-preserving (PP) finite volume schemes for shallow water equations on adaptive moving structured meshes. The mesh movement poses new challenges in maintaining the WB property, which not only depends on the balance between flux gradients and source terms but is also affected by the mesh movement. To address these complexities, the WB property in curvilinear coordinates is decomposed into flux source balance and mesh movement balance. The flux source balance is achieved by suitable decomposition of the source terms, the numerical fluxes based on hydrostatic reconstruction, and appropriate discretization of the geometric conservation laws (GCLs). Concurrently, the mesh movement balance is maintained by integrating additional schemes to update the bottom topography during mesh adjustments. The proposed schemes are rigorously proven to maintain the WB property by using the discrete GCLs and these two balances. We provide rigorous analyses of the PP property under a sufficient condition enforced by a PP limiter. Due to the involvement of mesh metrics and movement, the analyses are nontrivial, while some standard techniques, such as splitting high-order schemes into convex combinations of formally first-order PP schemes, are not directly applicable. Various numerical examples validate the high-order accuracy, high efficiency, WB, and PP properties of the proposed schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09600v1-abstract-full').style.display = 'none'; document.getElementById('2409.09600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 13 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08477">arXiv:2409.08477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08477">pdf</a>, <a href="https://arxiv.org/format/2409.08477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Integrating Neural Operators with Diffusion Models Improves Spectral Representation in Turbulence Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Oommen%2C+V">Vivek Oommen</a>, <a href="/search/physics?searchtype=author&amp;query=Bora%2C+A">Aniruddha Bora</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Karniadakis%2C+G+E">George Em Karniadakis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08477v1-abstract-short" style="display: inline;"> We integrate neural operators with diffusion models to address the spectral limitations of neural operators in surrogate modeling of turbulent flows. While neural operators offer computational efficiency, they exhibit deficiencies in capturing high-frequency flow dynamics, resulting in overly smooth approximations. To overcome this, we condition diffusion models on neural operators to enhance the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08477v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08477v1-abstract-full" style="display: none;"> We integrate neural operators with diffusion models to address the spectral limitations of neural operators in surrogate modeling of turbulent flows. While neural operators offer computational efficiency, they exhibit deficiencies in capturing high-frequency flow dynamics, resulting in overly smooth approximations. To overcome this, we condition diffusion models on neural operators to enhance the resolution of turbulent structures. Our approach is validated for different neural operators on diverse datasets, including a high Reynolds number jet flow simulation and experimental Schlieren velocimetry. The proposed method significantly improves the alignment of predicted energy spectra with true distributions compared to neural operators alone. Additionally, proper orthogonal decomposition analysis demonstrates enhanced spectral fidelity in space-time. This work establishes a new paradigm for combining generative models with neural operators to advance surrogate modeling of turbulent systems, and it can be used in other scientific applications that involve microstructure and high-frequency content. See our project page: vivekoommen.github.io/NO_DM <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08477v1-abstract-full').style.display = 'none'; document.getElementById('2409.08477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06758">arXiv:2409.06758</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06758">pdf</a>, <a href="https://arxiv.org/ps/2409.06758">ps</a>, <a href="https://arxiv.org/format/2409.06758">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Numerical Investigations on Dilute Cold Plasma Potential and Electron Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cai%2C+S">Shiying Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">Chunpei Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06758v2-abstract-short" style="display: inline;"> Simulation results are presented to demonstrate electron temperature and electrical potential development in dilute and cold plasma development. The simulation method is a hybrid method which adopted fluid model for electrons due to their high mobility, while heavy ions and neutrals are modelled with the direct simulation Monte Carlo and Particle-In-Cell methods. The flows include steady, starting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06758v2-abstract-full').style.display = 'inline'; document.getElementById('2409.06758v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06758v2-abstract-full" style="display: none;"> Simulation results are presented to demonstrate electron temperature and electrical potential development in dilute and cold plasma development. The simulation method is a hybrid method which adopted fluid model for electrons due to their high mobility, while heavy ions and neutrals are modelled with the direct simulation Monte Carlo and Particle-In-Cell methods. The flows include steady, starting-up and shutting-down scenarios. The goal is to illustrate the exponential behaviors which were predicted in several recently developed formulas. Those formulas include many coefficients related with local properties, and they are difficult to determine. Hence, those trends can only efficiently demonstrate by numerical simulations which are more convenient than experimental measurements. The results confirm several facts. For steady plasma flows, the electron temperature and potential profiles are smooth, very likely, they can be approximated with exponential functions. For unsteady flows, the property developing trends in the shutting down or starting-up processes change monotonically. Further, at locations with large gradients, the property change trends are less ideal than those formulas. This is consistent with the assumptions with which those formulas were developed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06758v2-abstract-full').style.display = 'none'; document.getElementById('2409.06758v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages. arXiv admin note: text overlap with arXiv:2311.08423</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Zhang%2C+Z&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10