CINXE.COM

Search results for: hadron loops

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hadron loops</title> <meta name="description" content="Search results for: hadron loops"> <meta name="keywords" content="hadron loops"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hadron loops" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hadron loops"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 142</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hadron loops</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Production of New Hadron States in Effective Field Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qi%20Wu">Qi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dian-Yong%20Chen"> Dian-Yong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng-Kun%20Guo"> Feng-Kun Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Li"> Gang Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past decade, a growing number of new hadron states have been observed, which are dubbed as XYZ states in the heavy quarkonium mass regions. In this work, we present our study on the production of some new hadron states. In particular, we investigate the processes Υ(5S,6S)→ Zb (10610)/Zb (10650)π, Bc→ Zc (3900)/Zc (4020)π and Λb→ Pc (4312)/Pc (4440)/Pc (4457)K. (1) For the production of Zb (10610)/Zb (10650) from Υ(5S,6S) decay, two types of bottom-meson loops were discussed within a nonrelativistic effective field theory. We found that the loop contributions with all intermediate states being the S-wave ground state bottom mesons are negligible, while the loops with one bottom meson being the broad B₀* or B₁' resonance could provide the dominant contributions to the Υ(5S)→ Zb⁽'⁾ π. (2) For the production of Zc (3900)/Zc (4020) from Bc decay, the branching ratios of Bc⁺→ Z (3900)⁺ π⁰ and Bc⁺→ Zc (4020)⁺ π⁰ are estimated to be of order of 10⁽⁻⁴⁾ and 10⁽⁻⁷⁾ in an effective Lagrangian approach. The large production rate of Zc (3900) could provide an important source of the production of Zc (3900) from the semi-exclusive decay of b-flavored hadrons reported by D0 Collaboration, which can be tested by the exclusive measurements in LHCb. (3) For the production of Pc (4312), Pc (4440) and Pc (4457) from Λb decay, the ratio of the branching fraction of Λb→ Pc K was predicted in a molecular scenario by using an effective Lagrangian approach, which is weakly dependent on our model parameter. We also find the ratios of the productions of the branching fractions of Λb→ Pc K and Pc→ J/ψ p can be well interpreted in the molecular scenario. Moreover, the estimated branching fractions of Λb→ Pc K are of order 10⁽⁻⁶⁾, which could be tested by further measurements in LHCb Collaboration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20Lagrangian%20approach" title="effective Lagrangian approach">effective Lagrangian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=hadron%20loops" title=" hadron loops"> hadron loops</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20states" title=" molecular states"> molecular states</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20hadron%20states" title=" new hadron states"> new hadron states</a> </p> <a href="https://publications.waset.org/abstracts/132530/production-of-new-hadron-states-in-effective-field-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Turk%20Cakir">Ilkay Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Altinli"> Murat Altinli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zekeriya%20Uysal"> Zekeriya Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20Senol"> Abdulkadir Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Olcay%20Bolukbasi%20Yalcinkaya"> Olcay Bolukbasi Yalcinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yilmaz"> Ali Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson&rsquo;s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous H&gamma;&gamma;, H&gamma;Z and HZZ couplings in e&minus; p &rarr; e&minus; q H process are obtained. Detector simulations are also taken into account in the calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalos%20couplings" title="anomalos couplings">anomalos couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=FCC-eh" title=" FCC-eh"> FCC-eh</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs" title=" Higgs"> Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=Z%20boson" title=" Z boson"> Z boson</a> </p> <a href="https://publications.waset.org/abstracts/82433/the-search-of-anomalous-higgs-boson-couplings-at-the-large-hadron-electron-collider-and-future-circular-electron-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Coarse-Graining in Micromagnetic Simulations of Magnetic Hyperthermia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razyeh%20Behbahani">Razyeh Behbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20L.%20Plumer"> Martin L. Plumer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Saika-Voivod"> Ivan Saika-Voivod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert equation are used to calculate dynamic magnetic hysteresis loops relevant to magnetic hyperthermia applications. With the goal to effectively simulate room-temperature loops for large iron-oxide based systems at relatively slow sweep rates on the order of 1 Oe/ns or less, a coarse-graining scheme is proposed and tested. The scheme is derived from a previously developed renormalization-group approach. Loops associated with nanorods, used as building blocks for larger nanoparticles that were employed in preclinical trials (Dennis et al., 2009 Nanotechnology 20 395103), serve as the model test system. The scaling algorithm is shown to produce nearly identical loops over several decades in the model grain sizes. Sweep-rate scaling involving the damping constant alpha is also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse-graining" title="coarse-graining">coarse-graining</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermia" title=" hyperthermia"> hyperthermia</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loops" title=" hysteresis loops"> hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=micromagnetic%20simulations" title=" micromagnetic simulations"> micromagnetic simulations</a> </p> <a href="https://publications.waset.org/abstracts/112852/coarse-graining-in-micromagnetic-simulations-of-magnetic-hyperthermia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> One Period Loops of Memristive Circuits with Mixed-Mode Oscillations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wieslaw%20Marszalek">Wieslaw Marszalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Trzaska"> Zdzislaw Trzaska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interesting properties of various one-period loops of singularly perturbed memristive circuits with mixed-mode oscillations (MMOs) are analyzed in this paper. The analysis is mixed, both analytical and numerical and focused on the properties of pinched hysteresis of the memristive element and other one-period loops formed by pairs of time-series solutions for various circuits' variables. The memristive element is the only nonlinear element in the two circuits. A theorem on periods of mixed-mode oscillations of the circuits is formulated and proved. Replacements of memristors by parallel G-C or series R-L circuits for a MMO response with equivalent RMS values is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed-mode%20oscillations" title="mixed-mode oscillations">mixed-mode oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=memristive%20circuits" title=" memristive circuits"> memristive circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=pinched%20hysteresis" title=" pinched hysteresis"> pinched hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=one-period%20loops" title=" one-period loops"> one-period loops</a>, <a href="https://publications.waset.org/abstracts/search?q=singularly%20perturbed%20circuits" title=" singularly perturbed circuits"> singularly perturbed circuits</a> </p> <a href="https://publications.waset.org/abstracts/20949/one-period-loops-of-memristive-circuits-with-mixed-mode-oscillations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Neutral Heavy Scalar Searches via Standard Model Gauge Boson Decays at the Large Hadron Electron Collider with Multivariate Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Delle%20Rose">Luigi Delle Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Fischer"> Oliver Fischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hammad"> Ahmed Hammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we study the prospects of the proposed Large Hadron electron Collider (LHeC) in the search for heavy neutral scalar particles. We consider a minimal model with one additional complex scalar singlet that interacts with the Standard Model (SM) via mixing with the Higgs doublet, giving rise to an SM-like Higgs boson and a heavy scalar particle. Both scalar particles are produced via vector boson fusion and can be tested via their decays into pairs of SM particles, analogously to the SM Higgs boson. Using multivariate techniques, we show that the LHeC is sensitive to heavy scalars with masses between 200 and 800 GeV down to scalar mixing of order 0.01. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title="beyond the standard model">beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20hadron%20electron%20collider" title=" large hadron electron collider"> large hadron electron collider</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20analysis" title=" multivariate analysis"> multivariate analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=scalar%20singlet" title=" scalar singlet"> scalar singlet</a> </p> <a href="https://publications.waset.org/abstracts/102214/neutral-heavy-scalar-searches-via-standard-model-gauge-boson-decays-at-the-large-hadron-electron-collider-with-multivariate-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Mechanical Simulation with Electrical and Dimensional Tests for AISHa Containment Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Noto">F. Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Costa"> G. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Celona"> L. Celona</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chines"> F. Chines</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ciavola"> G. Ciavola</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Cuttone"> G. Cuttone</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gammino"> S. Gammino</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Leonardi"> O. Leonardi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Marletta"> S. Marletta</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Torrisi"> G. Torrisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At Istituto Nazionale di Fisica Nucleare &ndash; Laboratorio Nazionale del Sud (INFN-LNS), a broad experience in the design, construction and commissioning of ECR and microwave ion sources is available. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations, which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadron therapy facility using heavy ions. In this paper, we analyzed the dimensional test and electrical test about an innovative solution for the containment chamber that allows us to solve our isolation and structural problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title="FEM analysis">FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20cyclotron%20resonance%20ion%20source" title=" electron cyclotron resonance ion source"> electron cyclotron resonance ion source</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectrical%20measurement" title=" dielectrical measurement"> dielectrical measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=hadron%20therapy" title=" hadron therapy"> hadron therapy</a> </p> <a href="https://publications.waset.org/abstracts/48047/mechanical-simulation-with-electrical-and-dimensional-tests-for-aisha-containment-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20van%20Tonder">Pierre van Tonder</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoff%20Kruger"> Christoff Kruger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20reinforcement" title="supplementary reinforcement">supplementary reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor%20loops" title=" anchor loops"> anchor loops</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20panels" title=" retaining panels"> retaining panels</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pull-out%20failure" title=" pull-out failure"> pull-out failure</a> </p> <a href="https://publications.waset.org/abstracts/143106/pull-out-analysis-of-composite-loops-embedded-in-steel-reinforced-concrete-retaining-wall-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhang">Jing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqin%20Chang"> Yongqin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongwei%20Wang"> Yongwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Li"> Xiaolin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaoning%20Jiang"> Shaoning Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Farong%20Wan"> Farong Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Long"> Yi Long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-0.2wt.%25V%20alloy" title=" Fe-0.2wt.%V alloy"> Fe-0.2wt.%V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/30363/effects-of-hydrogen-ion-irritation-on-the-microstructure-and-hardness-of-fe-02wtv-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Modeling of Single Bay Precast Residential House Using Ruaumoko 2D Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Hamid">N. H. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Mohamed"> N. M. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Anuar"> S. A. Anuar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast residential houses are normally constructed in Malaysia using precast shear-key wall panel and precast wall panel are designed using BS8110 where there is no provision for earthquake. However, the safety of this house under moderate and strong earthquake is still questionable. Consequently, the full-scale of residential house are designed, constructed, tested and analyzed under in-plane lateral cyclic loading. Hysteresis loops are plotted based on the experimental work and compared with modeling of hysteresis loops using HYSTERES in RUAUMOKO 2D program. Modified Takeda hysteresis model is chosen to behave a similar pattern with experimental work. This program will display the earthquake excitations, spectral displacements, pseudo spectral acceleration, and deformation shape of the structure. It can be concluded that this building is suffering severe cracks and damage under moderate and severe earthquake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=precast%20shear-key" title="precast shear-key">precast shear-key</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis%20loops" title=" hysteresis loops"> hysteresis loops</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20displacements" title=" spectral displacements"> spectral displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20shape" title=" deformation shape"> deformation shape</a> </p> <a href="https://publications.waset.org/abstracts/11522/modeling-of-single-bay-precast-residential-house-using-ruaumoko-2d-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Study of Composite Materials for Aisha Containment Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Costa">G. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Noto"> F. Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Celona"> L. Celona</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chines"> F. Chines</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ciavola"> G. Ciavola</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Cuttone"> G. Cuttone</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gammino"> S. Gammino</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Leonardi"> O. Leonardi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Marletta"> S. Marletta</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Torrisi"> G. Torrisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron-therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is intended to be a multipurpose device, operating at 18 GHz, in order to achieve higher plasma densities. It should provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. The source is potentially interesting for any hadrontherapy center using heavy ions. In the paper, we designed an innovative solution for the plasma containment chamber that allows us to solve our isolation and structural problems. We analyzed the materials chosen for our aim (glass fibers and carbon fibers) and we illustrated the all process (spinning, curing and machining) of the assembly of our chamber. The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hadron-therapy" title="hadron-therapy">hadron-therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fiber" title=" glass fiber"> glass fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum-bag" title=" vacuum-bag"> vacuum-bag</a>, <a href="https://publications.waset.org/abstracts/search?q=ECR" title=" ECR"> ECR</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20source" title=" ion source"> ion source</a> </p> <a href="https://publications.waset.org/abstracts/48051/study-of-composite-materials-for-aisha-containment-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Supersymmetry versus Compositeness: 2-Higgs Doublet Models Tell the Story</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Curtis">S. De Curtis</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Delle%20Rose"> L. Delle Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moretti"> S. Moretti</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Yagyu"> K. Yagyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersymmetry and compositeness are the two prevalent paradigms providing both a solution to the hierarchy problem and motivation for a light Higgs boson state. An open door towards the solution is found in the context of 2-Higgs Doublet Models (2HDMs), which are necessary to supersymmetry and natural within compositeness in order to enable Electro-Weak Symmetry Breaking. In scenarios of compositeness, the two isospin doublets arise as pseudo Nambu-Goldstone bosons from the breaking of SO(6). By calculating the Higgs potential at one-loop level through the Coleman-Weinberg mechanism from the explicit breaking of the global symmetry induced by the partial compositeness of fermions and gauge bosons, we derive the phenomenological properties of the Higgs states and highlight the main signatures of this Composite 2-Higgs Doublet Model at the Large Hadron Collider. These include modifications to the SM-like Higgs couplings as well as production and decay channels of heavier Higgs bosons. We contrast the properties of this composite scenario to the well-known ones established in supersymmetry, with the MSSM being the most notorious example. We show how 2HDM spectra of masses and couplings accessible at the Large Hadron Collider may allow one to distinguish between the two paradigms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title="beyond the standard model">beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20Higgs" title=" composite Higgs"> composite Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetry" title=" supersymmetry"> supersymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Two-Higgs%20Doublet%20Model" title=" Two-Higgs Doublet Model"> Two-Higgs Doublet Model</a> </p> <a href="https://publications.waset.org/abstracts/102212/supersymmetry-versus-compositeness-2-higgs-doublet-models-tell-the-story" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Patterns Obtained by Using Knitting Technique in Textile Crafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Erzurumlu">Özlem Erzurumlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazan%20Oskay"> Nazan Oskay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20Melek"> Ece Melek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knitting which is one of the textile manufacturing techniques is manufactured by using the system of single yarn. Knitting wares consisting of loops structurally have flexible structures. Knitting can be shaped and given volume easily due to increasing or decreasing the number of loops, being manufactured in circular form and its flexible structure. While the knitting wares are basically being manufactured to meet the requirements, it takes its place in the art field overflowing outside of industrial production later. Textile artist ensures his ideas to convert into artistic product by using textiles and non-textiles with aesthetic concerns and creative impulses. When textile crafts are observed at the present time we see that knitting technique has an extensive area of use such as sculpture, panel, installation art and performing art. It is examined how the knitting technique is used in textile crafts observing patterns obtained by this technique in textile crafts in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=art" title="art">art</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=knitting%20art" title=" knitting art"> knitting art</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20crafts" title=" textile crafts"> textile crafts</a> </p> <a href="https://publications.waset.org/abstracts/28234/patterns-obtained-by-using-knitting-technique-in-textile-crafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">707</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening%20behavior" title=" hardening behavior"> hardening behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20exponential%20model" title=" nonlinear exponential model"> nonlinear exponential model</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolators" title=" seismic isolators"> seismic isolators</a>, <a href="https://publications.waset.org/abstracts/search?q=softening%20behavior" title=" softening behavior"> softening behavior</a> </p> <a href="https://publications.waset.org/abstracts/59055/an-advanced-exponential-model-for-seismic-isolators-having-hardening-or-softening-behavior-at-large-displacements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> The MoEDAL-MAPP* Experiment - Expanding the Discovery Horizon of the Large Hadron Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Pinfold">James Pinfold</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MoEDAL (Monopole and Exotics Detector at the LHC) experiment deployed at IP8 on the Large Hadron Collider ring was the first dedicated search experiment to take data at the Large Hadron Collider (LHC) in 2010. It was designed to search for Highly Ionizing Particle (HIP) avatars of new physics such as magnetic monopoles, dyons, Q-balls, multiply charged particles, massive, slowly moving charged particles and long-lived massive charge SUSY particles. We shall report on our search at LHC’s Run-2 for Magnetic monopoles and dyons produced in p-p and photon-fusion. In more detail, we will report our most recent result in this arena: the search for magnetic monopoles via the Schwinger Mechanism in Pb-Pb collisions. The MoEDAL detector, originally the first dedicated search detector at the LHC, is being reinstalled for LHC’s Run-3 to continue the search for electrically and magnetically charged HIPs with enhanced instantaneous luminosity, detector efficiency and a factor of ten lower thresholds for HIPs. As part of this effort, we will search for massive l long-lived, singly and multiply charged particles from various scenarios for which MoEDAL has a competitive sensitivity. An upgrade to MoEDAL, the MoEDAL Apparatus for Penetrating Particles (MAPP), is now the LHC’s newest detector. The MAPP detector, positioned in UA83, expands the physics reach of MoEDAL to include sensitivity to feebly-charged particles with charge, or effective charge, as low as 10-3 e (where e is the electron charge). Also, In conjunction with MoEDAL’s trapping detector, the MAPP detector gives us a unique sensitivity to extremely long-lived charged particles. MAPP also has some sensitivity to long-lived neutral particles. The addition of an Outrigger detector for MAPP-1 to increase its acceptance for more massive milli-charged particles is currently in the Technical Proposal stage. Additionally, we will briefly report on the plans for the MAPP-2 upgrade to the MoEDAL-MAPP experiment for the High Luminosity LHC (HL-LHC). This experiment phase is designed to maximize MoEDAL-MAPP’s sensitivity to very long-lived neutral messengers of physics beyond the Standard Model. We envisage this detector being deployed in the UGC1 gallery near IP8. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LHC" title="LHC">LHC</a>, <a href="https://publications.waset.org/abstracts/search?q=beyond%20the%20standard%20model" title=" beyond the standard model"> beyond the standard model</a>, <a href="https://publications.waset.org/abstracts/search?q=dedicated%20search%20experiment" title=" dedicated search experiment"> dedicated search experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=highly%20ionizing%20particles" title=" highly ionizing particles"> highly ionizing particles</a>, <a href="https://publications.waset.org/abstracts/search?q=long-lived%20particles" title=" long-lived particles"> long-lived particles</a>, <a href="https://publications.waset.org/abstracts/search?q=milli-charged%20particles" title=" milli-charged particles"> milli-charged particles</a> </p> <a href="https://publications.waset.org/abstracts/167524/the-moedal-mapp-experiment-expanding-the-discovery-horizon-of-the-large-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> A Large Ion Collider Experiment (ALICE) Diffractive Detector Control System for RUN-II at the Large Hadron Collider </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Cabanillas-Noris">J. C. Cabanillas-Noris</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Mart%C3%ADnez-Hern%C3%A1ndez"> M. I. Martínez-Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Le%C3%B3n-Monz%C3%B3n"> I. León-Monzón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The selection of diffractive events in the ALICE experiment during the first data taking period (RUN-I) of the Large Hadron Collider (LHC) was limited by the range over which rapidity gaps occur. It would be possible to achieve better measurements by expanding the range in which the production of particles can be detected. For this purpose, the ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase (RUN-II). Any new detector should be able to take the data synchronously with all other detectors and be operated through the ALICE central systems. One of the key elements that must be developed for the AD0 detector is the Detector Control System (DCS). The DCS must be designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, from electronics settings and power supply levels to the archiving of operating conditions data and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), their threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters define the efficiency of AD0 and they have to be monitored and controlled through AD0 DCS. Finally, AD0 DCS provides the operator with multiple interfaces to execute these tasks. They are realized as operating panels and scripts running in the background. These features are implemented on a SCADA software platform as a distributed control system which integrates to the global control system of the ALICE experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AD0" title="AD0">AD0</a>, <a href="https://publications.waset.org/abstracts/search?q=ALICE" title=" ALICE"> ALICE</a>, <a href="https://publications.waset.org/abstracts/search?q=DCS" title=" DCS"> DCS</a>, <a href="https://publications.waset.org/abstracts/search?q=LHC" title=" LHC"> LHC</a> </p> <a href="https://publications.waset.org/abstracts/41006/a-large-ion-collider-experiment-alice-diffractive-detector-control-system-for-run-ii-at-the-large-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Ferroelectricity in Fused Potassium Nitrate-Polymer Composite Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Dabra">Navneet Dabra</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljinder%20Kaur"> Baljinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhbir%20Singh"> Lakhbir Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Annapu%20Reddy"> V. Annapu Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nath"> R. Nath</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Yong%20Jeong"> Dae-Yong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasbir%20S.%20Hundal"> Jasbir S. Hundal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ferroelectric properties of fused potassium nitrate (KNO3)- polyvinyl alcohol (PVA) composite films have been investigated. The composite films of KNO3-PVA have been prepared by solvant cast technique and then fused over the brass substrate. The ferroelectric hysteresis loops (P-E) have been obtained at room temperature using modified Sawyer-Tower circuit. Percentage of back switching and differential dielectric constant has been derived from P-V loops. The x-ray diffraction (XRD) studies confirm the formation of ferroelectric phase (phase III) in these composite films. The AFM and FE-SEM studies have been used to study the surface morphology of these composite films. The values of remanemt polarization, coercive field, back switching, crystallite size, lattice parameters, and surface roughness have been estimated and correlated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferroelectric%20polymer%20composite" title="ferroelectric polymer composite">ferroelectric polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=remanemt%20polarization" title=" remanemt polarization"> remanemt polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20switching" title=" back switching"> back switching</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallite%20size" title=" crystallite size"> crystallite size</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20parameters%20and%20surface%20roughness" title=" lattice parameters and surface roughness"> lattice parameters and surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/9842/ferroelectricity-in-fused-potassium-nitrate-polymer-composite-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Direct CP Violation in Baryonic B-Hadron Decays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Q.%20Geng">C. Q. Geng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Hsiao"> Y. K. Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study direct CP-violating asymmetries (CPAs) in the baryonic B decays of B- -> p\bar{p}M and Λb decays of Λb ®pM andΛb -> J/ΨpM with M=π-, K-,ρ-,K*- based on the generalized factorization method in the standard model (SM). In particular, we show that the CPAs in the vector modes of B-®p\bar{p}K* and Λb -> p K*- can be as large as 20%. We also discuss the simplest purely baryonic decays of Λb-> p\bar{p}n, p\bar{p}Λ, Λ\bar{p}Λ, and Λ\bar{Λ}Λ. We point out that some of CPAs are promising to be measured by the current as well as future B facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CP%20violation" title="CP violation">CP violation</a>, <a href="https://publications.waset.org/abstracts/search?q=B%20decays" title=" B decays"> B decays</a>, <a href="https://publications.waset.org/abstracts/search?q=baryonic%20decays" title=" baryonic decays"> baryonic decays</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%9Bb%20decays" title=" Λb decays"> Λb decays</a> </p> <a href="https://publications.waset.org/abstracts/51614/direct-cp-violation-in-baryonic-b-hadron-decays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Mitigation of Electromagnetic Interference Generated by GPIB Control-Network in AC-DC Transfer Measurement System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Hlakola">M. M. Hlakola</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Golovins"> E. Golovins</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Nicolae"> D. V. Nicolae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of instrumentation electronics is undergoing an explosive growth, due to its wide range of applications. The proliferation of electrical devices in a close working proximity can negatively influence each other’s performance. The degradation in the performance is due to electromagnetic interference (EMI). This paper investigates the negative effects of electromagnetic interference originating in the General Purpose Interface Bus (GPIB) control-network of the ac-dc transfer measurement system. Remedial measures of reducing measurement errors and failure of range of industrial devices due to EMI have been explored. The ac-dc transfer measurement system was analyzed for the common-mode (CM) EMI effects. Further investigation of coupling path as well as more accurate identification of noise propagation mechanism has been outlined. To prevent the occurrence of common-mode (ground loops) which was identified between the GPIB system control circuit and the measurement circuit, a microcontroller-driven GPIB switching isolator device was designed, prototyped, programmed and validated. This mitigation technique has been explored to reduce EMI effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CM" title="CM">CM</a>, <a href="https://publications.waset.org/abstracts/search?q=EMI" title=" EMI"> EMI</a>, <a href="https://publications.waset.org/abstracts/search?q=GPIB" title=" GPIB"> GPIB</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20loops" title=" ground loops"> ground loops</a> </p> <a href="https://publications.waset.org/abstracts/40477/mitigation-of-electromagnetic-interference-generated-by-gpib-control-network-in-ac-dc-transfer-measurement-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramovatar">Ramovatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Panwar"> Neeraj Panwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20properties" title=" energy storage properties"> energy storage properties</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20free%20ceramics" title=" lead free ceramics"> lead free ceramics</a> </p> <a href="https://publications.waset.org/abstracts/99492/dielectric-energy-storage-and-impedance-spectroscopic-studies-of-tin-doped-ba098ca002tio3-lead-free-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Age and Sex Identification among Egyptian Population Using Fingerprint Ridge Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazih%20Ramadan">Nazih Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20Mohy-Eldine"> Manal Mohy-Eldine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amani%20Hanoon"> Amani Hanoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Shehab"> Alaa Shehab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: The study of fingerprints is widely used in providing a clue regarding identity. Age and gender identification from fingerprints is an important step in forensic anthropology in order to minimize the list of suspects search. The aim of this study was to determine finger ridge density and patterns among Egyptians, and to estimate age and gender using ridge densities. Materials and Methods: This study was conducted on 177 randomly-selected healthy Egyptian subjects (90 males and 87 females). They were divided into three age groups; Group (a): from 6-< 12 years, group (b) from 12-< 18 years and group (c) ≥ 18 years. Bilateral digital prints, from every subject, were obtained by the inking procedure. Ridge count per 25 mm² was determined together with assessment of ridge pattern type. Statistical analysis was done with references to different age and sex groups. Results: There was a statistical significant difference in ridge density between the different age groups; where younger ages had significantly higher ridge density than older ages. Females proved to have significantly higher ridge density than males. Also, there was a statistically significant negative correlation between age and ridge density. Ulnar loops were the most frequent pattern among Egyptians then whorls then arches then radial loops. Finally, different regression models were constructed to estimate age and gender from fingerprints ridge density. Conclusion: fingerprint ridge density can be used to identify both age and sex of subjects. Further studies are recommended on different populations, larger samples or using different methods of fingerprint recording and finger ridge counting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20identification" title=" sex identification"> sex identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Egyptian%20population" title=" Egyptian population"> Egyptian population</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprints" title=" fingerprints"> fingerprints</a>, <a href="https://publications.waset.org/abstracts/search?q=ridge%20density" title=" ridge density"> ridge density</a> </p> <a href="https://publications.waset.org/abstracts/48687/age-and-sex-identification-among-egyptian-population-using-fingerprint-ridge-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicol%C3%B2%20Vaiana">Nicolò Vaiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Serino"> Giorgio Serino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20isolation" title="base isolation">base isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20engineering" title=" earthquake engineering"> earthquake engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20elasto-plastic%20model" title=" parallel elasto-plastic model"> parallel elasto-plastic model</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolators" title=" seismic isolators"> seismic isolators</a>, <a href="https://publications.waset.org/abstracts/search?q=softening%20hysteresis%20loops" title=" softening hysteresis loops"> softening hysteresis loops</a> </p> <a href="https://publications.waset.org/abstracts/58216/simulation-of-dynamic-behavior-of-seismic-isolators-using-a-parallel-elasto-plastic-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> The Learning Loops in the Public Realm Project in South Verona: Air Quality and Noise Pollution Participatory Data Collection towards Co-Design, Planning and Construction of Mitigation Measures in Urban Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20Condotta">Massimiliano Condotta</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Borga"> Giovanni Borga</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Scanagatta"> Chiara Scanagatta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban systems are places where the various actors involved interact and enter in conflict, in particular with reference to topics such as traffic congestion and security. But topics of discussion, and often clash because of their strong complexity, are air and noise pollution. For air pollution, the complexity stems from the fact that atmospheric pollution is due to many factors, but above all, the observation and measurement of the amount of pollution of a transparent, mobile and ethereal element like air is very difficult. Often the perceived condition of the inhabitants does not coincide with the real conditions, because it is conditioned - sometimes in positive ways other in negative ways - from many other factors such as the presence, or absence, of natural elements such as trees or rivers. These problems are seen with noise pollution as well, which is also less considered as an issue even if it’s problematic just as much as air quality. Starting from these opposite positions, it is difficult to identify and implement valid, and at the same time shared, mitigation solutions for the problem of urban pollution (air and noise pollution). The LOOPER (Learning Loops in the Public Realm) project –described in this paper – wants to build and test a methodology and a platform for participatory co-design, planning, and construction process inside a learning loop process. Novelties in this approach are various; the most relevant are three. The first is that citizens participation starts since from the research of problems and air quality analysis through a participatory data collection, and that continues in all process steps (design and construction). The second is that the methodology is characterized by a learning loop process. It means that after the first cycle of (1) problems identification, (2) planning and definition of design solution and (3) construction and implementation of mitigation measures, the effectiveness of implemented solutions is measured and verified through a new participatory data collection campaign. In this way, it is possible to understand if the policies and design solution had a positive impact on the territory. As a result of the learning process produced by the first loop, it will be possible to improve the design of the mitigation measures and start the second loop with new and more effective measures. The third relevant aspect is that the citizens' participation is carried out via Urban Living Labs that involve all stakeholder of the city (citizens, public administrators, associations of all urban stakeholders,…) and that the Urban Living Labs last for all the cycling of the design, planning and construction process. The paper will describe in detail the LOOPER methodology and the technical solution adopted for the participatory data collection and design and construction phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title="air quality">air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=co-design" title=" co-design"> co-design</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20loops" title=" learning loops"> learning loops</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20pollution" title=" noise pollution"> noise pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20living%20labs" title=" urban living labs"> urban living labs</a> </p> <a href="https://publications.waset.org/abstracts/82988/the-learning-loops-in-the-public-realm-project-in-south-verona-air-quality-and-noise-pollution-participatory-data-collection-towards-co-design-planning-and-construction-of-mitigation-measures-in-urban-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Autonomous Flight Control for Multirotor by Alternative Input Output State Linearization with Nested Saturations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Eun%20Yoon">Yong Eun Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20N.%20Johnson"> Eric N. Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Liling%20Ren"> Liling Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multirotor is one of the most popular types of small unmanned aircraft systems and has already been used in many areas including transport, military, surveillance, and leisure. Together with its popularity, the needs for proper flight control is growing because in most applications it is required to conduct its missions autonomously, which is in many aspects based on autonomous flight control. There have been many studies about the flight control for multirotor, but there is still room for enhancements in terms of performance and efficiency. This paper presents an autonomous flight control method for multirotor based on alternative input output linearization coupled with nested saturations. With alternative choice of the output of the multirotor flight control system, we can reduce computational cost regarding Lie algebra, and the linearized system can be stabilized with the introduction of nested saturations with real poles of our own design. Stabilization of internal dynamics is also based on the nested saturations and accompanies the determination of part of desired states. In particular, outer control loops involving state variables which originally are not included in the output of the flight control system is naturally rendered through this internal dynamics stabilization. We can also observe that desired tilting angles are determined by error dynamics from outer loops. Simulation results show that in any tracking situations multirotor stabilizes itself with small time constants, preceded by tuning process for control parameters with relatively low degree of complexity. Future study includes control of piecewise linear behavior of multirotor with actuator saturations, and the optimal determination of desired states while tracking multiple waypoints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20flight%20control" title="automatic flight control">automatic flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=input%20output%20linearization" title=" input output linearization"> input output linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=multirotor" title=" multirotor"> multirotor</a>, <a href="https://publications.waset.org/abstracts/search?q=nested%20saturations" title=" nested saturations"> nested saturations</a> </p> <a href="https://publications.waset.org/abstracts/76979/autonomous-flight-control-for-multirotor-by-alternative-input-output-state-linearization-with-nested-saturations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Turk%20Cakir">I. Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Senol"> A. Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Tasci"> A. T. Tasci</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Cakir"> O. Cakir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the anomalous WWγ and WWZ couplings by calculating total cross sections of the ep→νqγX and ep→νqZX processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ,λγ) and (Δκz,λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101,0.065) and (0.320,0.002) at an integrated luminosity of Lint=100 fb-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalous%20couplings" title="anomalous couplings">anomalous couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20circular%20collider" title=" future circular collider"> future circular collider</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20hadron%20electron%20collider" title=" large hadron electron collider"> large hadron electron collider</a>, <a href="https://publications.waset.org/abstracts/search?q=W-boson%20and%20Z-boson" title=" W-boson and Z-boson"> W-boson and Z-boson</a> </p> <a href="https://publications.waset.org/abstracts/17408/probing-anomalous-ww-gh-and-wwz-couplings-with-polarized-electron-beam-at-the-lhec-and-fcc-ep-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Salman%20Sultan">Musaab Salman Sultan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni<sub>60</sub>Fe<sub>40 </sub>nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic &quot;continuous small features&quot; in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOKE%20magnetometry" title="MOKE magnetometry">MOKE magnetometry</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20measurements" title=" MR measurements"> MR measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=OOMMF%20package" title=" OOMMF package"> OOMMF package</a>, <a href="https://publications.waset.org/abstracts/search?q=micromagnetic%20simulations" title=" micromagnetic simulations"> micromagnetic simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20nanowires" title=" ferromagnetic nanowires"> ferromagnetic nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20magnetic%20properties" title=" surface magnetic properties"> surface magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/83610/surface-and-bulk-magnetization-behavior-of-isolated-ferromagnetic-nife-nanowires" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Bazmara">Hossein Bazmara</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaamran%20Raahemifar"> Kaamran Raahemifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Sefidgar"> Mostafa Sefidgar</a>, <a href="https://publications.waset.org/abstracts/search?q=Madjid%20Soltani"> Madjid Soltani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=angiogenesis" title="angiogenesis">angiogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=endothelial%20cells" title=" endothelial cells"> endothelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale%20model" title=" multi-scale model"> multi-scale model</a>, <a href="https://publications.waset.org/abstracts/search?q=cellular%20Pott%27s%20model" title=" cellular Pott&#039;s model"> cellular Pott&#039;s model</a>, <a href="https://publications.waset.org/abstracts/search?q=signaling%20cascade" title=" signaling cascade"> signaling cascade</a> </p> <a href="https://publications.waset.org/abstracts/37304/angiogenesis-and-blood-flow-the-role-of-blood-flow-in-proliferation-and-migration-of-endothelial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Brain Connectome of Glia, Axons, and Neurons: Cognitive Model of Analogy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozgu%20Hafizoglu">Ozgu Hafizoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with physical, behavioral, principal relations that are essential to learning, discovery, and innovation. The Cognitive Model of Analogy (CMA) leads and creates patterns of pathways to transfer information within and between domains in science, just as happens in the brain. The connectome of the brain shows how the brain operates with mental leaps between domains and mental hops within domains and the way how analogical reasoning mechanism operates. This paper demonstrates the CMA as an evolutionary approach to science, technology, and life. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions in the new era, especially post-pandemic. In this paper, we will reveal how to draw an analogy to scientific research to discover new systems that reveal the fractal schema of analogical reasoning within and between the systems like within and between the brain regions. Distinct phases of the problem-solving processes are divided thusly: stimulus, encoding, mapping, inference, and response. Based on the brain research so far, the system is revealed to be relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain’s mechanism in macro context; brain and spinal cord, and micro context: glia and neurons, relative to matching conditions of analogical reasoning and relational information, encoding, mapping, inference and response processes, and verification of perceptual responses in four-term analogical reasoning. Finally, we will relate all these terminologies with these mental leaps, mental maps, mental hops, and mental loops to make the mental model of CMA clear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analogy" title="analogy">analogy</a>, <a href="https://publications.waset.org/abstracts/search?q=analogical%20reasoning" title=" analogical reasoning"> analogical reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20connectome" title=" brain connectome"> brain connectome</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20model" title=" cognitive model"> cognitive model</a>, <a href="https://publications.waset.org/abstracts/search?q=neurons%20and%20glia" title=" neurons and glia"> neurons and glia</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20leaps" title=" mental leaps"> mental leaps</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20hops" title=" mental hops"> mental hops</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20loops" title=" mental loops"> mental loops</a> </p> <a href="https://publications.waset.org/abstracts/148821/brain-connectome-of-glia-axons-and-neurons-cognitive-model-of-analogy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mona%20Alharbi">Mona Alharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20Crystallography" title="X-Ray Crystallography">X-Ray Crystallography</a>, <a href="https://publications.waset.org/abstracts/search?q=BPSL2418" title=" BPSL2418"> BPSL2418</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkholderia%20pseudomallei" title=" Burkholderia pseudomallei"> Burkholderia pseudomallei</a>, <a href="https://publications.waset.org/abstracts/search?q=Melioidosis" title=" Melioidosis"> Melioidosis</a> </p> <a href="https://publications.waset.org/abstracts/54364/x-ray-crystallographic-studies-on-bpsl2418-from-burkholderia-pseudomallei" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Application of Deep Learning in Top Pair and Single Top Quark Production at the Large Hadron Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Ahmed">Ijaz Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Zada"> Anwar Zada</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Waqas"> Muhammad Waqas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20U.%20Ashraf"> M. U. Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We demonstrate the performance of a very efficient tagger applies on hadronically decaying top quark pairs as signal based on deep neural network algorithms and compares with the QCD multi-jet background events. A significant enhancement of performance in boosted top quark events is observed with our limited computing resources. We also compare modern machine learning approaches and perform a multivariate analysis of boosted top-pair as well as single top quark production through weak interaction at √s = 14 TeV proton-proton Collider. The most relevant known background processes are incorporated. Through the techniques of Boosted Decision Tree (BDT), likelihood and Multlayer Perceptron (MLP) the analysis is trained to observe the performance in comparison with the conventional cut based and count approach <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=top%20tagger" title="top tagger">top tagger</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate" title=" multivariate"> multivariate</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=LHC" title=" LHC"> LHC</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20top" title=" single top"> single top</a> </p> <a href="https://publications.waset.org/abstracts/156965/application-of-deep-learning-in-top-pair-and-single-top-quark-production-at-the-large-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Possible Sulfur Induced Superconductivity in Nano-Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Mona">J. Mona</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20da%20Silva"> R. R. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-L.Cheng"> C.-L.Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kopelevich"> Y. Kopelevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanodiamond" title="nanodiamond">nanodiamond</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title=" superconductivity"> superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy "> Raman spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/14990/possible-sulfur-induced-superconductivity-in-nano-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hadron%20loops&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hadron%20loops&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hadron%20loops&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hadron%20loops&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hadron%20loops&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10