CINXE.COM

Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images

<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732286508"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732286508" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732286508"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732286508"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732286508"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732286508"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732286508"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732286508"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732286508"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content="&nbsp;"/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/applsci-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/applsci-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/applsci-logo-sq.png?8600e93ff98dbf14"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1732286508"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(74,74,127,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(74,74,127,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(74,74,127,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(74,74,127,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(74,74,127,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1732286508"> <meta name="title" content="Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images"> <meta name="description" content="This work presents the development of an ADAS (advanced driving assistance system) focused on driver drowsiness detection, whose objective is to alert drivers of their drowsy state to avoid road traffic accidents. In a driving environment, it is necessary that fatigue detection is performed in a non-intrusive way, and that the driver is not bothered with alarms when he or she is not drowsy. Our approach to this open problem uses sequences of images that are 60 s long and are recorded in such a way that the subject&rsquo;s face is visible. To detect whether the driver shows symptoms of drowsiness or not, two alternative solutions are developed, focusing on the minimization of false positives. The first alternative uses a recurrent and convolutional neural network, while the second one uses deep learning techniques to extract numeric features from images, which are introduced into a fuzzy logic-based system afterwards. The accuracy obtained by both systems is similar: around 65% accuracy over training data, and 60% accuracy on test data. However, the fuzzy logic-based system stands out because it avoids raising false alarms and reaches a specificity (proportion of videos in which the driver is not drowsy that are correctly classified) of 93%. Although the obtained results do not achieve very satisfactory rates, the proposals presented in this work are promising and can be considered a solid baseline for future works." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/applsci-logo.png?8600e93ff98dbf14" > <meta name="dc.title" content="Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images"> <meta name="dc.creator" content="Elena Magán"> <meta name="dc.creator" content="M. Paz Sesmero"> <meta name="dc.creator" content="Juan Manuel Alonso-Weber"> <meta name="dc.creator" content="Araceli Sanchis"> <meta name="dc.type" content="Article"> <meta name="dc.source" content="Applied Sciences 2022, Vol. 12, Page 1145"> <meta name="dc.date" content="2022-01-22"> <meta name ="dc.identifier" content="10.3390/app12031145"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="This work presents the development of an ADAS (advanced driving assistance system) focused on driver drowsiness detection, whose objective is to alert drivers of their drowsy state to avoid road traffic accidents. In a driving environment, it is necessary that fatigue detection is performed in a non-intrusive way, and that the driver is not bothered with alarms when he or she is not drowsy. Our approach to this open problem uses sequences of images that are 60 s long and are recorded in such a way that the subject&rsquo;s face is visible. To detect whether the driver shows symptoms of drowsiness or not, two alternative solutions are developed, focusing on the minimization of false positives. The first alternative uses a recurrent and convolutional neural network, while the second one uses deep learning techniques to extract numeric features from images, which are introduced into a fuzzy logic-based system afterwards. The accuracy obtained by both systems is similar: around 65% accuracy over training data, and 60% accuracy on test data. However, the fuzzy logic-based system stands out because it avoids raising false alarms and reaches a specificity (proportion of videos in which the driver is not drowsy that are correctly classified) of 93%. Although the obtained results do not achieve very satisfactory rates, the proposals presented in this work are promising and can be considered a solid baseline for future works." > <meta name="dc.subject" content="ADAS" > <meta name="dc.subject" content="drowsiness" > <meta name="dc.subject" content="deep learning" > <meta name="dc.subject" content="convolutional neural networks" > <meta name="dc.subject" content="recurrent neural networks" > <meta name="dc.subject" content="fuzzy logic" > <meta name="dc.subject" content="computer vision" > <meta name ="prism.issn" content="2076-3417"> <meta name ="prism.publicationName" content="Applied Sciences"> <meta name ="prism.publicationDate" content="2022-01-22"> <meta name ="prism.volume" content="12"> <meta name ="prism.number" content="3"> <meta name ="prism.section" content="Article" > <meta name ="prism.startingPage" content="1145" > <meta name="citation_issn" content="2076-3417"> <meta name="citation_journal_title" content="Applied Sciences"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images"> <meta name="citation_publication_date" content="2022/1"> <meta name="citation_online_date" content="2022/01/22"> <meta name="citation_volume" content="12"> <meta name="citation_issue" content="3"> <meta name="citation_firstpage" content="1145"> <meta name="citation_author" content="Magán, Elena"> <meta name="citation_author" content="Sesmero, M. Paz"> <meta name="citation_author" content="Alonso-Weber, Juan Manuel"> <meta name="citation_author" content="Sanchis, Araceli"> <meta name="citation_doi" content="10.3390/app12031145"> <meta name="citation_id" content="mdpi-app12031145"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/2076-3417/12/3/1145"> <meta name="citation_pdf_url" content="https://www.mdpi.com/2076-3417/12/3/1145/pdf?version=1643184369"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/2076-3417/12/3/1145/pdf?version=1643184369"> <meta name="fulltext_pdf" content="https://www.mdpi.com/2076-3417/12/3/1145/pdf?version=1643184369"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/2076-3417/12/3/1145/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/2076-3417/12/3/1145/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/2076-3417/12/3/1145/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/2076-3417/12/3/1145/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/2076-3417/12/3/1145/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/2076-3417/12/3/1145/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/applsci-logo-social.png?8600e93ff98dbf14" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/2076-3417/12/3/1145" /> <meta property="og:title" content="Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images" /> <meta property="og:description" content="This work presents the development of an ADAS (advanced driving assistance system) focused on driver drowsiness detection, whose objective is to alert drivers of their drowsy state to avoid road traffic accidents. In a driving environment, it is necessary that fatigue detection is performed in a non-intrusive way, and that the driver is not bothered with alarms when he or she is not drowsy. Our approach to this open problem uses sequences of images that are 60 s long and are recorded in such a way that the subject&rsquo;s face is visible. To detect whether the driver shows symptoms of drowsiness or not, two alternative solutions are developed, focusing on the minimization of false positives. The first alternative uses a recurrent and convolutional neural network, while the second one uses deep learning techniques to extract numeric features from images, which are introduced into a fuzzy logic-based system afterwards. The accuracy obtained by both systems is similar: around 65% accuracy over training data, and 60% accuracy on test data. However, the fuzzy logic-based system stands out because it avoids raising false alarms and reaches a specificity (proportion of videos in which the driver is not drowsy that are correctly classified) of 93%. Although the obtained results do not achieve very satisfactory rates, the proposals presented in this work are promising and can be considered a solid baseline for future works." /> <meta property="og:image" content="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001-550.jpg?1643187646" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732286508"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732286508"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/2076-3417/12/3/1147">Probiotic Molecules That Inhibit Inflammatory Diseases</a></div> Next Article in Special Issue<br> <div><a href="/2076-3417/12/9/4534">Deep-Learning-Based Stream-Sensing Method for Detecting Asynchronous Multiple Signals</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/2076-3417/12/3/1146">Planning of Optical Connections in 5G Packet-Optical xHaul Access Network</a></div> Previous Article in Special Issue<br> <div><a href="/2076-3417/12/1/115">Factorial Analysis for Gas Leakage Risk Predictions from a Vehicle-Based Methane Survey</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=applsci " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider">&nbsp;</div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label">&nbsp;</div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" selected='selected'> Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks &amp; Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences &amp; Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical &amp; Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer&#039;s Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access &amp; Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label">&nbsp;</div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label">&nbsp;</div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="12" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="3" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label">&nbsp;</div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label">&nbsp;</div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider">&nbsp;</div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/applsci">Applied Sciences</a> </div> <div class="breadcrumb__element"> <a href="/2076-3417/12">Volume 12</a> </div> <div class="breadcrumb__element"> <a href="/2076-3417/12/3">Issue 3</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/app12031145</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/applsci"> <img src="https://pub.mdpi-res.com/img/journals/applsci-logo.png?8600e93ff98dbf14" alt="applsci-logo" title="Applied Sciences" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D90" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/applsci" data-path="/2076-3417/12/3/1145" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">&#9658;</span> <span class="open" style="display: none;">&#9660;</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editors</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title=""> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1732286508" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Luis Javier Garcia Villalba</span> </div> </div> </div> <div class="academic-editor-container " title=""> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1732286508" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Keon Myung Lee</span> </div> </div> </div> <div class="academic-editor-container " title=""> <div class="sciprofiles-link" style="display: inline-block"> <div class="sciprofiles-link__link"> <img class="sciprofiles-link__image" src="https://pub.mdpi-res.com/bundles/mdpisciprofileslink/img/unknown-user.png?1732286508" style="width: auto; height: 16px; border-radius: 50%;"> <span class="sciprofiles-link__name" style="line-height: 36px;">Mi-Hye Kim</span> </div> </div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/2076-3417/12/3/1145/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Link</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Driver%20Drowsiness%20Detection%20by%20Applying%20Deep%20Learning%20Techniques%20to%20Sequences%20of%20Images" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Authors Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Elena%20Mag%C3%A1n%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Magán, E.</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22M.%20Paz%20Sesmero%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Sesmero, M. Paz</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Juan%20Manuel%20Alonso-Weber%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Alonso-Weber, J. Manuel</a> <li> </li> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Araceli%20Sanchis%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Sanchis, A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Elena%20Mag%C3%A1n" target="_blank" rel="noopener noreferrer">Magán, E.</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=M.%20Paz%20Sesmero" target="_blank" rel="noopener noreferrer">Sesmero, M. Paz</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Juan%20Manuel%20Alonso-Weber" target="_blank" rel="noopener noreferrer">Alonso-Weber, J. Manuel</a> <li> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Araceli%20Sanchis" target="_blank" rel="noopener noreferrer">Sanchis, A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Elena%20Mag%C3%A1n" target="_blank" rel="noopener noreferrer">Magán, E.</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=M.%20Paz%20Sesmero" target="_blank" rel="noopener noreferrer">Sesmero, M. Paz</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Juan%20Manuel%20Alonso-Weber" target="_blank" rel="noopener noreferrer">Alonso-Weber, J. Manuel</a> <li> </li> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Araceli%20Sanchis" target="_blank" rel="noopener noreferrer">Sanchis, A.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/app12031145'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/2076-3417/12/3/1145/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/app12031145?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> <a href="#" class="" data-hypothesis-trigger-endorses-tab title="Endorse"> <i data-hypothesis-endorse-trigger class="material-icons" >thumb_up</i> <div data-hypothesis-endorsement-count data-hypothesis-trigger-endorses-tab class="hypothesis-count-container"> ... </div> <span>Endorse</span> </a> <a href="#" data-hypothesis-trigger class="js-hypothesis-open UI_ArticleAnnotationsButton" title="Comment"> <i class="material-icons">textsms</i> <div data-hypothesis-annotation-count class="hypothesis-count-container"> ... </div> <span>Comment</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/2076-3417/12/3/1145/pdf?version=1643184369" data-name="Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images" data-journal="applsci"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/2076-3417/12/3/1145/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa">&#xf034;</i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa">&#xf035;</i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/2076-3417/12/3/1145"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Article</span></div> <h1 class="title hypothesis_container" itemprop="name"> Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6844281' data-options='is_hover:true, hover_timeout:5000'> Elena Magán</div><div id="profile-card-drop6844281" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Elena Magán</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1541463?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Elena%20Mag%C3%A1n" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Elena%20Mag%C3%A1n&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Elena%20Mag%C3%A1n" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6844281" href="/cdn-cgi/l/email-protection#f0df939e94dd939799df9cdf959d91999cdd80829f84959384999f9ed3c0c0c0c8c6c5c0c4c0c2c0c4c092c2c5c093c092c0c3c492c1c0c0c6c5c6c0c8c492c0c0c1c6"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-9797-6146" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6844282' data-options='is_hover:true, hover_timeout:5000'> M. Paz Sesmero</div><div id="profile-card-drop6844282" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/1014853/thumb/María_Paz_Sesmero_Lorente.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">M. Paz Sesmero</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1014853?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=M.%20Paz%20Sesmero" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=M.%20Paz%20Sesmero&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=M.%20Paz%20Sesmero" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup> *</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6844282" href="/cdn-cgi/l/email-protection#1c337f7278317f7b7533703379717d7570316c6e7368797f687573723f2c2c2d792a782c242d792c2c2c242d7a2c2e2e782c282c2f2c7e282f2d242c7929792c2c282f2c242d79"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0001-9473-6809" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a>, </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6844283' data-options='is_hover:true, hover_timeout:5000'> Juan Manuel Alonso-Weber</div><div id="profile-card-drop6844283" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/bundles/mdpisciprofileslink/img/unknown-user.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Juan Manuel Alonso-Weber</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1617704?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Juan%20Manuel%20Alonso-Weber" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Juan%20Manuel%20Alonso-Weber&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Juan%20Manuel%20Alonso-Weber" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6844283" href="/cdn-cgi/l/email-protection#0a2569646e27696d632566256f676b6366277a78657e6f697e636564293a3a3a3d3c6b3a683b6e386b3a393a683e3e3b6c3a333f333a3d3e3e3a6c3b33"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-5383-3642" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a> and </span><span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop6844284' data-options='is_hover:true, hover_timeout:5000'> Araceli Sanchis</div><div id="profile-card-drop6844284" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/1044076/thumb/Araceli_Sanchis_de_Miguel.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Araceli Sanchis</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1044076?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.net/scholars?q=Araceli%20Sanchis" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Araceli%20Sanchis&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Araceli%20Sanchis" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div></div><sup></sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="6844284" href="/cdn-cgi/l/email-protection#83ace0ede7aee0e4eaaceface6eee2eaefaef3f1ecf7e6e0f7eaeceda0b3b3b3e0b5e7b2e6b3b3b1e7b3b7b3b0b3e1b7b0b2bbb3e6b6e6b3b3b7b0b3bbb2e6"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0002-1429-4092" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1732286508" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-name ">Computer Science and Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Spain</div> </div> <div class="affiliation"> <div class="affiliation-item"><sup>*</sup></div> <div class="affiliation-name ">Author to whom correspondence should be addressed. </div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Appl. Sci.</em> <b>2022</b>, <em>12</em>(3), 1145; <a href="https://doi.org/10.3390/app12031145">https://doi.org/10.3390/app12031145</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 2 December 2021</span> / <span style="display: inline-block">Revised: 7 January 2022</span> / <span style="display: inline-block">Accepted: 19 January 2022</span> / <span style="display: inline-block">Published: 22 January 2022</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/applsci/special_issues/Deep_Neural_Networks ">Application of Artificial Intelligence, Deep Neural Networks</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-730830" aria-controls="drop-supplementary-730830" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-730830" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/2076-3417/12/3/1145/pdf?version=1643184369" data-name="Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images" data-journal="applsci">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/2076-3417/12/3/1145/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/2076-3417/12/3/1145/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/2076-3417/12/3/1145/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/2076-3417/12/3/1145/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001.png?1643187646" title=" <strong>Figure 1</strong><br/> &lt;p&gt;System overview.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g002.png?1643187646" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Alternative I overview.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g003.png?1643187645" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Preprocessing of the driver’s face.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g004.png?1643187645" title=" <strong>Figure 4</strong><br/> &lt;p&gt;EfficientNetB0’s architecture overview.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g005.png?1643187646" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Architecture of the model used for drowsiness estimation.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g006.png?1643187645" title=" <strong>Figure 6</strong><br/> &lt;p&gt;Alternative II overview.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g007.png?1643187645" title=" <strong>Figure 7</strong><br/> &lt;p&gt;(&lt;b&gt;left&lt;/b&gt;) Face detected by DLIB’s face detection algorithm. (&lt;b&gt;right&lt;/b&gt;) Landmarks detected by DLIB’s landmark detection algorithm.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g008.png?1643187645" title=" <strong>Figure 8</strong><br/> &lt;p&gt;Architecture of the model used for yawning detection.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g009.png?1643187646" title=" <strong>Figure 9</strong><br/> &lt;p&gt;Fuzzy sets and membership functions of variable “blinks”.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g010.png?1643187646" title=" <strong>Figure 10</strong><br/> &lt;p&gt;Defuzzification example.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g011.png?1643187645" title=" <strong>Figure 11</strong><br/> &lt;p&gt;Accuracy obtained by Alternative I over training data. Minimun value is colored red. Median value is colored yellow. Maximum value is colored green. All other cells are colored proportionally. The best value is shown in bold.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g012.png?1643187646" title=" <strong>Figure 12</strong><br/> &lt;p&gt;Accuracy obtained by Alternative II over training data. Minimun value is colored red. Median value is colored yellow. Maximum value is colored green. All other cells are colored proportionally. The best (max. accuracy with min. false positives) values are shown in bold.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g013.png?1643187645" title=" <strong>Figure 13</strong><br/> &lt;p&gt;(&lt;b&gt;left&lt;/b&gt;) Frame of subject 60’s awake video. (&lt;b&gt;right&lt;/b&gt;) Landmark detection of the frame.&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g014.png?1643187646" title=" <strong>Figure 14</strong><br/> &lt;p&gt;(&lt;b&gt;left&lt;/b&gt;) Frame of subject 60’s drowsy video. (&lt;b&gt;right&lt;/b&gt;) Landmark detection of the frame.&lt;/p&gt; "> </a> </div> <a class="button button--color-inversed" href="/2076-3417/12/3/1145/notes">Versions&nbsp;Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">This work presents the development of an ADAS (advanced driving assistance system) focused on driver drowsiness detection, whose objective is to alert drivers of their drowsy state to avoid road traffic accidents. In a driving environment, it is necessary that fatigue detection is performed in a non-intrusive way, and that the driver is not bothered with alarms when he or she is not drowsy. Our approach to this open problem uses sequences of images that are 60 s long and are recorded in such a way that the subject&rsquo;s face is visible. To detect whether the driver shows symptoms of drowsiness or not, two alternative solutions are developed, focusing on the minimization of false positives. The first alternative uses a recurrent and convolutional neural network, while the second one uses deep learning techniques to extract numeric features from images, which are introduced into a fuzzy logic-based system afterwards. The accuracy obtained by both systems is similar: around 65% accuracy over training data, and 60% accuracy on test data. However, the fuzzy logic-based system stands out because it avoids raising false alarms and reaches a specificity (proportion of videos in which the driver is not drowsy that are correctly classified) of 93%. Although the obtained results do not achieve very satisfactory rates, the proposals presented in this work are promising and can be considered a solid baseline for future works.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=ADAS">ADAS</a>; <a href="/search?q=drowsiness">drowsiness</a>; <a href="/search?q=deep+learning">deep learning</a>; <a href="/search?q=convolutional+neural+networks">convolutional neural networks</a>; <a href="/search?q=recurrent+neural+networks">recurrent neural networks</a>; <a href="/search?q=fuzzy+logic">fuzzy logic</a>; <a href="/search?q=computer+vision">computer vision</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-applsci-12-01145' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>Drowsiness, defined as the state of sleepiness when one needs to rest, can cause symptoms that have great impact over the performance of tasks: slowed response time, intermittent lack of awareness, or microsleeps (blinks with a duration of over 500 ms), to name a few examples [<a href="#B1-applsci-12-01145" class="html-bibr">1</a>]. In fact, continuous fatigue can cause levels of performance impairment similar to those caused by alcohol [<a href="#B2-applsci-12-01145" class="html-bibr">2</a>,<a href="#B3-applsci-12-01145" class="html-bibr">3</a>]. While driving, these symptoms are extremely dangerous since they significantly increase the probabilities of drivers missing road signs or exits, drifting into other lanes or even crashing their vehicle, causing an accident [<a href="#B4-applsci-12-01145" class="html-bibr">4</a>].</div><div class='html-p'>For this work, our premise is the following: a camera mounted on a vehicle will record frontal images of the driver, which will be analyzed by using artificial intelligence (AI) techniques, such as deep learning, to detect whether the driver is drowsy or not. By using that information, the system will be able to alert the driver and prevent accidents. Given that the ADAS will have different functionalities integrated, one of the restrictions imposed to the module presented in this work will be to avoid the activation of false alarms that may distract the driver and cause him or her to turn off the ADAS.</div><div class='html-p'>Thus, the main novelty of this work is the use of a non-intrusive system that is capable of detecting fatigue from sequences of images, which at the moment is an open problem. In most of the available works, the experimental methodology consists of extracting and classifying individual frames from each video and verifying whether the classification is correct or not, but that approach does not consider the intrinsic relationship between consecutive images, and their measures of false positives are less reliable. Currently, there are few works that test the systems on complete videos and count the number of alarms emitted during each video (which is necessary when evaluating the number of false alarms raised during a period of time). Therefore, the proposals presented in this paper can be considered a starting point for the design of such systems.</div><div class='html-p'>Deep learning algorithms are characterized by the use of neural networks whose models are built of massive amounts of layers [<a href="#B5-applsci-12-01145" class="html-bibr">5</a>], and they have the ability to automatize the feature extraction process [<a href="#B6-applsci-12-01145" class="html-bibr">6</a>]. Among deep learning algorithms, there is a specific type of deep neural networks (DNNs) called convolutional neural networks (CNNs), which have great performance on computer vision because they are able to find patterns and recognize characteristics among images [<a href="#B7-applsci-12-01145" class="html-bibr">7</a>].</div><div class='html-p'>An important concept related to CNNs is transfer learning [<a href="#B8-applsci-12-01145" class="html-bibr">8</a>]. This technique consists of using a model that was previously trained to solve a different problem on a similar domain (e.g., detecting dogs in images), and use it to solve a new problem (e.g., detecting cats). The idea is to create a new CNN in which the first layers correspond to the lower layers of the pre-trained model and the upper layers are new layers adapted and trained to solve the new proposed problem. In this way, the knowledge acquired by the pre-trained model serves as a starting point for the new model. This technique is especially useful to generate accurate models with a small amount of data, where it would not be feasible to train a model from scratch, and, on the other hand, it is useful to reach high accuracy with few training epochs.</div><div class='html-p'>In this context, we propose two different solutions to approach the fatigue detection problem:</div><div class='html-p'><ul class='html-order'><li><div class='html-p'>The first one is focused on using deep learning to analyze a sequence of images of the driver.</div></li><li><div class='html-p'>The second one uses a combination of AI and deep learning techniques to extract the important features from the image and, after that, the obtained data are introduced on a fuzzy inference system that evaluates whether the driver is drowsy or not.</div></li></ul></div><div class='html-p'>The implementation of the first proposed solution consists of a combination of a CNN and a recurrent neural network (RNN), which is a type of neural network that is specialized in feature extraction from sequences of data (e.g., using the weather information of the last 7 days to predict tomorrow’s weather). This way, the CNN architecture will recognize patterns on the images and, by introducing it on a RNN structure, the model will be able to identify patterns among the sequence of images, thus predicting whether the driver is tired or not.</div><div class='html-p'>The second alternative, however, uses a combination of artificial intelligence techniques and deep learning to preprocess the images of the driver. A linear supporting vector machine (SVM), combined with the histogram of oriented gradients (HOG), will be used to identify the face, and an ensemble of regression trees will be used to detect the landmarks of the driver (keypoints that locate face elements, such as the eyes or the mouth). In this work, we opted to use the combination of a linear SVM with HOG to detect the driver’s face, but there are other interesting techniques, such as YOLO-v4 [<a href="#B9-applsci-12-01145" class="html-bibr">9</a>], that could be used for this purpose.</div><div class='html-p'>Once the face of the driver has been located, the preprocessing will continue, and a CNN that receives the cropped face as an input will be used to know whether the driver is yawning or not. The parameters obtained after the preprocessing phase are then introduced on a fuzzy inference system powered by fuzzy logic, where they will be analyzed to assess the drowsiness level of the driver (for example, by evaluating if the driver is yawning frequently or blinking too fast).</div><div class='html-p'>Fuzzy logic uses rules that follow the structure “<span class='html-small-caps'>if</span> <span class='html-italic'>p</span> <span class='html-small-caps'>then</span> <span class='html-italic'>q</span>”, but, whereas in classical logic <span class='html-italic'>p</span> and <span class='html-italic'>q</span> can only be <math display='inline'><semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>u</mi> <mi>e</mi> </mrow> </semantics></math> or <math display='inline'><semantics> <mrow> <mi>f</mi> <mi>a</mi> <mi>l</mi> <mi>s</mi> <mi>e</mi> </mrow> </semantics></math>, in fuzzy logic, a statement can be <span class='html-italic'>partially true</span> [<a href="#B10-applsci-12-01145" class="html-bibr">10</a>]. This is very useful when handling imprecise or rough information, for example, when we are trying to assess if a certain number of blinks means that the driver is blinking slowly or quickly. Since the consequent can also be <span class='html-italic'>partially true</span>, this allows the system to estimate the level of drowsiness of the driver instead of only decide whether he or she is fatigued or not, which can help to avoid false positives.</div><div class='html-p'>This way, when the system estimates that the driver is too tired to drive, it will be able to raise an alarm and suggest the stopping of the vehicle, thus protecting both the driver and their surroundings (such as pedestrians or other drivers). In the near future, an implementation of these systems could be integrated on a vehicle as an advanced driver assistance system (ADAS) to monitor drivers and calculate their drowsiness level, alerting them if necessary.</div><div class='html-p'>This paper is organized as follows: <a href="#sec2-applsci-12-01145" class="html-sec">Section 2</a> provides an overview of recent works related to fatigue detection, as well as the application of deep learning and fuzzy logic techniques for driver safety. The proposed design for our fatigue detection system is described on <a href="#sec3-applsci-12-01145" class="html-sec">Section 3</a>, while <a href="#sec4-applsci-12-01145" class="html-sec">Section 4</a> presents the results obtained. Finally, <a href="#sec5-applsci-12-01145" class="html-sec">Section 5</a> analyzes the results and the detected problems and proposes possible improvements and future work lines, and <a href="#sec6-applsci-12-01145" class="html-sec">Section 6</a> presents the conclusions of the work.</div></section><section id='sec2-applsci-12-01145' type=''><h2 data-nested='1'> 2. Background and Related Work</h2><div class='html-p'>When measuring the drowsiness level of a driver, there are two different approaches according to the origin of the data used for this measuring. On the one hand, there are systems that monitor the vehicle state to assess the fatigue of the driver, while on the other hand, there are systems that use parameters obtained from the own driver.</div><div class='html-p'><span class='html-italic'>(a) Systems focused on the vehicle</span></div><div class='html-p'>Among works that focus on the analysis of the vehicle state and its relation to fatigue, the most common measures that are studied are steering wheel behaviors or lane departures [<a href="#B11-applsci-12-01145" class="html-bibr">11</a>,<a href="#B12-applsci-12-01145" class="html-bibr">12</a>,<a href="#B13-applsci-12-01145" class="html-bibr">13</a>]. In [<a href="#B14-applsci-12-01145" class="html-bibr">14</a>], other parameters of the car are used, such as the vehicle position or the steering wheel angle, and they perform data fusion on multiple measures to achieve a more reliable system. However, even if the diminishing performance over skill-based tasks by the driver can actually be a consequence of drowsiness, it appears at a later stage and it cannot be used to detect the early symptoms of fatigue [<a href="#B15-applsci-12-01145" class="html-bibr">15</a>].</div><div class='html-p'><span class='html-italic'>(b) Systems focused on the driver</span></div><div class='html-p'>One of the most reliable ways of estimating fatigue is by using electroencephalograms (EEG) in combination with electrooculograms (EOG) [<a href="#B16-applsci-12-01145" class="html-bibr">16</a>], but in real driving environments, these kinds of systems are usually rejected by drivers. Their main drawback is that they require that the driver has attached electrodes around the eyes and over the head, which makes them intrusive systems that produce discomfort and rejection by drivers.</div><div class='html-p'>Because of this limitation, the most used fatigue detection systems are those in which the driver’s state is detected through a camera placed on the vehicle that takes images of the driver. In this work, we will focus on the detection of the early symptoms of drowsiness by using the driver’s state.</div><div class='html-p'>There are many works that follow this approach, which use numerous and varied parameters and techniques for their detection. For example, in [<a href="#B17-applsci-12-01145" class="html-bibr">17</a>], the landmarks of the driver’s face (that is, a group of points that locate the most important elements of the face: eyes, eyebrows, nose, mouth, and facial shape) are obtained, and then, using these landmarks, some parameters, such as the percentage of eye closure (PERCLOS), are calculated. Afterwards, these features are introduced on a support vector machine (SVM) that classifies whether the driver is tired or not.</div><div class='html-p'>In [<a href="#B18-applsci-12-01145" class="html-bibr">18</a>], a combination of depth videos and deep learning is used for fatigue detection. In particular, it uses two CNNs: a <span class='html-italic'>spatial CNN</span>, which detects object’s positions, and a <span class='html-italic'>temporal CNN</span>, which looks for information between two neighboring frames. By using these two CNNs, the system is able to calculate motion vectors from one frame to another, which allows to detect yawns, even when the driver uses a hand to cover his or her mouth.</div><div class='html-p'>Fuzzy logic [<a href="#B10-applsci-12-01145" class="html-bibr">10</a>] becomes a powerful tool when developing systems that help protect drivers: on the one hand, because it is easy and intuitive to create rules that are accurate and whose results are easily understood, and, on the other hand, due to the fast computing of these kind of systems, which allows using them in real time. Examples of these systems are not limited to fatigue detection: in [<a href="#B19-applsci-12-01145" class="html-bibr">19</a>], for example, a fuzzy-based alarm system is proposed that alerts the driver of dangerous situations.</div><div class='html-p'>Among works that combine fuzzy logic and fatigue detection, in [<a href="#B20-applsci-12-01145" class="html-bibr">20</a>], a system is proposed that analyzes the mouth and eyes of the driver, measuring its openness to assess whether the driver is fatigued or not, and if the system detects drowsiness over several consecutive frames, it raises an alarm. In contrast, in [<a href="#B21-applsci-12-01145" class="html-bibr">21</a>], the authors use measures that represent the driver’s behavior over a window of time, as the average PERCLOS, the driver’s blinking rate or the head position, all of it measured over the last 60 s. After this, these parameters are introduced in a fuzzy inference system (FIS) formed by 32 different rules, and the drowsiness level of the driver is calculated.</div><div class='html-p'>Although both works report good results, it is important to note that the experiments were performed over people that simulated their drowsiness state. By faking these situations, subjects tend to exaggerate their expressions and show symptoms that are clearly visible, which causes the developed systems to be less reliable in real environments.</div><div class='html-p'>To avoid the problem of simulated data, in this work, we will use the UTA Real-Life Drowsiness Dataset (UTA-RLDD) [<a href="#B22-applsci-12-01145" class="html-bibr">22</a>]. This dataset contains the frontal videos of 60 different people performing a simple task (reading or watching something on a computer), with a duration of 10 min per recording. These videos are classified based on the state of drowsiness of the subjects when they were recorded (awake, low vigilant or drowsy), and each person has at least one video of each category. UTA-RLDD was created for the task of multi-stage drowsiness detection, targeting not only extreme and easily visible cases, but also less explicit cases, where subtle micro-expressions are the discriminative factors. Because of this, it is a suitable dataset to search for the evidence of real drowsiness, which is the purpose of this work.</div><div class='html-p'>The ultimate aim of our work is to activate an alarm when the system detects that the driver is drowsy, which means that the alarm activation module will follow a binary behavior (on/off, depending on the fatigue level of the driver). Because of this, only the “awake” and “drowsy” classes are used to train and test the system (60 awake videos, 62 drowsy videos). The database provides the videos divided in 5 folds (or subsets of data), so in this work, we use 5-fold cross-validation to test the data. These videos were recorded with different cameras (web, mobile phone, etc.), resulting in a pool of videos with different qualities and resolution. This is very interesting to emulate real situations in a car, where there are light changes, but the results obtained can be moderate, as would correspond to this situation.</div><div class='html-p'>To compare our work to a baseline, it is especially interesting to review the works proposed in [<a href="#B22-applsci-12-01145" class="html-bibr">22</a>,<a href="#B23-applsci-12-01145" class="html-bibr">23</a>] since they define and implement a fatigue detection system, mostly based on CNNs that are tested over UTA-RLDD. However, it is important to note that in most of these works, the methodology used to test the database is different from ours. These differences are explained in <a href="#sec5-applsci-12-01145" class="html-sec">Section 5</a>, where the results reported by our systems are analyzed and compared with those obtained by other reference systems.</div><div class='html-p'>Besides this, the YawDD dataset [<a href="#B24-applsci-12-01145" class="html-bibr">24</a>] is also used to help with the preprocessing of the recordings: YawDD videos are used to train and test a complementary CNN that detects whether the driver is yawning or not. Although yawns are not as common as other symptoms at the early stages of fatigue, they are a clear indicator of drowsiness, and it is important that our system is able to detect them.</div><div class='html-p'>Because of this, and because in UTA-RLDD the yawns are not tagged, we use a dedicated dataset that allows us to train a model for this task. Once the CNN is trained and the information about yawns can be gathered from any video, YawDD videos will not be used anymore (the UTA-RLDD dataset will be used to test the drowsiness detection system, as mentioned before).</div><div class='html-p'>YawDD provides videos from 30 different people performing three actions while driving: talking or singing, yawning, or driving normally. This dataset provides videos taken from two different angles: some of them were recorded with a camera mounted under the front mirror of the vehicle, while others were recorded from the dashboard. Because of their similarity to UTA-RLDD videos, in this work, we use the videos of the dashboard to detect if the driver is yawning.</div></section><section id='sec3-applsci-12-01145' type=''><h2 data-nested='1'> 3. Materials and Methods</h2><div class='html-p'>The aim of this work is to develop a system that is able to estimate the fatigue of a driver by using sequences of images that are recorded in such way that the face of the subject is visible.</div><div class='html-p'>The drowsiness detection system developed in this work is part of a driver-based ADAS system [<a href="#B25-applsci-12-01145" class="html-bibr">25</a>,<a href="#B26-applsci-12-01145" class="html-bibr">26</a>], with two important restrictions: early detection and minimization of the number of false positives. The idea is that the system will warn the driver only in real cases of fatigue, to avoid false positives, which would cause boredom in the driver, causing them to turn off the ADAS, without executing the rest of the functionalities.</div><div class='html-p'>When it comes to the recording of the driver, it is important to determine the frame rate that the camera has to communicate to the system. A high frame rate will overload the system because of the high number of frames per second (FPS) that have to be evaluated, but a low amount of FPS can affect negatively the system performance. In this domain, it is necessary that there are enough FPS to appreciate details of the image sequence that have a very short duration, such as blinks.</div><div class='html-p'>Since the average blink duration ranges from 100 to 400 ms [<a href="#B27-applsci-12-01145" class="html-bibr">27</a>], in this work, a frame rate of 10 FPS is used, which is enough to detect blinks and avoid overloading the system. This way, 600 frames are evaluated every time a new frame is captured by the camera. To do this, the system stores the previous 599 frames, so that a full sequence of 60 s is analyzed at each instant.</div><div class='html-p'>As mentioned in <a href="#sec1-applsci-12-01145" class="html-sec">Section 1</a>, this work proposes two alternative solutions to estimate drivers’ drowsiness. The first alternative uses a recurrent and convolutional neural network, while the second one uses AI and deep learning techniques to extract numeric features from images, and then introduces them into a fuzzy logic-based system. However, both solutions follow the same process structure, which consists of three phases: preprocessing, analysis, and alarm activation. <a href="#applsci-12-01145-f001" class="html-fig">Figure 1</a> shows the three different phases.</div><div class='html-p'>As shown in <a href="#applsci-12-01145-f001" class="html-fig">Figure 1</a>, the system receives 600 frontal images of the driver, corresponding to the last 60 s recorded by a camera placed on the vehicle (for example, on the driver’s dash) at 10 frames per second (FPS).</div><div class='html-p'>These images are received by the <span class='html-italic'>preprocessing module</span>, whose objective is to transform the received image into data that can be used by the drowsiness detection model. The preprocessed data are then sent to the <span class='html-italic'>analysis module</span>, which performs the fatigue detection tasks and assesses the level of drowsiness of the driver at that moment, based on the information from the last 60 s. Lastly, the calculated drowsiness level is transmitted to the <span class='html-italic'>alarm activation module</span>, which uses the last levels of drowsiness to determine whether it is necessary to alert the driver or not.</div><div class='html-p'>As mentioned above, one of the main objectives of the alarm activation module is to minimize the number of false positives of the system (drowsiness alerts when the driver is actually awake), since a high number of false positives disturbs the driver and increases the possibility of turning off the system. This is one of the reasons that motivate the experimentation over videos instead of frames and make the tests more exacting, since the activation of a single alarm in a 10 min video means that, regardless of what is detected before or after that moment, the classification of the video will be considered “drowsy”.</div><div class='html-p'>Once the system has made its decision on whether to alert the driver or not (a yes/no possible outcome), it will communicate its decision to the human–computer interaction system responsible for warning the driver by using visual and/or sound stimuli.</div><div class='html-p'>The three modules (preprocessing, analysis and alarm activation) of each of the two alternative solutions are described below.</div><section id='sec3dot1-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 3.1. Alternative I: Recurrent and Convolutional Neural Network</h4><div class='html-p'>The first alternative, although it is focused on using deep learning techniques, uses one artificial intelligence technique (linear SVM combined with HOG) to preprocess the driver’s image and extract the face. This new image is sent to the <span class='html-italic'>analysis module</span>, that applies deep learning techniques to analyze the fatigue of the driver at that moment.</div><div class='html-p'>In this case, the <span class='html-italic'>analysis module</span> is composed of a recurrent and convolutional neural network (which we will call “recurrent CNN”). This recurrent CNN is responsible for detecting the fatigue of the driver at the current moment by calculating a numerical output that represents the estimated drowsiness level of the driver. This value is sent to the <span class='html-italic'>alarm activation module</span>, where it is decided whether or not to activate the corresponding alarm.</div><div class='html-p'><a href="#applsci-12-01145-f002" class="html-fig">Figure 2</a> shows a diagram representing the process followed by the system, divided in 3 stages that are detailed in this section.</div><section id='sec3dot1dot1-applsci-12-01145' type=''><h4 class='' data-nested='3'> 3.1.1. Preprocessing</h4><div class='html-p'>As previously mentioned, before sending the image to the recurrent CNN, we crop and preprocess the original frame at the <span class='html-italic'>preprocessing module</span>. To avoid that the model is affected by possible noise, the first step is to apply a Gaussian blur to the original image. Blurring images is a common technique used to smooth edges and remove noise from an image, while leaving most of the image intact.</div><div class='html-p'>From the blurred image, we extract the image region that contains the face, for which DLIB’s library [<a href="#B28-applsci-12-01145" class="html-bibr">28</a>] is used. In particular, we use its face detector, which calculates the coordinates of the face location by using histograms of oriented gradients (HOG) and a linear supporting vector machine (SVM) [<a href="#B29-applsci-12-01145" class="html-bibr">29</a>]. This way, this AI technique is used to crop the original image and leave only the face of the driver.</div><div class='html-p'>After this, we scale the face to 64 × 64 px, a size that allows us to preserve the details of the face and considerably reduces the computation time required to process each image. Next, we perform a histogram equalization to adjust the contrast of the image and avoid unnecessary details. We apply ImageNet mean subtraction [<a href="#B7-applsci-12-01145" class="html-bibr">7</a>], a technique that reduces the probability that the classification is affected by the illumination of the image, and that allows to use transfer learning with models that have been trained over the ImageNet domain. <a href="#applsci-12-01145-f003" class="html-fig">Figure 3</a> shows an example of the preprocessing that is performed.</div></section><section id='sec3dot1dot2-applsci-12-01145' type=''><h4 class='' data-nested='3'> 3.1.2. Analysis</h4><div class='html-p'>The analysis module uses a recurrent and convolutional neural network to estimate the drowsiness level of the driver. The CNN is based on the EfficientNetB0 architecture [<a href="#B30-applsci-12-01145" class="html-bibr">30</a>], which presents a lightweight model that is highly precise. Smaller models are processed faster, and EfficientNetB0 presents the smallest model of the EfficientNet series. Since the differences in accuracy are not significant in our domain when upgrading to a superior model, we consider EfficientNetB0 to be the most adequate model for this case, where the model needs to quickly obtain a prediction. This way, we perform transfer learning on this model by using previously trained weights that have great performance in recognizing objects on images from the ImageNet dataset [<a href="#B31-applsci-12-01145" class="html-bibr">31</a>].</div><div class='html-p'>The EfficientNetB0 architecture is divided into 9 blocks, each of them formed by multiple layers. <a href="#applsci-12-01145-f004" class="html-fig">Figure 4</a> shows an overview of this architecture, where the 9 main blocks are represented.</div><div class='html-p'>In this work, we focused on tuning the number of frozen layers of the transferred model to obtain the highest possible accuracy. For this, we trained our system using four different configurations, named after the amount of layers that are trained within the EfficientNetB0 model:</div><ul class='html-bullet'><li><div class='html-p'><span class='html-italic'>No training:</span> All layers are frozen, no layer from EfficientNetB0 is trained.</div></li><li><div class='html-p'><span class='html-italic'>Top training:</span> All layers are frozen except for the layers of Block 9 (pooling, flatten, dense and dropout layers).</div></li><li><div class='html-p'><span class='html-italic'>Partial training:</span> In addition to layers of Block 9, layers from Block 8 (the last MBConv block) are also trained.</div></li><li><div class='html-p'><span class='html-italic'>Full training:</span> All layers remain unfrozen.</div></li></ul><div class='html-p'>To test these configurations, a preliminary evaluation was performed, where each configuration was trained over 25 epochs. After analyzing the training accuracy obtained from this experimentation, we concluded that the best performing configuration was <span class='html-italic'>top training</span>. So, the weights of the model are frozen at every layer, except for the last block of the layers (which consists of pooling, flatten, dense and dropout layers), preventing the information loss of the early layers while training the new model. In this case, the EfficientNetB0 architecture is used as the base of a GRU (gated recurrent unit) recurrent neural network, combining, in this way, a CNN with a RNN.</div><div class='html-p'>The GRU network receives 600 images with the face of the driver, and it has to identify the characteristics that reveal if the driver was drowsy during that last minute. The output of the GRU is received by the final classifier, where some dense and dropout layers are used to estimate the drowsiness level of the driver, which is a number between 0 and 1.</div><div class='html-p'><a href="#applsci-12-01145-f005" class="html-fig">Figure 5</a> shows the final architecture of the network. As mentioned, transfer learning is applied in the module labeled GRU in <a href="#applsci-12-01145-f005" class="html-fig">Figure 5</a>, where EfficientNetB0 is implemented. The rest of the additional layers are those that are trained to transform the knowledge provided by EfficientNetB0 into a drowsiness level estimation.</div></section><section id='sec3dot1dot3-applsci-12-01145' type=''><h4 class='' data-nested='3'> 3.1.3. Alarm Activation</h4><div class='html-p'>The following conditions must be met to alert the driver:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>The driver is considered to be drowsy at a specific moment when the output of the analysis module is greater than a threshold, called <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math>. This value ranges between 0 and 1.</div></li><li><div class='html-p'>The driver has to be considered drowsy for multiple instants of the last 60 s to raise an alarm. This is determined by the variable <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>, which represents how many seconds the driver has to be drowsy before alerting him or her. This value ranges between 0 and 60.</div></li></ul></div><div class='html-p'>This way, when the driver is considered drowsy for at least the established minimum time, an alarm is raised. If the condition to raise an alarm continues after alerting the driver, a second alarm is not raised. Instead, another alarm is raised only if the conditions for alerting the driver are no longer met, and after that, drowsiness is detected again.</div><div class='html-p'>To calculate the optimal values of variables <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>, multiple tests were performed, which are described in <a href="#sec3dot3-applsci-12-01145" class="html-sec">Section 3.3</a>.</div></section></section><section id='sec3dot2-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 3.2. Alternative II: Deep Learning Combined with Fuzzy Logic</h4><div class='html-p'>In this case, the images are preprocessed by using artificial intelligence (linear SVM combined with HOG and ensemble of regression trees) and deep learning techniques (pre-trained CNN), which extract numerical characteristics that can be introduced on a fuzzy inference system (FIS). After this, the FIS returns a numerical output that represents the estimated drowsiness level of the driver, and this value allows the system to raise an alarm if needed.</div><div class='html-p'><a href="#applsci-12-01145-f006" class="html-fig">Figure 6</a> shows a diagram representing the process followed by the system, divided into 3 stages, which are explained in this section.</div><section id='sec3dot2dot1-applsci-12-01145' type=''><h4 class='' data-nested='3'> 3.2.1. Preprocessing</h4><div class='html-p'>The parameters that we are interested in discovering from the driver’s image are the following:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'>Number of blinks (<math display='inline'><semantics> <mrow> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> <mi>s</mi> </mrow> </semantics></math>).</div></li><li><div class='html-p'>Average blinking duration (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math>).</div></li><li><div class='html-p'>Number of microsleeps, i.e., blinks with a duration of over 500 ms (<math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>c</mi> <mi>r</mi> <mi>o</mi> <mi>s</mi> <mi>l</mi> <mi>e</mi> <mi>e</mi> <mi>p</mi> <mi>s</mi> </mrow> </semantics></math>).</div></li><li><div class='html-p'>Number of yawns (<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math>).</div></li><li><div class='html-p'>Time spent yawning (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> </mrow> </semantics></math>).</div></li></ul></div><div class='html-p'>The first step to calculate these parameters is locating the driver’s face. To do this, DLIB’s face detector is used once again. However, in this case, we also use the landmark detector that DLIB provides, which is an implementation of [<a href="#B32-applsci-12-01145" class="html-bibr">32</a>], where the shape predictor uses an ensemble of regression trees. DLIB’s landmark detector represents the facial features with a group of 68 points, 12 of them representing the eyes (6 points per eye), which allows us to know the position of the driver’s eyes. <a href="#applsci-12-01145-f007" class="html-fig">Figure 7</a> shows an example of landmark detection.</div><div class='html-p'>To calculate the parameters related to eyes and blinks, it is necessary to calculate first how opened or closed the driver’s eyes are. To do this, we use the technique proposed in [<a href="#B33-applsci-12-01145" class="html-bibr">33</a>]: we calculate the eye aspect ratio (EAR) by measuring the distance between the top eyelid and the bottom eyelid, and we divide it by the eye width, thus obtaining openness values that usually range between 0.16 and 0.36. Experimentally, it is determined a threshold of 0.20, so that every time that the measured EAR is under 0.20, it is considered that the driver has closed his or her eyes. By calculating how many times and for how long the driver blinks, we gather the first three measures.</div><div class='html-p'>Next, we want to use the face to detect if the driver is yawning. To do this, the face of the driver is cropped and preprocessed following the same process as described in <a href="#sec3dot1dot1-applsci-12-01145" class="html-sec">Section 3.1.1</a>. This image is then given as an input to a CNN that we have trained specifically to detect whether a person is yawning or not. This network is based on the EfficientNetB0 model: we use its architecture and its trained weights over the ImageNet domain, and we add new layers to the model to train the network on the detection of the specific actions that we are interested in.</div><div class='html-p'><a href="#applsci-12-01145-f008" class="html-fig">Figure 8</a> shows the architecture chosen for this network.</div><div class='html-p'>To train this neural network, the YawDD dataset [<a href="#B24-applsci-12-01145" class="html-bibr">24</a>] is used, which provides videos from 30 different people yawning and driving normally. In particular, we use the videos that were recorded by a camera placed on the dashboard, in front of the driver. Videos from 18 people are used at the training phase, while 6 are used for validation and the other 6 are used for testing. The accuracy when classifying the drivers’ yawns reached a notable 88% accuracy on the testing data used. To avoid possible errors, to classify a frame, the system calculates the average class of the last 20 frames (2 s), and it returns the class that appears more times.</div><div class='html-p'>Thanks to this deep learning model, we can calculate how many seconds the driver has spent yawning, thus obtaining the remaining parameters that we need for the fuzzy inference system.</div></section><section id='sec3dot2dot2-applsci-12-01145' type=''><h4 class='' data-nested='3'> 3.2.2. Analysis</h4><div class='html-p'>To perform the drowsiness detection, a Mamdani fuzzy inference system [<a href="#B34-applsci-12-01145" class="html-bibr">34</a>] is designed for which we have to specify inputs, outputs, and rules.</div><section id='Inputs' type=''><h4 class='' data-nested='4'> Inputs</h4><div class='html-p'>Each input has to be represented by a variable, which must have one or more fuzzy sets that define the possible values that the variable can take (for example, variable “number of blinks”, which would receive an integer, could have fuzzy sets “low”, “normal” and “high”). Each fuzzy set is defined by a membership function <math display='inline'><semantics> <mrow> <mi>μ</mi> <mi>A</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math>, which, for an input <span class='html-italic'>x</span>, assigns a degree of membership to fuzzy set <span class='html-italic'>A</span>. This membership value is a number between 0 and 1, where 0 means that it is completely false and that value <span class='html-italic'>x</span> belongs to fuzzy set <span class='html-italic'>A</span>, and 1 means that is completely true.</div><div class='html-p'>In this work, two types of membership functions are used: triangular (tri) and trapezoidal (trap) membership functions. These membership functions are typically used in fuzzy logic because they are able to represent easily and accurately the evolution of the values on most fuzzy sets. In this case, the use of one type of membership function or another is tailored to each variable, and it is related to the range of values associated with each fuzzy set.</div><div class='html-p'>Both functions are defined by a group of points that are linearly connected, but, while triangular functions are defined by three points (with membership values 0, 1, and 0), at the trapezoidal function, there are four points (with membership values 0, 1, 1, and 0).</div><div class='html-p'><a href="#applsci-12-01145-f009" class="html-fig">Figure 9</a> shows an example of a variable where three fuzzy sets are defined: two of them (<math display='inline'><semantics> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>n</mi> <mi>o</mi> <mi>r</mi> <mi>m</mi> <mi>a</mi> <mi>l</mi> </mrow> </semantics></math>) use triangular functions, and the other one (<math display='inline'><semantics> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </semantics></math>) uses a trapezoidal function.</div><div class='html-p'><a href="#applsci-12-01145-t001" class="html-table">Table 1</a> shows the variables used as inputs of the FIS along their respective fuzzy sets.</div></section><section id='Output' type=''><h4 class='' data-nested='4'> Output</h4><div class='html-p'>As inputs, the outputs of a FIS are designed with variables defined by fuzzy sets. The result is calculated as the degree of membership to the different fuzzy sets, and after that, it is defuzzified to obtain a single numerical value that represents that variable (in our case, a number on the [0, 1] interval that indicates the drowsiness level of the driver). The output variable of this system is defined at <a href="#applsci-12-01145-t002" class="html-table">Table 2</a>.</div><div class='html-p'>The method employed for defuzzification is the center of gravity (COG). This technique, based on the activations of the output fuzzy sets, calculates the center of gravity of the area under the membership functions [<a href="#B35-applsci-12-01145" class="html-bibr">35</a>].</div><div class='html-p'><a href="#applsci-12-01145-f010" class="html-fig">Figure 10</a> shows an example of this method, where the defuzzified output is 0.53.</div></section><section id='Rules' type=''><h4 class='' data-nested='4'> Rules</h4><div class='html-p'>Finally, rules connect input variables with output variables. Our aim is to define the conditions that show the drowsiness state of a driver. For this, 11 different rules are defined and collected in <a href="#applsci-12-01145-t003" class="html-table">Table 3</a>.</div></section></section><section id='sec3dot2dot3-applsci-12-01145' type=''><h4 class='' data-nested='3'> 3.2.3. Alarm Activation</h4><div class='html-p'>To calculate whether the ADAS has to alert the driver or not, the system based on fuzzy logic performs the same process as that of the system that uses a recurrent CNN, which is described in <a href="#sec3dot1dot3-applsci-12-01145" class="html-sec">Section 3.1.3</a>.</div></section></section><section id='sec3dot3-applsci-12-01145' type='methods'><h4 class='html-italic' data-nested='2'> 3.3. Experimentation Methodology</h4><div class='html-p'>Experimentation is performed over the UTA-RLDD dataset, using videos of 60 different people on two different states: awake and drowsy. The training data used consist of 97 videos (48 awake, 49 drowsy), while the test data consist of 25 videos (12 awake, 13 drowsy). It is important to consider that UTA-RLDD is a realistic dataset, where the subjects are not simulating their drowsiness, so it is common that the recorded person does not show fatigue symptoms at every second of the video, but only at specific moments.</div><div class='html-p'>Because of this, to evaluate the system’s performance, each video is analyzed frame by frame, evaluating at each frame the drowsiness level of the driver. After this, the alarm activation module of the ADAS decides whether to alert the driver or not. The number of alarms raised during the video is counted, and this number is used to calculate the system’s accuracy. This way, each video can count either as a hit (if the subject is awake and there are no raised alarms, or if the subject is drowsy and there is at least one alert) or as a miss (if there are no alarms when the driver is drowsy, or if the system raises an alarm when the driver is awake). If the system alerts the driver at least once, we consider that the video is classified as “drowsy”, and if there are no alarms, it is classified as “awake”.</div><div class='html-p'>It is important to understand the following terms that are used while evaluating the system:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'><b>FP (false positive)</b>: Video misclassified as “drowsy”, where the subject was actually awake.</div></li><li><div class='html-p'><b>FN (false negative)</b>: Video misclassified as “awake”, where the subject was actually drowsy.</div></li><li><div class='html-p'><b>TN (true negative)</b>: Video correctly classified as “awake”, where the subject was awake.</div></li><li><div class='html-p'><b>TP (true positive)</b>: Video correctly classified as “drowsy”, where the subject was drowsy.</div></li></ul></div><div class='html-p'>As explained in <a href="#sec3dot1dot3-applsci-12-01145" class="html-sec">Section 3.1.3</a>, the alarm activation module works with two variables: <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math>, which represents the minimum drowsiness level to consider that a driver is drowsy, and <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>, which represents how many seconds the driver has to be considered drowsy before raising an alarm. These two variables affect the system’s performance: if the threshold is low and the minimum time is high, there are more possibilities of raising an alarm. This means that the driver is alerted at early phases of fatigue; however, it also increases the generation of false positives. Avoiding false positives is of the utmost importance, since a system that raises alarms when it is not necessary will bother the driver, who will likely turn off the whole system.</div><div class='html-p'>Because of this reason, we perform multiple tests with different combinations of thresholds and minimum times. We test the systems over the training data with a threshold ranging between 0.20 and 0.95 (using intervals of 0.05), and with a minimum time ranging between 10 and 60 (using intervals of 5). After this, the combination that obtains the higher accuracy over the training data is chosen. If there is more than one combination that reaches the best accuracy, the combination with the lowest number of false positives is selected. Then, the chosen combination is used to evaluate the system over the test data.</div><div class='html-p'>To verify the performance of both alternatives over different distributions of data, we apply a 5-fold cross validation. Because of this, the methodology described above is followed separately in each of the five experiments performed. As an illustrative example, we present the detailed results obtained on the first experiment, followed by a summary of the results of the five experiments and the final averaged results.</div></section></section><section id='sec4-applsci-12-01145' type='results'><h2 data-nested='1'> 4. Results</h2><div class='html-p'>This section presents the results derived from the experimental evaluation. These results were obtained by following the experimentation methodology described in <a href="#sec3dot3-applsci-12-01145" class="html-sec">Section 3.3</a> with each of the two solutions proposed in this work, so there is a subsection for the performance of each alternative.</div><section id='sec4dot1-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 4.1. Alternative I: Recurrent and Convolutional Neural Network</h4><div class='html-p'>First, to illustrate the experimentation methodology followed, we present the results obtained on the first experiment, where we use folds 1–4 for training and fold 5 for testing. <a href="#applsci-12-01145-f011" class="html-fig">Figure 11</a> shows the accuracy rates of the first alternative for the classification of the training data on this experiment.</div><div class='html-p'>As it can be seen in <a href="#applsci-12-01145-f011" class="html-fig">Figure 11</a>, the <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> <mi>s</mi> </mrow> </semantics></math> with the better performance are 0.60, 0.65 and 0.70, where the 0.65 stands out and reaches an accuracy of 71% when the minimum time (<math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>) is 15. We use this combination to evaluate the system over the test data, and we obtain the results presented in <a href="#applsci-12-01145-t004" class="html-table">Table 4</a>.</div><div class='html-p'>Following the same methodology, we test the other combinations of folds, obtaining the results presented in <a href="#applsci-12-01145-t005" class="html-table">Table 5</a> and <a href="#applsci-12-01145-t006" class="html-table">Table 6</a>.</div><div class='html-p'>As we can observe, the accuracy over the test data is reduced by around 55%. Besides this, there are a lot of false positives, since in 40% of the videos in which the subject was awake, the system raised an unnecessary alarm (on average, 4.8/12 of the videos). These results show that this approach is not useful to be used in the ADAS.</div></section><section id='sec4dot2-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 4.2. Alternative II: Deep Learning Combined with Fuzzy Logic</h4><div class='html-p'>As in the previous case, we present first the results obtained on the first experiment, where we use folds 1–4 for training and fold 5 for testing, and, after this, we present the cross-validated results obtained over the test data.</div><div class='html-p'><a href="#applsci-12-01145-f012" class="html-fig">Figure 12</a> shows the accuracy rates of the second alternative for the classification of the training data. In this case, the table only shows the results of <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> <mi>s</mi> </mrow> </semantics></math> that range from 0.20 to 0.65, because all systems tested with a threshold of 0.55 or higher obtained an accuracy of 0.49. This accuracy was obtained by never alerting the driver, which is accurate for 49% of the data (corresponding to the “awake” videos).</div><div class='html-p'>As it can be seen in <a href="#applsci-12-01145-f012" class="html-fig">Figure 12</a>, there are multiple combinations of thresholds and times that reach the maximum accuracy obtained, which in this case is 69%. Because of this, we have to analyze the false positive rate of each combination, aiming to use the combination that produces the minimum number of false positives.</div><div class='html-p'><a href="#applsci-12-01145-t007" class="html-table">Table 7</a> shows the complete results of the combinations that achieved the best accuracy on the first experiment.</div><div class='html-p'>As we can see, both combinations with a 0.5 threshold achieve an impressive 0% false positive rate, so we will use these combinations to test the system over the test data, and we obtain the results presented in <a href="#applsci-12-01145-t008" class="html-table">Table 8</a>.</div><div class='html-p'>Since both combinations achieve the same accuracy, we could choose any of them to represent the results of the first experiment. Following the same methodology, we test the other combinations of folds, obtaining the results presented in <a href="#applsci-12-01145-t009" class="html-table">Table 9</a> and <a href="#applsci-12-01145-t010" class="html-table">Table 10</a>.</div><div class='html-p'>The averaged accuracy, although it is sightly better, does not differ much from the one obtained by Alternative I. However, in this case, the system only alerts the driver incorrectly on 0.8/12 cases, which means that the false positive rate of this solution is reduced to 7%.</div></section></section><section id='sec5-applsci-12-01145' type='discussion'><h2 data-nested='1'> 5. Discussion</h2><div class='html-p'>This section presents a complete analysis of the results obtained by both alternatives, including the limitations of the results and a comparison with the state of the art, some problems detected at the preprocessing module, and possible future improvements to the system that are identified.</div><section id='sec5dot1-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 5.1. Analysis and Limitations of the Results</h4><div class='html-p'>After analyzing the results obtained, we can conclude that, even though both systems have potential, they are not ready for installation on the ADAS of a real vehicle. The accuracy of both systems is insufficient, especially on the test data, so they must be revised and improved.</div><div class='html-p'>Both alternatives reached a similar accuracy: around 65% on training data and 55–65% on test data. This results are quite poor considering that we are only classifying two balanced classes (awake and drowsy), since a random classifier should obtain an accuracy of 50% and our system only sightly improves that number.</div><div class='html-p'>Even thought the results are similar, Alternative I falls behind Alternative II because it raises too many false positives to be tolerable to the driver. Until the false positive rate is minimized, this alternative cannot be considered for implementation in real driving environments. Since this solution uses a neural network that learns by itself the characteristics of data, to improve this results, it is necessary to tune the training parameters or even the architecture of the network used.</div><div class='html-p'>However, the results obtained by Alternative II, which uses deep learning combined with fuzzy logic, are promising, since it minimizes the number of false positives. From the 60 videos (around 10 h of video) where the driver was completely alert, the system only raised an alarm on 4 of them, so it stands as a reliable system that will not bother the driver with unnecessary alarms. Its precision while detecting actual fatigue is inferior to Alternative I, but we are working on improvements to the fuzzy inference system that will make the system capable of detecting more drowsy situations.</div><div class='html-p'>Apart from the accuracy, another aspect that requires analysis for future versions of the system is the value of parameters <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>. This value remains relatively stable among the tests performed (<math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> is in the range of [0.50, 0.65] or [0.45, 0.50] depending on the alternative, while <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math> is usually in the range of [0.10, 0.15]), but there are some outliers among the results of the different folds, and the tests performed are insufficient for choosing the best value.</div><div class='html-p'>Because of this, more tests are necessary to obtain the best combination of parameters for which it could be beneficial to use other databases and a cross validation that considers more folds (e.g., using 10 folds instead of 5). By comparing the best performing combinations of each of those tests, we will be able to determine values that work almost universally.</div></section><section id='sec5dot2-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 5.2. Comparison with Systems of the State of the Art</h4><div class='html-p'>Unfortunately, currently there are not a lot of works where the UTA-RLDD dataset is used, so we are limited when comparing our work to a baseline. The most relevant works at this moment are [<a href="#B22-applsci-12-01145" class="html-bibr">22</a>,<a href="#B23-applsci-12-01145" class="html-bibr">23</a>,<a href="#B36-applsci-12-01145" class="html-bibr">36</a>,<a href="#B37-applsci-12-01145" class="html-bibr">37</a>,<a href="#B38-applsci-12-01145" class="html-bibr">38</a>,<a href="#B39-applsci-12-01145" class="html-bibr">39</a>,<a href="#B40-applsci-12-01145" class="html-bibr">40</a>,<a href="#B41-applsci-12-01145" class="html-bibr">41</a>,<a href="#B42-applsci-12-01145" class="html-bibr">42</a>].</div><div class='html-p'>In the majority of the works available, the experimentation methodology differs from ours: they extract and classify individual frames from each video and verify whether the classification was correct or not, while we test our systems over the full videos and count the number of alarms raised during each video. Therefore, and although the evaluation of our system is described in terms of videos classified as awake or drowsy, technically the system does not classify the videos, but rather counts the number of alarms raised by the alarm activation module during each video and considers that the system detects the driver as “awake” when it does not raise any alarm and “drowsy” when it raises at least one. Because of this, some works are not exactly comparable, but it is interesting to check their results nevertheless.</div><div class='html-p'>It is also important to note that UTA-RLDD provides videos classified in three categories (awake, low vigilant, and drowsy). Some works use all categories, while others perform the classification using only two of the labels (awake and drowsy, as in this work), which is relevant when evaluating results and comparing systems.</div><div class='html-p'>A summary of the results collected in some of the works that use the UTA-RLDD database is shown in <a href="#applsci-12-01145-t011" class="html-table">Table 11</a>. As we have mentioned before, we consider that avoiding false positives is critical in this domain, so that drivers do not turn off the alert system. Because of this, besides the global accuracy, we also compare the false positives rate, when possible. It is worth noting that after thoroughly revising the related works, we verified that the false positive rate is only available in Refs. [<a href="#B22-applsci-12-01145" class="html-bibr">22</a>] (where three classes are used) and [<a href="#B36-applsci-12-01145" class="html-bibr">36</a>,<a href="#B41-applsci-12-01145" class="html-bibr">41</a>,<a href="#B42-applsci-12-01145" class="html-bibr">42</a>] (where two classes are used, but classification is performed using frames instead of videos).</div><div class='html-p'>In [<a href="#B22-applsci-12-01145" class="html-bibr">22</a>], the work where the UTA-RLDD was presented, four methods are used to classify videos as one of the three available categories. These methods obtain global accuracies between 57% and 65%, and the model that obtains the highest accuracy is the HM-LTSM network, with 65.20% accuracy. The accuracy on awake and drowsy videos is high, reaching a notable 80% in both categories. Although these results are very positive, false alarms would be raised in 19% of the cases, so the system could be improved to reduce this rate.</div><div class='html-p'>It is also interesting to analyze their comparison to a human judgment baseline, in which four volunteers classified the drowsiness level of each video. Human judgment reached a 57.8% accuracy, which is closer to the accuracy obtained by our systems. It makes sense that the fuzzy logic-based system approaches the accuracy obtained by human judgment, since the variables and the rules defined are based on the expert knowledge of humans. The false positive rate is higher, however, while using human judgment, and alerts the driver unnecessarily in 37% of the cases.</div><div class='html-p'>In [<a href="#B36-applsci-12-01145" class="html-bibr">36</a>], they use the categories “awake” and “drowsy”, like our system, leaving out the “low-vigilant” videos. In this case, the authors use around 100–120 images per recording. The model chosen for the fatigue detection task is a simple CNN created from scratch that combines five convolutional layers with a flatten layer and a dense layer. Although the global accuracy on the test images reaches 69%, this model cannot be considered for a real implementation on an ADAS because of the high rate of false positives (56% of the images tested).</div><div class='html-p'>It might be noted that, according to the author’s code, the random train/test split (80% train/20% test) of data was performed after extracting the images. Because of this, the accuracy might have been affected if frames extracted from the same video were used both in train and in test sets. Since every video is recorded under different conditions, the network could be learning to recognize the situation that is shown at a particular frame (person, angle, illumination), instead of recognizing the fatigue of the subject.</div><div class='html-p'>In [<a href="#B38-applsci-12-01145" class="html-bibr">38</a>], the authors present two CNNs trained to classify individual frames and predict whether the driver is drowsy or awake. One of the CNNs is created from scratch with three convolutional layers and one fully connected layer, and one is based on the AlexNet architecture [<a href="#B7-applsci-12-01145" class="html-bibr">7</a>], where they apply transfer learning. The CNN created from scratch obtains slightly better results, reaching a notable 96% accuracy.</div><div class='html-p'>To test the CNNs, they use videos from 28 out of the 60 subjects available at UTA-RLDD dataset, gathering around 55,000 frames. The authors mention that they use 70% of the data for training and 30% for testing, but there are no details on how the separation is done, so it is possible that it presents the same problem explained in the previous case.</div><div class='html-p'>In [<a href="#B23-applsci-12-01145" class="html-bibr">23</a>], they use the UTA-RLDD dataset to train and test a CNN inspired by LeNet architecture [<a href="#B39-applsci-12-01145" class="html-bibr">39</a>] to detect fatigue in drivers. They also use the “awake” and “drowsy” videos, and their methodology is to classify a randomly generated frame of each video. The accuracy of the model is assessed using stratified five-fold cross validation and, according to the authors, in each fold, there are about 152 sleepy samples and about 151 vigilant samples. However, since there is no indication about if the training and test sets share frames from the same video, it is possible that it presents the same problems as [<a href="#B36-applsci-12-01145" class="html-bibr">36</a>,<a href="#B38-applsci-12-01145" class="html-bibr">38</a>].</div><div class='html-p'>This way, it is reported an accuracy of 91.8% when classifying a single frame, much higher than the accuracy obtained by our systems when raising alarms on the full videos. In that same work, they also use an implementation of [<a href="#B43-applsci-12-01145" class="html-bibr">43</a>], which uses multiple CNNs to classify fatigue, over UTA-RLDD. In this case, the accuracy reaches 63%, which is more similar to the results reported by our systems.</div><div class='html-p'>In [<a href="#B37-applsci-12-01145" class="html-bibr">37</a>], the authors use the FaceNet CNN [<a href="#B44-applsci-12-01145" class="html-bibr">44</a>] to extract facial features from the drivers’ images, and then use either a multiclass SVM or a K-NN to classify those features into one of the three categories of the UTA-RLDD dataset. The accuracy obtained by both systems is high: the multiclass SVM reaches a 89% accuracy when classifying individual frames, while the K-NN outperforms it with a 94% accuracy. They use a total of 3000 images to train the models and another 300 images to validate them, but it is unknown to what videos these images belong or how they were selected.</div><div class='html-p'>In [<a href="#B40-applsci-12-01145" class="html-bibr">40</a>], the authors combine convolutional neural networks and long short-term memory for fatigue detection. The proposed hybrid architecture is trained and evaluated on a relabeled dataset that combines multiple datasets, including UTA-RLDD, and classifies their videos into three classes: “alert”, “low vigilant”, and “fatigue”. The relabeling process is performed at two levels: at the frame level (each frame is classified as one of the three categories) and at the minute level (each minute is classified).</div><div class='html-p'>The accuracy obtained by this architecture is 54.71% on frame segment cases, and 43.05% on minute segment cases. According to the authors, unlike other databases, UTA-RLDD contains subtle facial features that are difficult to capture through the training process. This could explain the low accuracy values obtained.</div><div class='html-p'>In [<a href="#B41-applsci-12-01145" class="html-bibr">41</a>], authors compare a CNN and a LSTM that evaluate drowsiness driver detection on UTA-RLDD dataset. Dlib’s pretrained face detector is used for detecting landmarks of eyes and mouth and extracting the eye aspect ratio (EAR), mouth aspect ratio (MAR), mouth over eye aspect ratio (MOEAR) and pupil circularity (PC). After extracting these four features, the data of all participants are merged and a new dataset is created. In total, 75% of the data are used to train the models, and the remaining 25% are used to test these models. The overall accuracy obtained by the LSTM network is 0.64, and that obtained by CNN is 0.72. As in [<a href="#B36-applsci-12-01145" class="html-bibr">36</a>], the system accuracy may be affected by the fact that images from the same video are used in both the training and test sets. In addition, the false positive rate of both systems is around 22%, which makes them unsuitable for implementation in an ADAS.</div><div class='html-p'>In [<a href="#B42-applsci-12-01145" class="html-bibr">42</a>], the authors use a LSTM that receives facial features (changes in eyes and mouth movements) as input data to predict fatigue. In this work, the dataset used to model the system include frames from alert and drowsy videos of only 16 participants. In this case, the training of the model is performed by applying a cross-validation process that uses 74% of the data. Once the cross validation is completed, the best performing model is chosen as the final model. According to the authors, the accuracy (63%) and true positive rate (70%) achieved by the system are not satisfactory. Their argument is that facial landmark data are not sufficient to make a reliable prediction and that other characteristics, such as body temperature and heart rate, should be used to make a reliable prediction. The false positive rate of this system (0.48) is also not tolerable in a real driving environment.</div><div class='html-p'>Overall, the models that reach the highest accuracy (around 90%) are those who use CNNs to classify individual frames extracted from the videos. Even though these results are positive and promising, we consider that it would be necessary to evaluate its performance over the full duration of the videos, as is done in [<a href="#B22-applsci-12-01145" class="html-bibr">22</a>] and in this work, to guarantee that false alarms are not raised. Since some of the works compared do not describe exhaustively the split process of training and testing samples, it would be necessary to revise that the systems recognize fatigue symptoms and not other characteristics of the subjects.</div><div class='html-p'>Finally, it should be noted that the low false positive rate (0.07) obtained by the system that combines AI and fuzzy logic techniques (alternative II), together with its accuracy value (0.63), indicate that this proposal meets the objectives set in this work: to design a system that can be integrated into an ADAS that is able to detect fatigue states in driving environments and minimizes the false alarms raised.</div></section><section id='sec5dot3-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 5.3. Problems Detected at Preprocessing</h4><div class='html-p'>Apart from the accuracy reported, some problems were detected while testing the alternative based on the combination of deep learning and fuzzy logic, specifically on some tests of the videos from subject 60, which showed a young Asian man wearing glasses. This particular case stood out because at that time, the system made two errors: the awake video was classified as “drowsy”, and the drowsy video was classified as “awake”, so we checked manually what happened.</div><div class='html-p'>The two errors were related to the feature extraction process. <a href="#applsci-12-01145-f013" class="html-fig">Figure 13</a> shows the causes of the error on the awake video: even though landmarks are correctly detected, the points that represent the eyes of the subject are close to each other, which caused the error of the system. The EAR value, which was set at 0.22 at that moment, made the system believe that the eyes were constantly closed, raising an alarm almost immediately. This way, the differences in facial features across all races should be taken into account by the system.</div><div class='html-p'>However, on the drowsy video, the error was caused by a failure of landmark detection. As seen in <a href="#applsci-12-01145-f014" class="html-fig">Figure 14</a>, the eye detection is not aligned with the face of the subject, and when he closes his eyes, the system is unable to detect it. This error could be caused by the changes in illumination, because of the glasses, or by a combination of both, but in any case, it highlights the importance of a good landmark detection system.</div></section><section id='sec5dot4-applsci-12-01145' type=''><h4 class='html-italic' data-nested='2'> 5.4. Future Works and Improvements</h4><div class='html-p'>Since Alternative I uses a neural network that learns the features of the videos by itself, to improve it, we could modify the following:</div><div class='html-p'><ul class='html-bullet'><li><div class='html-p'><b>Training settings</b>. For example, changing the number of epochs or the learning rate.</div></li><li><div class='html-p'><b>Model used for transfer learning</b>. We used EfficientNetB0, which is a model trained for object recognition over the ImageNet database. A domain that could be more similar to the drowsiness detection task could be facial recognition (since in this domain they analyze faces, too), so we could try to use models, such as VGGFace [<a href="#B45-applsci-12-01145" class="html-bibr">45</a>].</div></li><li><div class='html-p'><b>Network’s architecture</b>, especially the section related to the recurrent neural network. GRU is known for being useful for its long-term memory, which helps working with long sequences of data, but the system could benefit from using an architecture specialized in working with massive sequences of data, such as WaveNet [<a href="#B46-applsci-12-01145" class="html-bibr">46</a>].</div></li></ul></div><div class='html-p'>For both alternatives, it could also be useful to add a third class to the classes “awake” and “drowsy”. This new class, which could be named “questionable” as in [<a href="#B12-applsci-12-01145" class="html-bibr">12</a>], could be used to avoid false positives when the model is not 100% sure that the driver is drowsy. To do this, the UTA-RLDD database could be used, since it provides an extra class “low vigilant” where the subjects are not neither completely alert nor completely drowsy.</div><div class='html-p'>Another possible improvement to the system could be to review the fuzzy inference system, adding new inputs and rules. For example, the CNN in charge of yawning detection could be modified to also identify when the driver is talking, since the drowsiness level of a person that is part of a conversation is usually low.</div><div class='html-p'>Finally, to guarantee the effectiveness of the system in a real driving environment, it would be necessary to test it over data where the subjects are actually driving and the driver state is quantifiably binary (awake/drowsy). The UTA-RLDD dataset is extremely useful because it is realistic and shows videos recorded from a similar angle to that which could be used in vehicles, but the subjects are not driving and their symptoms could vary. In this dataset, the subjects were asked to perform one of these three actions: reading, watching something on their computer, or being idle. While reading, for example, the blinking rate is reduced [<a href="#B47-applsci-12-01145" class="html-bibr">47</a>], so the activity performed is relevant when testing the final system.</div></section></section><section id='sec6-applsci-12-01145' type='conclusions'><h2 data-nested='1'> 6. Conclusions</h2><div class='html-p'>In this paper, two different implementations for a driver drowsiness detection system are proposed, where deep learning plays an important role. These systems use images of the driver to identify fatigue symptoms, but instead of predicting whether a driver is tired or not from a single image, in this work, a full sequence of 60 s is used to determine whether the driver is tired or not over the last minute.</div><div class='html-p'>The first solution proposed uses a model based on deep learning for the estimation of the drowsiness level of the driver, using a combination of a convolutional neural network with a recurrent neural network. The second solution uses fuzzy logic for calculating the fatigue but needs to apply artificial intelligence and deep learning techniques to preprocess the data before using the fuzzy inference system.</div><div class='html-p'>Testing was performed using a 5-fold cross-validation on 122 videos that have a duration of approximately 10 min per recording, which are provided by the UTA-RLDD database. The number of raised alarms was counted for each video, verifying in this way whether the system is reliable or not. Neither of the systems reported a satisfying performance, both of them obtaining an accuracy of around 65% over training data and over 60% on test data.</div><div class='html-p'>However, the second alternative, which combines deep learning with fuzzy logic, reported promising results. This system is able to work continuously without bothering the driver when he or she is not drowsy, since among the 60 videos of attentive drivers, there was only one video in which the system raised an alarm incorrectly (raising an unnecessary alarm only in 7% of the cases where the driver was actually alert). This way, the minimization of the false positive rate obtained is considered a success.</div><div class='html-p'>Its accuracy when correctly detecting the drowsiness of the driver, however, needs to be improved, because the system alerted the driver only in approximately 22 out of 61 videos where the subjects were drowsy (36% accuracy). This means that, although the conditions established for the fuzzy system are related to fatigue symptoms and can be used to detect fatigue, they do not represent all of the possible symptoms and thus cannot detect drowsiness on all videos.</div><div class='html-p'>Both systems have great potential, and multiple ways of improving them were identified and will be addressed in the future. Detecting drowsiness from images of the driver is a complex problem that even commercial automotive brands struggle with. Further investigation will be needed before completion, for which this work stands as a solid baseline to improve upon.</div></section> </div> <div class="html-back"> <section class='html-notes'><h2 >Author Contributions</h2><div class='html-p'>Conceptualization, M.P.S.; methodology, J.M.A.-W. and A.S.; software, E.M.; validation, E.M. and A.S.; formal analysis, M.P.S.; investigation, M.P.S. and J.M.A.-W.; resources, A.S.; data curation, J.M.A.-W.; writing—original draft preparation, E.M. and J.M.A.-W.; writing—review and editing, M.P.S. and A.S.; visualization, E.M.; supervision, M.P.S. and A.S.; project administration, A.S.; funding acquisition, A.S. All authors have read and agreed to the published version of the manuscript.</div></section><section class='html-notes'><h2 >Funding</h2><div class='html-p'>This research received no external funding.</div></section><section class='html-notes'><h2 >Institutional Review Board Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Informed Consent Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>The data supporting reported results can be found publicly available at (UTA-RLDD) <a href='https://sites.google.com/view/utarldd/home' target='_blank' rel="noopener noreferrer">https://sites.google.com/view/utarldd/home</a>, accessed on 1 December 2021, (UTA-RLDD dataset [<a href="#B22-applsci-12-01145" class="html-bibr">22</a>], a dataset by Ghoddoosian et al.) and at (YawDD) <a href='https://ieee-dataport.org/open-access/yawdd-yawning-detection-dataset' target='_blank' rel="noopener noreferrer">https://ieee-dataport.org/open-access/yawdd-yawning-detection-dataset</a>, accessed on 1 December 2021, (YawDD dataset [<a href="#B24-applsci-12-01145" class="html-bibr">24</a>], a dataset by Abtahi et al.).</div></section><section id='html-ack' class='html-ack'><h2 >Acknowledgments</h2><div class='html-p'>This work was supported by the Spanish Government under projects PID2019-104793RB-C31, TRA2016-78886-C3-1-R, RTI2018-096036-B-C22, PEAVAUTO-CM-UC3M and by the Region of Madrid’s Excellence Program (EPUC3M17).</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The authors declare no conflict of interest.</div></section><section id='html-references_list'><h2>References</h2><ol class='html-xx'><li id='B1-applsci-12-01145' class='html-x' data-content='1.'>Dinges, D.F. An overview of sleepiness and accidents. <span class='html-italic'>J. Sleep Res.</span> <b>1995</b>, <span class='html-italic'>4</span>, 4–14. [<a href="https://scholar.google.com/scholar_lookup?title=An+overview+of+sleepiness+and+accidents&author=Dinges,+D.F.&publication_year=1995&journal=J.+Sleep+Res.&volume=4&pages=4%E2%80%9314&doi=10.1111/j.1365-2869.1995.tb00220.x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1111/j.1365-2869.1995.tb00220.x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B2-applsci-12-01145' class='html-x' data-content='2.'>Dawson, D.; Reid, K. Fatigue, alcohol and performance impairment. <span class='html-italic'>Nature</span> <b>1997</b>, <span class='html-italic'>388</span>, 235. [<a href="https://scholar.google.com/scholar_lookup?title=Fatigue,+alcohol+and+performance+impairment&author=Dawson,+D.&author=Reid,+K.&publication_year=1997&journal=Nature&volume=388&pages=235&doi=10.1038/40775" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/40775" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B3-applsci-12-01145' class='html-x' data-content='3.'>Williamson, A.M.; Feyer, A.M.; Mattick, R.P.; Friswell, R.; Finlay-Brown, S. Developing measures of fatigue using an alcohol comparison to validate the effects of fatigue on performance. <span class='html-italic'>Accid. Anal. Prev.</span> <b>2001</b>, <span class='html-italic'>33</span>, 313–326. [<a href="https://scholar.google.com/scholar_lookup?title=Developing+measures+of+fatigue+using+an+alcohol+comparison+to+validate+the+effects+of+fatigue+on+performance&author=Williamson,+A.M.&author=Feyer,+A.M.&author=Mattick,+R.P.&author=Friswell,+R.&author=Finlay-Brown,+S.&publication_year=2001&journal=Accid.+Anal.+Prev.&volume=33&pages=313%E2%80%93326&doi=10.1016/S0001-4575(00)00045-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0001-4575(00)00045-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B4-applsci-12-01145' class='html-x' data-content='4.'>Soares, S.; Monteiro, T.; Lobo, A.; Couto, A.; Cunha, L.; Ferreira, S. Analyzing Driver Drowsiness: From Causes to Effects. <span class='html-italic'>Sustainability</span> <b>2020</b>, <span class='html-italic'>12</span>, 1971. [<a href="https://scholar.google.com/scholar_lookup?title=Analyzing+Driver+Drowsiness:+From+Causes+to+Effects&author=Soares,+S.&author=Monteiro,+T.&author=Lobo,+A.&author=Couto,+A.&author=Cunha,+L.&author=Ferreira,+S.&publication_year=2020&journal=Sustainability&volume=12&pages=1971&doi=10.3390/su12051971" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/su12051971" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.mdpi.com/2071-1050/12/5/1971/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B5-applsci-12-01145' class='html-x' data-content='5.'>Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A Survey on Deep Learning: Algorithms, Techniques, and Applications. <span class='html-italic'>ACM Comput. Surv.</span> <b>2018</b>, <span class='html-italic'>51</span>, 1–36. [<a href="https://scholar.google.com/scholar_lookup?title=A+Survey+on+Deep+Learning:+Algorithms,+Techniques,+and+Applications&author=Pouyanfar,+S.&author=Sadiq,+S.&author=Yan,+Y.&author=Tian,+H.&author=Tao,+Y.&author=Reyes,+M.P.&author=Shyu,+M.L.&author=Chen,+S.C.&author=Iyengar,+S.S.&publication_year=2018&journal=ACM+Comput.+Surv.&volume=51&pages=1%E2%80%9336&doi=10.1145/3234150" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1145/3234150" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-applsci-12-01145' class='html-x' data-content='6.'>Najafabadi, M.; Villanustre, F.; Khoshgoftaar, T.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. <span class='html-italic'>J. Big Data</span> <b>2015</b>, <span class='html-italic'>2</span>, 1–21. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+learning+applications+and+challenges+in+big+data+analytics&author=Najafabadi,+M.&author=Villanustre,+F.&author=Khoshgoftaar,+T.&author=Seliya,+N.&author=Wald,+R.&author=Muharemagic,+E.&publication_year=2015&journal=J.+Big+Data&volume=2&pages=1%E2%80%9321&doi=10.1186/s40537-014-0007-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s40537-014-0007-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://journalofbigdata.springeropen.com/track/pdf/10.1186/s40537-014-0007-7" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B7-applsci-12-01145' class='html-x' data-content='7.'>Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. <span class='html-italic'>Commun. ACM</span> <b>2017</b>, <span class='html-italic'>60</span>, 84–90. [<a href="https://scholar.google.com/scholar_lookup?title=ImageNet+Classification+with+Deep+Convolutional+Neural+Networks&author=Krizhevsky,+A.&author=Sutskever,+I.&author=Hinton,+G.E.&publication_year=2017&journal=Commun.+ACM&volume=60&pages=84%E2%80%9390&doi=10.1145/3065386" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1145/3065386" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B8-applsci-12-01145' class='html-x' data-content='8.'>Transfer Learning &amp; Fine-Tuning. Available online: <a href='https://keras.io/guides/transfer_learning/' target='_blank' rel="noopener noreferrer" >https://keras.io/guides/transfer_learning/</a> (accessed on 20 August 2021).</li><li id='B9-applsci-12-01145' class='html-x' data-content='9.'>Roy, A.M.; Bhaduri, J. A Deep Learning Enabled Multi-Class Plant Disease Detection Model Based on Computer Vision. <span class='html-italic'>AI</span> <b>2021</b>, <span class='html-italic'>2</span>, 413–428. [<a href="https://scholar.google.com/scholar_lookup?title=A+Deep+Learning+Enabled+Multi-Class+Plant+Disease+Detection+Model+Based+on+Computer+Vision&author=Roy,+A.M.&author=Bhaduri,+J.&publication_year=2021&journal=AI&volume=2&pages=413%E2%80%93428&doi=10.3390/ai2030026" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ai2030026" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B10-applsci-12-01145' class='html-xx' data-content='10.'>Zadeh, L. Fuzzy logic. <span class='html-italic'>Computer</span> <b>1988</b>, <span class='html-italic'>21</span>, 83–93. [<a href="https://scholar.google.com/scholar_lookup?title=Fuzzy+logic&author=Zadeh,+L.&publication_year=1988&journal=Computer&volume=21&pages=83%E2%80%9393&doi=10.1109/2.53" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/2.53" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B11-applsci-12-01145' class='html-xx' data-content='11.'>Krajewski, J.; Sommer, D.; Trutschel, U.; Edwards, D.; Golz, M. Steering Wheel Behavior Based Estimation of Fatigue. In Proceedings of the Fifth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Big Sky Resort, Big Sky, MT, USA, 22–25 June 2009; pp. 118–124. [<a href="https://scholar.google.com/scholar_lookup?title=Steering+Wheel+Behavior+Based+Estimation+of+Fatigue&conference=Proceedings+of+the+Fifth+International+Driving+Symposium+on+Human+Factors+in+Driver+Assessment,+Training+and+Vehicle+Design&author=Krajewski,+J.&author=Sommer,+D.&author=Trutschel,+U.&author=Edwards,+D.&author=Golz,+M.&publication_year=2009&pages=118%E2%80%93124&doi=10.17077/drivingassessment.1311" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.17077/drivingassessment.1311" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B12-applsci-12-01145' class='html-xx' data-content='12.'>Friedrichs, F.; Yang, B. Drowsiness monitoring by steering and lane data based features under real driving conditions. In Proceedings of the 2010 18th European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010; pp. 209–213. [<a href="https://scholar.google.com/scholar_lookup?title=Drowsiness+monitoring+by+steering+and+lane+data+based+features+under+real+driving+conditions&conference=Proceedings+of+the+2010+18th+European+Signal+Processing+Conference&author=Friedrichs,+F.&author=Yang,+B.&publication_year=2010&pages=209%E2%80%93213" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B13-applsci-12-01145' class='html-xx' data-content='13.'>McDonald, A.D.; Schwarz, C.; Lee, J.D.; Brown, T.L. Real-Time Detection of Drowsiness Related Lane Departures Using Steering Wheel Angle. <span class='html-italic'>Proc. Hum. Factors Ergon. Soc. Annu. Meet.</span> <b>2012</b>, <span class='html-italic'>56</span>, 2201–2205. [<a href="https://scholar.google.com/scholar_lookup?title=Real-Time+Detection+of+Drowsiness+Related+Lane+Departures+Using+Steering+Wheel+Angle&author=McDonald,+A.D.&author=Schwarz,+C.&author=Lee,+J.D.&author=Brown,+T.L.&publication_year=2012&journal=Proc.+Hum.+Factors+Ergon.+Soc.+Annu.+Meet.&volume=56&pages=2201%E2%80%932205&doi=10.1177/1071181312561464" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1177/1071181312561464" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://pdfs.semanticscholar.org/a772/380bff43df036ecb846192854e2cd30ee52c.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B14-applsci-12-01145' class='html-xx' data-content='14.'>Samiee, S.; Azadi, S.; Kazemi, R.; Nahvi, A.; Eichberger, A. Data Fusion to Develop a Driver Drowsiness Detection System with Robustness to Signal Loss. <span class='html-italic'>Sensors</span> <b>2014</b>, <span class='html-italic'>14</span>, 17832–17847. [<a href="https://scholar.google.com/scholar_lookup?title=Data+Fusion+to+Develop+a+Driver+Drowsiness+Detection+System+with+Robustness+to+Signal+Loss&author=Samiee,+S.&author=Azadi,+S.&author=Kazemi,+R.&author=Nahvi,+A.&author=Eichberger,+A.&publication_year=2014&journal=Sensors&volume=14&pages=17832%E2%80%9317847&doi=10.3390/s140917832&pmid=25256113" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/s140917832" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.ncbi.nlm.nih.gov/pubmed/25256113" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>] [<a href="https://www.mdpi.com/1424-8220/14/9/17832/pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B15-applsci-12-01145' class='html-xx' data-content='15.'>Yang, J.H.; Mao, Z.H.; Tijerina, L.; Pilutti, T.; Coughlin, J.F.; Feron, E. Detection of Driver Fatigue Caused by Sleep Deprivation. <span class='html-italic'>IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum.</span> <b>2009</b>, <span class='html-italic'>39</span>, 694–705. [<a href="https://scholar.google.com/scholar_lookup?title=Detection+of+Driver+Fatigue+Caused+by+Sleep+Deprivation&author=Yang,+J.H.&author=Mao,+Z.H.&author=Tijerina,+L.&author=Pilutti,+T.&author=Coughlin,+J.F.&author=Feron,+E.&publication_year=2009&journal=IEEE+Trans.+Syst.+Man+Cybern.%E2%80%94Part+A+Syst.+Hum.&volume=39&pages=694%E2%80%93705&doi=10.1109/TSMCA.2009.2018634" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TSMCA.2009.2018634" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://calhoun.nps.edu/bitstream/10945/41689/1/YangMaoTijerinaPiluttiCoughlinFeron2009.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B16-applsci-12-01145' class='html-xx' data-content='16.'>Sommer, D.; Golz, M. Evaluation of PERCLOS based current fatigue monitoring technologies. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4456–4459. [<a href="https://scholar.google.com/scholar_lookup?title=Evaluation+of+PERCLOS+based+current+fatigue+monitoring+technologies&conference=Proceedings+of+the+2010+Annual+International+Conference+of+the+IEEE+Engineering+in+Medicine+and+Biology&author=Sommer,+D.&author=Golz,+M.&publication_year=2010&pages=4456%E2%80%934459&doi=10.1109/IEMBS.2010.5625960" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/IEMBS.2010.5625960" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-applsci-12-01145' class='html-xx' data-content='17.'>Gao, Y.; Wang, C. Fatigue state detection from multi-feature of eyes. In Proceedings of the 2017 4th International Conference on Systems and Informatics (ICSAI), Hangzhou, China, 11–13 November 2017; pp. 177–181. [<a href="https://scholar.google.com/scholar_lookup?title=Fatigue+state+detection+from+multi-feature+of+eyes&conference=Proceedings+of+the+2017+4th+International+Conference+on+Systems+and+Informatics+(ICSAI)&author=Gao,+Y.&author=Wang,+C.&publication_year=2017&pages=177%E2%80%93181&doi=10.1109/ICSAI.2017.8248285" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ICSAI.2017.8248285" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B18-applsci-12-01145' class='html-xx' data-content='18.'>Ma, X.; Chau, L.P.; Yap, K.H. Depth video-based two-stream convolutional neural networks for driver fatigue detection. In Proceedings of the 2017 International Conference on Orange Technologies (ICOT), Singapore, 8–10 December 2017; pp. 155–158. [<a href="https://scholar.google.com/scholar_lookup?title=Depth+video-based+two-stream+convolutional+neural+networks+for+driver+fatigue+detection&conference=Proceedings+of+the+2017+International+Conference+on+Orange+Technologies+(ICOT)&author=Ma,+X.&author=Chau,+L.P.&author=Yap,+K.H.&publication_year=2017&pages=155%E2%80%93158&doi=10.1109/ICOT.2017.8336111" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ICOT.2017.8336111" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B19-applsci-12-01145' class='html-xx' data-content='19.'>Magán, E.; Ledezma, A.; Sesmero, P.; Sanchis, A. Fuzzy Alarm System based on Human-centered Approach. In Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2020), Prague, Czech Republic, 2–4 May 2020; pp. 448–455. [<a href="https://scholar.google.com/scholar_lookup?title=Fuzzy+Alarm+System+based+on+Human-centered+Approach&conference=Proceedings+of+the+6th+International+Conference+on+Vehicle+Technology+and+Intelligent+Transport+Systems+(VEHITS+2020)&author=Mag%C3%A1n,+E.&author=Ledezma,+A.&author=Sesmero,+P.&author=Sanchis,+A.&publication_year=2020&pages=448%E2%80%93455&doi=10.5220/0009348704480455" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.5220/0009348704480455" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B20-applsci-12-01145' class='html-xx' data-content='20.'>Azim, T.; Jaffar, M.A.; Mirza, A.M. Fully automated real time fatigue detection of drivers through Fuzzy Expert Systems. <span class='html-italic'>Appl. Soft Comput.</span> <b>2014</b>, <span class='html-italic'>18</span>, 25–38. [<a href="https://scholar.google.com/scholar_lookup?title=Fully+automated+real+time+fatigue+detection+of+drivers+through+Fuzzy+Expert+Systems&author=Azim,+T.&author=Jaffar,+M.A.&author=Mirza,+A.M.&publication_year=2014&journal=Appl.+Soft+Comput.&volume=18&pages=25%E2%80%9338&doi=10.1016/j.asoc.2014.01.020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.asoc.2014.01.020" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B21-applsci-12-01145' class='html-xx' data-content='21.'>Bergasa, L.; Nuevo, J.; Sotelo, M.A.; Barea, R.; Guillén, M. Real-time system for monitoring driver vigilance. <span class='html-italic'>IEEE Trans. Intell. Transp. Syst.</span> <b>2006</b>, <span class='html-italic'>7</span>, 63–77. [<a href="https://scholar.google.com/scholar_lookup?title=Real-time+system+for+monitoring+driver+vigilance&author=Bergasa,+L.&author=Nuevo,+J.&author=Sotelo,+M.A.&author=Barea,+R.&author=Guill%C3%A9n,+M.&publication_year=2006&journal=IEEE+Trans.+Intell.+Transp.+Syst.&volume=7&pages=63%E2%80%9377&doi=10.1109/TITS.2006.869598" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/TITS.2006.869598" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.robesafe.com/personal/bergasa/papers/IEEETITS2006.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B22-applsci-12-01145' class='html-xx' data-content='22.'>Ghoddoosian, R.; Galib, M.; Athitsos, V. A Realistic Dataset and Baseline Temporal Model for Early Drowsiness Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Singapore, 8–10 December 2019. [<a href="https://scholar.google.com/scholar_lookup?title=A+Realistic+Dataset+and+Baseline+Temporal+Model+for+Early+Drowsiness+Detection&conference=Proceedings+of+the+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+Workshops&author=Ghoddoosian,+R.&author=Galib,+M.&author=Athitsos,+V.&publication_year=2019" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B23-applsci-12-01145' class='html-xx' data-content='23.'>Tamanani, R.; Muresan, R.; Al-Dweik, A. Estimation of Driver Vigilance Status Using Real-Time Facial Expression and Deep Learning. <span class='html-italic'>IEEE Sens. Lett.</span> <b>2021</b>, <span class='html-italic'>5</span>, 1–4. [<a href="https://scholar.google.com/scholar_lookup?title=Estimation+of+Driver+Vigilance+Status+Using+Real-Time+Facial+Expression+and+Deep+Learning&author=Tamanani,+R.&author=Muresan,+R.&author=Al-Dweik,+A.&publication_year=2021&journal=IEEE+Sens.+Lett.&volume=5&pages=1%E2%80%934&doi=10.1109/LSENS.2021.3070419" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/LSENS.2021.3070419" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B24-applsci-12-01145' class='html-xx' data-content='24.'>Abtahi, S.; Omidyeganeh, M.; Shirmohammadi, S.; Hariri, B. YawDD: Yawning Detection Dataset. <span class='html-italic'>IEEE DataPort</span> <b>2020</b>. [<a href="https://scholar.google.com/scholar_lookup?title=YawDD:+Yawning+Detection+Dataset&author=Abtahi,+S.&author=Omidyeganeh,+M.&author=Shirmohammadi,+S.&author=Hariri,+B.&publication_year=2020&journal=IEEE+DataPort&doi=10.21227/e1qm-hb90" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.21227/e1qm-hb90" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B25-applsci-12-01145' class='html-xx' data-content='25.'>Lorente, M.P.S.; Lopez, E.M.; Florez, L.A.; Espino, A.L.; Martínez, J.A.I.; de Mi-guel, A.S. Explaining Deep Learning-Based Driver Models. <span class='html-italic'>Appl. Sci.</span> <b>2021</b>, <span class='html-italic'>11</span>, 3321. [<a href="https://scholar.google.com/scholar_lookup?title=Explaining+Deep+Learning-Based+Driver+Models&author=Lorente,+M.P.S.&author=Lopez,+E.M.&author=Florez,+L.A.&author=Espino,+A.L.&author=Mart%C3%ADnez,+J.A.I.&author=de+Mi-guel,+A.S.&publication_year=2021&journal=Appl.+Sci.&volume=11&pages=3321&doi=10.3390/app11083321" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/app11083321" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B26-applsci-12-01145' class='html-xx' data-content='26.'>Sipele, O.; Zamora, V.; Ledezma, A.; Sanchis, A.c. Advanced Driver’s Alarms System through Multi-agent Paradigm. In Proceedings of the 2018 3rd IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 3–5 September 2018; pp. 269–275. [<a href="https://scholar.google.com/scholar_lookup?title=Advanced+Driver%E2%80%99s+Alarms+System+through+Multi-agent+Paradigm&conference=Proceedings+of+the+2018+3rd+IEEE+International+Conference+on+Intelligent+Transportation+Engineering+(ICITE)&author=Sipele,+O.&author=Zamora,+V.&author=Ledezma,+A.&author=Sanchis,+A.c.&publication_year=2018&pages=269%E2%80%93275&doi=10.1109/ICITE.2018.8492600" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/ICITE.2018.8492600" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B27-applsci-12-01145' class='html-xx' data-content='27.'>Schiffman, H.R. <span class='html-italic'>Sensation and Perception: An Integrated Approach</span>, 3rd ed.; John Wiley &amp; Sons: Oxford, UK, 1990. [<a href="https://scholar.google.com/scholar_lookup?title=Sensation+and+Perception:+An+Integrated+Approach&author=Schiffman,+H.R.&publication_year=1990" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B28-applsci-12-01145' class='html-xx' data-content='28.'>King, D.E. Dlib-ml: A Machine Learning Toolkit. <span class='html-italic'>J. Mach. Learn. Res.</span> <b>2009</b>, <span class='html-italic'>10</span>, 1755–1758. [<a href="https://scholar.google.com/scholar_lookup?title=Dlib-ml:+A+Machine+Learning+Toolkit&author=King,+D.E.&publication_year=2009&journal=J.+Mach.+Learn.+Res.&volume=10&pages=1755%E2%80%931758" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B29-applsci-12-01145' class='html-xx' data-content='29.'>Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [<a href="https://scholar.google.com/scholar_lookup?title=Histograms+of+oriented+gradients+for+human+detection&conference=Proceedings+of+the+2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+(CVPR%E2%80%9905)&author=Dalal,+N.&author=Triggs,+B.&publication_year=2005&pages=886%E2%80%93893&doi=10.1109/CVPR.2005.177" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/CVPR.2005.177" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://hal.inria.fr/inria-00548512/file/hog_cvpr2005.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B30-applsci-12-01145' class='html-xx' data-content='30.'>Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. <span class='html-italic'>arXiv</span> <b>2019</b>, arXiv:1905.11946. [<a href="https://scholar.google.com/scholar_lookup?title=EfficientNet:+Rethinking+Model+Scaling+for+Convolutional+Neural+Networks&author=Tan,+M.&author=Le,+Q.V.&publication_year=2019&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B31-applsci-12-01145' class='html-xx' data-content='31.'>Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [<a href="https://scholar.google.com/scholar_lookup?title=ImageNet:+A+large-scale+hierarchical+image+database&conference=Proceedings+of+the+2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&author=Deng,+J.&author=Dong,+W.&author=Socher,+R.&author=Li,+L.J.&author=Li,+K.&author=Fei-Fei,+L.&publication_year=2009&pages=248%E2%80%93255&doi=10.1109/CVPR.2009.5206848" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/CVPR.2009.5206848" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://www.image-net.org/papers/imagenet_cvpr09.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B32-applsci-12-01145' class='html-xx' data-content='32.'>Kazemi, V.; Sullivan, J. One millisecond face alignment with an ensemble of regression trees. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1867–1874. [<a href="https://scholar.google.com/scholar_lookup?title=One+millisecond+face+alignment+with+an+ensemble+of+regression+trees&conference=Proceedings+of+the+2014+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&author=Kazemi,+V.&author=Sullivan,+J.&publication_year=2014&pages=1867%E2%80%931874&doi=10.1109/CVPR.2014.241" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/CVPR.2014.241" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://kth.diva-portal.org/smash/get/diva2:713097/FULLTEXT01" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B33-applsci-12-01145' class='html-xx' data-content='33.'>Soukupová, T.; Cech, J. Eye-Blink Detection Using Facial Landmarks. In Proceedings of the 21st Computer Vision Winter Workshop, Rimske Toplice, Slovenia, 3–5 February 2016; pp. 22–29. [<a href="https://scholar.google.com/scholar_lookup?title=Eye-Blink+Detection+Using+Facial+Landmarks&conference=Proceedings+of+the+21st+Computer+Vision+Winter+Workshop&author=Soukupov%C3%A1,+T.&author=Cech,+J.&publication_year=2016&pages=22%E2%80%9329" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B34-applsci-12-01145' class='html-xx' data-content='34.'>Mamdani, E.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. <span class='html-italic'>Int. J. Man-Mach. Stud.</span> <b>1975</b>, <span class='html-italic'>7</span>, 1–13. [<a href="https://scholar.google.com/scholar_lookup?title=An+experiment+in+linguistic+synthesis+with+a+fuzzy+logic+controller&author=Mamdani,+E.&author=Assilian,+S.&publication_year=1975&journal=Int.+J.+Man-Mach.+Stud.&volume=7&pages=1%E2%80%9313&doi=10.1016/S0020-7373(75)80002-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0020-7373(75)80002-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B35-applsci-12-01145' class='html-xx' data-content='35.'>Leekwijck, W.V.; Kerre, E.E. Defuzzification: Criteria and classification. <span class='html-italic'>Fuzzy Sets Syst.</span> <b>1999</b>, <span class='html-italic'>108</span>, 159–178. [<a href="https://scholar.google.com/scholar_lookup?title=Defuzzification:+Criteria+and+classification&author=Leekwijck,+W.V.&author=Kerre,+E.E.&publication_year=1999&journal=Fuzzy+Sets+Syst.&volume=108&pages=159%E2%80%93178&doi=10.1016/S0165-0114(97)00337-0" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0165-0114(97)00337-0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B36-applsci-12-01145' class='html-xx' data-content='36.'>Yassine, N. Artificial Intelligence Techniques for Driver Fatigue Detection. Ph.D. Thesis, Oxford Brookes University, Oxford, UK, 2020. [<a href="https://scholar.google.com/scholar_lookup?title=Artificial+Intelligence+Techniques+for+Driver+Fatigue+Detection&author=Yassine,+N.&publication_year=2020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B37-applsci-12-01145' class='html-xx' data-content='37.'>Adhinata, F.D.; Rakhmadani, D.P.; Wijayanto, D. Fatigue Detection on Face Image Using FaceNet Algorithm and K-Nearest Neighbor Classifier. <span class='html-italic'>J. Inf. Syst. Eng. Bus. Intell.</span> <b>2021</b>, <span class='html-italic'>7</span>, 22–30. [<a href="https://scholar.google.com/scholar_lookup?title=Fatigue+Detection+on+Face+Image+Using+FaceNet+Algorithm+and+K-Nearest+Neighbor+Classifier&author=Adhinata,+F.D.&author=Rakhmadani,+D.P.&author=Wijayanto,+D.&publication_year=2021&journal=J.+Inf.+Syst.+Eng.+Bus.+Intell.&volume=7&pages=22%E2%80%9330&doi=10.20473/jisebi.7.1.22-30" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.20473/jisebi.7.1.22-30" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B38-applsci-12-01145' class='html-xx' data-content='38.'>Nasri, I.; Karrouchi, M.; Snoussi, H.; Kassmi, K.; Messaoudi, A. Detection and Prediction of Driver Drowsiness for the Prevention of Road Accidents Using Deep Neural Networks Techniques. In Proceedings of the 6th International Conference onWireless Technologies, Embedded, and Intelligent Systems (WITS 2020), Fez, Morocco, 14–16 October 2020; pp. 57–64. [<a href="https://scholar.google.com/scholar_lookup?title=Detection+and+Prediction+of+Driver+Drowsiness+for+the+Prevention+of+Road+Accidents+Using+Deep+Neural+Networks+Techniques&conference=Proceedings+of+the+6th+International+Conference+onWireless+Technologies,+Embedded,+and+Intelligent+Systems+(WITS+2020)&author=Nasri,+I.&author=Karrouchi,+M.&author=Snoussi,+H.&author=Kassmi,+K.&author=Messaoudi,+A.&publication_year=2020&pages=57%E2%80%9364" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B39-applsci-12-01145' class='html-xx' data-content='39.'>Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. <span class='html-italic'>Proc. IEEE</span> <b>1998</b>, <span class='html-italic'>86</span>, 2278–2324. [<a href="https://scholar.google.com/scholar_lookup?title=Gradient-Based+Learning+Applied+to+Document+Recognition&author=Lecun,+Y.&author=Bottou,+L.&author=Bengio,+Y.&author=Haffner,+P.&publication_year=1998&journal=Proc.+IEEE&volume=86&pages=2278%E2%80%932324&doi=10.1109/5.726791" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/5.726791" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://pdfs.semanticscholar.org/62d7/9ced441a6c78dfd161fb472c5769791192f6.pdf" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B40-applsci-12-01145' class='html-xx' data-content='40.'>Liu, P.; Chi, H.L.; Li, X.; Guo, J. Effects of dataset characteristics on the performance of fatigue detection for crane operators using hybrid deep neural networks. <span class='html-italic'>Autom. Constr.</span> <b>2021</b>, <span class='html-italic'>132</span>, 103901. [<a href="https://scholar.google.com/scholar_lookup?title=Effects+of+dataset+characteristics+on+the+performance+of+fatigue+detection+for+crane+operators+using+hybrid+deep+neural+networks&author=Liu,+P.&author=Chi,+H.L.&author=Li,+X.&author=Guo,+J.&publication_year=2021&journal=Autom.+Constr.&volume=132&pages=103901&doi=10.1016/j.autcon.2021.103901" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.autcon.2021.103901" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B41-applsci-12-01145' class='html-xx' data-content='41.'>Khan, F.; Islam, R. Drowsiness Driver Detection Using Neural Network on UTA-RLDD Dataset. Available online: <a href='https://github.com/kokfahad/Drowsiness-Driver-Detection—Fahad' target='_blank' rel="noopener noreferrer" >https://github.com/kokfahad/Drowsiness-Driver-Detection---Fahad</a> (accessed on 1 December 2021).</li><li id='B42-applsci-12-01145' class='html-xx' data-content='42.'>Singh, H.K.; Kuusik, A.B.R. Evaluation of Driver Status Assessment System Based on Deep Learning. Ph.D. Thesis, Tallinn University of Technology, Tallinn, Estonia, 2020. [<a href="https://scholar.google.com/scholar_lookup?title=Evaluation+of+Driver+Status+Assessment+System+Based+on+Deep+Learning&author=Singh,+H.K.&author=Kuusik,+A.B.R.&publication_year=2020" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B43-applsci-12-01145' class='html-xx' data-content='43.'>Reddy, B.; Kim, Y.H.; Yun, S.; Seo, C.; Jang, J. Real-Time Driver Drowsiness Detection for Embedded System Using Model Compression of Deep Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 438–445. [<a href="https://scholar.google.com/scholar_lookup?title=Real-Time+Driver+Drowsiness+Detection+for+Embedded+System+Using+Model+Compression+of+Deep+Neural+Networks&conference=Proceedings+of+the+2017+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+Workshops+(CVPRW)&author=Reddy,+B.&author=Kim,+Y.H.&author=Yun,+S.&author=Seo,+C.&author=Jang,+J.&publication_year=2017&pages=438%E2%80%93445&doi=10.1109/CVPRW.2017.59" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/CVPRW.2017.59" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B44-applsci-12-01145' class='html-xx' data-content='44.'>Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A Unified Embedding for Face Recognition and Clustering. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [<a href="https://scholar.google.com/scholar_lookup?title=FaceNet:+A+Unified+Embedding+for+Face+Recognition+and+Clustering&conference=Proceedings+of+the+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&author=Schroff,+F.&author=Kalenichenko,+D.&author=Philbin,+J.&publication_year=2015&pages=815%E2%80%93823&doi=10.1109/CVPR.2015.7298682" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1109/CVPR.2015.7298682" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="http://arxiv.org/pdf/1503.03832" target='_blank' rel="noopener noreferrer">Green Version</a>]</li><li id='B45-applsci-12-01145' class='html-xx' data-content='45.'>Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine Vision Conference, Swansea, UK, 7–10 September 2015. [<a href="https://scholar.google.com/scholar_lookup?title=Deep+Face+Recognition&conference=Proceedings+of+the+British+Machine+Vision+Conference&author=Parkhi,+O.M.&author=Vedaldi,+A.&author=Zisserman,+A.&publication_year=2015" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B46-applsci-12-01145' class='html-xx' data-content='46.'>van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. WaveNet: A Generative Model for Raw Audio. <span class='html-italic'>arXiv</span> <b>2016</b>, arXiv:1609.03499. [<a href="https://scholar.google.com/scholar_lookup?title=WaveNet:+A+Generative+Model+for+Raw+Audio&author=van+den+Oord,+A.&author=Dieleman,+S.&author=Zen,+H.&author=Simonyan,+K.&author=Vinyals,+O.&author=Graves,+A.&author=Kalchbrenner,+N.&author=Senior,+A.&author=Kavukcuoglu,+K.&publication_year=2016&journal=arXiv" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B47-applsci-12-01145' class='html-xx' data-content='47.'>Abusharha, A.A. Changes in blink rate and ocular symptoms during different reading tasks. <span class='html-italic'>Clin. Optom.</span> <b>2017</b>, <span class='html-italic'>9</span>, 133–138. [<a href="https://scholar.google.com/scholar_lookup?title=Changes+in+blink+rate+and+ocular+symptoms+during+different+reading+tasks&author=Abusharha,+A.A.&publication_year=2017&journal=Clin.+Optom.&volume=9&pages=133%E2%80%93138&doi=10.2147/OPTO.S142718" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2147/OPTO.S142718" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.dovepress.com/getfile.php?fileID=39353" target='_blank' rel="noopener noreferrer">Green Version</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="applsci-12-01145-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f001"> <img alt="Applsci 12 01145 g001 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> System overview. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f001" > <div class="html-caption" > <b>Figure 1.</b> System overview.</div> <div class="html-img"><img alt="Applsci 12 01145 g001" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g001.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f002"> <img alt="Applsci 12 01145 g002 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g002.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g002.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Alternative I overview. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f002" > <div class="html-caption" > <b>Figure 2.</b> Alternative I overview.</div> <div class="html-img"><img alt="Applsci 12 01145 g002" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g002.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g002.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g002.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f003"> <img alt="Applsci 12 01145 g003 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g003.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g003.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> Preprocessing of the driver’s face. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f003" > <div class="html-caption" > <b>Figure 3.</b> Preprocessing of the driver’s face.</div> <div class="html-img"><img alt="Applsci 12 01145 g003" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g003.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g003.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g003.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f004"> <img alt="Applsci 12 01145 g004 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g004.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g004.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> EfficientNetB0’s architecture overview. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f004" > <div class="html-caption" > <b>Figure 4.</b> EfficientNetB0’s architecture overview.</div> <div class="html-img"><img alt="Applsci 12 01145 g004" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g004.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g004.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g004.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f005"> <img alt="Applsci 12 01145 g005 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g005.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g005.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Architecture of the model used for drowsiness estimation. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f005" > <div class="html-caption" > <b>Figure 5.</b> Architecture of the model used for drowsiness estimation.</div> <div class="html-img"><img alt="Applsci 12 01145 g005" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g005.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g005.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g005.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f006"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f006"> <img alt="Applsci 12 01145 g006 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g006.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g006.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g006-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f006"></a> </div> </div> <div class="html-fig_description"> <b>Figure 6.</b> Alternative II overview. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f006"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f006" > <div class="html-caption" > <b>Figure 6.</b> Alternative II overview.</div> <div class="html-img"><img alt="Applsci 12 01145 g006" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g006.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g006.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g006.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f007"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f007"> <img alt="Applsci 12 01145 g007 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g007.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g007.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g007-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f007"></a> </div> </div> <div class="html-fig_description"> <b>Figure 7.</b> (<b>left</b>) Face detected by DLIB’s face detection algorithm. (<b>right</b>) Landmarks detected by DLIB’s landmark detection algorithm. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f007"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f007" > <div class="html-caption" > <b>Figure 7.</b> (<b>left</b>) Face detected by DLIB’s face detection algorithm. (<b>right</b>) Landmarks detected by DLIB’s landmark detection algorithm.</div> <div class="html-img"><img alt="Applsci 12 01145 g007" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g007.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g007.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g007.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f008"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f008"> <img alt="Applsci 12 01145 g008 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g008.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g008.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g008-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f008"></a> </div> </div> <div class="html-fig_description"> <b>Figure 8.</b> Architecture of the model used for yawning detection. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f008"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f008" > <div class="html-caption" > <b>Figure 8.</b> Architecture of the model used for yawning detection.</div> <div class="html-img"><img alt="Applsci 12 01145 g008" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g008.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g008.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g008.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f009"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f009"> <img alt="Applsci 12 01145 g009 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g009.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g009.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g009-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f009"></a> </div> </div> <div class="html-fig_description"> <b>Figure 9.</b> Fuzzy sets and membership functions of variable “blinks”. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f009"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f009" > <div class="html-caption" > <b>Figure 9.</b> Fuzzy sets and membership functions of variable “blinks”.</div> <div class="html-img"><img alt="Applsci 12 01145 g009" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g009.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g009.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g009.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f010"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f010"> <img alt="Applsci 12 01145 g010 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g010.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g010.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g010-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f010"></a> </div> </div> <div class="html-fig_description"> <b>Figure 10.</b> Defuzzification example. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f010"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f010" > <div class="html-caption" > <b>Figure 10.</b> Defuzzification example.</div> <div class="html-img"><img alt="Applsci 12 01145 g010" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g010.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g010.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g010.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f011"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f011"> <img alt="Applsci 12 01145 g011 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g011.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g011.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g011-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f011"></a> </div> </div> <div class="html-fig_description"> <b>Figure 11.</b> Accuracy obtained by Alternative I over training data. Minimun value is colored red. Median value is colored yellow. Maximum value is colored green. All other cells are colored proportionally. The best value is shown in bold. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f011"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f011" > <div class="html-caption" > <b>Figure 11.</b> Accuracy obtained by Alternative I over training data. Minimun value is colored red. Median value is colored yellow. Maximum value is colored green. All other cells are colored proportionally. The best value is shown in bold.</div> <div class="html-img"><img alt="Applsci 12 01145 g011" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g011.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g011.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g011.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f012"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f012"> <img alt="Applsci 12 01145 g012 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g012.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g012.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g012-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f012"></a> </div> </div> <div class="html-fig_description"> <b>Figure 12.</b> Accuracy obtained by Alternative II over training data. Minimun value is colored red. Median value is colored yellow. Maximum value is colored green. All other cells are colored proportionally. The best (max. accuracy with min. false positives) values are shown in bold. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f012"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f012" > <div class="html-caption" > <b>Figure 12.</b> Accuracy obtained by Alternative II over training data. Minimun value is colored red. Median value is colored yellow. Maximum value is colored green. All other cells are colored proportionally. The best (max. accuracy with min. false positives) values are shown in bold.</div> <div class="html-img"><img alt="Applsci 12 01145 g012" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g012.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g012.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g012.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f013"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f013"> <img alt="Applsci 12 01145 g013 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g013.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g013.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g013-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f013"></a> </div> </div> <div class="html-fig_description"> <b>Figure 13.</b> (<b>left</b>) Frame of subject 60’s awake video. (<b>right</b>) Landmark detection of the frame. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f013"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f013" > <div class="html-caption" > <b>Figure 13.</b> (<b>left</b>) Frame of subject 60’s awake video. (<b>right</b>) Landmark detection of the frame.</div> <div class="html-img"><img alt="Applsci 12 01145 g013" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g013.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g013.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g013.png" /></div> </div><div class="html-fig-wrap" id="applsci-12-01145-f014"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f014"> <img alt="Applsci 12 01145 g014 550" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g014.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g014.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g014-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#fig_body_display_applsci-12-01145-f014"></a> </div> </div> <div class="html-fig_description"> <b>Figure 14.</b> (<b>left</b>) Frame of subject 60’s drowsy video. (<b>right</b>) Landmark detection of the frame. <!-- <p><a class="html-figpopup" href="#fig_body_display_applsci-12-01145-f014"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id ="fig_body_display_applsci-12-01145-f014" > <div class="html-caption" > <b>Figure 14.</b> (<b>left</b>) Frame of subject 60’s drowsy video. (<b>right</b>) Landmark detection of the frame.</div> <div class="html-img"><img alt="Applsci 12 01145 g014" data-large="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g014.png" data-original="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g014.png" data-lsrc="/applsci/applsci-12-01145/article_deploy/html/images/applsci-12-01145-g014.png" /></div> </div><div class="html-table-wrap" id="applsci-12-01145-t001"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t001'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Inputs FIS. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t001" > <div class="html-caption" ><b>Table 1.</b> Inputs FIS.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' rowspan='2' class='html-align-center' >Variable Name</th><th colspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fuzzy Sets</th></tr><tr ><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>Name</span></th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>Membership Function</span></th></tr></thead><tbody ><tr ><td align='center' valign='middle' rowspan='3' style='border-bottom:solid thin' class='html-align-center' >No. of blinks (<math display='inline'><semantics> <mrow> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> <mi>s</mi> </mrow> </semantics></math>)</td><td align='center' valign='middle' class='html-align-center' >low</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >normal</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >high</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>p</mi> <mo>(</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> <mo>,</mo> <mn>50</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' rowspan='3' style='border-bottom:solid thin' class='html-align-center' >Average duration of blinks, in seconds (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math>)</td><td align='center' valign='middle' class='html-align-center' >low</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>p</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0.10</mn> <mo>,</mo> <mn>0.30</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >normal</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>p</mi> <mo>(</mo> <mn>0.10</mn> <mo>,</mo> <mn>0.30</mn> <mo>,</mo> <mn>0.40</mn> <mo>,</mo> <mn>0.60</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >high</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>p</mi> <mo>(</mo> <mn>0.40</mn> <mo>,</mo> <mn>0.60</mn> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Number of microsleeps (<math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>c</mi> <mi>r</mi> <mi>o</mi> <mi>s</mi> <mi>l</mi> <mi>e</mi> <mi>e</mi> <mi>p</mi> <mi>s</mi> </mrow> </semantics></math>)</td><td align='center' valign='middle' class='html-align-center' >low</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >high</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>p</mi> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Number of yawns (<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math>)</td><td align='center' valign='middle' class='html-align-center' >low</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >high</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>p</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Seconds spent yawning (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> </mrow> </semantics></math>)</td><td align='center' valign='middle' class='html-align-center' >low</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >high</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>30</mn> <mo>,</mo> <mn>30</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t002"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t002'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Output FIS. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t002" > <div class="html-caption" ><b>Table 2.</b> Output FIS.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' rowspan='2' class='html-align-center' >Variable Name</th><th colspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Fuzzy Sets</th></tr><tr ><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>Name</span></th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>Membership Function</span></th></tr></thead><tbody ><tr ><td align='center' valign='middle' rowspan='3' style='border-bottom:solid thin' class='html-align-center' >Drowsiness (<math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math>)</td><td align='center' valign='middle' class='html-align-center' >low</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0.5</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' class='html-align-center' >medium</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >high</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'> <semantics> <mrow> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mo>(</mo> <mn>0.5</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics> </math></td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t003"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t003'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> Rules FIS. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t003" > <div class="html-caption" ><b>Table 3.</b> Rules FIS.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' rowspan='2' class='html-align-center' >Rule Number</th><th colspan='2' align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Rule Description</th></tr><tr ><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>IF</span></th><th align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><span class='html-italic'>THEN</span></th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> medium</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> high</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> medium</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> normal <span class='html-small-caps'>or</span> <math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> high</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>c</mi> <mi>r</mi> <mi>o</mi> <mi>s</mi> <mi>l</mi> <mi>e</mi> <mi>e</mi> <mi>p</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> high</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >6</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> low</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> medium</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >8</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> medium</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >9</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>y</mi> <mi>a</mi> <mi>w</mi> <mi>n</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> high)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> high</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> normal) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> normal) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>c</mi> <mi>r</mi> <mi>o</mi> <mi>s</mi> <mi>l</mi> <mi>e</mi> <mi>e</mi> <mi>p</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low)</td><td align='center' valign='middle' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> low</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >11</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >(<math display='inline'><semantics> <mrow> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>a</mi> <mi>v</mi> <mi>g</mi> <mo>_</mo> <mi>b</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>k</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low) <span class='html-small-caps'>and</span> (<math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>c</mi> <mi>r</mi> <mi>o</mi> <mi>s</mi> <mi>l</mi> <mi>e</mi> <mi>e</mi> <mi>p</mi> <mi>s</mi> </mrow> </semantics></math> <span class='html-small-caps'>is</span> low)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> </mrow> </semantics></math><span class='html-small-caps'>is</span> low</td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t004"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t004'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t004"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 4.</b> Results obtained by Alternative I when using the system over the test data with the best combination of <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t004" > <div class="html-caption" ><b>Table 4.</b> Results obtained by Alternative I when using the system over the test data with the best combination of <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsiness Threshold</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Minimum Time</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Total Accuracy</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.65</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >15</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >8</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.56</td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t005"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t005'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t005"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 5.</b> Cross-validation of the results obtained by Alternative I over train data. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t005" > <div class="html-caption" ><b>Table 5.</b> Cross-validation of the results obtained by Alternative I over train data.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Cross-Validation Experiment</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsiness Threshold</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Minimum Time</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Total Accuracy</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.65</td><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >17</td><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >31</td><td align='center' valign='middle' class='html-align-center' >38</td><td align='center' valign='middle' class='html-align-center' >0.71</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.60</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >19</td><td align='center' valign='middle' class='html-align-center' >20</td><td align='center' valign='middle' class='html-align-center' >29</td><td align='center' valign='middle' class='html-align-center' >30</td><td align='center' valign='middle' class='html-align-center' >0.60</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >55</td><td align='center' valign='middle' class='html-align-center' >22</td><td align='center' valign='middle' class='html-align-center' >22</td><td align='center' valign='middle' class='html-align-center' >26</td><td align='center' valign='middle' class='html-align-center' >27</td><td align='center' valign='middle' class='html-align-center' >0.55</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >26</td><td align='center' valign='middle' class='html-align-center' >12</td><td align='center' valign='middle' class='html-align-center' >22</td><td align='center' valign='middle' class='html-align-center' >38</td><td align='center' valign='middle' class='html-align-center' >0.61</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >32</td><td align='center' valign='middle' class='html-align-center' >46</td><td align='center' valign='middle' class='html-align-center' >18</td><td align='center' valign='middle' class='html-align-center' >0.65</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Average</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>17.2</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>19.4</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>30.8</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>30.2</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>0.62</b></td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t006"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t006'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t006"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 6.</b> Cross-validation of the results obtained by Alternative I over test data. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t006" > <div class="html-caption" ><b>Table 6.</b> Cross-validation of the results obtained by Alternative I over test data.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Cross-Validation Experiment</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsiness Threshold</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Minimum Time</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Total Accuracy</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.65</td><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >6</td><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >6</td><td align='center' valign='middle' class='html-align-center' >8</td><td align='center' valign='middle' class='html-align-center' >0.56</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.60</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >9</td><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.46</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >55</td><td align='center' valign='middle' class='html-align-center' >9</td><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >8</td><td align='center' valign='middle' class='html-align-center' >0.62</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >8</td><td align='center' valign='middle' class='html-align-center' >8</td><td align='center' valign='middle' class='html-align-center' >0.67</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.46</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Average</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>4.8</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>7</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>7.2</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>5.4</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>0.554</b></td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t007"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t007'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t007"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 7.</b> Best results obtained by Alternative II when using the system over the training data. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t007" > <div class="html-caption" ><b>Table 7.</b> Best results obtained by Alternative II when using the system over the training data.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsiness Threshold</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Minimum Time</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Total Accuracy</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >27</td><td align='center' valign='middle' class='html-align-center' >45</td><td align='center' valign='middle' class='html-align-center' >22</td><td align='center' valign='middle' class='html-align-center' >0.69</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >15</td><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >27</td><td align='center' valign='middle' class='html-align-center' >45</td><td align='center' valign='middle' class='html-align-center' >22</td><td align='center' valign='middle' class='html-align-center' >0.69</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >50</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >29</td><td align='center' valign='middle' class='html-align-center' >47</td><td align='center' valign='middle' class='html-align-center' >20</td><td align='center' valign='middle' class='html-align-center' >0.69</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >55</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >29</td><td align='center' valign='middle' class='html-align-center' >47</td><td align='center' valign='middle' class='html-align-center' >20</td><td align='center' valign='middle' class='html-align-center' >0.69</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >30</td><td align='center' valign='middle' class='html-align-center' >48</td><td align='center' valign='middle' class='html-align-center' >19</td><td align='center' valign='middle' class='html-align-center' >0.69</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.50</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >15</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >30</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >48</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >19</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.69</td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t008"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t008'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t008"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 8.</b> Results obtained by Alternative II when using the system over the test data with the best combination of <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t008" > <div class="html-caption" ><b>Table 8.</b> Results obtained by Alternative II when using the system over the test data with the best combination of <math display='inline'><semantics> <mrow> <mi>d</mi> <mi>r</mi> <mi>o</mi> <mi>w</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> <mi>s</mi> <mo>_</mo> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mi>e</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> and <math display='inline'><semantics> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>e</mi> </mrow> </semantics></math>.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsiness Threshold</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Minimum Time</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Total Accuracy</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.52</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.50</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >15</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >1</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >11</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >11</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.52</td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t009"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t009'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t009"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 9.</b> Cross validation of the results obtained by Alternative II over train data. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t009" > <div class="html-caption" ><b>Table 9.</b> Cross validation of the results obtained by Alternative II over train data.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Cross-Validation Experiment</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsiness Threshold</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Minimum Time</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Total Accuracy</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >30</td><td align='center' valign='middle' class='html-align-center' >48</td><td align='center' valign='middle' class='html-align-center' >19</td><td align='center' valign='middle' class='html-align-center' >0.69</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >34</td><td align='center' valign='middle' class='html-align-center' >47</td><td align='center' valign='middle' class='html-align-center' >16</td><td align='center' valign='middle' class='html-align-center' >0.64</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >31</td><td align='center' valign='middle' class='html-align-center' >46</td><td align='center' valign='middle' class='html-align-center' >18</td><td align='center' valign='middle' class='html-align-center' >0.66</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >33</td><td align='center' valign='middle' class='html-align-center' >47</td><td align='center' valign='middle' class='html-align-center' >17</td><td align='center' valign='middle' class='html-align-center' >0.65</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >50–55</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >32</td><td align='center' valign='middle' class='html-align-center' >47</td><td align='center' valign='middle' class='html-align-center' >18</td><td align='center' valign='middle' class='html-align-center' >0.66</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Average</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>1</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>32</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>47</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>17.6</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>0.66</b></td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t010"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t010'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t010"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 10.</b> Cross validation of the results obtained by Alternative II over test data. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t010" > <div class="html-caption" ><b>Table 10.</b> Cross validation of the results obtained by Alternative II over test data.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Cross-Validation Experiment</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsiness Threshold</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Minimum Time</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >FN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TN</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >TP</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Total Accuracy</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.52</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >12</td><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >0.71</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >3</td><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >2</td><td align='center' valign='middle' class='html-align-center' >7</td><td align='center' valign='middle' class='html-align-center' >10</td><td align='center' valign='middle' class='html-align-center' >6</td><td align='center' valign='middle' class='html-align-center' >0.64</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.50</td><td align='center' valign='middle' class='html-align-center' >10–15</td><td align='center' valign='middle' class='html-align-center' >0</td><td align='center' valign='middle' class='html-align-center' >8</td><td align='center' valign='middle' class='html-align-center' >12</td><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.67</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >5</td><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' class='html-align-center' >50–55</td><td align='center' valign='middle' class='html-align-center' >1</td><td align='center' valign='middle' class='html-align-center' >8</td><td align='center' valign='middle' class='html-align-center' >11</td><td align='center' valign='middle' class='html-align-center' >4</td><td align='center' valign='middle' class='html-align-center' >0.63</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>Average</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>-</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>0.8</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>8.2</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>11.2</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>4.2</b></td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' ><b>0.63</b></td></tr></tbody> </table> </div><div class="html-table-wrap" id="applsci-12-01145-t011"> <div class="html-table_wrap_td" > <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href='#table_body_display_applsci-12-01145-t011'> <img alt="Table" data-lsrc="https://www.mdpi.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/2076-3417/12/3/1145/display" href="#table_body_display_applsci-12-01145-t011"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 11.</b> Comparison of results obtained by systems that predict fatigue over UTA-RLDD dataset. </div> </div> <div class="html-table_show mfp-hide " id ="table_body_display_applsci-12-01145-t011" > <div class="html-caption" ><b>Table 11.</b> Comparison of results obtained by systems that predict fatigue over UTA-RLDD dataset.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Model</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Overall Accuracy (Test)</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Awake Videos Accuracy</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Low-Vigilant Accuracy</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Drowsy Videos Accuracy</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Methodology</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Reference</th><th align='center' valign='middle' style='border-bottom:solid thin;border-top:solid thin' class='html-align-center' >Experimentation Notes</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >Our approach: Alternative I</td><td align='center' valign='middle' class='html-align-center' >0.55</td><td align='center' valign='middle' class='html-align-center' >0.60</td><td align='center' valign='middle' class='html-align-center' >N/A</td><td align='center' valign='middle' class='html-align-center' >0.45</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Videos</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >5-fold cross-validation</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Our approach: Alternative II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.63</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.93</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >N/A</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.35</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >HM-LSTM network</td><td align='center' valign='middle' class='html-align-center' >0.65</td><td align='center' valign='middle' class='html-align-center' >0.81</td><td align='center' valign='middle' class='html-align-center' >0.32</td><td align='center' valign='middle' class='html-align-center' >0.82</td><td align='center' valign='middle' rowspan='4' style='border-bottom:solid thin' class='html-align-center' >Videos</td><td align='center' valign='middle' rowspan='4' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B22-applsci-12-01145" class="html-bibr">22</a>]</td><td align='center' valign='middle' rowspan='4' style='border-bottom:solid thin' class='html-align-center' >5-fold cross-validation</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >LSTM network</td><td align='center' valign='middle' class='html-align-center' >0.61</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' class='html-align-center' >-</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >Fully connected layers</td><td align='center' valign='middle' class='html-align-center' >0.57</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' class='html-align-center' >-</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Human judgment</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.58</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.63</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.45</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.65</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >2-stream DNN</td><td align='center' valign='middle' class='html-align-center' >0.63</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' class='html-align-center' >N/A</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Frames</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B23-applsci-12-01145" class="html-bibr">23</a>]</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >5-fold cross-validation (152 sleepy samples, 151 vigilant samples per fold)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN (LeNet)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.92</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >N/A</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN (5 conv. layers)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.69</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.44</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >N/A</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.90</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Frames</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B36-applsci-12-01145" class="html-bibr">36</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5-fold cross-validation</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >FaceNet + SVM</td><td align='center' valign='middle' class='html-align-center' >0.90</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' class='html-align-center' >-</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Frames</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B37-applsci-12-01145" class="html-bibr">37</a>]</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Train: 1000 samples for each class Validation: 100 samples</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >FaceNet + KNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.95</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN (LeNet)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.96</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >N/A</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Frames</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B38-applsci-12-01145" class="html-bibr">38</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >28/60 participants Dataset: 101,793 samples</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN and LSTM (frame segment level)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.43</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Frames</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B40-applsci-12-01145" class="html-bibr">40</a>]</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >70% train, 30% test Dataset is relabelled with every frame and minute as segment units using Karolinska Sleepiness Scale (KSS)</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN and LSTM (minute segment level)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.55</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >-</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Video</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >LSTM</td><td align='center' valign='middle' class='html-align-center' >0.64</td><td align='center' valign='middle' class='html-align-center' >0.40</td><td align='center' valign='middle' class='html-align-center' >N/A</td><td align='center' valign='middle' class='html-align-center' >0.88</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >Frames</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B41-applsci-12-01145" class="html-bibr">41</a>]</td><td align='center' valign='middle' rowspan='2' style='border-bottom:solid thin' class='html-align-center' >A new dataset is created by merging data of all participants 75% train, 25% test</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CNN</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.72</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.63</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >N/A</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.80</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Deep Learning (LSTM)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.63</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.52</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >N/A</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >0.70</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Frames</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B42-applsci-12-01145" class="html-bibr">42</a>]</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >16/60 participants 74% train, 26% test 10 cv to find the best-performed model, which is used for testing. Test: 1591 frames</td></tr></tbody> </table> </div></section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Publisher’s Note:</b> MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.</div></td></tr></table></section> <section id="html-copyright"><br>© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='https://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#f2cdd4939f82c981879098979186cfb4809d9fd7c0c2bfb6a2bbd7c1b3d7c0c2d7c0c0b6809b849780d7c0c2b6809d85819b9c978181d7c0c2b697869791869b9d9cd7c0c2908bd7c0c2b382829e8b9b9c95d7c0c2b6979782d7c0c2be9793809c9b9c95d7c0c2a697919a9c9b83879781d7c0c2869dd7c0c2a1978387979c919781d7c0c29d94d7c0c2bb9f93959781d483879d86c9d4939f82c9909d968bcf9a86868281c8dddd858585dc9f96829bdc919d9fddc3c6c4c3c4c4c2d7c1b3d7c2b3d7c2b3b6809b849780d7c0c2b6809d85819b9c978181d7c0c2b697869791869b9d9cd7c0c2908bd7c0c2b382829e8b9b9c95d7c0c2b6979782d7c0c2be9793809c9b9c95d7c0c2a697919a9c9b83879781d7c0c2869dd7c0c2a1978387979c919781d7c0c29d94d7c0c2bb9f93959781d7c2b3d7c2b3b390818680939186d7c1b3d7c0c2a69a9b81d7c0c2859d8099d7c0c282809781979c8681d7c0c2869a97d7c0c2969784979e9d829f979c86d7c0c29d94d7c0c2939cd7c0c2b3b6b3a1d7c0c2d7c0ca939684939c919796d7c0c296809b849b9c95d7c0c29381819b8186939c9197d7c0c2818b8186979fd7c0cbd7c0c2949d9187819796d7c0c29d9cd7c0c296809b849780d7c0c296809d85819b9c978181d7c0c29697869791869b9d9cd7c0b1d7c0c2859a9d8197d7c0c29d90989791869b8497d7c0c29b81d7c0c2869dd7c0c2939e978086d7c0c296809b84978081d7c0c29d94d7c0c2869a979b80d7c0c296809d85818bd7c0c28186938697d7c0c2869dd7c0c293849d9b96d7c0c2809d9396d7c0c286809394949b91d7c0c29391919b96979c8681dcd7c0c2bb9cd7c0c293d7c0c296809b849b9c95d7c0c2979c849b809d9c9f979c86d7c0b1d7c0c29b86d7c0c29b81d7c0c29c979197818193808bd7c0c2869a9386d7c0c29493869b958797d7c0c29697869791869b9d9cd7c0c29b81d7c0c2829780949d809f9796d7c0c29b9cd7c0c293d7c0c29c9d9cdf9b9c868087819b8497d7c0c285938bd7c0b1d7c0c2939c96d7c0c2869a9386d7c0c2869a97d7c0c296809b849780d7c0c29b81d7c0c29c9d86d7c0c2909d869a97809796d7c0c2859b869ad7c0c2939e93809f81d7c0c2859a979cd7c0c29a97d7c0c29d80d7c0c2819a97d7c0c29b81d7c0c29c9d86d7c0c296809d85818bdcd7c0c2bd8780d7c0c2938282809d93919ad7c0c2869dd7c0c2869a9b81d7c0c29d82979cd7c0c282809d909e979fd7c0c287819781d7c0c281978387979c919781d7c0c29d94d7c0c29b9f93959781d7c0c2869a9386d7c0c2938097d7c0c2c4c2d7c0c281d7c0c29e9d9c95d7c0c2939c96d7c0c2938097d7c0c28097919d80969796d7c0c29b9cd7c0c28187919ad7c0c293d7c0c285938bd7c0c2869a9386d7c0c2869a97d7c0c281879098979186d7c0c4808183879dd7c1b081d7c0c294939197d7c0c29b81d7c0c2849b819b909e97dcd7c0c2a69dd7c0c2969786979186d7c0c2859a97869a9780d7c0c2869a97d7c0c296809b849780d7c0c2819a9d8581d7c0c2818b9f82869d9f81d7c0c29d94d7c0c296809d85819b9c978181d7c0c29d80d7c0c29c9d86d7c0b1d7c0c286859dd7c0c2939e8697809c93869b8497d7c0c2819d9e87869b9d9c81d7c0c2938097d7c0c2969784979e9d829796d7c0b1d7c0c2949d9187819b9c95d7c0c29d9cd7c0c2869a97d7c0c29f9b9c9b9f9b8893869b9d9cd7c0c29d94d7c0c294939e8197d7c0c2829d819b869b849781dcd7c0c2a69a97d7c0c2949b808186d7c0c2939e8697809c93869b8497d7c0c287819781d7c0c293d7c0c2809791878080979c86d7c0c2939c96d7c0c2919d9c849d9e87869b9d9c939ed7c0c29c978780939ed7c0c29c9786859d8099d7c0b1d7c0c2859a9b9e97d7c0c2869a97d7c0c28197919d9c96d7c0c29d9c97d7c0c287819781d7c0c296979782d7c0c29e9793809c9b9c95d7c0c28697919a9c9b83879781d7c0c2869dd7c0c2978a8680939186d7c0c29c879f97809b91d7c0c29497938687809781d7c0c294809d9fd7c0c29b9f93959781d7c0b1d7c0c2859a9b919ad7c0c2938097d7c0c29b9c86809d9687919796d7c0c29b9c869dd7c0c293d7c0c2948788888bd7c0c29e9d959b91df9093819796d7c0c2818b8186979fd7c0c293948697808593809681dcd7c0c2a69a97d7c0c2939191878093918bd7c0c29d9086939b9c9796d7c0c2908bd7c0c2909d869ad7c0c2818b8186979f81d7c0c29b81d7c0c2819b9f9b9e9380d7c1b3d7c0c293809d879c96d7c0c2c4c7d7c0c7d7c0c2939191878093918bd7c0c29d849780d7c0c28680939b9c9b9c95d7c0c296938693d7c0b1d7c0c2939c96d7c0c2c4c2d7c0c7d7c0c2939191878093918bd7c0c29d9cd7c0c286978186d7c0c296938693dcd7c0c2ba9d8597849780d7c0b1d7c0c2869a97d7c0c2948788888bd7c0c29e9d959b91df9093819796d7c0c2818b8186979fd7c0c28186939c9681d7c0c29d8786d7c0c290979193878197d7c0c29b86d7c0c293849d9b9681d7c0c280939b819b9c95d7c0c294939e8197d7c0c2939e93809f81d7c0c2939c96d7c0c2809793919a9781d7c0c293d7c0c2818297919b949b919b868bd7c0c2d7c0ca82809d829d80869b9d9cd7c0c29d94d7c0c2849b96979d81d7c0c29b9cd7c0c2859a9b919ad7c0c2869a97d7c0c296809b849780a9dcdcdcaf" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Driver+Drowsiness+Detection+by+Applying+Deep+Learning+Techniques+to+Sequences+of+Images&amp;hashtags=mdpiapplsci&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1461660&amp;via=Applsci" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1461660&amp;title=Driver%20Drowsiness%20Detection%20by%20Applying%20Deep%20Learning%20Techniques%20to%20Sequences%20of%20Images%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThis%20work%20presents%20the%20development%20of%20an%20ADAS%20%28advanced%20driving%20assistance%20system%29%20focused%20on%20driver%20drowsiness%20detection%2C%20whose%20objective%20is%20to%20alert%20drivers%20of%20their%20drowsy%20state%20to%20avoid%20road%20traffic%20accidents.%20In%20a%20driving%20environment%2C%20it%20is%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1461660" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1461660" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1461660" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Magán, E.; Sesmero, M.P.; Alonso-Weber, J.M.; Sanchis, A. Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images. <em>Appl. Sci.</em> <b>2022</b>, <em>12</em>, 1145. https://doi.org/10.3390/app12031145 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Magán E, Sesmero MP, Alonso-Weber JM, Sanchis A. Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images. <em>Applied Sciences</em>. 2022; 12(3):1145. https://doi.org/10.3390/app12031145 </p> <b>Chicago/Turabian Style</b><br> <p> Magán, Elena, M. Paz Sesmero, Juan Manuel Alonso-Weber, and Araceli Sanchis. 2022. "Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images" <em>Applied Sciences</em> 12, no. 3: 1145. https://doi.org/10.3390/app12031145 </p> <b>APA Style</b><br> <p> Magán, E., Sesmero, M. P., Alonso-Weber, J. M., & Sanchis, A. (2022). Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images. <em>Applied Sciences</em>, <em>12</em>(3), 1145. https://doi.org/10.3390/app12031145 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/applsci/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="730830"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="730830"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="730830"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Magán, E.; Sesmero, M.P.; Alonso-Weber, J.M.; Sanchis, A. Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images. <em>Appl. Sci.</em> <b>2022</b>, <em>12</em>, 1145. https://doi.org/10.3390/app12031145 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Magán E, Sesmero MP, Alonso-Weber JM, Sanchis A. Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images. <em>Applied Sciences</em>. 2022; 12(3):1145. https://doi.org/10.3390/app12031145 </p> <b>Chicago/Turabian Style</b><br> <p> Magán, Elena, M. Paz Sesmero, Juan Manuel Alonso-Weber, and Araceli Sanchis. 2022. "Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images" <em>Applied Sciences</em> 12, no. 3: 1145. https://doi.org/10.3390/app12031145 </p> <b>APA Style</b><br> <p> Magán, E., Sesmero, M. P., Alonso-Weber, J. M., & Sanchis, A. (2022). Driver Drowsiness Detection by Applying Deep Learning Techniques to Sequences of Images. <em>Applied Sciences</em>, <em>12</em>(3), 1145. https://doi.org/10.3390/app12031145 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/applsci">Appl. Sci.</a></em>, EISSN 2076-3417, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/applsci" class="rss-link">RSS</a> </span> <span> <a href="/journal/applsci/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732286508" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks &amp; Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences &amp; Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical &amp; Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer&#039;s Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access &amp; Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#1c233a7d716c276f697e76797f68215a6e7371392e2c51584c55392f5d392e2c392e2e586e756a796e392e2c586e736b6f7572796f6f392e2c587968797f68757372392e2c7e65392e2c5d6c6c706575727b392e2c5879796c392e2c50797d6e7275727b392e2c48797f7472756d69796f392e2c6873392e2c4f796d6979727f796f392e2c737a392e2c55717d7b796f3a6d697368273a7d716c277e737865217468686c6f2633336b6b6b3271786c75327f7371332d282a2d2a2a2c392f5d392c5d392c5d586e756a796e392e2c586e736b6f7572796f6f392e2c587968797f68757372392e2c7e65392e2c5d6c6c706575727b392e2c5879796c392e2c50797d6e7275727b392e2c48797f7472756d69796f392e2c6873392e2c4f796d6979727f796f392e2c737a392e2c55717d7b796f16164874756f392e2c6b736e77392e2c6c6e796f7972686f392e2c687479392e2c78796a7970736c71797268392e2c737a392e2c7d72392e2c5d585d4f392e2c392e247d786a7d727f7978392e2c786e756a75727b392e2c7d6f6f756f687d727f79392e2c6f656f687971392e25392e2c7a737f696f7978392e2c7372392e2c786e756a796e392e2c786e736b6f7572796f6f392e2c787968797f68757372392e5f392e2c6b74736f79392e2c737e76797f68756a79392e2c756f392e2c6873392e2c7d70796e68392e2c786e756a796e6f392e2c737a392e2c687479756e392e2c786e736b6f65392e2c6f687d6879392e2c6873392e2c7d6a737578392e2c6e737d78392e2c686e7d7a7a757f392e2c7d7f7f75787972686f32392e2c5572392e2c7d392e2c786e756a75727b392e2c79726a756e737271797268392e5f392e2c7568392e2c756f392e2c72797f796f6f7d6e65392e2c68747d68392e2c7a7d68757b6979392e2c787968797f68757372392e2c756f392e2c6c796e7a736e717978392e2c7572392e2c7d392e2c727372317572686e696f756a79392e2c6b7d65392e5f392e2c7d7278392e2c68747d68392e2c687479392e2c786e756a796e392e2c756f392e2c727368392e2c7e736874796e7978392e2c6b756874392e2c7d707d6e716f392e2c6b747972392e2c7479392e2c736e392e2c6f7479392e2c756f392e2c727368392e2c786e736b6f6532392e2c53696e392e2c7d6c6c6e737d7f74392e2c6873392e2c6874756f392e2c736c7972392e2c6c6e737e707971392e2c696f796f392e2c6f796d6979727f796f392e2c737a392e2c75717d7b796f392e2c68747d68392e2c7d6e79392e2c2a2c392e2c6f392e2c7073727b392e2c7d7278392e2c7d6e79392e2c6e797f736e787978392e2c7572392e2c6f697f74392e2c7d392e2c6b7d65392e2c68747d68392e2c687479392e2c6f697e76797f6839592e39242c3925256f392e2c7a7d7f79392e2c756f392e2c6a756f757e707932392e2c4873392e2c787968797f68392e2c6b74796874796e392e2c687479392e2c786e756a796e392e2c6f74736b6f392e2c6f65716c6873716f392e2c737a392e2c786e736b6f7572796f6f392e2c736e392e2c727368392e5f392e2c686b73392e2c7d7068796e727d68756a79392e2c6f737069687573726f392e2c7d6e79392e2c78796a7970736c7978392e5f392e2c7a737f696f75727b392e2c7372392e2c687479392e2c717572757175667d68757372392e2c737a392e2c7a7d706f79392e2c6c736f7568756a796f32392e2c487479392e2c7a756e6f68392e2c7d7068796e727d68756a79392e2c696f796f392e2c7d392e2c6e797f696e6e797268392e2c7d7278392e2c7f73726a737069687573727d70392e2c7279696e7d70392e2c7279686b736e77392e5f392e2c6b74757079392e2c687479392e2c6f797f737278392e2c737279392e2c696f796f392e2c7879796c392e2c70797d6e7275727b392e2c68797f7472756d69796f392e2c6873392e2c7964686e7d7f68392e2c726971796e757f392e2c7a797d68696e796f392e2c7a6e7371392e2c75717d7b796f392e5f392e2c6b74757f74392e2c7d6e79392e2c7572686e7378697f7978392e2c75726873392e2c7d392e2c7a69666665392e2c70737b757f317e7d6f7978392e2c6f656f687971392e2c7d7a68796e6b7d6e786f32392e2c487479392e2c7d7f7f696e7d7f65392e2c737e687d75727978392e2c7e65392e2c7e736874392e2c6f656f6879716f392e2c756f392e2c6f757175707d6e392f5d392e2c7d6e73697278392e2c2a29392e29392e2c7d7f7f696e7d7f65392e2c736a796e392e2c686e7d757275727b392e2c787d687d392e5f392e2c7d7278392e2c2a2c392e29392e2c7d7f7f696e7d7f65392e2c7372392e2c68796f68392e2c787d687d32392e2c54736b796a796e392e5f392e2c687479392e2c7a69666665392e2c70737b757f317e7d6f7978392e2c6f656f687971392e2c6f687d72786f392e2c736968392e2c7e797f7d696f79392e2c7568392e2c7d6a7375786f392e2c6e7d756f75727b392e2c7a7d706f79392e2c7d707d6e716f392e2c7d7278392e2c6e797d7f74796f392e2c7d392e2c6f6c797f757a757f756865392e2c392e246c6e736c736e68757372392e2c737a392e2c6a757879736f392e2c7572392e2c6b74757f74392e2c687479392e2c786e756a796e392e2c756f392e2c727368392e2c786e736b6f654732323241" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Driver+Drowsiness+Detection+by+Applying+Deep+Learning+Techniques+to+Sequences+of+Images&amp;hashtags=mdpiapplsci&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1461660&amp;via=Applsci" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F1461660&amp;title=Driver%20Drowsiness%20Detection%20by%20Applying%20Deep%20Learning%20Techniques%20to%20Sequences%20of%20Images%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThis%20work%20presents%20the%20development%20of%20an%20ADAS%20%28advanced%20driving%20assistance%20system%29%20focused%20on%20driver%20drowsiness%20detection%2C%20whose%20objective%20is%20to%20alert%20drivers%20of%20their%20drowsy%20state%20to%20avoid%20road%20traffic%20accidents.%20In%20a%20driving%20environment%2C%20it%20is%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/1461660" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/1461660" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/1461660" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/1461660" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/1461660" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/1461660</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="180" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="96" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="120" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="192" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="96" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="96" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="120" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="168" y="48" width="12" height="12" /> <rect x="180" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="96" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="120" y="84" width="12" height="12" /> <rect x="132" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="192" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="36" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="132" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="168" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="192" y="96" width="12" height="12" /> <rect x="216" y="96" width="12" height="12" /> <rect x="228" y="96" width="12" height="12" /> <rect x="240" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="276" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="48" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="132" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="216" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="24" y="120" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="96" y="120" width="12" height="12" /> <rect x="156" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="36" y="132" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="84" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="132" y="132" width="12" height="12" /> <rect x="144" y="132" width="12" height="12" /> <rect x="156" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="240" y="132" width="12" height="12" /> <rect x="0" y="144" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="48" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="96" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="168" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="252" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="24" y="156" width="12" height="12" /> <rect x="60" y="156" width="12" height="12" /> <rect x="96" y="156" width="12" height="12" /> <rect x="108" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="264" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="48" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="84" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="192" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="60" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="156" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="12" y="192" width="12" height="12" /> <rect x="24" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="84" y="192" width="12" height="12" /> <rect x="96" y="192" width="12" height="12" /> <rect x="132" y="192" width="12" height="12" /> <rect x="144" y="192" width="12" height="12" /> <rect x="156" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="252" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="144" y="204" width="12" height="12" /> <rect x="156" y="204" width="12" height="12" /> <rect x="168" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="108" y="216" width="12" height="12" /> <rect x="132" y="216" width="12" height="12" /> <rect x="144" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="108" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="264" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="120" y="240" width="12" height="12" /> <rect x="132" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="96" y="252" width="12" height="12" /> <rect x="108" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="144" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="228" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="108" y="264" width="12" height="12" /> <rect x="156" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="228" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="132" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="156" y="276" width="12" height="12" /> <rect x="168" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="168" y="288" width="12" height="12" /> <rect x="180" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732286508"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "applsci"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732286508"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732286508'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732286508"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1732286508"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/730830/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <!-- Twitter universal website tag code --> <script> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pa3'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script> $(document).ready(function() { $(document).on('keyup', function (e) { if (e.keyCode == 27) { var hElem = $(this).find(".annotator-adder"); if (hElem.length){ hElem.css({'visibility':'hidden'}); } else { document.querySelector("hypothesis-adder").shadowRoot.querySelector(".annotator-adder").style.visibility = "hidden"; } } }); }); </script> <script> window.hypothesisConfig = function () { return { sidebarAppUrl: 'https://commenting.mdpi.com/app.html', showHighlights: 'whenSidebarOpen' , openSidebar: false , assetRoot: 'https://commentingres.mdpi.com/hypothesis', services: [{ apiUrl: 'https://commenting.mdpi.com/api/', authority: 'mdpi', grantToken: '', doi: '10.3390/app12031145' }], }; }; </script> <script async id="hypothesis_frame"></script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/2076-3417/12/3/1145" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.net/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732286508\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fapp12031145/90"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1732286508\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fapp12031145", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1732286508"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1732286508"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/2076-3417/12/3/1145/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/730830/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, "&quot;") + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/730830/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732286508"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1732286508"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1732286508"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1732286508"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1732286508"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732286508"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e6e6db27cf940a7',t:'MTczMjMzNjI3NS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10