CINXE.COM
Search results for: Taguchi parameter design
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Taguchi parameter design</title> <meta name="description" content="Search results for: Taguchi parameter design"> <meta name="keywords" content="Taguchi parameter design"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Taguchi parameter design" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Taguchi parameter design"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14190</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Taguchi parameter design</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14190</span> Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen">Joseph C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkata%20Karthik%20Jakka"> Venkata Karthik Jakka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding%20processes" title="injection molding processes">injection molding processes</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi%20parameter%20design" title=" taguchi parameter design"> taguchi parameter design</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=high-density%20polyethylene%28HDPE%29" title=" high-density polyethylene(HDPE)"> high-density polyethylene(HDPE)</a> </p> <a href="https://publications.waset.org/abstracts/91601/optimization-of-two-quality-characteristics-in-injection-molding-processes-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14189</span> Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen">Joseph C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Cox"> Joshua Cox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L<sub>18 </sub>Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20Parameter%20Design" title="Taguchi Parameter Design">Taguchi Parameter Design</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Wire%20EDM" title=" Wire EDM"> Wire EDM</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20accuracy" title=" dimensional accuracy"> dimensional accuracy</a> </p> <a href="https://publications.waset.org/abstracts/67231/taguchi-based-optimization-of-surface-roughness-and-dimensional-accuracy-in-wire-edm-process-with-s7-heat-treated-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14188</span> Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Singh">Varsha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishan%20Fuse"> Kishan Fuse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20milling" title=" CNC milling"> CNC milling</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20relational%20analysis" title=" grey relational analysis"> grey relational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-response%20optimization" title=" multi-response optimization"> multi-response optimization</a> </p> <a href="https://publications.waset.org/abstracts/61719/multi-response-optimization-of-cnc-milling-parameters-using-taguchi-based-grey-relational-analysis-for-aa6061-t6-aluminium-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14187</span> Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sky%20Chou">Sky Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design" title=" Taguchi parameter design"> Taguchi parameter design</a> </p> <a href="https://publications.waset.org/abstracts/84336/six-sigma-based-optimization-of-shrinkage-accuracy-in-injection-molding-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14186</span> Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%20Made%20Gatot%20Karohika">I Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/72207/optimization-of-three-layer-corrugated-metal-gasket-by-using-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14185</span> Optimization of Transmission Loss on a Series-Coupled Muffler by Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing-Fung%20Lin">Jing-Fung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jer-Jia%20Sheu"> Jer-Jia Sheu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an approach has been developed for the noise reduction of a muffler. The transmission loss (TL) in the muffler is maximized by the use of a double-chamber muffler, and a baffle with a hole is inserted between chambers. Taguchi method is used to optimize the design for the acoustical performance of the muffler. The TL performance is evaluated by COMSOL software. The excellent parameter combination for the maximum TL is attained as high as 35.30 dB in a wide frequency range from 10 Hz to 1400 Hz. The influence sequence of four parameters on TL is determined by the range analysis. The effects of length and expansion ratio of the first chamber on TL performance for the excellent program were discussed. Comparisons of the TL results from different designs are made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle" title=" baffle"> baffle</a>, <a href="https://publications.waset.org/abstracts/search?q=chamber" title=" chamber"> chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=muffler" title=" muffler"> muffler</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20loss" title=" transmission loss"> transmission loss</a> </p> <a href="https://publications.waset.org/abstracts/150143/optimization-of-transmission-loss-on-a-series-coupled-muffler-by-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14184</span> Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20K.%20Abbass">Muna K. Abbass</a>, <a href="https://publications.waset.org/abstracts/search?q=Laith%20A.%20Mohammed"> Laith A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muntaha%20K.%20Abbas"> Muntaha K. Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Li%20base%20alloy" title="Al-Li base alloy">Al-Li base alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature "> temperature </a> </p> <a href="https://publications.waset.org/abstracts/11322/optimizing-oxidation-process-parameters-of-al-li-base-alloys-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14183</span> Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjian%20Chen">Anjian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=six-sigma" title=" six-sigma"> six-sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/89931/optimization-of-surface-roughness-in-additive-manufacturing-processes-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14182</span> Optimization of Parameters for Electrospinning of Pan Nanofibers by Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Karanfil%20Celep">Gamze Karanfil Celep</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of polymer concentration and electrospinning process parameters on the average diameters of electrospun polyacrylonitrile (PAN) nanofibers were experimentally investigated. Besides, mechanical and thermal properties of PAN nanofibers were examined by tensile test and thermogravimetric analysis (TGA), respectively. For this purpose, the polymer concentration, solution feed rate, supply voltage and tip-to-collector distance were determined as the control factors. To succeed these aims, Taguchi’s L16 orthogonal design (4 parameters, 4 level) was employed for the experimental design. Optimal electrospinning conditions were defined using the signal-to-noise (S/N) ratio that was calculated from diameters of the electrospun PAN nanofibers according to "the-smaller-the-better" approachment. In addition, analysis of variance (ANOVA) was evaluated to conclude the statistical significance of the process parameters. The smallest diameter of PAN nanofibers was observed. According to the S/N ratio response results, the most effective parameter on finding out of nanofiber diameter was determined. Finally, the Taguchi design of experiments method has been found to be an effective method to statistically optimize the critical electrospinning parameters used in nanofiber production. After determining the optimum process parameters of nanofiber production, electrical conductivity and fuel cell performance of electrospun PAN nanofibers on the carbon papers will be evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title="nanofiber">nanofiber</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/59230/optimization-of-parameters-for-electrospinning-of-pan-nanofibers-by-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14181</span> Optimizing of Machining Parameters of Plastic Material Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jumazulhisham%20Abdul%20Shukor">Jumazulhisham Abdul Shukor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Sazali%20Said"> Mohd. Sazali Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshanizah%20Harun"> Roshanizah Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuib%20Husin"> Shuib Husin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Razlee%20Ab%20Kadir"> Ahmad Razlee Ab Kadir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper applies Taguchi Optimization Method in determining the best machining parameters for pocket milling process on Polypropylene (PP) using CNC milling machine where the surface roughness is considered and the Carbide inserts cutting tool are used. Three machining parameters; speed, feed rate and depth of cut are investigated along three levels; low, medium and high of each parameter (Taguchi Orthogonal Arrays). The setting of machining parameters were determined by using Taguchi Method and the Signal-to-Noise (S/N) ratio are assessed to define the optimal levels and to predict the effect of surface roughness with assigned parameters based on L9. The final experimental outcomes are presented to prove the optimization parameters recommended by manufacturer are accurate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inserts" title="inserts">inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20process" title=" milling process"> milling process</a>, <a href="https://publications.waset.org/abstracts/search?q=signal-to-noise%20%28S%2FN%29%20ratio" title=" signal-to-noise (S/N) ratio"> signal-to-noise (S/N) ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20Optimization%20Method" title=" Taguchi Optimization Method"> Taguchi Optimization Method</a> </p> <a href="https://publications.waset.org/abstracts/18108/optimizing-of-machining-parameters-of-plastic-material-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14180</span> Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjeet%20Singh">Gurjeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Pradhan"> M. K. Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Verma"> Ajay Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20moulding" title="injection moulding">injection moulding</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-propylene" title=" poly-propylene"> poly-propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a> </p> <a href="https://publications.waset.org/abstracts/39417/effect-of-injection-moulding-process-parameter-on-tensile-strength-of-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14179</span> Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sky%20Chou">Sky Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index C<sub>p</sub> and C<sub>pk</sub> for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L<sub>9</sub> orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNC%20machining" title="CNC machining">CNC machining</a>, <a href="https://publications.waset.org/abstracts/search?q=six%20sigma" title=" six sigma"> six sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20methodology" title=" Taguchi methodology"> Taguchi methodology</a> </p> <a href="https://publications.waset.org/abstracts/72502/taguchi-based-six-sigma-approach-to-optimize-surface-roughness-for-milling-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14178</span> Optimisation of Pin Fin Heat Sink Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Chougule">N. K. Chougule</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20V.%20Parishwad"> G. V. Parishwad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pin%20Fin%20Heat%20Sink%20%28PFHS%29" title="Pin Fin Heat Sink (PFHS)">Pin Fin Heat Sink (PFHS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a> </p> <a href="https://publications.waset.org/abstracts/42824/optimisation-of-pin-fin-heat-sink-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14177</span> Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weinian%20Wang">Weinian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNC%20milling%20operation" title="CNC milling operation">CNC milling operation</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20turning%20operation" title=" CNC turning operation"> CNC turning operation</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design" title=" Taguchi parameter design"> Taguchi parameter design</a> </p> <a href="https://publications.waset.org/abstracts/89929/optimization-of-surface-roughness-in-turning-process-utilizing-live-tooling-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14176</span> Optimization of Processing Parameters of Acrylonitrile–Butadiene–Styrene Sheets Integrated by Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Sadat%20Miri">Fatemeh Sadat Miri</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Ehsani"> Morteza Ehsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Farshid%20Hosseini"> Seyed Farshid Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research is concerned with the optimization of extrusion parameters of ABS sheets by the Taguchi experimental design method. In this design method, three parameters of % recycling ABS, processing temperature and degassing time on mechanical properties, hardness, HDT, and color matching of ABS sheets were investigated. The variations of this research are the dosage of recycling ABS, processing temperature, and degassing time. According to experimental test data, the highest level of tensile strength and HDT belongs to the sample with 5% recycling ABS, processing temperature of 230°C, and degassing time of 3 hours. Additionally, the minimum level of MFI and color matching belongs to this sample, too. The present results are in good agreement with the Taguchi method. Based on the outcomes of the Taguchi design method, degassing time has the most effect on the mechanical properties of ABS sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS" title="ABS">ABS</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/174448/optimization-of-processing-parameters-of-acrylonitrile-butadiene-styrene-sheets-integrated-by-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14175</span> Reliability Enhancement by Parameter Design in Ferrite Magnet Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Won%20Jung">Won Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Emri"> Wan Emri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite%20magnet" title="ferrite magnet">ferrite magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20optimization" title=" process optimization"> process optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/14217/reliability-enhancement-by-parameter-design-in-ferrite-magnet-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14174</span> Analysis of a CO₂ Two-Phase Ejector Performances with Taguchi and Anova Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Megdouli">Karima Megdouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ejector, a central element within the CO₂ transcritical ejection refrigeration system, holds significant importance in enhancing refrigeration capacity and minimizing compressor power usage. This study's objective is to introduce a technique for enhancing the effectiveness of the CO₂ transcritical two-phase ejector, utilizing Taguchi and ANOVA analysis. The investigation delves into the impact of geometric parameters, secondary flow temperature, and primary flow pressure on the efficiency of the ejector. Results indicate that employing a combination of Taguchi and ANOVA offers increased reliability and superior performance when optimizing the design of the CO₂ two-phase ejector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ejector" title="ejector">ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic" title=" supersonic"> supersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi" title=" Taguchi"> Taguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/173279/analysis-of-a-co2-two-phase-ejector-performances-with-taguchi-and-anova-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14173</span> A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Chen">Joseph Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hundal"> N. Hundal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title="surface roughness">surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design" title=" Taguchi parameter design"> Taguchi parameter design</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20center" title=" turning center"> turning center</a>, <a href="https://publications.waset.org/abstracts/search?q=turn-milling%20operations" title=" turn-milling operations"> turn-milling operations</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20machining%20center" title=" vertical machining center"> vertical machining center</a> </p> <a href="https://publications.waset.org/abstracts/5128/a-systematic-approach-for-identifying-turning-center-capabilities-with-vertical-machining-center-in-milling-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14172</span> Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amara%20Prakasa%20Rao">Amara Prakasa Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20S.%20N.%20Sarma"> N. V. S. N. Sarma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array%20factor" title="array factor">array factor</a>, <a href="https://publications.waset.org/abstracts/search?q=beamforming" title=" beamforming"> beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=null%20placement" title=" null placement"> null placement</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20method" title=" optimization method"> optimization method</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20array" title=" orthogonal array"> orthogonal array</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20antenna%20system" title=" smart antenna system"> smart antenna system</a> </p> <a href="https://publications.waset.org/abstracts/14589/linear-array-geometry-synthesis-with-minimum-sidelobe-level-and-null-control-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14171</span> Application of Generalized Taguchi and Design of Experiment Methodology for Rebar Production at an Integrated Steel Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20V.%20S.%20P.%20Sastry">S. B. V. S. P. Sastry</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20S.%20Kesava%20Rao"> V. V. S. Kesava Rao </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, x-ray impact of Taguchi method and design of experiment philosophy to project relationship between various factors leading to output yield strength of rebar is studied. In bar mill of an integrated steel plant, there are two production lines called as line 1 and line 2. The metallic properties e.g. yield strength of finished product of the same material is varying for a particular grade material when rolled simultaneously in both the lines. A study has been carried out to set the process parameters at optimal level for obtaining equal value of yield strength simultaneously for both lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bar%20mill" title="bar mill">bar mill</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi" title=" taguchi"> taguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20strength" title=" yield strength"> yield strength</a> </p> <a href="https://publications.waset.org/abstracts/48018/application-of-generalized-taguchi-and-design-of-experiment-methodology-for-rebar-production-at-an-integrated-steel-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14170</span> Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineeth%20G.%20Kuriakose">Vineeth G. Kuriakose</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Li"> Ye Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L<sub>9</sub> Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability C<sub>p</sub> and the process capability index C<sub>pk</sub> were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title="surface roughness">surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design" title=" Taguchi parameter design"> Taguchi parameter design</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20turning" title=" CNC turning"> CNC turning</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20milling" title=" CNC milling"> CNC milling</a> </p> <a href="https://publications.waset.org/abstracts/98030/taguchi-based-surface-roughness-optimization-for-slotted-and-tapered-cylindrical-products-in-milling-and-turning-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14169</span> Adsorption of Chromium Ions from Aqueous Solution by Carbon Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Heydari">S. Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sharififard"> H. Sharififard</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nabavinia"> M. Nabavinia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kiani"> H. Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Parvizi"> M. Parvizi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid industrialization has led to increased disposal of heavy metals into the environment. Activated carbon adsorption has proven to be an effective process for the removal of trace metal contaminants from aqueous media. This paper was investigated chromium adsorption efficiency by commercial activated carbon. The sorption studied as a function of activated carbon particle size, dose of activated carbon and initial pH of solution. Adsorption tests for the effects of these factors were designed with Taguchi approach. According to the Taguchi parameter design methodology, L9 orthogonal array was used. Analysis of experimental results showed that the most influential factor was initial pH of solution. The optimum conditions for chromium adsorption by activated carbons were found to be as follows: Initial feed pH 6, adsorbent particle size 0.412 mm and activated carbon dose 6 g/l. Under these conditions, nearly %100 of chromium ions was adsorbed by activated carbon after 2 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/3442/adsorption-of-chromium-ions-from-aqueous-solution-by-carbon-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14168</span> Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Patil">Vinay Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Kekade"> Swapnil Kekade</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Supare"> Ashish Supare</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Pawar"> Vinayak Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shital%20Jadhav"> Shital Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Singh"> Rajkumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conventional%20turning" title="conventional turning">conventional turning</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=S%2FN%20ratio" title=" S/N ratio"> S/N ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=bainitic%20steel%20machining" title=" bainitic steel machining"> bainitic steel machining</a> </p> <a href="https://publications.waset.org/abstracts/15099/optimization-of-process-parameters-by-using-taguchi-method-for-bainitic-steel-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14167</span> Effect of Process Parameters on Tensile Strength of Aluminum Alloy ADC 10 Produced through Ceramic Shell Investment Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh">Balwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Castings are produced by using aluminum alloy ADC 10 through the process of Ceramic Shell Investment Casting. Experiments are conducted as per the Taguchi L9 orthogonal array. In order to evaluate the effect of process parameters such as mould preheat temperature, preheat time, firing temperature and pouring temperature on surface roughness of ceramic shell investment castings, the Taguchi parameter design and optimization approach is used. Plots of means of significant factors and S/N ratios have been used to determine the best relationship between the responses and model parameters. It is found that the pouring temperature is the most significant factor. The best tensile strength of aluminum alloy ADC 10 is given by 150 ºC shell preheat temperature, 45 minutes preheat time, 900 ºC firing temperature, 650 ºC pouring temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investment%20casting" title="investment casting">investment casting</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20preheat%20temperature" title=" shell preheat temperature"> shell preheat temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=firing%20temperature" title=" firing temperature"> firing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/94264/effect-of-process-parameters-on-tensile-strength-of-aluminum-alloy-adc-10-produced-through-ceramic-shell-investment-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14166</span> An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirasak%20Panyaphirawat">Thirasak Panyaphirawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Pairoj%20Sapsmarnwong"> Pairoj Sapsmarnwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Teeratas%20Pornyungyuen"> Teeratas Pornyungyuen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title="design of experiment">design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20design" title=" Taguchi design"> Taguchi design</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis%20of%20variance" title=" analysis of variance"> analysis of variance</a>, <a href="https://publications.waset.org/abstracts/search?q=machining%20parameters" title=" machining parameters"> machining parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20boring%20tool" title=" horizontal boring tool"> horizontal boring tool</a> </p> <a href="https://publications.waset.org/abstracts/12992/an-optimization-of-machine-parameters-for-modified-horizontal-boring-tool-using-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14165</span> Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chikwendu%20Okpala">Charles Chikwendu Okpala</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Chukwutoo%20Ihueze"> Christopher Chukwutoo Ihueze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20production%20system" title="lean production system">lean production system</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20minute%20exchange%20of%20dies" title=" single minute exchange of dies"> single minute exchange of dies</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20to%20noise%20ratio" title=" signal to noise ratio"> signal to noise ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20robust%20design" title=" Taguchi robust design"> Taguchi robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/97907/taguchi-robust-design-for-optimal-setting-of-process-wastes-parameters-in-an-automotive-parts-manufacturing-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14164</span> Design and Optimization for a Compliant Gripper with Force Regulation Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nhat%20Linh%20Ho">Nhat Linh Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh-Phong%20Dao"> Thanh-Phong Dao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Chour%20Huang"> Shyh-Chour Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hieu%20Giang%20Le"> Hieu Giang Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array <em>L<sub>9</sub></em> is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexure%20hinge" title="flexure hinge">flexure hinge</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20mechanism" title=" compliant mechanism"> compliant mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=compliant%20gripper" title=" compliant gripper"> compliant gripper</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20regulation%20mechanism" title=" force regulation mechanism"> force regulation mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/61596/design-and-optimization-for-a-compliant-gripper-with-force-regulation-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14163</span> Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title="cascade refrigeration system">cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20area" title=" heat transfer area"> heat transfer area</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20solution" title=" optimal solution"> optimal solution</a> </p> <a href="https://publications.waset.org/abstracts/12558/analysis-of-heat-exchanger-area-of-two-stage-cascade-refrigeration-system-using-taguchi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14162</span> Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title="cascade refrigeration system">cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20area" title=" heat transfer area"> heat transfer area</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20solution" title=" optimal solution"> optimal solution</a> </p> <a href="https://publications.waset.org/abstracts/10978/analysis-of-heat-exchanger-area-of-two-stage-cascade-refrigeration-system-using-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14161</span> Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Kumar%20Ponnappan">Harish Kumar Ponnappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L<sub>9 </sub>orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=live%20tooling" title="live tooling">live tooling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=taguchi%20analysis" title=" taguchi analysis"> taguchi analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20milling%20operation" title=" CNC milling operation"> CNC milling operation</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20turning%20operation" title=" CNC turning operation"> CNC turning operation</a> </p> <a href="https://publications.waset.org/abstracts/113808/optimization-of-surface-finish-in-milling-operation-using-live-tooling-via-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=472">472</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=473">473</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Taguchi%20parameter%20design&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>