CINXE.COM
Search results for: spacecraft disposal
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spacecraft disposal</title> <meta name="description" content="Search results for: spacecraft disposal"> <meta name="keywords" content="spacecraft disposal"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spacecraft disposal" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spacecraft disposal"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 677</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spacecraft disposal</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">557</span> Multi-Tooled Robotic Hand for Tele-Operation of Explosive Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faik%20Derya%20Ince">Faik Derya Ince</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Topgul"> Ugur Topgul</a>, <a href="https://publications.waset.org/abstracts/search?q=Alp%20%20Gunay"> Alp Gunay</a>, <a href="https://publications.waset.org/abstracts/search?q=Can%20Bayoglu"> Can Bayoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dante%20J.%20Dorantes-Gonzalez"> Dante J. Dorantes-Gonzalez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Explosive attacks are arguably the most lethal threat that may occur in terrorist attacks. In order to counteract this issue, explosive ordnance disposal operators put their lives on the line to dispose of a possible improvised explosive device. Robots can make the disposal process more accurately and saving human lives. For this purpose, there is a demand for more accurate and dexterous manipulating robotic hands that can be teleoperated from a distance. The aim of this project is to design a robotic hand that contains two active and two passive DOF for each finger, as well as a minimum set of tools for mechanical cutting and screw driving within the same robotic hand. Both hand and toolset, are teleoperated from a distance from a haptic robotic glove in order to manipulate dangerous objects such as improvised explosive devices. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the robotic hand and toolset design. Novel, dexterous and robust solutions for the fingers were obtained, and six servo motors are used in total to remotely control the multi-tooled robotic hand. This project is still undergoing and presents currents results. Future research steps are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Explosive%20Manipulation" title="Explosive Manipulation">Explosive Manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Robotic%20Hand" title=" Robotic Hand"> Robotic Hand</a>, <a href="https://publications.waset.org/abstracts/search?q=Tele-Operation" title=" Tele-Operation"> Tele-Operation</a>, <a href="https://publications.waset.org/abstracts/search?q=Tool%20Integration" title=" Tool Integration"> Tool Integration</a> </p> <a href="https://publications.waset.org/abstracts/123898/multi-tooled-robotic-hand-for-tele-operation-of-explosive-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">556</span> Wastewater from the Food Industry: Characteristics and Possibilities of Sediments on the Basis of the Dairy Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Ga%C5%82wa-Widera">Monika Gałwa-Widera</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Kwarciak%E2%80%93Koz%C5%82owska"> Anna Kwarciak–Kozłowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucyna%20S%C5%82awik-Dembiczak"> Lucyna Sławik-Dembiczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Issues relating to management of sewage sludge from small and medium-sized wastewater treatment plants is a vital issue, which deal with such scholars as well as those directly involved in the issue of wastewater treatment and management of sedimentary. According to the Law on Waste generating waste is responsible for such processing to the product obtained impacted on the environment minimally. In small and medium-sized wastewater treatment plants have to deal with the technology of sludge management technology is far from drying and incineration of sewage sludge. So here you can use other technologies. One of them is the composting of sewage sludge. It is a process of processing and disposal of sewage sludge that effectively their disposal. By composting, we can obtain a product that contains significant amounts of organic matter to assess the fertilizing qualities. Modifications to the ongoing process in biological reactors allow for more rapid receipt of a wholesome product. The research presented and discussed in this publication relate to assist the composting process of sewage sludge and biomass structural material in the shares of rates: 35% biomass, 55% sludge, 10% structural material using a method which involves the re-spawning batch composting physical methods leachate from the composting process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=industry" title=" industry"> industry</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/17534/wastewater-from-the-food-industry-characteristics-and-possibilities-of-sediments-on-the-basis-of-the-dairy-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">555</span> Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masaumi%20Nakahara">Masaumi Nakahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sou%20Watanabe"> Sou Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromichi%20Ogi"> Hiromichi Ogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsuhiro%20Shibata"> Atsuhiro Shibata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazunori%20Nomura"> Kazunori Nomura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20level%20radioactive%20solid%20waste" title="high level radioactive solid waste">high level radioactive solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20reactor%20fuel%20reprocessing" title=" advanced reactor fuel reprocessing"> advanced reactor fuel reprocessing</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20waste%20disposal" title=" radioactive waste disposal"> radioactive waste disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20cycle%20technology" title=" nuclear fuel cycle technology"> nuclear fuel cycle technology</a> </p> <a href="https://publications.waset.org/abstracts/104543/waste-management-in-a-hot-laboratory-of-japan-atomic-energy-agency-3-volume-reduction-and-stabilization-of-solid-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">554</span> Sustainability and Clustering: A Bibliometric Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20M.%20Assef">Fernanda M. Assef</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Teresinha%20A.%20Steiner"> Maria Teresinha A. Steiner</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Gabriel%20F.%20Barros"> David Gabriel F. Barros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Review researches are useful in terms of analysis of research problems. Between the types of review documents, we commonly find bibliometric studies. This type of application often helps the global visualization of a research problem and helps academics worldwide to understand the context of a research area better. In this document, a bibliometric view surrounding clustering techniques and sustainability problems is presented. The authors aimed at which issues mostly use clustering techniques, and, even which sustainability issue would be more impactful on today’s moment of research. During the bibliometric analysis, we found ten different groups of research in clustering applications for sustainability issues: Energy; Environmental; Non-urban planning; Sustainable Development; Sustainable Supply Chain; Transport; Urban Planning; Water; Waste Disposal; and, Others. And, by analyzing the citations of each group, we discovered that the Environmental group could be classified as the most impactful research cluster in the area mentioned. Now, after the content analysis of each paper classified in the environmental group, we found that the k-means technique is preferred for solving sustainability problems with clustering methods since it appeared the most amongst the documents. The authors finally conclude that a bibliometric assessment could help indicate a gap of researches on waste disposal – which was the group with the least amount of publications – and the most impactful research on environmental problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bibliometric%20assessment" title="bibliometric assessment">bibliometric assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=territorial%20partitioning" title=" territorial partitioning"> territorial partitioning</a> </p> <a href="https://publications.waset.org/abstracts/125972/sustainability-and-clustering-a-bibliometric-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">553</span> Designing a Waste Management System for an Urban Area in Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20C.%20K.%20Gunathilaka">R. A. C. K. Gunathilaka</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20T.%20D.%20Peiris"> P. T. D. Peiris</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20M.%20Jayawardane"> O. S. M. Jayawardane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20I.%20Kulathunga"> S. M. A. I. Kulathunga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste management is one of the predominant aspects of resource utilization and sustainability. The absence of a proper waste management system may lead to adverse troubles and catastrophic tragedies ultimately. Sri Lanka has faced different predicaments for a long time due to the unavailability of a systematic manner in the waste management process. The main objective of this research is to design an efficient waste management system for an urban area in Sri Lanka. The research was dispersed into three categories as biodegradable, non-biodegradable, and hazardous waste. Different waste materials were researched for each category by probing the entire process from the beginning to final disposal for perceiving the prevailing problems in the waste management system. The distinctive segment of this research is comparing efficient foreign waste management strategies with efficacious approaches on increasing public commitment to uncovering cognizable ways of implementing such a system in the Sri Lankan context. Waste management systems in Singapore, Japan, Malaysia, USA, Maldives, and China incorporated their exemplary plan of action on tackling the waste problem in diverse sectors were studied. Ultimately, three coherent models were proposed for each category pertaining to the concepts of circular economy and lean manufacturing from the inception to the final disposal of the waste. This research also includes concealed financial opportunities regarding waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title="circular economy">circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20waste%20management%20system" title=" efficient waste management system"> efficient waste management system</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title=" lean manufacturing"> lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20area" title=" urban area"> urban area</a> </p> <a href="https://publications.waset.org/abstracts/141541/designing-a-waste-management-system-for-an-urban-area-in-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">552</span> Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Jabli">H. Al-Jabli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20saline%20brine" title="high saline brine">high saline brine</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-melting%20process" title=" freeze-melting process"> freeze-melting process</a>, <a href="https://publications.waset.org/abstracts/search?q=ice%20crystallization" title=" ice crystallization"> ice crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=brine%20disposal%20process" title=" brine disposal process"> brine disposal process</a> </p> <a href="https://publications.waset.org/abstracts/62639/experimental-investigation-on-freeze-concentration-process-desalting-for-highly-saline-brines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">551</span> 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omer%20Burak%20Iskender">Omer Burak Iskender</a>, <a href="https://publications.waset.org/abstracts/search?q=Keck%20Voon%20Ling"> Keck Voon Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Dubanchet"> Vincent Dubanchet</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Simonini"> Luca Simonini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20quaternion" title="dual quaternion">dual quaternion</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20experimental%20test" title=" real-time experimental test"> real-time experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=rendezvous%20and%20docking" title=" rendezvous and docking"> rendezvous and docking</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft%20autonomy" title=" spacecraft autonomy"> spacecraft autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20servicing" title=" space servicing"> space servicing</a> </p> <a href="https://publications.waset.org/abstracts/108672/6-degree-of-freedom-spacecraft-motion-planning-via-model-predictive-control-and-dual-quaternions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">550</span> A Case Study on Management of Coal Seam Gas by-Product Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojibul%20Sajjad">Mojibul Sajjad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20G.%20Rasul"> Mohammad G. Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Sharif%20Imam%20Ibne%20Amir"> Md. Sharif Imam Ibne Amir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland Coal Seam Gas industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully Mine field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20seam%20gas%20%28CSG%29" title="coal seam gas (CSG)">coal seam gas (CSG)</a>, <a href="https://publications.waset.org/abstracts/search?q=cleat%20water" title=" cleat water"> cleat water</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro-fracking" title=" hydro-fracking"> hydro-fracking</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20water" title=" product water"> product water</a> </p> <a href="https://publications.waset.org/abstracts/20512/a-case-study-on-management-of-coal-seam-gas-by-product-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">549</span> Effect of Urban Solid Waste Management Practices on the Sustainability of Urban Infrastructure in Sokoto Metropolis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rilwanu">Rilwanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bello"> Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Usmn%20Bello%20Saad"> Usmn Bello Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Umar%20Yaro"> Hamza Umar Yaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Isyka%20Ibrahim"> Isyka Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebayo%20Oluwole"> Adebayo Oluwole</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimoh%20Abdurrahman"> Jimoh Abdurrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban solid waste management is a critical issue affecting the sustainability of urban infrastructure globally. In rapidly growing cities like Sokoto metropolis inefficient waste management practices led to significant environmental and economic challenges. The research aimed at assessing the effect of waste management practices on the sustainability of urban infrastructure in Sokoto. It also includes assessing the current state of solid waste management practices and its impact on the sustainability of sokoto urban infrastructure. The methodology adopted both primary and secondary sources of data. The targeted population include the staff of SUDA, STEPA and some of the resident in the metropolis. Descriptive method was adopted in the analysis and presentation of data. The study revealed that the waste management practice adopted is solid metropolis was very poor as its associated with poor funding, no availability of sufficient vehicles, bad attitude of resident upon waste disposal which led to blockage of streets and water channels which can subsequently lead to flood. The study recommended that the state government need to increase in funding the relevant authority and also provide the waste dumping sites as well as modern vehicles and equipment to ensure effective solid waste management and disposal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste" title="waste">waste</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=S" title=" S"> S</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20infrastructure" title=" urban infrastructure"> urban infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/191491/effect-of-urban-solid-waste-management-practices-on-the-sustainability-of-urban-infrastructure-in-sokoto-metropolis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">548</span> How to Improve the Environmental Performance in a HEI in Mexico, an EEA Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Aguirre%20Moreno">Stephanie Aguirre Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20Everardo%20Olgu%C3%ADn%20Tiznado"> Jesús Everardo Olguín Tiznado</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Camargo%20Wilson"> Claudia Camargo Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Andr%C3%A9s%20L%C3%B3pez%20Barreras"> Juan Andrés López Barreras </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work presents a proposal to evaluate the environmental performance of a Higher Education Institution (HEI) in Mexico in order to minimize their environmental impact. Given that public education has limited financial resources, it is necessary to conduct studies that support priorities in decision-making situations and thus obtain the best cost-benefit ratio of continuous improvement programs as part of the environmental management system implemented. The methodology employed, adapted from the Environmental Effect Analysis (EEA), weighs the environmental aspects identified in the environmental diagnosis by two characteristics. Number one, environmental priority through the perception of the stakeholders, compliance of legal requirements, and environmental impact of operations. Number two, the possibility of improvement, which depends of factors such as the exchange rate that will be made, the level of investment and the return time of it. The highest environmental priorities, or hot spots, identified in this evaluation were: electricity consumption, water consumption and recycling, and disposal of municipal solid waste. However, the possibility of improvement for the disposal of municipal solid waste is higher, followed by water consumption and recycling, in spite of having an equal possibility of improvement to the energy consumption, time of return and cost-benefit is much greater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20performance" title="environmental performance">environmental performance</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20priority" title=" environmental priority"> environmental priority</a>, <a href="https://publications.waset.org/abstracts/search?q=possibility%20of%20improvement" title=" possibility of improvement"> possibility of improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20improvement%20programs" title=" continuous improvement programs"> continuous improvement programs</a> </p> <a href="https://publications.waset.org/abstracts/18812/how-to-improve-the-environmental-performance-in-a-hei-in-mexico-an-eea-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Waste Burial to the Pressure Deficit Areas in the Eastern Siberia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Abukova">L. Abukova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Abramova"> O. Abramova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Goreva"> A. Goreva</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yakovlev"> Y. Yakovlev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Important executive decisions on oil and gas production stimulation in Eastern Siberia have been recently taken. There are unique and large fields of oil, gas, and gas-condensate in Eastern Siberia. The Talakan, Koyumbinskoye, Yurubcheno-Tahomskoye, Kovykta, Chayadinskoye fields are supposed to be developed first. It will result in an abrupt increase in environmental load on the nature of Eastern Siberia. In Eastern Siberia, the introduction of ecological imperatives in hydrocarbon production is still realistic. Underground water movement is the one of the most important factors of the ecosystems condition management. Oil and gas production is associated with the forced displacement of huge water masses, mixing waters of different composition, and origin that determines the extent of anthropogenic impact on water drive systems and their protective reaction. An extensive hydrogeological system of the depression type is identified in the pre-salt deposits here. Pressure relieve here is steady up to the basement. The decrease of the hydrodynamic potential towards the basement with such a gradient resulted in reformation of the fields in process of historical (geological) development of the Nepsko-Botuobinskaya anteclise. The depression hydrodynamic systems are characterized by extremely high isolation and can only exist under such closed conditions. A steady nature of water movement due to a strictly negative gradient of reservoir pressure makes it quite possible to use environmentally-harmful liquid substances instead of water. Disposal of the most hazardous wastes is the most expedient in the deposits of the crystalline basement in certain structures distant from oil and gas fields. The time period for storage of environmentally-harmful liquid substances may be calculated by means of the geological time scales ensuring their complete prevention from releasing into environment or air even during strong earthquakes. Disposal of wastes of chemical and nuclear industries is a matter of special consideration. The existing methods of storage and disposal of wastes are very expensive. The methods applied at the moment for storage of nuclear wastes at the depth of several meters, even in the most durable containers, constitute a potential danger. The enormous size of the depression system of the Nepsko-Botuobinskaya anteclise makes it possible to easily identify such objects at the depth below 1500 m where nuclear wastes will be stored indefinitely without any environmental impact. Thus, the water drive system of the Nepsko-Botuobinskaya anteclise is the ideal object for large-volume injection of environmentally harmful liquid substances even if there are large oil and gas accumulations in the subsurface. Specific geological and hydrodynamic conditions of the system allow the production of hydrocarbons from the subsurface simultaneously with the disposal of industrial wastes of oil and gas, mining, chemical, and nuclear industries without any environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eastern%20Siberia" title="Eastern Siberia">Eastern Siberia</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20pressure" title=" formation pressure"> formation pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20water" title=" underground water"> underground water</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20burial" title=" waste burial"> waste burial</a> </p> <a href="https://publications.waset.org/abstracts/49057/waste-burial-to-the-pressure-deficit-areas-in-the-eastern-siberia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> Trajectory Optimization for Autonomous Deep Space Missions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anne%20Schattel">Anne Schattel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitja%20Echim"> Mitja Echim</a>, <a href="https://publications.waset.org/abstracts/search?q=Christof%20B%C3%BCskens"> Christof Büskens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trajectory planning for deep space missions has become a recent topic of great interest. Flying to space objects like asteroids provides two main challenges. One is to find rare earth elements, the other to gain scientific knowledge of the origin of the world. Due to the enormous spatial distances such explorer missions have to be performed unmanned and autonomously. The mathematical field of optimization and optimal control can be used to realize autonomous missions while protecting recourses and making them safer. The resulting algorithms may be applied to other, earth-bound applications like e.g. deep sea navigation and autonomous driving as well. The project KaNaRiA ('Kognitionsbasierte, autonome Navigation am Beispiel des Ressourcenabbaus im All') investigates the possibilities of cognitive autonomous navigation on the example of an asteroid mining mission, including the cruise phase and approach as well as the asteroid rendezvous, landing and surface exploration. To verify and test all methods an interactive, real-time capable simulation using virtual reality is developed under KaNaRiA. This paper focuses on the specific challenge of the guidance during the cruise phase of the spacecraft, i.e. trajectory optimization and optimal control, including first solutions and results. In principle there exist two ways to solve optimal control problems (OCPs), the so called indirect and direct methods. The indirect methods are being studied since several decades and their usage needs advanced skills regarding optimal control theory. The main idea of direct approaches, also known as transcription techniques, is to transform the infinite-dimensional OCP into a finite-dimensional non-linear optimization problem (NLP) via discretization of states and controls. These direct methods are applied in this paper. The resulting high dimensional NLP with constraints can be solved efficiently by special NLP methods, e.g. sequential quadratic programming (SQP) or interior point methods (IP). The movement of the spacecraft due to gravitational influences of the sun and other planets, as well as the thrust commands, is described through ordinary differential equations (ODEs). The competitive mission aims like short flight times and low energy consumption are considered by using a multi-criteria objective function. The resulting non-linear high-dimensional optimization problems are solved by using the software package WORHP ('We Optimize Really Huge Problems'), a software routine combining SQP at an outer level and IP to solve underlying quadratic subproblems. An application-adapted model of impulsive thrusting, as well as a model of an electrically powered spacecraft propulsion system, is introduced. Different priorities and possibilities of a space mission regarding energy cost and flight time duration are investigated by choosing different weighting factors for the multi-criteria objective function. Varying mission trajectories are analyzed and compared, both aiming at different destination asteroids and using different propulsion systems. For the transcription, the robust method of full discretization is used. The results strengthen the need for trajectory optimization as a foundation for autonomous decision making during deep space missions. Simultaneously they show the enormous increase in possibilities for flight maneuvers by being able to consider different and opposite mission objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20space%20navigation" title="deep space navigation">deep space navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=guidance" title=" guidance"> guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective" title=" multi-objective"> multi-objective</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20optimization" title=" non-linear optimization"> non-linear optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning." title=" trajectory planning."> trajectory planning.</a> </p> <a href="https://publications.waset.org/abstracts/35765/trajectory-optimization-for-autonomous-deep-space-missions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> Utilization of Sludge in the Manufacturing of Fired Clay Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjali%20G.%20Pillai">Anjali G. Pillai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chadrakaran"> S. Chadrakaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-bricks" title="eco-bricks">eco-bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20construction%20material" title=" green construction material"> green construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20amended%20bricks" title=" sludge amended bricks"> sludge amended bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20disposal" title=" sludge disposal"> sludge disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/66230/utilization-of-sludge-in-the-manufacturing-of-fired-clay-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">544</span> Healthcare Waste Management Practices in Bangladesh: A Case Study in Dhaka City, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Nuralam">H. M. Nuralam</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Xiao-lan"> Z. Xiao-lan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Dubey"> B. K. Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Wen-Chuan"> D. Wen-Chuan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthcare waste (HCW) is one of the major concerns in environmental issues due to its infectious and hazardous nature that is requires specific treatment and systematic management prior to final disposal. This study aimed to assess HCW management system in Dhaka City (DC), Bangladesh, by investigating the present practices implemented by the city. In this study, five different healthcare establishments were selected in DC. Field visits and interviews with health personnel and staff who are concerned with the waste management were conducted. The information was gathered through questionnaire focus on the different aspect of HCW management like, waste segregation and collection, storage and transport, awareness as well. The results showed that a total of 7,215 kg/day (7.2 ton/day) of waste were generated, of which 79.36% (5.6 ton/day) was non-hazardous waste and 20.6% (1.5 ton/day) was hazardous waste. The rate of waste generation in these healthcare establishments (HCEs) was 2.6 kg/bed/day. There was no appropriate and systematic management of HCWs except at few private HCEs that segregate their hazardous waste. All the surveyed HCEs dumped their HCW together with the municipal waste, and some staff members were also found to be engaged in improper handling of the generated waste. Furthermore, the used sharp instruments, saline bags, blood bags and test tubes were collected for resale or reuse. Nevertheless, the lack of awareness, appropriate policy, regulation and willingness to act, were responsible for the improper management of HCW in DC. There was lack of practical training of concerned healthcare to handle the waste properly, while the nurses and staff were found to be aware of the health impacts of HCW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=disposal" title=" disposal"> disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhaka%20city" title=" Dhaka city"> Dhaka city</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20waste%20management" title=" healthcare waste management"> healthcare waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20generation" title=" waste generation"> waste generation</a> </p> <a href="https://publications.waset.org/abstracts/61293/healthcare-waste-management-practices-in-bangladesh-a-case-study-in-dhaka-city-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">543</span> Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julius%20Ilawe%20Osayi">Julius Ilawe Osayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Osifo"> Peter Osifo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20pyrolysis" title="catalytic pyrolysis">catalytic pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuel" title=" fossil fuel"> fossil fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=kaolin" title=" kaolin"> kaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolytic%20oil" title=" pyrolytic oil"> pyrolytic oil</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20tyres" title=" used tyres"> used tyres</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeolite%20NaY" title=" Zeolite NaY"> Zeolite NaY</a> </p> <a href="https://publications.waset.org/abstracts/91561/impact-of-zeolite-nay-synthesized-from-kaolin-on-the-properties-of-pyrolytic-oil-derived-from-used-tire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">542</span> Vitrification and Devitrification of Chromium Containing Tannery Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savvas%20Varitis">Savvas Varitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Kavouras"> Panagiotis Kavouras</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Kaimakamis"> George Kaimakamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Pavlidou"> Eleni Pavlidou</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Vourlias"> George Vourlias</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Chrysafis"> Konstantinos Chrysafis</a>, <a href="https://publications.waset.org/abstracts/search?q=Philomela%20Komninou"> Philomela Komninou</a>, <a href="https://publications.waset.org/abstracts/search?q=Theodoros%20Karakostas"> Theodoros Karakostas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tannery industry produces high quantities of chromium containing waste which also have high organic content. Processing of this waste is important since the organic content is above the disposal limits and the containing trivalent chromium could be potentially oxidized to hexavalent in the environment. This work aims to fabricate new vitreous and glass ceramic materials which could incorporate the tannery waste in stabilized form either for safe disposal or for the production of useful materials. Tannery waste was incinerated at 500oC in anoxic conditions so most of the organic content would be removed and the chromium remained trivalent. Glass forming agents SiO2, Na2O and CaO were mixed with the resulting ash in different proportions with decreasing ash content. Considering the low solubility of Cr in silicate melts, the mixtures were melted at 1400oC and/or 1500oC for 2h and then casted on a refractory steel plate. The resulting vitreous products were characterized by X-Ray Diffraction (XRD), Differential Thermal Analysis (DTA), Scanning and Transmission Electron Microscopy (SEM and TEM). XRD reveals the existence of Cr2O3 (eskolaite) crystallites embedded in a glassy amorphous matrix. Such crystallites are not formed under a certain proportion of the waste in the ash-vitrified material. Reduction of the ash proportion increases chromium content in the silicate matrix. From these glassy products, glass-ceramics were produced via different regimes of thermal treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20containing%20tannery%20ash" title="chromium containing tannery ash">chromium containing tannery ash</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20ceramic%20materials" title=" glass ceramic materials"> glass ceramic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20processing" title=" thermal processing"> thermal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=vitrification" title=" vitrification"> vitrification</a> </p> <a href="https://publications.waset.org/abstracts/25645/vitrification-and-devitrification-of-chromium-containing-tannery-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> Spatial and Seasonal Distribution of Persistent Organic Pollutant (Polychlorinated Biphenyl) Along the Course of Buffalo River, Eastern Cape Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazaq%20Yahaya">Abdulrazaq Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Omobola%20Okoh"> Omobola Okoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Okoh"> Anthony Okoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polychlorinated biphenyls (PCBs) are generated from short emission or leakage from capacitors and electrical transformers, industrial chemicals wastewater discharge and careless disposal of wastes. They are toxic, semi-volatile compounds which can persist in the environment, hence classified as persistent organic pollutants. Their presence in the environmental matrices has become a global concern. In this study, we assessed the concentrations and distribution patterns of 19 polychlorinated biphenyls congeners (PCB 1, 5, 18, 31, 44, 52, 66, 87, 101, 110, 138, 141, 151, 153, 170, 180, 183, 187, and 206) at six sampling points in water along the course of Buffalo River, Eastern Cape, South Africa. Solvent extraction followed by sulphuric acid, potassium permanganate and silica gel cleanup were used in this study. The analysis was done with gas chromatography electron capture detector (GC-ECD). The results of the analysis of all the 19 PCBs congeners ranged from not detectable to 0.52 ppb and 2.5 ppb during summer and autumn periods respectively. These values are generally higher than the World Health Organization (WHO) maximum permissible limit. Their presence in the waterbody suggests an increase in anthropogenic activities over the seasons. In view of their volatility, the compounds are transportable over long distances by air currents away from their point of origin putting the health of the communities at risk, thus suggesting the need for strict regulations on the use as well as save disposal of this group of compounds in the communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title="organic pollutants">organic pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls" title=" polychlorinated biphenyls"> polychlorinated biphenyls</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/56910/spatial-and-seasonal-distribution-of-persistent-organic-pollutant-polychlorinated-biphenyl-along-the-course-of-buffalo-river-eastern-cape-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> Working Mode and Key Technology of Thermal Vacuum Test Software for Spacecraft Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei">Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Haiyang"> Zhan Haiyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Miao"> Gu Miao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A universal software platform is developed for improving the defects in the practical one. This software platform has distinct advantages in modularization, information management, and the interfaces. Several technologies such as computer technology, virtualization technology, network technology, etc. are combined together in this software platform, and four working modes are introduced in this article including single mode, distributed mode, cloud mode, and the centralized mode. The application area of the software platform is extended through the switch between these working modes. The software platform can arrange the thermal vacuum test process automatically. This function can improve the reliability of thermal vacuum test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20platform" title="software platform">software platform</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20vacuum%20test" title=" thermal vacuum test"> thermal vacuum test</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20and%20measurement" title=" control and measurement"> control and measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20mode" title=" work mode"> work mode</a> </p> <a href="https://publications.waset.org/abstracts/54112/working-mode-and-key-technology-of-thermal-vacuum-test-software-for-spacecraft-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> An Overview of Electronic Waste as Aggregate in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Shamili">S. R. Shamili</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Natarajan"> C. Natarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Karthikeyan"> J. Karthikeyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dumping" title="dumping">dumping</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20waste" title=" electronic waste"> electronic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20chemicals" title=" toxic chemicals"> toxic chemicals</a> </p> <a href="https://publications.waset.org/abstracts/77169/an-overview-of-electronic-waste-as-aggregate-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20Pratama%20Herman">Angga Pratama Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Yusup"> Suzana Yusup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20steam%20gasification" title=" biomass steam gasification"> biomass steam gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20scale" title=" lab scale"> lab scale</a> </p> <a href="https://publications.waset.org/abstracts/43272/utilization-of-bottom-ash-as-catalyst-in-biomass-steam-gasification-for-hydrogen-and-syngas-production-lab-scale-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> A Concept of Rational Water Management at Local Utilities: The Use of RO for Water Supply and Wastewater Treatment/Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Matveev">N. Matveev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pervov"> A. Pervov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title="reverse osmosis">reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=stormwater%20treatment" title=" stormwater treatment"> stormwater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=open-channel%20module" title=" open-channel module"> open-channel module</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reuse" title=" wastewater reuse"> wastewater reuse</a> </p> <a href="https://publications.waset.org/abstracts/10346/a-concept-of-rational-water-management-at-local-utilities-the-use-of-ro-for-water-supply-and-wastewater-treatmentreuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> Recycling of Sewage Sludge Ash (SSA) as Construction Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Chen">Z. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Poon"> C. S. Poon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Hong Kong, about 1,000 tonnes of sewage sludge were produced every day in 2014 representing a major fraction of the total solid municipal waste. Traditionally, sewage sludge is disposed of at landfills. This disposal method causes environmental issues and uses up precious space in landfills which are becoming saturated one by one. To tackle the disposal problem, Hong Kong government has just built a sewage sludge incinerator. Through incineration the volume of waste can be reduced up to 90% by converting sewage sludge into ash. Whilst sewage sludge ash (SSA) still needs to be disposed of at landfills, research has been conducted at the Hong Kong Polytechnic University on using SSA to substitute cement for the production of construction materials. Results demonstrated that SSA contained many open and isolated pores and thus can reduce the cement dilution effect resulting in only slight decrease in the flexural and compressive strengths of cement mortar. The incorporation of SSA in cement mortar can be up to 20% of the binder, without too much worry about adverse effect on strength development of mortar. There was some enhancement in strength using ground SSA in comparison to the original SSA. The original SSA shortened the relative initial setting time of cement paste but ground SSA caused slight delay in the setting of cement paste. The research also found that increasing the percentage of SSA lead to decreasing workability of cement mortar with the same water/binder ratio, and ground SSA was beneficial to workability although grinding increased the surface area of SSA. This paper summarizes the major findings of the research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title="cement replacement">cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title=" construction material"> construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge%20ash" title=" sewage sludge ash"> sewage sludge ash</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recycling" title=" waste recycling"> waste recycling</a> </p> <a href="https://publications.waset.org/abstracts/37608/recycling-of-sewage-sludge-ash-ssa-as-construction-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Phytoremediation Alternative for Landfill Leachate Sludges Doña Juana Bogotá D.C. Colombia Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinz%C3%B3n%20Uribe%20Luis%20Felipe">Pinzón Uribe Luis Felipe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch%C3%A1vez%20Porras%20%C3%81lvaro"> Chávez Porras Álvaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruge%20Castellanos%20Liliana%20Constanza"> Ruge Castellanos Liliana Constanza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to global data, solid waste management of has low economic investment for its management in underdeveloped countries; being the main factor the advanced technologies acknowledge for proper operation and at the same time the technical development. Has been evidenced that communities have a distorted perception of the role and legalized final destinations for waste or "Landfill" places specific management; influenced primarily by their physical characteristics and the information that the media provide of these, as well as their wrong association with "open dumps". One of the major inconveniences in these landfills is the leachate sludge management from treatment plants; as this exhibit a composition highly contaminating (physical, chemical and biological) for the natural environment due to improper handling and disposal. This is the case Landfill Doña Juana (RSDJ), Bogotá, Colombia, considered among the largest in South America; where management problems have persisted for decades, since its creation being definitive on the concept that society has acquired about this form of waste disposal and improper leachate handling. Within this research process for treating phytoremediation alternatives were determined by using plants that are able to degrade heavy metals contained in these; allowing the resulting sludge to be used as a seal in the final landfill cover; within a restoration process, providing option to solve the landscape contamination problem, as well as in the communities perception and conflicts that generates landfill. For the project chemical assays were performed in sludge leachate that allowed the characterization of metals such as chromium (Cr), lead (Pb), arsenic (As) and mercury (Hg), in order to meet the amount in the biosolids regard to the provisions of the USEPA 40 CFR 503. The evaluations showed concentrations of 102.2 mg / kg of Cr, 0.49 mg / kg Pb, 0.390 mg / kg of As and 0.104 mg / kg of Hg; being lower than of the standards. A literature review on native plant species suitable for an alternative process of phytoremediation, these metals degradation capable was developed. Concluding that among them, Vetiveria zizanioides, Eichhornia crassipes and Limnobium laevigatum, for their hiperacumulativas in their leaves, stems and roots characteristics may allow these toxic elements reduction of in the environment, improving the outlook for disposal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health" title="health">health</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20slurry%20of%20leachate" title=" filling slurry of leachate"> filling slurry of leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/26662/phytoremediation-alternative-for-landfill-leachate-sludges-dona-juana-bogota-dc-colombia-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Temporal Effects on Chemical Composition of Treated Wastewater and Borehole Water Used for Irrigation in Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pholosho%20M.%20Kgopa">Pholosho M. Kgopa</a>, <a href="https://publications.waset.org/abstracts/search?q=Phatu%20W.%20Mashela"> Phatu W. Mashela</a>, <a href="https://publications.waset.org/abstracts/search?q=Alen%20Manyevere"> Alen Manyevere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing incidents of drought spells in most Sub-Saharan Africa call for using alternative sources of water for irrigation in arid and semi-arid regions. A study was conducted to investigate chemical composition of borehole and treated wastewater from different sampling disposal sites at University of Limpopo Experimental Farm (ULEF). A 4 × 5 factorial experiment, with the borehole as a reference sampling site and three other sampling sites along the wastewater disposal system was conducted over five months. Water samples were collected at four sites namely, (a) exit from Pond 16 into the furrow, (b) entry into night-dam, (c) exit from night dam to irrigated fields and (d) exit from borehole to irrigated fields. Water samples were collected in the middle of each month, starting from July to November 2016. Samples were analysed for pH, EC, Ca, Mg, Na, K, Al, B, Zn, Cu, Cr, Pb, Cd and As. The site × time interactions were highly significant for Ca, Mg, Zn, Cu, Cr, Pb, Cd, and As variables, but not for Na and K. Sampling site was highly significant on all variables, with sampling period not significant for K and Na. Relative to water from the borehole, Na concentration in wastewater samples from the night-dam exit, night-dam entry and Pond16 exit were lower by 69, 34 and 55%, respectively. Relative to borehole water, Al was higher in wastewater sampling sites. In conclusion, both sampling site and period affected the chemical composition of treated wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irrigation%20water%20quality" title="irrigation water quality">irrigation water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20effects" title=" spatial effects"> spatial effects</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20effects" title=" temporal effects"> temporal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a> </p> <a href="https://publications.waset.org/abstracts/72569/temporal-effects-on-chemical-composition-of-treated-wastewater-and-borehole-water-used-for-irrigation-in-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Recycled Use of Solid Wastes in Building Material: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oriyomi%20M.%20Okeyinka">Oriyomi M. Okeyinka</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20A.%20Oloke"> David A. Oloke</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20M.%20Khatib"> Jamal M. Khatib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling" title="recycling">recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20wastes" title=" solid wastes"> solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/12957/recycled-use-of-solid-wastes-in-building-material-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Consequential Effects of Coal Utilization on Urban Water Supply Sources – a Study of Ajali River in Enugu State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enebe%20Christian%20Chukwudi">Enebe Christian Chukwudi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water bodies around the world notably underground water, ground water, rivers, streams, and seas, face degradation of their water quality as a result of activities associated with coal utilization including coal mining, coal processing, coal burning, waste storage and thermal pollution from coal plants which tend to contaminate these water bodies. This contamination results from heavy metals, presence of sulphate and iron, dissolved solids, mercury and other toxins contained in coal ash, sludge, and coal waste. These wastes sometimes find their way to sources of urban water supply and contaminate them. A major problem encountered in the supply of potable water to Enugu municipality is the contamination of Ajali River, the source of water supply to Enugu municipal by coal waste. Hydro geochemical analysis of Ajali water samples indicate high sulphate and iron content, high total dissolved solids(TDS), low pH (acidity values) and significant hardness in addition to presence of heavy metals, mercury, and other toxins. This is indicative of the following remedial measures: I. Proper disposal of mine wastes at designated disposal sites that are suitably prepared. II. Proper water treatment and III. Reduction of coal related contaminants taking advantage of clean coal technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effects" title="effects">effects</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=sources" title=" sources"> sources</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/16098/consequential-effects-of-coal-utilization-on-urban-water-supply-sources-a-study-of-ajali-river-in-enugu-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Compaction of Municipal Solid Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Jankovic%20Pantic">Jovana Jankovic Pantic</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragoslav%20Rakic"> Dragoslav Rakic</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Djuric"> Tina Djuric</a>, <a href="https://publications.waset.org/abstracts/search?q=Irena%20Basaric%20Ikodinovic"> Irena Basaric Ikodinovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Snezana%20Bogdanovic"> Snezana Bogdanovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regardless of the numerous activities undertaken to reduce municipal solid waste, its annual volumes continue to grow. In Serbia, the most common and the only one form of waste disposal is at municipal landfills with daily compaction and soil covering. Municipal waste compacting is one of the basic components of the disposal process. Well compacted waste takes up less volume and allows much safer storage. In order to better predict the behavior of municipal waste at landfills, it is necessary to define compaction parameters: the maximum dry unit weight and optimal moisture content. In current geotechnical practice, the most common method of determination compaction parameters is by the standard method (Proctor compaction test) used in soil mechanics, with an eventual reduction of compaction energy. Although this methodology is accepted in newer geotechnical scientific discipline "waste mechanics", different treatments of municipal waste at the landfill itself (including pretreatment), indicate the need to change this classical approach. The main reason for that is the simulation of the operation of compactors (hedgehogs) at the landfill. Therefore, during the research, various innovative solutions are introduced, such as changing the classic flat Proctor hammer, by adding spikes, whose function is, in addition to compaction, destruction and shredding of municipal waste. The paper presents the behavior of municipal waste for four synthetic waste samples with different waste compositions (Plandište landfill). The samples were tested in standard Proctor apparatus at the same compaction energy, but with two different hammers: standard flat hammer and hammer with spikes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compaction" title="compaction">compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=hammer%20with%20spikes" title=" hammer with spikes"> hammer with spikes</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=proctor%20compaction%20test" title=" proctor compaction test"> proctor compaction test</a> </p> <a href="https://publications.waset.org/abstracts/139642/compaction-of-municipal-solid-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Correlation of Unsuited and Suited 5ᵗʰ Female Hybrid III Anthropometric Test Device Model under Multi-Axial Simulated Orion Abort and Landing Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20J.%20Kennett">Christian J. Kennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20A.%20Baldwin"> Mark A. Baldwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As several companies are working towards returning American astronauts back to space on US-made spacecraft, NASA developed a human flight certification-by-test and analysis approach due to the cost-prohibitive nature of extensive testing. This process relies heavily on the quality of analytical models to accurately predict crew injury potential specific to each spacecraft and under dynamic environments not tested. As the prime contractor on the Orion spacecraft, Lockheed Martin was tasked with quantifying the correlation of analytical anthropometric test devices (ATDs), also known as crash test dummies, against test measurements under representative impact conditions. Multiple dynamic impact sled tests were conducted to characterize Hybrid III 5th ATD lumbar, head, and neck responses with and without a modified shuttle-era advanced crew escape suit (ACES) under simulated Orion landing and abort conditions. Each ATD was restrained via a 5-point harness in a mockup Orion seat fixed to a dynamic impact sled at the Wright Patterson Air Force Base (WPAFB) Biodynamics Laboratory in the horizontal impact accelerator (HIA). ATDs were subject to multiple impact magnitudes, half-sine pulse rise times, and XZ - ‘eyeballs out/down’ or Z-axis ‘eyeballs down’ orientations for landing or an X-axis ‘eyeballs in’ orientation for abort. Several helmet constraint devices were evaluated during suited testing. Unique finite element models (FEMs) were developed of the unsuited and suited sled test configurations using an analytical 5th ATD model developed by LSTC (Livermore, CA) and deformable representations of the seat, suit, helmet constraint countermeasures, and body restraints. Explicit FE analyses were conducted using the non-linear solver LS-DYNA. Head linear and rotational acceleration, head rotational velocity, upper neck force and moment, and lumbar force time histories were compared between test and analysis using the enhanced error assessment of response time histories (EEARTH) composite score index. The EEARTH rating paired with the correlation and analysis (CORA) corridor rating provided a composite ISO score that was used to asses model correlation accuracy. NASA occupant protection subject matter experts established an ISO score of 0.5 or greater as the minimum expectation for correlating analytical and experimental ATD responses. Unsuited 5th ATD head X, Z, and resultant linear accelerations, head Y rotational accelerations and velocities, neck X and Z forces, and lumbar Z forces all showed consistent ISO scores above 0.5 in the XZ impact orientation, regardless of peak g-level or rise time. Upper neck Y moments were near or above the 0.5 score for most of the XZ cases. Similar trends were found in the XZ and Z-axis suited tests despite the addition of several different countermeasures for restraining the helmet. For the X-axis ‘eyeballs in’ loading direction, only resultant head linear acceleration and lumbar Z-axis force produced ISO scores above 0.5 whether unsuited or suited. The analytical LSTC 5th ATD model showed good correlation across multiple head, neck, and lumbar responses in both the unsuited and suited configurations when loaded in the XZ ‘eyeballs out/down’ direction. Upper neck moments were consistently the most difficult to predict, regardless of impact direction or test configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20biomechanics" title="impact biomechanics">impact biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=manned%20spaceflight" title=" manned spaceflight"> manned spaceflight</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20correlation" title=" model correlation"> model correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-axial%20loading" title=" multi-axial loading"> multi-axial loading</a> </p> <a href="https://publications.waset.org/abstracts/134805/correlation-of-unsuited-and-suited-5-female-hybrid-iii-anthropometric-test-device-model-under-multi-axial-simulated-orion-abort-and-landing-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Kinetic Alfvén Wave Localization and Turbulent Spectrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anju%20Kumari">Anju Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The localization of Kinetic Alfvén Wave (KAW) caused by finite amplitude background density fluctuations has been studied in intermediate beta plasma. KAW breaks up into localized large amplitude structures when perturbed by MHD fluctuations of the medium which are in the form of magnetosonic waves. Numerical simulation has been performed to analyse the localized structures and resulting turbulent spectrum of KAW applicable to magnetopause. Simulation results reveal that power spectrum deviates from Kolmogorov scaling at the transverse size of KAW, equal to ion gyroradius. Steepening of power spectrum at shorter wavelengths may be accountable for heating and acceleration of the plasma particles. The obtained results are compared with observations collected from the THEMIS spacecraft in magnetopause. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinetic%20Alfv%C3%A9n%20Wave%20%28KAW%29" title="Kinetic Alfvén Wave (KAW)">Kinetic Alfvén Wave (KAW)</a>, <a href="https://publications.waset.org/abstracts/search?q=localization" title=" localization"> localization</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence" title=" turbulence"> turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20spectrum" title=" turbulent spectrum"> turbulent spectrum</a> </p> <a href="https://publications.waset.org/abstracts/14702/kinetic-alfven-wave-localization-and-turbulent-spectrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Heidari">L. Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalili%20Ghazizade"> M. Jalili Ghazizade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IWM%20software" title="IWM software">IWM software</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Maku" title=" Maku"> Maku</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20management" title=" municipal solid waste management"> municipal solid waste management</a> </p> <a href="https://publications.waset.org/abstracts/73084/municipal-solid-waste-management-using-life-cycle-assessment-approach-case-study-of-maku-city-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=4" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spacecraft%20disposal&page=6" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>