CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;42 of 42 results for author: <span class="mathjax">Maccherozzi, F</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Maccherozzi%2C+F">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Maccherozzi, F"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Maccherozzi%2C+F&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Maccherozzi, F"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22204">arXiv:2410.22204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22204">pdf</a>, <a href="https://arxiv.org/format/2410.22204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> RingSim- An Agent-based Approach for Modelling Mesoscopic Magnetic Nanowire Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vidamour%2C+I+T">Ian T Vidamour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venkat%2C+G">Guru Venkat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swindells%2C+C">Charles Swindells</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffin%2C+D">David Griffin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fry%2C+P+W">Paul W Fry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rowan-Robinson%2C+R+M">Richard M Rowan-Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Welbourne%2C+A">Alexander Welbourne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stepney%2C+S">Susan Stepney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allwood%2C+D+A">Dan A Allwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayward%2C+T+J">Thomas J Hayward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22204v1-abstract-short" style="display: inline;"> We describe &#39;RingSim&#39;, a phenomenological agent-based model that allows numerical simulation of magnetic nanowire networks with areas of hundreds of micrometers squared for durations of hundreds of seconds; a practical impossibility for general-purpose micromagnetic simulation tools. In RingSim, domain walls (DWs) are instanced as mobile agents which respond to external magnetic fields, and their&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22204v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22204v1-abstract-full" style="display: none;"> We describe &#39;RingSim&#39;, a phenomenological agent-based model that allows numerical simulation of magnetic nanowire networks with areas of hundreds of micrometers squared for durations of hundreds of seconds; a practical impossibility for general-purpose micromagnetic simulation tools. In RingSim, domain walls (DWs) are instanced as mobile agents which respond to external magnetic fields, and their stochastic interactions with pinning sites and other DWs are described via simple phenomenological rules. We first present a detailed description of the model and its algorithmic implementation for simulating the behaviours of arrays of interconnected ring-shaped nanowires, which have previously been proposed as hardware platforms for unconventional computing applications. The model is then validated against a series of experimental measurements of an array&#39;s static and dynamic responses to rotating magnetic fields. The robust agreement between the modelled and experimental data demonstrates that agent-based modelling is a powerful tool for exploring mesoscale magnetic devices, enabling time scales and device sizes that are inaccessible to more conventional magnetic simulation techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22204v1-abstract-full').style.display = 'none'; document.getElementById('2410.22204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00747">arXiv:2402.00747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00747">pdf</a>, <a href="https://arxiv.org/format/2402.00747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53726-z">10.1038/s41467-024-53726-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mott resistive switching initiated by topological defects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Milloch%2C+A">Alessandra Milloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Figueruelo-Campanero%2C+I">Ignacio Figueruelo-Campanero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsu%2C+W">Wei-Fan Hsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mor%2C+S">Selene Mor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mellaerts%2C+S">Simon Mellaerts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veiga%2C+L+I">Larissa Ishibe Veiga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Spera%2C+M">Mauro Spera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seo%2C+J+W">Jin Won Seo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locquet%2C+J">Jean-Pierre Locquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizio%2C+M">Michele Fabrizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menghini%2C+M">Mariela Menghini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">Claudio Giannetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00747v1-abstract-short" style="display: inline;"> Resistive switching is the fundamental process that triggers the sudden change of the electrical properties in solid-state devices under the action of intense electric fields. Despite its relevance for information processing, ultrafast electronics, neuromorphic devices, resistive memories and brain-inspired computation, the nature of the local stochastic fluctuations that drive the formation of me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00747v1-abstract-full').style.display = 'inline'; document.getElementById('2402.00747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00747v1-abstract-full" style="display: none;"> Resistive switching is the fundamental process that triggers the sudden change of the electrical properties in solid-state devices under the action of intense electric fields. Despite its relevance for information processing, ultrafast electronics, neuromorphic devices, resistive memories and brain-inspired computation, the nature of the local stochastic fluctuations that drive the formation of metallic nuclei out of the insulating state has remained hidden. Here, using operando X-ray nano-imaging, we have captured the early-stages of resistive switching in a V2O3-based device under working conditions. V2O3 is a paradigmatic Mott material, which undergoes a first-order metal-to-insulator transition coupled to a lattice transformation that breaks the threefold rotational symmetry of the rhombohedral metal phase. We reveal a new class of volatile electronic switching triggered by nanoscale topological defects of the lattice order parameter of the insulating phase. Our results pave the way to the use of strain engineering approaches to manipulate topological defects and achieve the full control of the electronic Mott switching. The concept of topology-driven reversible electronic transition is of interest for a broad class of quantum materials, comprising transition metal oxides, chalcogenides and kagome metals, that exhibit first-order electronic transitions coupled to a symmetry-breaking order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00747v1-abstract-full').style.display = 'none'; document.getElementById('2402.00747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications, 15, 9414 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16273">arXiv:2401.16273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16273">pdf</a>, <a href="https://arxiv.org/format/2401.16273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Phase Coexistence and Transitions between Antiferromagnetic and Ferromagnetic States in a Synthetic Antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Barker%2C+C+E+A">Christopher E. A. Barker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fallon%2C+K">Kayla Fallon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barton%2C+C">Craig Barton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haltz%2C+E">Eloi Haltz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Almeida%2C+T+P">Trevor P. Almeida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Villa%2C+S">Sara Villa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kirkbride%2C+C">Colin Kirkbride</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sarpi%2C+B">Brice Sarpi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGrouther%2C+D">Damien McGrouther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McVitie%2C+S">Stephen McVitie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+T+A">Thomas A. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kazakova%2C+O">Olga Kazakova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">Christopher H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16273v2-abstract-short" style="display: inline;"> In synthetic antiferromagnets (SAFs) the combination of antiferromagnetic order and synthesis using conventional sputtering techniques is combined to produce systems that are advantageous for spintronics applications. Here we present the preparation and study of SAF multilayers possessing both perpendicular magnetic anisotropy and the Dzyaloshinskii-Moriya interaction. The multilayers have an anti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16273v2-abstract-full').style.display = 'inline'; document.getElementById('2401.16273v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16273v2-abstract-full" style="display: none;"> In synthetic antiferromagnets (SAFs) the combination of antiferromagnetic order and synthesis using conventional sputtering techniques is combined to produce systems that are advantageous for spintronics applications. Here we present the preparation and study of SAF multilayers possessing both perpendicular magnetic anisotropy and the Dzyaloshinskii-Moriya interaction. The multilayers have an antiferromagnetically (AF) aligned ground state but can be forced into a full ferromagnetic (FM) alignment by applying an out-of-plane field $\sim 100$~mT. We study the spin textures in these multilayers in their ground state as well as around the transition point between the AF and FM states, at fields $\sim 40$~mT, by imaging the spin textures using complementary methods: photo-emission electron, magnetic force, and Lorentz transmission electron microscopies. The transformation into a FM state by field proceeds by a nucleation and growth process, where first skyrmionic nuclei form, which broaden into regions containing a FM-aligned labyrinth pattern that eventually occupies the whole film. This process remarkably occurs without any significant change in the net magnetic moment of the multilayer. The mix of AF- and FM-aligned regions on the micron scale in the middle of this transition is reminiscent of a first-order phase transition that exhibits phase coexistence. These results are important for guiding the design of spintronic devices using chiral magnetic textures made from SAFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16273v2-abstract-full').style.display = 'none'; document.getElementById('2401.16273v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09550">arXiv:2302.09550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09550">pdf</a>, <a href="https://arxiv.org/format/2302.09550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Magnetic domain engineering in antiferromagnetic CuMnAs and Mn$_2$Au devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">Sonka Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomonay%2C+O">Olena Gomonay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+O+J">Oliver J. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krizek%2C+F">Filip Krizek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lytvynenko%2C+L+X+B+Y">Luke X. Barton Yaryna Lytvynenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poole%2C+S">Stuart Poole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">Richard P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nov%C3%A1k%2C+V">Vit Nov谩k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbone%2C+D">Dina Carbone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bj%C3%B6rling%2C+A">Alexander Bj枚rling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niu%2C+Y">Yuran Niu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golias%2C+E">Evangelos Golias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kriegner%2C+D">Dominik Kriegner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jourdan%2C+M">Martin Jourdan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">Kevin W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">Peter Wadley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09550v3-abstract-short" style="display: inline;"> Antiferromagnetic materials hold potential for use in spintronic devices with fast operation frequencies and field robustness. Despite the rapid progress in proof-of-principle functionality in recent years, there has been a notable lack of understanding of antiferromagnetic domain formation and manipulation, which translates to either incomplete or non-scalable control of the magnetic order. Here,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09550v3-abstract-full').style.display = 'inline'; document.getElementById('2302.09550v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09550v3-abstract-full" style="display: none;"> Antiferromagnetic materials hold potential for use in spintronic devices with fast operation frequencies and field robustness. Despite the rapid progress in proof-of-principle functionality in recent years, there has been a notable lack of understanding of antiferromagnetic domain formation and manipulation, which translates to either incomplete or non-scalable control of the magnetic order. Here, we demonstrate simple and functional ways of influencing the domain structure in CuMnAs and Mn2Au, two key materials of antiferromagnetic spintronics research, using device patterning and strain engineering. Comparing x-ray microscopy data from two different materials, we reveal the key parameters dictating domain formation in antiferromagnetic devices and show how the non-trivial interaction of magnetostriction, substrate clamping and edge anisotropy leads to specific equilibrium domain configurations. More specifically, we observe that patterned edges have a significant impact on the magnetic anisotropy and domain structure over long distances, and we propose a theoretical model that relates short-range edge anisotropy and long-range magnetoelastic interactions. The principles invoked are of general applicability to the domain formation and engineering in antiferromagnetic thin films at large, which will pave the way towards realizing truly functional antiferromagnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09550v3-abstract-full').style.display = 'none'; document.getElementById('2302.09550v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02040">arXiv:2209.02040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02040">pdf</a>, <a href="https://arxiv.org/format/2209.02040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.184417">10.1103/PhysRevB.107.184417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identifiying the domain wall spin structure in current-induced switching of antiferromagnetic NiO/Pt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+C">Christin Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Tejerina%2C+L">Luis Sanchez-Tejerina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filianina%2C+M">Mariia Filianina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrmann%2C+F">Felix Fuhrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meer%2C+H">Hendrik Meer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramos%2C+R">Rafael Ramos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saitoh%2C+E">Eiji Saitoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldrati%2C+L">Lorenzo Baldrati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02040v1-abstract-short" style="display: inline;"> The understanding of antiferromagnetic domain walls, which are the interface between domains with different N茅el order orientations, is a crucial aspect to enable the use of antiferromagnetic materials as active elements in future spintronic devices. In this work, we demonstrate that in antiferromagnetic NiO/Pt bilayers circular domain structures can be generated by switching driven by electrical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02040v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02040v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02040v1-abstract-full" style="display: none;"> The understanding of antiferromagnetic domain walls, which are the interface between domains with different N茅el order orientations, is a crucial aspect to enable the use of antiferromagnetic materials as active elements in future spintronic devices. In this work, we demonstrate that in antiferromagnetic NiO/Pt bilayers circular domain structures can be generated by switching driven by electrical current pulses. The generated domains are T-domains, separated from each other by a domain wall whose spins are pointing toward the average direction of the two T-domains rather than the common axis of the two planes. Interestingly, this direction is the same for the whole circular domain indicating the absence of strong Lifshitz invariants. The domain wall can be micromagnetically modeled by strain distributions in the NiO thin film induced by the MgO substrate, deviating from the bulk anisotropy. From our measurements we determine the domain wall width to have a full width at half maximum of $螖= 98 \pm 10$ nm, demonstrating strong confinement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02040v1-abstract-full').style.display = 'none'; document.getElementById('2209.02040v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00286">arXiv:2207.00286</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.00286">pdf</a>, <a href="https://arxiv.org/ps/2207.00286">ps</a>, <a href="https://arxiv.org/format/2207.00286">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+O+J">O. J. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poole%2C+S+F">S. F. Poole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">S. Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barton%2C+L+X">L. X. Barton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nov%C3%A1k%2C+V">V. Nov谩k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C5%99%C3%AD%C5%BEek%2C+F">F. K艡铆啪ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauhan%2C+J+S">J. S. Chauhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">R. P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rushforth%2C+A+W">A. W. Rushforth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">T. Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tretiakov%2C+O+A">O. A. Tretiakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">K. W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">P. Wadley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00286v1-abstract-short" style="display: inline;"> Topologically protected magnetic textures, such as skyrmions, half-skyrmions (merons) and their antiparticles, constitute tiny whirls in the magnetic order. They are promising candidates for information carriers in next-generation memory devices, as they can be efficiently propelled at very high velocities using current-induced spin torques. Antiferromagnets have been shown to host versions of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00286v1-abstract-full').style.display = 'inline'; document.getElementById('2207.00286v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00286v1-abstract-full" style="display: none;"> Topologically protected magnetic textures, such as skyrmions, half-skyrmions (merons) and their antiparticles, constitute tiny whirls in the magnetic order. They are promising candidates for information carriers in next-generation memory devices, as they can be efficiently propelled at very high velocities using current-induced spin torques. Antiferromagnets have been shown to host versions of these textures, which have gained significant attention because of their potential for terahertz dynamics, deflection free motion, and improved size scaling due to the absence of stray field. Here we show that topological spin textures, merons and antimerons, can be generated at room temperature and reversibly moved using electrical pulses in thin film CuMnAs, a semimetallic antiferromagnet that is a testbed system for spintronic applications. The electrical generation and manipulation of antiferromagnetic merons is a crucial step towards realizing the full potential of antiferromagnetic thin films as active components in high density, high speed magnetic memory devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00286v1-abstract-full').style.display = 'none'; document.getElementById('2207.00286v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04446">arXiv:2206.04446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04446">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01352-4">10.1038/s42005-023-01352-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconfigurable Reservoir Computing in a Magnetic Metamaterial </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vidamour%2C+I">Ian Vidamour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swindells%2C+C">Charles Swindells</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venkat%2C+G">Guru Venkat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manneschi%2C+L">Luca Manneschi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fry%2C+P">Paul Fry</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Welbourne%2C+A">Alexander Welbourne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rowan-Robinson%2C+R">Richard Rowan-Robinson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francisco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S">Sarnjeet Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vasilaki%2C+E">Eleni Vasilaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allwood%2C+D">Daniel Allwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayward%2C+T">Thomas Hayward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04446v3-abstract-short" style="display: inline;"> In-materia reservoir computing (RC) leverages the intrinsic physical responses of functional materials to perform complex computational tasks. Magnetic metamaterials are exciting candidates for RC due to their huge state space, nonlinear emergent dynamics, and non-volatile memory. However, to be suitable for a broad range of tasks, the material system is required to exhibit a broad range of proper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04446v3-abstract-full').style.display = 'inline'; document.getElementById('2206.04446v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04446v3-abstract-full" style="display: none;"> In-materia reservoir computing (RC) leverages the intrinsic physical responses of functional materials to perform complex computational tasks. Magnetic metamaterials are exciting candidates for RC due to their huge state space, nonlinear emergent dynamics, and non-volatile memory. However, to be suitable for a broad range of tasks, the material system is required to exhibit a broad range of properties, and isolating these behaviours experimentally can often prove difficult. By using an electrically accessible device consisting of an array of interconnected magnetic nanorings -- a system shown to exhibit complex emergent dynamics -- here we show how reconfiguring the reservoir architecture allows exploitation of different aspects the system&#39;s dynamical behaviours. This is evidenced through state-of-the-art performance in diverse benchmark tasks with very different computational requirements, highlighting the additional computational configurability that can be obtained by altering the input/output architecture around the material system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04446v3-abstract-full').style.display = 'none'; document.getElementById('2206.04446v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08585">arXiv:2202.08585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08585">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-022-01848-w">10.1038/s41567-022-01848-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast X-ray imaging of the light-induced phase transition in VO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+A+S">Allan S. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=P%C3%A9rez-Salinas%2C+D">Daniel P茅rez-Salinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Siddiqui%2C+K+M">Khalid M. Siddiqui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+S">Sungwon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+S">Sungwook Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volckaert%2C+K">Klara Volckaert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Majchrzak%2C+P+E">Paulina E. Majchrzak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulstrup%2C+S">S酶ren Ulstrup</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">Naman Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hallman%2C+K">Kent Hallman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haglund%2C+R+F">Richard F. Haglund Jr.</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%BCnther%2C+C+M">Christian M. G眉nther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfau%2C+B">Bastian Pfau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">Stefan Eisebitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fitzpatrick%2C+A">Ann Fitzpatrick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S">Sarnjeet Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gargiani%2C+P">Pierluigi Gargiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valvidares%2C+M">Manuel Valvidares</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Artrith%2C+N">Nongnuch Artrith</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+F">Frank de Groot</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H">Hyeongi Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jang%2C+D">Dogeun Jang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katoch%2C+A">Abhishek Katoch</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08585v2-abstract-short" style="display: inline;"> Using light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08585v2-abstract-full').style.display = 'inline'; document.getElementById('2202.08585v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08585v2-abstract-full" style="display: none;"> Using light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale heterogeneity has not been directly observed. Here we use time- and spectrally resolved coherent X-ray imaging to track the prototypical light induced insulator-to-metal phase transition in vanadium dioxide on the nanoscale with femtosecond time resolution. We show that the early-time dynamics are independent of the initial spatial heterogeneity and observe a 200 fs switch to the metallic phase. A heterogeneous response emerges only after hundreds of picoseconds. Through spectroscopic imaging, we reveal that the transient metallic phase is a highly orthorhombically strained rutile metallic phase, an interpretation that is in contrast to those based on spatially averaged probes. Our results demonstrate the critical importance of spatially and spectrally resolved measurements for understanding and interpreting the transient phases of quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08585v2-abstract-full').style.display = 'none'; document.getElementById('2202.08585v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14603">arXiv:2111.14603</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14603">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Quantifying the Computational Capability of a Nanomagnetic Reservoir Computing Platform with Emergent Magnetization Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vidamour%2C+I+T">Ian T Vidamour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ellis%2C+M+O+A">Matthew O A Ellis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Griffin%2C+D">David Griffin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venkat%2C+G">Guru Venkat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Swindells%2C+C">Charles Swindells</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dawidek%2C+R+W+S">Richard W S Dawidek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Broomhall%2C+T+J">Thomas J Broomhall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinke%2C+N">Nina-Juliane Steinke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cooper%2C+J+F+K">Joshaniel F K Cooper</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francisco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stepney%2C+S">Susan Stepney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vasilaki%2C+E">Eleni Vasilaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allwood%2C+D+A">Dan A Allwood</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayward%2C+T+J">Thomas J Hayward</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14603v2-abstract-short" style="display: inline;"> Devices based on arrays of interconnected magnetic nano-rings with emergent magnetization dynamics have recently been proposed for use in reservoir computing applications, but for them to be computationally useful it must be possible to optimise their dynamical responses. Here, we use a phenomenological model to demonstrate that such reservoirs can be optimised for classification tasks by tuning h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14603v2-abstract-full').style.display = 'inline'; document.getElementById('2111.14603v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14603v2-abstract-full" style="display: none;"> Devices based on arrays of interconnected magnetic nano-rings with emergent magnetization dynamics have recently been proposed for use in reservoir computing applications, but for them to be computationally useful it must be possible to optimise their dynamical responses. Here, we use a phenomenological model to demonstrate that such reservoirs can be optimised for classification tasks by tuning hyperparameters that control the scaling and input rate of data into the system using rotating magnetic fields. We use task-independent metrics to assess the rings&#39; computational capabilities at each set of these hyperparameters and show how these metrics correlate directly to performance in spoken and written digit recognition tasks. We then show that these metrics, and performance in tasks, can be further improved by expanding the reservoir&#39;s output to include multiple, concurrent measures of the ring arrays magnetic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14603v2-abstract-full').style.display = 'none'; document.getElementById('2111.14603v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03724">arXiv:2110.03724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03724">pdf</a>, <a href="https://arxiv.org/format/2110.03724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-28311-x">10.1038/s41467-022-28311-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Defect-driven antiferromagnetic domain walls in CuMnAs films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">Sonka Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kriegner%2C+D">Dominik Kriegner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomonay%2C+O">Olena Gomonay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbone%2C+D">Dina Carbone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krizek%2C+F">Filip Krizek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novak%2C+V">Vit Novak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">Richard P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bjorling%2C+A">Alexander Bjorling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+O+J">Oliver J. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barton%2C+L+X">Luke X. Barton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poole%2C+S+F">Stuart F. Poole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Omari%2C+K+A">Khalid A. Omari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michalicka%2C+J">Jan Michalicka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Man%2C+O">Ondrej Man</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">Tomas Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">Peter Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">Kevin W. Edmonds</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03724v1-abstract-short" style="display: inline;"> Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microsco&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03724v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03724v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03724v1-abstract-full" style="display: none;"> Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180 degree and 90 degree domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03724v1-abstract-full').style.display = 'none'; document.getElementById('2110.03724v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05116">arXiv:2109.05116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05116">pdf</a>, <a href="https://arxiv.org/format/2109.05116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-31298-0">10.1038/s41467-022-31298-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale self-organisation and metastable non-thermal metallicity in Mott insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ronchi%2C+A">Andrea Ronchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franceschini%2C+P">Paolo Franceschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Poli%2C+A">Andrea De Poli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Homm%2C+P">P铆a Homm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fitzpatrick%2C+A">Ann Fitzpatrick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrini%2C+G">Gabriele Ferrini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banfi%2C+F">Francesco Banfi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menghini%2C+M">Mariela Menghini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizio%2C+M">Michele Fabrizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locquet%2C+J">Jean-Pierre Locquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">Claudio Giannetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05116v2-abstract-short" style="display: inline;"> Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05116v2-abstract-full').style.display = 'inline'; document.getElementById('2109.05116v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05116v2-abstract-full" style="display: none;"> Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V$_2$O$_3$, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05116v2-abstract-full').style.display = 'none'; document.getElementById('2109.05116v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 13:3730 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00894">arXiv:2012.00894</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.00894">pdf</a>, <a href="https://arxiv.org/format/2012.00894">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abn3535">10.1126/sciadv.abn3535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically sharp domain walls in an antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Krizek%2C+F">Filip Krizek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">Sonka Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ka%C5%A1par%2C+Z">Zden臎k Ka拧par</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marmodoro%2C+A">Alberto Marmodoro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Michali%C4%8Dka%2C+J">Jan Michali膷ka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Man%2C+O">Ond艡ej Man</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edstrom%2C+A">Alexander Edstrom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+O+J">Oliver J. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">Kevin W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">Richard P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dnes%2C+S+S">Sarnjeet S. Dnes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zub%C3%A1%C4%8D%2C+J">Jan Zub谩膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDelezn%C3%BD%2C+J">Jakub 沤elezn媒</a>, <a href="/search/cond-mat?searchtype=author&amp;query=V%C3%BDborn%C3%BD%2C+K">Karel V媒born媒</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olejn%C3%ADk%2C+K">Kamil Olejn铆k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nov%C3%A1k%2C+V">V铆t Nov谩k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rusz%2C+J">Jan Rusz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Idrobo%2C+J+C">Juan C. Idrobo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">Peter Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">Tomas Jungwirth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00894v1-abstract-short" style="display: inline;"> The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its relativistic quantum fundamentals to applications in information technologies. The traditional focus of the field on ferromagnets has recently started to shift towards antiferromagnets which offer a rich materials landscape and utility in ultra-fast and neuromorphic d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00894v1-abstract-full').style.display = 'inline'; document.getElementById('2012.00894v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00894v1-abstract-full" style="display: none;"> The interest in understanding scaling limits of magnetic textures such as domain walls spans the entire field of magnetism from its relativistic quantum fundamentals to applications in information technologies. The traditional focus of the field on ferromagnets has recently started to shift towards antiferromagnets which offer a rich materials landscape and utility in ultra-fast and neuromorphic devices insensitive to magnetic field perturbations. Here we report the observation that domain walls in an epitaxial crystal of antiferromagnetic CuMnAs can be atomically sharp. We reveal this ultimate domain wall scaling limit using differential phase contrast imaging within aberrationcorrected scanning transmission electron microscopy, which we complement by X-ray magnetic dichroism microscopy and ab initio calculations. We highlight that the atomically sharp domain walls are outside the remits of established spin-Hamiltonian theories and can offer device functionalities unparalleled in ferromagnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00894v1-abstract-full').style.display = 'none'; document.getElementById('2012.00894v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, Supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science advances, 8(13), eabn3535 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09755">arXiv:2011.09755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.09755">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0032940">10.1063/5.0032940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+A">Andrew Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lebrun%2C+R">Romain Lebrun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldrati%2C+L">Lorenzo Baldrati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamra%2C+A">Akashdeep Kamra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomonay%2C+O">Olena Gomonay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+S">Shilei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+F">Felix Schreiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grave%2C+D+A">Daniel A. Grave</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rothschild%2C+A">Avner Rothschild</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09755v1-abstract-short" style="display: inline;"> We report room temperature long-distance spin transport of magnons in antiferromagnetic thin film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09755v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09755v1-abstract-full" style="display: none;"> We report room temperature long-distance spin transport of magnons in antiferromagnetic thin film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisotropy. We find intrinsic magnon spin-diffusion lengths of up to 1.5 渭m, and magnetic domain governed decay lengths of 175 nm for the low frequency magnons, through electrical transport measurements demonstrating that the introduction of non-magnetic dopants does not strongly reduce the transport length scale showing that the magnetic damping of hematite is not significantly increased. We observe a complex field dependence of the non-local signal independent of the magnetic state visible in the local magnetoresistance and direct magnetic imaging of the antiferromagnetic domain structure. We explain our results in terms of a varying and applied-field-dependent ellipticity of the magnon modes reaching the detector electrode allowing us to tune the spin transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09755v1-abstract-full').style.display = 'none'; document.getElementById('2011.09755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08237">arXiv:2010.08237</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.08237">pdf</a>, <a href="https://arxiv.org/format/2010.08237">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.024423">10.1103/PhysRevB.103.024423 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrical detection of the spin reorientation transition in antiferromagnetic TmFeO$_3$ thin films by spin Hall magnetoresistance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Becker%2C+S">Sven Becker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+A">Andrew Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lebrun%2C+R">Romain Lebrun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldrati%2C+L">Lorenzo Baldrati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+S">Shilei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+F">Felix Schreiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jakob%2C+G">Gerhard Jakob</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08237v1-abstract-short" style="display: inline;"> TmFeO$_3$ (TFO) is a canted antiferromagnet that undergoes a spin reorientation transition (SRT) with temperature between 82 K and 94 K in single crystals. In this temperature region, the N茅el vector continuously rotates from the crystallographic $c$-axis (below 82 K) to the $a$-axis (above 94 K). The SRT allows for a temperature control of distinct antiferromagnetic states without the need for a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08237v1-abstract-full').style.display = 'inline'; document.getElementById('2010.08237v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08237v1-abstract-full" style="display: none;"> TmFeO$_3$ (TFO) is a canted antiferromagnet that undergoes a spin reorientation transition (SRT) with temperature between 82 K and 94 K in single crystals. In this temperature region, the N茅el vector continuously rotates from the crystallographic $c$-axis (below 82 K) to the $a$-axis (above 94 K). The SRT allows for a temperature control of distinct antiferromagnetic states without the need for a magnetic field, making it apt for applications working at THz frequencies. For device applications, thin films of TFO are required as well as an electrical technique for reading out the magnetic state. Here we demonstrate that orthorhombic TFO thin films can be grown by pulsed laser deposition and the detection of the SRT in TFO thin films can be accessed by making use of the all electrical spin Hall magnetoresistance (SMR), in good agreement for the temperature range where the SRT occurs. Our results demonstrate that one can electrically detect the SRT in insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08237v1-abstract-full').style.display = 'none'; document.getElementById('2010.08237v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 024423 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.08507">arXiv:2008.08507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.08507">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.15.034047">10.1103/PhysRevApplied.15.034047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of N茅el vector orientation in antiferromagnetic domains switched by currents in NiO/Pt thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schmitt%2C+C">Christin Schmitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldrati%2C+L">Lorenzo Baldrati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez-Tejerina%2C+L">Luis Sanchez-Tejerina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schreiber%2C+F">Felix Schreiber</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+A">Andrew Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filianina%2C+M">Mariia Filianina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+S">Shilei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrmann%2C+F">Felix Fuhrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramos%2C+R">Rafael Ramos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Backes%2C+D">Dirk Backes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mawass%2C+M+A">Mohamad A. Mawass</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kronast%2C+F">Florian Kronast</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valencia%2C+S">Sergio Valencia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saitoh%2C+E">Eiji Saitoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Finocchio%2C+G">Giovanni Finocchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.08507v3-abstract-short" style="display: inline;"> Understanding the electrical manipulation of antiferromagnetic order is a crucial aspect to enable the design of antiferromagnetic devices working at THz frequency. Focusing on collinear insulating antiferromagnetic NiO/Pt thin films as a materials platform, we identify the crystallographic orientation of the domains that can be switched by currents and quantify the N茅el vector direction changes.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08507v3-abstract-full').style.display = 'inline'; document.getElementById('2008.08507v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.08507v3-abstract-full" style="display: none;"> Understanding the electrical manipulation of antiferromagnetic order is a crucial aspect to enable the design of antiferromagnetic devices working at THz frequency. Focusing on collinear insulating antiferromagnetic NiO/Pt thin films as a materials platform, we identify the crystallographic orientation of the domains that can be switched by currents and quantify the N茅el vector direction changes. We demonstrate electrical switching between different T-domains by current pulses, finding that the N茅el vector orientation in these domains is along $[\pm5\ \pm5\ 19]$, different compared to the bulk $&lt;11\bar{2}&gt;$ directions. The final state of the N茅el vector $\textbf{n}$ switching after current pulses $\textbf{j}$ along the $[1\ \pm1\ 0]$ directions is $\textbf{n}\parallel \textbf{j}$. By comparing the observed N茅el vector orientation and the strain in the thin films, assuming that this variation arises solely from magnetoelastic effects, we quantify the order of magnitude of the magnetoelastic coupling coefficient as $b_{0}+2b_{1}=3*10^7 J\ m^{-3}$ . This information is key for the understanding of current-induced switching in antiferromagnets and for the design and use of such devices as active elements in spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.08507v3-abstract-full').style.display = 'none'; document.getElementById('2008.08507v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 15, 034047 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08583">arXiv:2007.08583</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08583">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast time-evolution of chiral N茅el magnetic domain walls probed by circular dichroism in x-ray resonant magnetic scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A9veill%C3%A9%2C+C">Cyril L茅veill茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burgos-Parra%2C+E">Erick Burgos-Parra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sassi%2C+Y">Yanis Sassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ajejas%2C+F">Fernando Ajejas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chardonnet%2C+V">Valentin Chardonnet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pedersoli%2C+E">Emanuele Pedersoli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capotondi%2C+F">Flavio Capotondi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Ninno%2C+G">Giovanni De Ninno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S">Sarnjeet Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burn%2C+D+M">David M. Burn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">Gerrit van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Latcham%2C+O+S">Oliver S. Latcham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shytov%2C+A+V">Andrey V. Shytov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kruglyak%2C+V+V">Volodymyr V. Kruglyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jal%2C+E">Emmanuelle Jal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cros%2C+V">Vincent Cros</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauleau%2C+J">Jean-Yves Chauleau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reyren%2C+N">Nicolas Reyren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viret%2C+M">Michel Viret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jaouen%2C+N">Nicolas Jaouen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08583v2-abstract-short" style="display: inline;"> Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions. We report here on the ultrafast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08583v2-abstract-full').style.display = 'inline'; document.getElementById('2007.08583v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08583v2-abstract-full" style="display: none;"> Non-collinear spin textures in ferromagnetic ultrathin films are attracting a renewed interest fueled by possible fine engineering of several magnetic interactions, notably the interfacial Dzyaloshinskii-Moriya interaction. This allows the stabilization of complex chiral spin textures such as chiral magnetic domain walls (DWs), spin spirals, and magnetic skyrmions. We report here on the ultrafast behavior of chiral DWs after optical pumping in perpendicularly magnetized asymmetric multilayers, probed using time-resolved circular dichroism in x-ray resonant magnetic scattering (CD-XRMS). We observe a picosecond transient reduction of the CD-XRMS, which is attributed to the spin current-induced coherent and incoherent torques within the continuously dependent spin texture of the DWs. We argue that a specific demagnetization of the inner structure of the DW induces a flow of hot spins from the interior of the neighboring magnetic domains. We identify this time-varying change of the DW textures shortly after the laser pulse as a distortion of the homochiral N&#39;eel shape toward a transient mixed Bloch-N茅el-Bloch textures along a direction transverse to the DW. Our study highlights how time-resolved CD-XRMS can be a unique tool for studying the time evolution in other systems showing a non-collinear electric/magnetic ordering such as skyrmion lattices, conical/helical phases, as well as the recently observed antiskyrmion lattices, in metallic or insulating materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08583v2-abstract-full').style.display = 'none'; document.getElementById('2007.08583v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.12699">arXiv:2006.12699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.12699">pdf</a>, <a href="https://arxiv.org/ps/2006.12699">ps</a>, <a href="https://arxiv.org/format/2006.12699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03219-6">10.1038/s41586-021-03219-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic Half-skyrmions and Bimerons at room temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jani%2C+H">Hariom Jani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+J">Jheng-Cyuan Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">Jiahao Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harrison%2C+J">Jack Harrison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schad%2C+J">Jonathon Schad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prakash%2C+S">Saurav Prakash</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C">Chang-Beom Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ariando%2C+A">A. Ariando</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Venkatesan%2C+T">T. Venkatesan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radaelli%2C+P+G">Paolo G. Radaelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.12699v2-abstract-short" style="display: inline;"> In the quest for post-CMOS technologies, ferromagnetic skyrmions and their anti-particles have shown great promise as topologically protected solitonic information carriers in memory-in-logic or neuromorphic devices. However, the presence of dipolar fields in ferromagnets, restricting the formation of ultra-small topological textures, and the deleterious skyrmion Hall effect when driven by spin to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12699v2-abstract-full').style.display = 'inline'; document.getElementById('2006.12699v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.12699v2-abstract-full" style="display: none;"> In the quest for post-CMOS technologies, ferromagnetic skyrmions and their anti-particles have shown great promise as topologically protected solitonic information carriers in memory-in-logic or neuromorphic devices. However, the presence of dipolar fields in ferromagnets, restricting the formation of ultra-small topological textures, and the deleterious skyrmion Hall effect when driven by spin torques have thus far inhibited their practical implementations. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling have recently come into intense focus, but their experimental realizations in natural antiferromagnetic systems are yet to emerge. Here, we demonstrate a family of topological antiferromagnetic spin-textures in $伪$-Fe$_2$O$_3$ - an earth-abundant oxide insulator - capped with a Pt over-layer. By exploiting a first-order analogue of the Kibble-Zurek mechanism, we stabilize exotic merons-antimerons (half-skyrmions), and bimerons, which can be erased by magnetic fields and re-generated by temperature cycling. These structures have characteristic sizes of the order ~100 nm that can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways to further scaling. Driven by current-based spin torques from the heavy-metal over-layer, some of these AFM textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.12699v2-abstract-full').style.display = 'none'; document.getElementById('2006.12699v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 590, 74 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.00034">arXiv:2006.00034</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.00034">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-16942-x">10.1038/s41467-020-16942-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large magnetoelectric coupling in multiferroic oxide heterostructures assembled via epitaxial lift-off </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pesquera%2C+D">David Pesquera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khestanova%2C+E">Ekaterina Khestanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghidini%2C+M">Massimo Ghidini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Sen Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rooney%2C+A+P">Aidan P. Rooney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riego%2C+P">Patricia Riego</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farokhipoor%2C+S">Saeedeh Farokhipoor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jiyeob Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moya%2C+X">Xavier Moya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vickers%2C+M+E">Mary E. Vickers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stelmashenko%2C+N+A">Nadia A. Stelmashenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haigh%2C+S+J">Sarah J. Haigh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathur%2C+N+D">Neil D. Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.00034v2-abstract-short" style="display: inline;"> The strain dependent functional properties of epitaxial transition metal oxide films can be significantly modified via substrate selection. However, large lattice mismatches preclude dislocation-free epitaxial growth on ferroelectric substrates, whose strain states are modified by applied electric fields. Here we overcome this mismatch problem by depositing an epitaxial film of ferromagnetic La0.7&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.00034v2-abstract-full').style.display = 'inline'; document.getElementById('2006.00034v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.00034v2-abstract-full" style="display: none;"> The strain dependent functional properties of epitaxial transition metal oxide films can be significantly modified via substrate selection. However, large lattice mismatches preclude dislocation-free epitaxial growth on ferroelectric substrates, whose strain states are modified by applied electric fields. Here we overcome this mismatch problem by depositing an epitaxial film of ferromagnetic La0.7Sr0.3MnO3 on a single crystal substrate of well lattice matched SrTiO3 via a film of SrRuO3 that we subsequently dissolved, permitting the transfer of unstrained La0.7Sr0.3MnO3 to a ferroelectric substrate of 0.68Pb(Mg1/3Nb2/3)O3 0.32PbTiO3 in a different crystallographic orientation. Ferroelectric domain switching, and a concomitant ferroelectric phase transition, produced large non volatile changes of magnetization that were mediated by magnetic domain rotations at locations defined by the microstructure - as revealed via high resolution vector maps of magnetization constructed from photoemission electron microscopy data, with contrast from x-ray magnetic circular dichroism. In future, our method may be exploited to control functional properties in dislocation free epitaxial films of any composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.00034v2-abstract-full').style.display = 'none'; document.getElementById('2006.00034v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 11, 3190 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.05460">arXiv:2004.05460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.05460">pdf</a>, <a href="https://arxiv.org/format/2004.05460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.4.094413">10.1103/PhysRevMaterials.4.094413 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Janda%2C+T">Tomas Janda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Godinho%2C+J">Joao Godinho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ostatnicky%2C+T">Tomas Ostatnicky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfitzner%2C+E">Emanuel Pfitzner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ulrich%2C+G">Georg Ulrich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoehl%2C+A">Arne Hoehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">Sonka Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Soban%2C+Z">Zbynek Soban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metzger%2C+T">Thomas Metzger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichlova%2C+H">Helena Reichlova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nov%C3%A1k%2C+V">V铆t Nov谩k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R">Richard Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heberle%2C+J">Joachim Heberle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">Peter Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K">Kevin Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+O">Ollie Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauhan%2C+J">Jas Chauhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S">Sarnjeet Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otxoa%2C+R">Ruben Otxoa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+P">Pierre Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olejnik%2C+K">Kamil Olejnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=N%C4%9Bmec%2C+P">Petr N臎mec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">Tomas Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaestner%2C+B">Bernd Kaestner</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.05460v1-abstract-short" style="display: inline;"> Antiferromagnets offer spintronic device characteristics unparalleled in ferromagnets owing to their lack of stray fields, THz spin dynamics, and rich materials landscape. Microscopic imaging of aniferromagnetic domains is one of the key prerequisites for understading physical principles of the device operation. However, adapting common magnetometry techniques to the dipolar-field-free antiferroma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05460v1-abstract-full').style.display = 'inline'; document.getElementById('2004.05460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.05460v1-abstract-full" style="display: none;"> Antiferromagnets offer spintronic device characteristics unparalleled in ferromagnets owing to their lack of stray fields, THz spin dynamics, and rich materials landscape. Microscopic imaging of aniferromagnetic domains is one of the key prerequisites for understading physical principles of the device operation. However, adapting common magnetometry techniques to the dipolar-field-free antiferromagnets has been a major challenge. Here we demonstrate in a collinear antiferromagnet a thermoelectric detection method by combining the magneto-Seebeck effect with local heat gradients generated by scanning far-field or near-field techniques. In a 20 nm epilayer of uniaxial CuMnAs we observe reversible 180 deg switching of the N茅el vector via domain wall displacement, controlled by the polarity of the current pulses. We also image polarity-dependent 90 deg switching of the N茅el vector in a thicker biaxial film, and domain shattering induced at higher pulse amplitudes. The antiferromagnetic domain maps obtained by our laboratory technique are compared to measurements by the established synchrotron microscopy using X-ray magnetic linear dichroism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.05460v1-abstract-full').style.display = 'none'; document.getElementById('2004.05460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 4, 094413 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12381">arXiv:1911.12381</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12381">pdf</a>, <a href="https://arxiv.org/format/1911.12381">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.094429">10.1103/PhysRevB.101.094429 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin flop and crystalline anisotropic magnetoresistance in CuMnAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+C">C. Andrews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">S. Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amin%2C+O+J">O. J. Amin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">P. Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">R. P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poole%2C+S+F">S. F. Poole</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felton%2C+J">J. Felton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">K. W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallagher%2C+B+L">B. L. Gallagher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rushforth%2C+A+W">A. W. Rushforth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Makarovsky%2C+O">O. Makarovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gas%2C+K">K. Gas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawicki%2C+M">M. Sawicki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kriegner%2C+D">D. Kriegner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zubac%2C+J">J. Zubac</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olejnik%2C+K">K. Olejnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novak%2C+V">V. Novak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">T. Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shahrokhvand%2C+M">M. Shahrokhvand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zeitler%2C+U">U. Zeitler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12381v2-abstract-short" style="display: inline;"> Recent research works have shown that the magnetic order in some antiferromagnetic materials can be manipulated and detected electrically, due to two physical mechanisms: Neel-order spin-orbit torques and anisotropic magnetoresistance. While these observations open up opportunities to use antiferromagnets for magnetic memory devices, different physical characterization methods are required for a b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12381v2-abstract-full').style.display = 'inline'; document.getElementById('1911.12381v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12381v2-abstract-full" style="display: none;"> Recent research works have shown that the magnetic order in some antiferromagnetic materials can be manipulated and detected electrically, due to two physical mechanisms: Neel-order spin-orbit torques and anisotropic magnetoresistance. While these observations open up opportunities to use antiferromagnets for magnetic memory devices, different physical characterization methods are required for a better understanding of those mechanisms. Here we report a magnetic field induced rotation of the antiferromagnetic Neel vector in epitaxial tetragonal CuMnAs thin films. Using soft x-ray magnetic linear dichroism spectroscopy, x-ray photoemission electron microscopy, integral magnetometry and magneto-transport methods, we demonstrate spin-flop switching and continuous spin reorientation in antiferromagnetic films with uniaxial and biaxial magnetic anisotropies, respectively. From field-dependent measurements of the magnetization and magnetoresistance, we obtain key material parameters including the anisotropic magnetoresistance coefficients, magnetocrystalline anisotropy, spin-flop and exchange fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12381v2-abstract-full').style.display = 'none'; document.getElementById('1911.12381v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 094429 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.02746">arXiv:1907.02746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.02746">pdf</a>, <a href="https://arxiv.org/format/1907.02746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tunability of domain structure and magnonic spectra in antidot arrays of Heusler alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mallick%2C+S">Sougata Mallick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mondal%2C+S">Sucheta Mondal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seki%2C+T">Takeshi Seki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sahoo%2C+S">Sourav Sahoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forrest%2C+T">Thomas Forrest</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wen%2C+Z">Zhenchao Wen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barman%2C+S">Saswati Barman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barman%2C+A">Anjan Barman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takanashi%2C+K">Koki Takanashi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bedanta%2C+S">Subhankar Bedanta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.02746v1-abstract-short" style="display: inline;"> Materials suitable for magnonic crystals demand low magnetic damping and long spin wave (SW) propagation distance. In this context Co based Heusler compounds are ideal candidates for magnonic based applications. In this work, antidot arrays (with different shapes) of epitaxial $\mathrm{Co}_2\mathrm{Fe}_{0.4}\mathrm{Mn}_{0.6}\mathrm{Si}$ (CFMS) Heusler alloy thin films have been prepared using e-be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02746v1-abstract-full').style.display = 'inline'; document.getElementById('1907.02746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.02746v1-abstract-full" style="display: none;"> Materials suitable for magnonic crystals demand low magnetic damping and long spin wave (SW) propagation distance. In this context Co based Heusler compounds are ideal candidates for magnonic based applications. In this work, antidot arrays (with different shapes) of epitaxial $\mathrm{Co}_2\mathrm{Fe}_{0.4}\mathrm{Mn}_{0.6}\mathrm{Si}$ (CFMS) Heusler alloy thin films have been prepared using e-beam lithography and sputtering technique. Magneto-optic Kerr effect and ferromagnetic resonance analysis have confirmed the presence of dominant cubic and moderate uniaxial magnetic anisotropies in the thin films. Domain imaging via x-ray photoemission electron microscopy on the antidot arrays reveals chain like switching or correlated bigger domains for different shape of the antidots. Time-resolved MOKE microscopy has been performed to study the precessional dynamics and magnonic modes of the antidots with different shapes. We show that the optically induced spin-wave spectra in such antidot arrays can be tuned by changing the shape of the holes. The variation in internal field profiles, pinning energy barrier, and anisotropy modifies the spin-wave spectra dramatically within the antidot arrays with different shapes. We further show that by combining the magnetocrystalline anisotropy with the shape anisotropy, an extra degree of freedom can be achieved to control the magnonic modes in such antidot lattices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02746v1-abstract-full').style.display = 'none'; document.getElementById('1907.02746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.08275">arXiv:1904.08275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.08275">pdf</a>, <a href="https://arxiv.org/ps/1904.08275">ps</a>, <a href="https://arxiv.org/format/1904.08275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.044007">10.1103/PhysRevApplied.12.044007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current-Driven Skyrmion Dynamics and Drive-Dependent Skyrmion Hall Effect in an Ultrathin Film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Juge%2C+R">Rom茅o Juge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Je%2C+S">Soong-Geun Je</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaves%2C+D+d+S">Dayane de Souza Chaves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buda-Prejbeanu%2C+L+D">Liliana D. Buda-Prejbeanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pe%C3%B1a-Garcia%2C+J">Jos茅 Pe帽a-Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nath%2C+J">Jayshankar Nath</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miron%2C+I+M">Ioan Mihai Miron</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rana%2C+K+G">Kumari Gaurav Rana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aballe%2C+L">Lucia Aballe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foerster%2C+M">Michael Foerster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Genuzio%2C+F">Francesca Genuzio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mente%C5%9F%2C+T+O">Tevfik Onur Mente艧</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locatelli%2C+A">Andrea Locatelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belmeguenai%2C+M">Mohamed Belmeguenai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roussign%C3%A9%2C+Y">Yves Roussign茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Auffret%2C+S">St茅phane Auffret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pizzini%2C+S">Stefania Pizzini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaudin%2C+G">Gilles Gaudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vogel%2C+J">Jan Vogel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulle%2C+O">Olivier Boulle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.08275v5-abstract-short" style="display: inline;"> Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray-field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08275v5-abstract-full').style.display = 'inline'; document.getElementById('1904.08275v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.08275v5-abstract-full" style="display: none;"> Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray-field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their practical implementation and the fundamental understanding of their dynamics. Here, we report on the current-driven motion of N茅el skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer. We find that these skyrmions can be driven at a speed of 100 m/s and exhibit a drive-dependent skyrmion Hall effect, which is accounted for by the effect of pinning. Our experiments are well substantiated by an analytical model of the skyrmion dynamics as well as by micromagnetic simulations including material inhomogeneities. This good agreement is enabled by the simple skyrmion spin structure in our system and a thorough characterization of its static and dynamical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.08275v5-abstract-full').style.display = 'none'; document.getElementById('1904.08275v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures + Supplementary Information (12 pages, 9 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 044007 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.02063">arXiv:1902.02063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.02063">pdf</a>, <a href="https://arxiv.org/format/1902.02063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.99.140409">10.1103/PhysRevB.99.140409 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging of current induced N茅el vector switching in antiferromagnetic Mn$_2$Au </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bodnar%2C+S+Y">S. Yu. Bodnar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filianina%2C+M">M. Filianina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bommanaboyena%2C+S+P">S. P. Bommanaboyena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forrest%2C+T">T. Forrest</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sapozhnik%2C+A+A">A. A. Sapozhnik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skourski%2C+Y">Y. Skourski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">M. Kl盲ui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jourdan%2C+M">M. Jourdan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.02063v1-abstract-short" style="display: inline;"> The effects of current induced N茅el spin-orbit torques on the antiferromagnetic domain structure of epitaxial Mn$_2$Au thin films were investigated by X-ray magnetic linear dichroism - photoemission electron microscopy (XMLD-PEEM). We observed current induced switching of AFM domains essentially corresponding to morphological features of the samples. Reversible as well as irreversible N茅el vector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02063v1-abstract-full').style.display = 'inline'; document.getElementById('1902.02063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.02063v1-abstract-full" style="display: none;"> The effects of current induced N茅el spin-orbit torques on the antiferromagnetic domain structure of epitaxial Mn$_2$Au thin films were investigated by X-ray magnetic linear dichroism - photoemission electron microscopy (XMLD-PEEM). We observed current induced switching of AFM domains essentially corresponding to morphological features of the samples. Reversible as well as irreversible N茅el vector reorientation was obtained in different parts of the samples and the switching of up to 30 % of all domains in the field of view of 10 $渭$m is demonstrated. Our direct microscopical observations are compared to and fully consistent with anisotropic magnetoresistance effects previously attributed to current induced N茅el vector switching in Mn$_2$Au. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.02063v1-abstract-full').style.display = 'none'; document.getElementById('1902.02063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 99, 140409 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11326">arXiv:1810.11326</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11326">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.177201">10.1103/PhysRevLett.123.177201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mechanism of N茅el order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Baldrati%2C+L">Lorenzo Baldrati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gomonay%2C+O">Olena Gomonay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ross%2C+A">Andrew Ross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filianina%2C+M">Mariia Filianina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lebrun%2C+R">Romain Lebrun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ramos%2C+R">Rafael Ramos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leveille%2C+C">Cyril Leveille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fuhrmann%2C+F">Felix Fuhrmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forrest%2C+T">Thomas Forrest</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valencia%2C+S">Sergio Valencia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kronast%2C+F">Florian Kronast</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saitoh%2C+E">Eiji Saitoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kl%C3%A4ui%2C+M">Mathias Kl盲ui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11326v2-abstract-short" style="display: inline;"> We probe the current-induced magnetic switching of insulating antiferromagnet/heavy metals systems, by electrical spin Hall magnetoresistance measurements and direct imaging, identifying a reversal occurring by domain wall (DW) motion. We observe switching of more than one third of the antiferromagnetic domains by the application of current pulses. Our data reveal two different magnetic switching&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11326v2-abstract-full').style.display = 'inline'; document.getElementById('1810.11326v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11326v2-abstract-full" style="display: none;"> We probe the current-induced magnetic switching of insulating antiferromagnet/heavy metals systems, by electrical spin Hall magnetoresistance measurements and direct imaging, identifying a reversal occurring by domain wall (DW) motion. We observe switching of more than one third of the antiferromagnetic domains by the application of current pulses. Our data reveal two different magnetic switching mechanisms leading together to an efficient switching, namely the spin-current induced effective magnetic anisotropy variation and the action of the spin torque on the DWs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11326v2-abstract-full').style.display = 'none'; document.getElementById('1810.11326v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, including supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 177201 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.03670">arXiv:1807.03670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.03670">pdf</a>, <a href="https://arxiv.org/format/1807.03670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.075111">10.1103/PhysRevB.100.075111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Early-stage dynamics of metallic droplets embedded in the nanotextured Mott insulating phase of V$_2$O$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ronchi%2C+A">Andrea Ronchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Homm%2C+P">P铆a Homm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Menghini%2C+M">Mariela Menghini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Franceschini%2C+P">Paolo Franceschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Banfi%2C+F">Francesco Banfi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrini%2C+G">Gabriele Ferrini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cilento%2C+F">Federico Cilento</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parmigiani%2C+F">Fulvio Parmigiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fabrizio%2C+M">Michele Fabrizio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locquet%2C+J">Jean-Pierre Locquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giannetti%2C+C">Claudio Giannetti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.03670v2-abstract-short" style="display: inline;"> Unveiling the physics that governs the intertwining between the nanoscale self-organization and the dynamics of insulator-to-metal transitions (\textit{IMT}) is key for controlling on demand the ultrafast switching in strongly correlated materials and nano-devices. A paradigmatic case is the \textit{IMT} in V$_2$O$_3$, for which the mechanism that leads to the nucleation and growth of metallic nan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03670v2-abstract-full').style.display = 'inline'; document.getElementById('1807.03670v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.03670v2-abstract-full" style="display: none;"> Unveiling the physics that governs the intertwining between the nanoscale self-organization and the dynamics of insulator-to-metal transitions (\textit{IMT}) is key for controlling on demand the ultrafast switching in strongly correlated materials and nano-devices. A paradigmatic case is the \textit{IMT} in V$_2$O$_3$, for which the mechanism that leads to the nucleation and growth of metallic nano-droplets out of the supposedly homogeneous Mott insulating phase is still a mystery. Here, we combine X-ray photoemission electron microscopy and ultrafast non-equilibrium optical spectroscopy to investigate the early stage dynamics of isolated metallic nano-droplets across the \textit{IMT} in V$_2$O$_3$ thin films. Our experiments show that the low-temperature monoclinic antiferromagnetic insulating phase is characterized by the spontaneous formation of striped polydomains, with different lattice distortions. The insulating domain boundaries accommodate the birth of metallic nano-droplets, whose non-equilibrium expansion can be triggered by the photo-induced change of the 3$d$-orbital occupation. We address the relation between the spontaneous nanotexture of the Mott insulating phase in V$_2$O$_3$ and the timescale of the metallic seeds growth. We speculate that the photoinduced metallic growth can proceed along a non-thermal pathway in which the monoclinic lattice symmetry of the insulating phase is partially retained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03670v2-abstract-full').style.display = 'none'; document.getElementById('1807.03670v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, text+figures+methods+supplementary</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 075111 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.07321">arXiv:1806.07321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.07321">pdf</a>, <a href="https://arxiv.org/format/1806.07321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.2.104406">10.1103/PhysRevMaterials.2.104406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Antiferromagnetic-ferromagnetic phase domain development in nanopatterned FeRh islands </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Temple%2C+R+C">R. C. Temple</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Almeida%2C+T+P">T. P. Almeida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Massey%2C+J+R">J. R. Massey</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fallon%2C+K">K. Fallon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamb%2C+R">R. Lamb</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morley%2C+S+A">S. A. Morley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGrouther%2C+D">D. McGrouther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McVitie%2C+S">S. McVitie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+T+A">T. A. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.07321v1-abstract-short" style="display: inline;"> The antiferromagnetic to ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images directly detail the progression in the shape and size of the FM phase domains during heating and cooling through the transition. In 5 um square islands&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07321v1-abstract-full').style.display = 'inline'; document.getElementById('1806.07321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.07321v1-abstract-full" style="display: none;"> The antiferromagnetic to ferromagnetic phase transition in B2-ordered FeRh is imaged in laterally confined nanopatterned islands using photoemission electron microscopy with x-ray magnetic circular dichroism contrast. The resulting magnetic images directly detail the progression in the shape and size of the FM phase domains during heating and cooling through the transition. In 5 um square islands this domain development during heating is shown to proceed in three distinct modes: nucleation, growth, and merging, each with subsequently greater energy costs. In 0.5 um islands, which are smaller than the typical final domain size, the growth mode is stunted and the transition temperature was found to be reduced by 20 K. The modification to the transition temperature is found by high resolution scanning transmission electron microscopy to be due to a 100 nm chemically disordered edge grain present as a result of ion implantation damage during the patterning. FeRh has unique possibilities for magnetic memory applications; the inevitable changes to its magnetic properties due to subtractive nanofabrication will need to be addressed in future work in order to progress from sheet films to suitable patterned devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07321v1-abstract-full').style.display = 'none'; document.getElementById('1806.07321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Materials 2, 104406 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.05146">arXiv:1711.05146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.05146">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-018-0079-1">10.1038/s41565-018-0079-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Current-polarity dependent manipulation of antiferromagnetic domains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">P. Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reimers%2C+S">S. Reimers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grzybowski%2C+M+J">M. J. Grzybowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andrews%2C+C">C. Andrews</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+M">M. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauhan%2C+J+S">J. S. Chauhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallagher%2C+B+L">B. L. Gallagher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">R. P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">K. W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novak%2C+V">V. Novak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wunderlich%2C+J">J. Wunderlich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">T. Jungwirth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.05146v1-abstract-short" style="display: inline;"> Antiferromagnets have a number of favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields . Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents . In previous experiments, orthogonal in-plan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05146v1-abstract-full').style.display = 'inline'; document.getElementById('1711.05146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.05146v1-abstract-full" style="display: none;"> Antiferromagnets have a number of favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields . Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents . In previous experiments, orthogonal in-plane current pulses were used to induce 90 degree rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry . Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using x-ray magnetic linear dichroism microscopy, and can also be detected electrically. The switching by domain wall motion can occur at much lower current densities than those needed for coherent domain switching. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.05146v1-abstract-full').style.display = 'none'; document.getElementById('1711.05146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.01726">arXiv:1706.01726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.01726">pdf</a>, <a href="https://arxiv.org/ps/1706.01726">ps</a>, <a href="https://arxiv.org/format/1706.01726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.jmmm.2017.10.030">10.1016/j.jmmm.2017.10.030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic skyrmions in confined geometries : effect of the magnetic field and the disorder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Juge%2C+R">Rom茅o Juge</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Je%2C+S">Soong-Geun Je</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaves%2C+D+d+S">Dayane de Souza Chaves</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pizzini%2C+S">Stefania Pizzini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buda-Prejbeanu%2C+L+D">Liliana D. Buda-Prejbeanu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aballe%2C+L">Lucia Aballe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Foerster%2C+M">Michael Foerster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Locatelli%2C+A">Andrea Locatelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mente%C5%9F%2C+T+O">Tevfik Onur Mente艧</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+A">Alessandro Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Auffret%2C+S">St茅phane Auffret</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gaudin%2C+G">Gilles Gaudin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vogel%2C+J">Jan Vogel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boulle%2C+O">Olivier Boulle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.01726v4-abstract-short" style="display: inline;"> We report on the effect of the lateral confinement and a perpendicular magnetic field on isolated room-temperature magnetic skyrmions in sputtered Pt/Co/MgO nanotracks and nanodots. We show that the skyrmions size can be easily tuned by playing on the lateral dimensions of the nanostructures and by using external magnetic field amplitudes of a few mT, which allow to reach sub-100 nm diameters. Our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01726v4-abstract-full').style.display = 'inline'; document.getElementById('1706.01726v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.01726v4-abstract-full" style="display: none;"> We report on the effect of the lateral confinement and a perpendicular magnetic field on isolated room-temperature magnetic skyrmions in sputtered Pt/Co/MgO nanotracks and nanodots. We show that the skyrmions size can be easily tuned by playing on the lateral dimensions of the nanostructures and by using external magnetic field amplitudes of a few mT, which allow to reach sub-100 nm diameters. Our XMCD-PEEM observations also highlight the important role of the pinning on the skyrmions size and stability under an out-of-plane magnetic field. Micromagnetic simulations reveal that the effect of local pinning can be well accounted for by considering the thin film grain structure with local anisotropy variations and reproduce well the dependence of the skyrmion diameter on the magnetic field and the geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01726v4-abstract-full').style.display = 'none'; document.getElementById('1706.01726v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.03147">arXiv:1702.03147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1702.03147">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">P. Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">K. W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shahedkhah%2C+M+R">M. R. Shahedkhah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">R. P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallagher%2C+B+L">B. L. Gallagher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zelezny%2C+J">J. Zelezny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunes%2C+J">J. Kunes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novak%2C+V">V. Novak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">T. Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saidl%2C+V">V. Saidl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nemec%2C+P">P. Nemec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.03147v1-abstract-short" style="display: inline;"> Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5nm thick CuMnAs layer is rotatable under small magnetic fields, due to the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03147v1-abstract-full').style.display = 'inline'; document.getElementById('1702.03147v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.03147v1-abstract-full" style="display: none;"> Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.03147v1-abstract-full').style.display = 'none'; document.getElementById('1702.03147v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.02930">arXiv:1609.02930</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1609.02930">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep42107">10.1038/srep42107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Beardsley%2C+R+P">R. P. Beardsley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkes%2C+D+E">D. E. Parkes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zemen%2C+J">J. Zemen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowe%2C+S">S. Bowe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">K. W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reardon%2C+C">C. Reardon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isakov%2C+I">I. Isakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Warburton%2C+P+A">P. A. Warburton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">R. P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallagher%2C+B+L">B. L. Gallagher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavill%2C+S+A">S. A. Cavill</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rushforth%2C+A+W">A. W. Rushforth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.02930v2-abstract-short" style="display: inline;"> We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02930v2-abstract-full').style.display = 'inline'; document.getElementById('1609.02930v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.02930v2-abstract-full" style="display: none;"> We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.02930v2-abstract-full').style.display = 'none'; document.getElementById('1609.02930v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 7, 42107 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.01941">arXiv:1608.01941</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.01941">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphoton.2016.255">10.1038/nphoton.2016.255 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical determination of the Neel vector in a CuMnAs thin-film antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Saidl%2C+V">V. Saidl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nemec%2C+P">P. Nemec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">P. Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hills%2C+V">V. Hills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">R. P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novak%2C+V">V. Novak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">K. W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallagher%2C+B+L">B. L. Gallagher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trojanek%2C+F">F. Trojanek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunes%2C+J">J. Kunes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zelezny%2C+J">J. Zelezny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maly%2C+P">P. Maly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">T. Jungwirth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.01941v1-abstract-short" style="display: inline;"> Recent breakthroughs in electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices. Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to the insensitivity to magnetic field perturbations, multi-level stability, ultra-fast spin dynamics and other favorable characteristics which may find u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01941v1-abstract-full').style.display = 'inline'; document.getElementById('1608.01941v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.01941v1-abstract-full" style="display: none;"> Recent breakthroughs in electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices. Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to the insensitivity to magnetic field perturbations, multi-level stability, ultra-fast spin dynamics and other favorable characteristics which may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and the ultra-short magnetization dynamics timescales make antiferromagnets notoriously difficult to study by common magnetometers or magnetic resonance techniques. In this paper we demonstrate the experimental determination of the Neel vector in a thin film of antiferromagnetic CuMnAs which is the prominent material used in the first realization of antiferromagnetic memory chips. We employ a femtosecond pump-probe magneto-optical experiment based on magnetic linear dichroism. This table-top optical method is considerably more accessible than the traditionally employed large scale facility techniques like neutron diffraction and X-ray magnetic dichroism measurements. This optical technique allows an unambiguous direct determination of the Neel vector orientation in thin antiferromagnetic films utilized in devices directly from measured data without fitting to a theoretical model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.01941v1-abstract-full').style.display = 'none'; document.getElementById('1608.01941v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Photonics 11, 91-97 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.08478">arXiv:1607.08478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.08478">pdf</a>, <a href="https://arxiv.org/ps/1607.08478">ps</a>, <a href="https://arxiv.org/format/1607.08478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.057701">10.1103/PhysRevLett.118.057701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaging current-induced switching of antiferromagnetic domains in CuMnAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Grzybowski%2C+M+J">M. J. Grzybowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadley%2C+P">P. Wadley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Edmonds%2C+K+W">K. W. Edmonds</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beardsley%2C+R">R. Beardsley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hills%2C+V">V. Hills</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campion%2C+R+P">R. P. Campion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gallagher%2C+B+L">B. L. Gallagher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chauhan%2C+J+S">J. S. Chauhan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Novak%2C+V">V. Novak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">T. Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.08478v2-abstract-short" style="display: inline;"> The magnetic order in antiferromagnetic (AF) materials is hard to control with external magnetic fields. However, recent advances in detecting and manipulating AF order electrically have opened up new prospects for these materials in basic and applied spintronics research. Using x-ray magnetic linear dichroism microscopy, we show here that staggered effective fields generated by electrical current&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.08478v2-abstract-full').style.display = 'inline'; document.getElementById('1607.08478v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.08478v2-abstract-full" style="display: none;"> The magnetic order in antiferromagnetic (AF) materials is hard to control with external magnetic fields. However, recent advances in detecting and manipulating AF order electrically have opened up new prospects for these materials in basic and applied spintronics research. Using x-ray magnetic linear dichroism microscopy, we show here that staggered effective fields generated by electrical current can induce reproducible and reversible modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. The current-induced domain switching is inhomogeneous at the submicron level. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.08478v2-abstract-full').style.display = 'none'; document.getElementById('1607.08478v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 057701 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.04445">arXiv:1602.04445</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.04445">pdf</a>, <a href="https://arxiv.org/format/1602.04445">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms13141">10.1038/ncomms13141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mattoni%2C+G">Giordano Mattoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zubko%2C+P">Pavlo Zubko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">Francesco Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Torren%2C+A+J+H">Alexander J. H. van der Torren</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boltje%2C+D+B">Daan B. Boltje</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hadjimichael%2C+M">Marios Hadjimichael</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manca%2C+N">Nicola Manca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Catalano%2C+S">Sara Catalano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gibert%2C+M">Marta Gibert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yanwei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aarts%2C+J">Jan Aarts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Triscone%2C+J">Jean-Marc Triscone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">Sarnjeet S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caviglia%2C+A+D">Andrea D. Caviglia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.04445v2-abstract-short" style="display: inline;"> Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04445v2-abstract-full').style.display = 'inline'; document.getElementById('1602.04445v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.04445v2-abstract-full" style="display: none;"> Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is an intrinsic local property, set by surface morphology and stable across multiple temperature cycles. Our data provides new insights into the MIT of heteroepitaxial nickelates and points to a rich, nanoscale phenomenology in this strongly correlated material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.04445v2-abstract-full').style.display = 'none'; document.getElementById('1602.04445v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 7 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05242">arXiv:1512.05242</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1512.05242">pdf</a>, <a href="https://arxiv.org/format/1512.05242">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.117.177601">10.1103/PhysRevLett.117.177601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coherent magneto-elastic domains in multiferroic BiFeO3 films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Price%2C+N+W">N. Waterfield Price</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+R+D">R. D. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saenrang%2C+W">W. Saenrang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bombardi%2C+A">A. Bombardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chmiel%2C+F+P">F. P. Chmiel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eom%2C+C+-">C. -B. Eom</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Radaelli%2C+P+G">P. G. Radaelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05242v3-abstract-short" style="display: inline;"> The physical properties of epitaxial films can fundamentally differ from those of bulk single crystals even above the critical thickness. By a combination of non-resonant x-ray magnetic scattering, neutron diffraction and vector-mapped x-ray magnetic linear dichroism photoemission electron microscopy, we show that epitaxial (111)-BiFeO3 films support sub-micron antiferromagnetic domains, which are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05242v3-abstract-full').style.display = 'inline'; document.getElementById('1512.05242v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05242v3-abstract-full" style="display: none;"> The physical properties of epitaxial films can fundamentally differ from those of bulk single crystals even above the critical thickness. By a combination of non-resonant x-ray magnetic scattering, neutron diffraction and vector-mapped x-ray magnetic linear dichroism photoemission electron microscopy, we show that epitaxial (111)-BiFeO3 films support sub-micron antiferromagnetic domains, which are magneto-elastically coupled to a coherent crystallographic monoclinic twin structure. This unique texture, which is absent in bulk single crystals, should enable control of magnetism in BiFeO3 film devices via epitaxial strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05242v3-abstract-full').style.display = 'none'; document.getElementById('1512.05242v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 117, 177601 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.3753">arXiv:1409.3753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1409.3753">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.91.014433">10.1103/PhysRevB.91.014433 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interfacial Dzyaloshinskii-Moriya interaction in Ta\Co20Fe60B20\MgO nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Conte%2C+R+L">R. Lo Conte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+E">E. Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hrabec%2C+A">A. Hrabec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamperti%2C+A">A. Lamperti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schulz%2C+T">T. Schulz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nasi%2C+L">L. Nasi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lazzarini%2C+L">L. Lazzarini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ocker%2C+B">B. Ocker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+T+A">T. A. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klaeui%2C+M">M. Klaeui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.3753v1-abstract-short" style="display: inline;"> We report current-induced domain wall motion (CIDWM) in Ta\Co20Fe60B20\MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion direction and velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3753v1-abstract-full').style.display = 'inline'; document.getElementById('1409.3753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.3753v1-abstract-full" style="display: none;"> We report current-induced domain wall motion (CIDWM) in Ta\Co20Fe60B20\MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion direction and velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain walls, due to a Dzyaloshinskii-Moriya interaction (DMI) with a DMI coefficient D=+0.06 mJ/m2. The positive DMI coefficient is interpreted to be a consequence of boron diffusion into the tantalum buffer layer during annealing. In a Pt\Co68Fe22B10\MgO nanowire CIDWM along the electron flow was observed, corroborating this interpretation. The experimental results are compared to 1D-model simulations including the effects of pinning. This advanced modelling allows us to reproduce the experiment outcomes and reliably extract a spin-Hall angle 胃SH=-0.11 for Ta in the nanowires, showing the importance of an analysis that goes beyond the currently used model for perfect nanowires. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.3753v1-abstract-full').style.display = 'none'; document.getElementById('1409.3753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1407.2154">arXiv:1407.2154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1407.2154">pdf</a>, <a href="https://arxiv.org/format/1407.2154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/16/11/113073">10.1088/1367-2630/16/11/113073 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a temperature dependent asymmetry in the domain structure of a Pd doped FeRh epilayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kinane%2C+C+J">C. J. Kinane</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loving%2C+M">M. Loving</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Vries%2C+M+A">M. A. de Vries</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fan%2C+R">R. Fan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Charlton%2C+T+R">T. R. Charlton</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claydon%2C+J+S">J. S. Claydon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Arena%2C+D+A">D. A. Arena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heiman%2C+D">D. Heiman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marrows%2C+C+H">C. H. Marrows</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lewis%2C+L+H">L. H. Lewis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Langridge%2C+S">Sean Langridge</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1407.2154v1-abstract-short" style="display: inline;"> Using X-ray photoelectron emission microscopy we have observed the coexistence of ferromagnetic and antiferromagnetic phases in a (3 at.%)Pd-doped FeRh epilayer. By quantitatively analyzing the resultant images we observe that as the epilayer transforms there is a change in magnetic domain symmetry from predominantly twofold at lower temperatures through to an equally weighted combination of both&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.2154v1-abstract-full').style.display = 'inline'; document.getElementById('1407.2154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1407.2154v1-abstract-full" style="display: none;"> Using X-ray photoelectron emission microscopy we have observed the coexistence of ferromagnetic and antiferromagnetic phases in a (3 at.%)Pd-doped FeRh epilayer. By quantitatively analyzing the resultant images we observe that as the epilayer transforms there is a change in magnetic domain symmetry from predominantly twofold at lower temperatures through to an equally weighted combination of both four and twofold symmetries at higher temperature. It is postulated that the lowered symmetry Ising-like nematic phase resides at the near-surface of the epilayer. This behavior is different to that of undoped FeRh suggesting that the variation in symmetry is driven by the competing structural and electronic interactions in the nanoscale FeRh film coupled with the effect of the chemical doping disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1407.2154v1-abstract-full').style.display = 'none'; document.getElementById('1407.2154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Epubs 12277055 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2014 New J. Phys. 16 113073 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.2775">arXiv:1311.2775</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1311.2775">pdf</a>, <a href="https://arxiv.org/format/1311.2775">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jp502209q">10.1021/jp502209q <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic Coupling and Single-Ion Anisotropy in Surface-Supported Mn-based Metal-Organic Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giovanelli%2C+L">L. Giovanelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Savoyant%2C+A">A. Savoyant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abel%2C+M">M. Abel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ksari%2C+Y">Y. Ksari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koudia%2C+M">M. Koudia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hayn%2C+R">R. Hayn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choueikani%2C+F">F. Choueikani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otero%2C+E">E. Otero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ohresser%2C+P">P. Ohresser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Themlin%2C+J+-">J. -M. Themlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clair%2C+S">S. Clair</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.2775v3-abstract-short" style="display: inline;"> The electronic and magnetic properties of Mn coordinated to 1,2,4,5-tetracyanobenzene (TCNB) in the Mn-TCNB 2D metal-ligand networks have been investigated by combining scanning tunneling microscopy and X-ray magnetic circular dichroism (XMCD) performed at low temperature (3 K). When formed on Au(111) and Ag(111) substrates the Mn-TCNB networks display similar geometric structures. Magnetization c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2775v3-abstract-full').style.display = 'inline'; document.getElementById('1311.2775v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.2775v3-abstract-full" style="display: none;"> The electronic and magnetic properties of Mn coordinated to 1,2,4,5-tetracyanobenzene (TCNB) in the Mn-TCNB 2D metal-ligand networks have been investigated by combining scanning tunneling microscopy and X-ray magnetic circular dichroism (XMCD) performed at low temperature (3 K). When formed on Au(111) and Ag(111) substrates the Mn-TCNB networks display similar geometric structures. Magnetization curves reveal ferromagnetic (FM) coupling of the Mn sites with similar single-ion anisotropy energies, but different coupling constants. Low-temperature XMCD spectra show that the local environment of the Mn centers differs appreciably for the two substrates. Multiplet structure calculations were used to derive the corresponding ligand field parameters confirming an in-plane uniaxial anisotropy. The observed interatomic coupling is discussed in terms of superexchange as well as substrate-mediated magnetic interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.2775v3-abstract-full').style.display = 'none'; document.getElementById('1311.2775v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">J. Phys. Chem. C 2014</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.6516">arXiv:1209.6516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1209.6516">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nmat3463">10.1038/nmat3463 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Moya%2C+X">X. Moya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hueso%2C+L+E">L. E. Hueso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tovstolytkin%2C+A+I">A. I. Tovstolytkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Podyalovskii%2C+D+I">D. I. Podyalovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ducati%2C+C">C. Ducati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Phillips%2C+L+C">L. C. Phillips</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghidini%2C+M">M. Ghidini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hovorka%2C+O">O. Hovorka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+A">A. Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vickers%2C+M+E">M. E. Vickers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Defa%C3%BF%2C+E">E. Defa每</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathur%2C+N+D">N. D. Mathur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.6516v1-abstract-short" style="display: inline;"> Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy efficient refrigeration, but only a few materials which suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La0.7Ca0.3MnO3 using strain mediated feedback from BaTiO3 subs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.6516v1-abstract-full').style.display = 'inline'; document.getElementById('1209.6516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.6516v1-abstract-full" style="display: none;"> Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy efficient refrigeration, but only a few materials which suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La0.7Ca0.3MnO3 using strain mediated feedback from BaTiO3 substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.6516v1-abstract-full').style.display = 'none'; document.getElementById('1209.6516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 1 Table, 5 figures, supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.5656">arXiv:1102.5656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.5656">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetization reversal processes in ErFe2/YFe2 exchange spring multilayer studied by xray magnetic circular dichroism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stenning%2C+G+B+G">G. B. G. Stenning</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buckingham%2C+A+R">A. R. Buckingham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bowden%2C+G+J">G. J. Bowden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ward%2C+R+C+C">R. C. C. Ward</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+der+Laan%2C+G">G. van der Laan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shelford%2C+L+R">L. R. Shelford</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhesi%2C+S+S">S. S. Dhesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Groot%2C+P+A+J">P. A. J. de Groot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.5656v1-abstract-short" style="display: inline;"> X-ray magnetic circular dichroism at the Er M4,5 edge is used to study the switching behavior of the hard ErFe2 layers in an epitaxial [ErFe2(70脜)/YFe2 (150脜)]{\times}25 exchange-spring superlattice. Magnetic hysteresis loops for the Er magnetization, at temperatures T &lt; 200 K, reveal a switching behavior with a single type of irreversible switch corresponding to vertical exchange spring states. E&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.5656v1-abstract-full').style.display = 'inline'; document.getElementById('1102.5656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.5656v1-abstract-full" style="display: none;"> X-ray magnetic circular dichroism at the Er M4,5 edge is used to study the switching behavior of the hard ErFe2 layers in an epitaxial [ErFe2(70脜)/YFe2 (150脜)]{\times}25 exchange-spring superlattice. Magnetic hysteresis loops for the Er magnetization, at temperatures T &lt; 200 K, reveal a switching behavior with a single type of irreversible switch corresponding to vertical exchange spring states. Experiments at T &gt; 200 K reveal a crossover to a regime with two types of switching processes. Computational modelling for this system gives a semi-quantitative agreement with the experiment and reveals that the observed high temperature switching behavior is due to a spin-flop like reorientation transition. In contrast to conventional spin-flop transitions in antiferromagnets, in this exchange spring system the increase in anisotropy energy of the hard magnetic layers is overcome by the decrease in Zeeman energy of the soft layers. Computational studies also reveal the presence of transitions between vertical exchange spring and spin-flop states with a first-order character as well as continuous transitions between these states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.5656v1-abstract-full').style.display = 'none'; document.getElementById('1102.5656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 Pages 5 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1102.2455">arXiv:1102.2455</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1102.2455">pdf</a>, <a href="https://arxiv.org/format/1102.2455">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.057209">10.1103/PhysRevLett.106.057209 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial Kagome Arrays of Nanomagnets: A Frozen Dipolar Spin Ice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rougemaille%2C+N">N. Rougemaille</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montaigne%2C+F">F. Montaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canals%2C+B">B. Canals</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duluard%2C+A">A. Duluard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacour%2C+D">D. Lacour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belkhou%2C+R">R. Belkhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fruchart%2C+O">O. Fruchart</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moussaoui%2C+S+E">S. El Moussaoui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bendounan%2C+A">A. Bendounan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1102.2455v1-abstract-short" style="display: inline;"> Magnetic frustration effects in artificial kagome arrays of nanomagnets are investigated using x-ray photoemission electron microscopy and Monte Carlo simulations. Spin configurations of demagnetized networks reveal unambiguous signatures of long range, dipolar interaction between the nanomagnets. As soon as the system enters the spin ice manifold, the kagome dipolar spin ice model captures the ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.2455v1-abstract-full').style.display = 'inline'; document.getElementById('1102.2455v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1102.2455v1-abstract-full" style="display: none;"> Magnetic frustration effects in artificial kagome arrays of nanomagnets are investigated using x-ray photoemission electron microscopy and Monte Carlo simulations. Spin configurations of demagnetized networks reveal unambiguous signatures of long range, dipolar interaction between the nanomagnets. As soon as the system enters the spin ice manifold, the kagome dipolar spin ice model captures the observed physics, while the short range kagome spin ice model fails. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1102.2455v1-abstract-full').style.display = 'none'; document.getElementById('1102.2455v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 106, 057209 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0711.3571">arXiv:0711.3571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0711.3571">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.2838455">10.1063/1.2838455 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 360 degree domain wall generation in the soft layer of magnetic tunnel junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">M. Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lacour%2C+D">Daniel Lacour</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Montaigne%2C+F">F. Montaigne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Briones%2C+J">J. Briones</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belkhou%2C+R">R. Belkhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moussaoui%2C+S+E">S. El Moussaoui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rougemaille%2C+N">N. Rougemaille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0711.3571v1-abstract-short" style="display: inline;"> High spatial resolution X-ray photo-emission electron microscopy technique has been used to study the influence of the dipolar coupling taking place between the NiFe and the Co ferromagnetic electrodes of micron sized, elliptical shaped magnetic tunnel junctions. The chemical selectivity of this technique allows to observe independently the magnetic domain structure in each ferromagnetic electro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.3571v1-abstract-full').style.display = 'inline'; document.getElementById('0711.3571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0711.3571v1-abstract-full" style="display: none;"> High spatial resolution X-ray photo-emission electron microscopy technique has been used to study the influence of the dipolar coupling taking place between the NiFe and the Co ferromagnetic electrodes of micron sized, elliptical shaped magnetic tunnel junctions. The chemical selectivity of this technique allows to observe independently the magnetic domain structure in each ferromagnetic electrode. The combination of this powerful imaging technique with micromagnetic simulations allows to evidence that a 360 degree domain wall can be stabilized in the NiFe soft layer. In this letter, we discuss the origin and the formation conditions of those 360 degree domain walls evidenced experimentally and numerically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0711.3571v1-abstract-full').style.display = 'none'; document.getElementById('0711.3571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physics Letters 92 (2008) 072501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0708.0350">arXiv:0708.0350</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0708.0350">pdf</a>, <a href="https://arxiv.org/ps/0708.0350">ps</a>, <a href="https://arxiv.org/format/0708.0350">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.99.117205">10.1103/PhysRevLett.99.117205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Garcia%2C+V">V. Garcia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sidis%2C+Y">Y. Sidis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marangolo%2C+M">M. Marangolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vidal%2C+F">F. Vidal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eddrief%2C+M">M. Eddrief</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bourges%2C+P">P. Bourges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccherozzi%2C+F">F. Maccherozzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+F">F. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Panaccione%2C+G">G. Panaccione</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Etgens%2C+V+H">V. H. Etgens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0708.0350v1-abstract-short" style="display: inline;"> The alpha-beta magneto-structural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 K to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more import&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.0350v1-abstract-full').style.display = 'inline'; document.getElementById('0708.0350v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0708.0350v1-abstract-full" style="display: none;"> The alpha-beta magneto-structural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 K to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more important, for the stabilization of the ferromagnetic alpha-phase at higher temperature than in bulk. We explain the premature appearance of the beta-phase at 275 K and the persistence of the ferromagnetic alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0708.0350v1-abstract-full').style.display = 'none'; document.getElementById('0708.0350v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, accepted for publication in Physical Review Letters</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10