CINXE.COM
Kolmogorov topological space in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Kolmogorov topological space in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> Kolmogorov topological space </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/14939/#Item_16" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="topology">Topology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topology">topology</a></strong> (<a class="existingWikiWord" href="/nlab/show/point-set+topology">point-set topology</a>, <a class="existingWikiWord" href="/nlab/show/point-free+topology">point-free topology</a>)</p> <p>see also <em><a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/functional+analysis">functional analysis</a></em> and <em><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a> <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></em></p> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology">Introduction</a></p> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subset">open subset</a>, <a class="existingWikiWord" href="/nlab/show/closed+subset">closed subset</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood">neighbourhood</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+for+the+topology">base for the topology</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood+base">neighbourhood base</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finer+topology">finer/coarser topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a>, <a class="existingWikiWord" href="/nlab/show/topological+interior">interior</a>, <a class="existingWikiWord" href="/nlab/show/topological+boundary">boundary</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separation+axiom">separation</a>, <a class="existingWikiWord" href="/nlab/show/sober+topological+space">sobriety</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+function">continuous function</a>, <a class="existingWikiWord" href="/nlab/show/homeomorphism">homeomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/uniformly+continuous+function">uniformly continuous function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+embedding">embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+map">open map</a>, <a class="existingWikiWord" href="/nlab/show/closed+map">closed map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequence">sequence</a>, <a class="existingWikiWord" href="/nlab/show/net">net</a>, <a class="existingWikiWord" href="/nlab/show/sub-net">sub-net</a>, <a class="existingWikiWord" href="/nlab/show/filter">filter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/convergence">convergence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a><a class="existingWikiWord" href="/nlab/show/Top">Top</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/convenient+category+of+topological+spaces">convenient category of topological spaces</a></li> </ul> </li> </ul> <p><strong><a href="Top#UniversalConstructions">Universal constructions</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/initial+topology">initial topology</a>, <a class="existingWikiWord" href="/nlab/show/final+topology">final topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subspace">subspace</a>, <a class="existingWikiWord" href="/nlab/show/quotient+space">quotient space</a>,</p> </li> <li> <p>fiber space, <a class="existingWikiWord" href="/nlab/show/space+attachment">space attachment</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product+space">product space</a>, <a class="existingWikiWord" href="/nlab/show/disjoint+union+space">disjoint union space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cylinder">mapping cylinder</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocylinder">mapping cocylinder</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+telescope">mapping telescope</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/colimits+of+normal+spaces">colimits of normal spaces</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/stuff%2C+structure%2C+property">Extra stuff, structure, properties</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/nice+topological+space">nice topological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metric+space">metric space</a>, <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a>, <a class="existingWikiWord" href="/nlab/show/metrisable+space">metrisable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kolmogorov+space">Kolmogorov space</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+space">Hausdorff space</a>, <a class="existingWikiWord" href="/nlab/show/regular+space">regular space</a>, <a class="existingWikiWord" href="/nlab/show/normal+space">normal space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sober+space">sober space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+space">compact space</a>, <a class="existingWikiWord" href="/nlab/show/proper+map">proper map</a></p> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+topological+space">sequentially compact</a>, <a class="existingWikiWord" href="/nlab/show/countably+compact+topological+space">countably compact</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+space">locally compact</a>, <a class="existingWikiWord" href="/nlab/show/sigma-compact+topological+space">sigma-compact</a>, <a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a>, <a class="existingWikiWord" href="/nlab/show/countably+paracompact+topological+space">countably paracompact</a>, <a class="existingWikiWord" href="/nlab/show/strongly+compact+topological+space">strongly compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compactly+generated+space">compactly generated space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+space">second-countable space</a>, <a class="existingWikiWord" href="/nlab/show/first-countable+space">first-countable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/contractible+space">contractible space</a>, <a class="existingWikiWord" href="/nlab/show/locally+contractible+space">locally contractible space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+space">connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+connected+space">locally connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simply-connected+space">simply-connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+simply-connected+space">locally simply-connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cell+complex">cell complex</a>, <a class="existingWikiWord" href="/nlab/show/CW-complex">CW-complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pointed+topological+space">pointed space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a>, <a class="existingWikiWord" href="/nlab/show/Banach+space">Banach space</a>, <a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+bundle">topological vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+manifold">topological manifold</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/empty+space">empty space</a>, <a class="existingWikiWord" href="/nlab/show/point+space">point space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+space">discrete space</a>, <a class="existingWikiWord" href="/nlab/show/codiscrete+space">codiscrete space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Sierpinski+space">Sierpinski space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/order+topology">order topology</a>, <a class="existingWikiWord" href="/nlab/show/specialization+topology">specialization topology</a>, <a class="existingWikiWord" href="/nlab/show/Scott+topology">Scott topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/real+line">real line</a>, <a class="existingWikiWord" href="/nlab/show/plane">plane</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder">cylinder</a>, <a class="existingWikiWord" href="/nlab/show/cone">cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sphere">sphere</a>, <a class="existingWikiWord" href="/nlab/show/ball">ball</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle">circle</a>, <a class="existingWikiWord" href="/nlab/show/torus">torus</a>, <a class="existingWikiWord" href="/nlab/show/annulus">annulus</a>, <a class="existingWikiWord" href="/nlab/show/Moebius+strip">Moebius strip</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polytope">polytope</a>, <a class="existingWikiWord" href="/nlab/show/polyhedron">polyhedron</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/projective+space">projective space</a> (<a class="existingWikiWord" href="/nlab/show/real+projective+space">real</a>, <a class="existingWikiWord" href="/nlab/show/complex+projective+space">complex</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/configuration+space+%28mathematics%29">configuration space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path">path</a>, <a class="existingWikiWord" href="/nlab/show/loop">loop</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+spaces">mapping spaces</a>: <a class="existingWikiWord" href="/nlab/show/compact-open+topology">compact-open topology</a>, <a class="existingWikiWord" href="/nlab/show/topology+of+uniform+convergence">topology of uniform convergence</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a>, <a class="existingWikiWord" href="/nlab/show/path+space">path space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Zariski+topology">Zariski topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cantor+space">Cantor space</a>, <a class="existingWikiWord" href="/nlab/show/Mandelbrot+space">Mandelbrot space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peano+curve">Peano curve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+with+two+origins">line with two origins</a>, <a class="existingWikiWord" href="/nlab/show/long+line">long line</a>, <a class="existingWikiWord" href="/nlab/show/Sorgenfrey+line">Sorgenfrey line</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-topology">K-topology</a>, <a class="existingWikiWord" href="/nlab/show/Dowker+space">Dowker space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Warsaw+circle">Warsaw circle</a>, <a class="existingWikiWord" href="/nlab/show/Hawaiian+earring+space">Hawaiian earring space</a></p> </li> </ul> <p><strong>Basic statements</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hausdorff+spaces+are+sober">Hausdorff spaces are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schemes+are+sober">schemes are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+images+of+compact+spaces+are+compact">continuous images of compact spaces are compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces">closed subspaces of compact Hausdorff spaces are equivalently compact subspaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subspaces+of+compact+Hausdorff+spaces+are+locally+compact">open subspaces of compact Hausdorff spaces are locally compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quotient+projections+out+of+compact+Hausdorff+spaces+are+closed+precisely+if+the+codomain+is+Hausdorff">quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lebesgue+number+lemma">Lebesgue number lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+equivalently+compact+metric+spaces">sequentially compact metric spaces are equivalently compact metric spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+totally+bounded">sequentially compact metric spaces are totally bounded</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+metric+space+valued+function+on+compact+metric+space+is+uniformly+continuous">continuous metric space valued function on compact metric space is uniformly continuous</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+are+normal">paracompact Hausdorff spaces are normal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+equivalently+admit+subordinate+partitions+of+unity">paracompact Hausdorff spaces equivalently admit subordinate partitions of unity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+injections+are+embeddings">closed injections are embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+maps+to+locally+compact+spaces+are+closed">proper maps to locally compact spaces are closed</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+proper+maps+to+locally+compact+spaces+are+equivalently+the+closed+embeddings">injective proper maps to locally compact spaces are equivalently the closed embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact">locally compact and sigma-compact spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact">locally compact and second-countable spaces are sigma-compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+regular+spaces+are+paracompact">second-countable regular spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CW-complexes+are+paracompact+Hausdorff+spaces">CW-complexes are paracompact Hausdorff spaces</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Urysohn%27s+lemma">Urysohn's lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tietze+extension+theorem">Tietze extension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tychonoff+theorem">Tychonoff theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tube+lemma">tube lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael%27s+theorem">Michael's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brouwer%27s+fixed+point+theorem">Brouwer's fixed point theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+invariance+of+dimension">topological invariance of dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jordan+curve+theorem">Jordan curve theorem</a></p> </li> </ul> <p><strong>Analysis Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heine-Borel+theorem">Heine-Borel theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/intermediate+value+theorem">intermediate value theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extreme+value+theorem">extreme value theorem</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological homotopy theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a>, <a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equivalence">homotopy equivalence</a>, <a class="existingWikiWord" href="/nlab/show/deformation+retract">deformation retract</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a>, <a class="existingWikiWord" href="/nlab/show/covering+space">covering space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalence">weak homotopy equivalence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+extension+property">homotopy extension property</a>, <a class="existingWikiWord" href="/nlab/show/Hurewicz+cofibration">Hurewicz cofibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+cofiber+sequence">cofiber sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Str%C3%B8m+model+category">Strøm model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+topological+spaces">classical model structure on topological spaces</a></p> </li> </ul> </div></div> <h4 id="category_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category+theory">(0,1)-category theory</a></strong>: <a class="existingWikiWord" href="/nlab/show/logic">logic</a>, <a class="existingWikiWord" href="/nlab/show/order+theory">order theory</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-category">(0,1)-category</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+preorders+and+%280%2C1%29-categories">relation between preorders and (0,1)-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proset">proset</a>, <a class="existingWikiWord" href="/nlab/show/partially+ordered+set">partially ordered set</a> (<a class="existingWikiWord" href="/nlab/show/directed+set">directed set</a>, <a class="existingWikiWord" href="/nlab/show/total+order">total order</a>, <a class="existingWikiWord" href="/nlab/show/linear+order">linear order</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/top">top</a>, <a class="existingWikiWord" href="/nlab/show/true">true</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bottom">bottom</a>, <a class="existingWikiWord" href="/nlab/show/false">false</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monotone+function">monotone function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/implication">implication</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/filter">filter</a>, <a class="existingWikiWord" href="/nlab/show/interval">interval</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lattice">lattice</a>, <a class="existingWikiWord" href="/nlab/show/semilattice">semilattice</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/meet">meet</a>, <a class="existingWikiWord" href="/nlab/show/logical+conjunction">logical conjunction</a>, <a class="existingWikiWord" href="/nlab/show/and">and</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/join">join</a>, <a class="existingWikiWord" href="/nlab/show/logical+disjunction">logical disjunction</a>, <a class="existingWikiWord" href="/nlab/show/or">or</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+element">compact element</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lattice+of+subobjects">lattice of subobjects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complete+lattice">complete lattice</a>, <a class="existingWikiWord" href="/nlab/show/algebraic+lattice">algebraic lattice</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/distributive+lattice">distributive lattice</a>, <a class="existingWikiWord" href="/nlab/show/completely+distributive+lattice">completely distributive lattice</a>, <a class="existingWikiWord" href="/nlab/show/canonical+extension">canonical extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperdoctrine">hyperdoctrine</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/first-order+hyperdoctrine">first-order</a>, <a class="existingWikiWord" href="/nlab/show/Boolean+hyperdoctrine">Boolean</a>, <a class="existingWikiWord" href="/nlab/show/coherent+hyperdoctrine">coherent</a>, <a class="existingWikiWord" href="/nlab/show/tripos">tripos</a></li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/regular+element">regular element</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Boolean+algebra">Boolean algebra</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/frame">frame</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li><a class="existingWikiWord" href="/nlab/show/Stone+duality">Stone duality</a></li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#definition'>Definition</a></li> <li><a href='#Properties'>Properties</a></li> <ul> <li><a href='#specialization_order'>Specialization order</a></li> <li><a href='#alternative_characterizations'>Alternative Characterizations</a></li> <li><a href='#SeparationAxiomInTermsOfLiftingProperties'>In terms of lifting properties</a></li> <li><a href='#reflection'>Reflection</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="definition">Definition</h2> <p>A <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,\tau)</annotation></semantics></math> is called a <em>Kolmogorov space</em> if it satisfies the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/separation+axiom">separation axiom</a>, hence if for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>≠</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x_1 \neq x_2 \in X</annotation></semantics></math> any two distinct points, then at least one of them has an <a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>∈</mo><mi>τ</mi></mrow><annotation encoding="application/x-tex">U_{x_i} \in \tau</annotation></semantics></math> which does not contain the other point. This is equivalent to its <a class="existingWikiWord" href="/nlab/show/contrapositive">contrapositive</a>: for all points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x_1, x_2 \in X</annotation></semantics></math>, if every <a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>U</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>∈</mo><mi>τ</mi></mrow><annotation encoding="application/x-tex">U_{x_i} \in \tau</annotation></semantics></math> which contains one of the points also contains the other point, then the two points are equal <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>=</mo><msub><mi>x</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_1 = x_2</annotation></semantics></math>.</p> <div> <p>the <strong>main <a class="existingWikiWord" href="/nlab/show/separation+axioms">separation axioms</a></strong></p> <table><thead><tr><th>number</th><th>name</th><th>statement</th><th>reformulation</th></tr></thead><tbody><tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Kolmogorov+space">Kolmogorov</a></td><td style="text-align: left;">given two distinct points, at least one of them has an <a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a> not containing the other point</td><td style="text-align: left;">every <a class="existingWikiWord" href="/nlab/show/irreducible+closed+subset">irreducible closed subset</a> is the <a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a> of at most one point</td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">T_1</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;">given two distinct points, both have an <a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a> not containing the other point</td><td style="text-align: left;">all points are <a class="existingWikiWord" href="/nlab/show/closed+point">closed</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">T_2</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Hausdorff+topological+space">Hausdorff</a></td><td style="text-align: left;">given two distinct points, they have <a class="existingWikiWord" href="/nlab/show/disjoint+subset">disjoint</a> <a class="existingWikiWord" href="/nlab/show/open+neighbourhoods">open neighbourhoods</a></td><td style="text-align: left;">the <a class="existingWikiWord" href="/nlab/show/diagonal">diagonal</a> is a <a class="existingWikiWord" href="/nlab/show/closed+map">closed map</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mrow><mo>></mo><mn>2</mn></mrow></msub></mrow><annotation encoding="application/x-tex">T_{\gt 2}</annotation></semantics></math></td><td style="text-align: left;"></td><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">T_1</annotation></semantics></math> and…</td><td style="text-align: left;">all points are <a class="existingWikiWord" href="/nlab/show/closed+point">closed</a> and…</td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">T_3</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/regular+Hausdorff+topological+space">regular Hausdorff</a></td><td style="text-align: left;">…given a point and a <a class="existingWikiWord" href="/nlab/show/closed+subset">closed subset</a> not containing it, they have <a class="existingWikiWord" href="/nlab/show/disjoint+subset">disjoint</a> <a class="existingWikiWord" href="/nlab/show/open+neighbourhoods">open neighbourhoods</a></td><td style="text-align: left;">…every <a class="existingWikiWord" href="/nlab/show/neighbourhood">neighbourhood</a> of a point contains the <a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a> of an <a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a></td></tr> <tr><td style="text-align: left;"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">T_4</annotation></semantics></math></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/normal+Hausdorff+topological+space">normal Hausdorff</a></td><td style="text-align: left;">…given two <a class="existingWikiWord" href="/nlab/show/disjoint+subset">disjoint</a> <a class="existingWikiWord" href="/nlab/show/closed+subsets">closed subsets</a>, they have <a class="existingWikiWord" href="/nlab/show/disjoint+subset">disjoint</a> <a class="existingWikiWord" href="/nlab/show/open+neighbourhoods">open neighbourhoods</a></td><td style="text-align: left;">…every <a class="existingWikiWord" href="/nlab/show/neighbourhood">neighbourhood</a> of a <a class="existingWikiWord" href="/nlab/show/closed+set">closed set</a> also contains the <a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a> of an <a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a> <br /> … every pair of <a class="existingWikiWord" href="/nlab/show/disjoint+subset">disjoint</a> <a class="existingWikiWord" href="/nlab/show/closed+subsets">closed subsets</a> is separated by an <a class="existingWikiWord" href="/nlab/show/Urysohn+function">Urysohn function</a></td></tr> </tbody></table> </div> <h2 id="Properties">Properties</h2> <h3 id="specialization_order">Specialization order</h3> <p>Every topological space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>O</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X, O(X))</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/preorder">preorder</a> with respect to the <a class="existingWikiWord" href="/nlab/show/specialization+order">specialization order</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>∀</mo> <mrow><mi>U</mi><mo>:</mo><mi>O</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>∈</mo><mi>U</mi><mo stretchy="false">)</mo><mo>⇒</mo><mo stretchy="false">(</mo><mi>y</mi><mo>∈</mo><mi>U</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\forall_{U:O(X)} (x \in U) \implies (y \in U)</annotation></semantics></math>.</p> <p> <div class='num_prop'> <h6>Proposition</h6> <p>A topological space is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math> precisely when it is a <a class="existingWikiWord" href="/nlab/show/partial+order">partial order</a> with respect to the <a class="existingWikiWord" href="/nlab/show/specialization+order">specialization order</a> of the topological space.</p> </div> </p> <p>The proof follows from the <a class="existingWikiWord" href="/nlab/show/contrapositive">contrapositive</a> of the definition of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math>-space.</p> <h3 id="alternative_characterizations">Alternative Characterizations</h3> <p>Regard <a class="existingWikiWord" href="/nlab/show/Sierpinski+space">Sierpinski space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi></mrow><annotation encoding="application/x-tex">\Sigma</annotation></semantics></math> as a <a class="existingWikiWord" href="/nlab/show/frame">frame</a> object in the category of topological spaces (meaning: the representable functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>Σ</mi><mo stretchy="false">)</mo><mo>:</mo><msup><mi>Top</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">Top(-, \Sigma): Top^{op} \to Set</annotation></semantics></math> lifts through the monadic forgetful functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Frame</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">Frame \to Set</annotation></semantics></math>), hence as a <a class="existingWikiWord" href="/nlab/show/dualizing+object">dualizing object</a> that induces a contravariant adjunction between frames and topological spaces. Thus for a space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, the frame <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Top</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Σ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Top(X, \Sigma)</annotation></semantics></math> is the frame of <a class="existingWikiWord" href="/nlab/show/open+sets">open sets</a>; for a frame <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>, there is an accompanying topological space of points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Frame</mi><mo stretchy="false">(</mo><mi>A</mi><mo>,</mo><mi>Σ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Frame(A, \Sigma)</annotation></semantics></math>, a subspace of the product space <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Σ</mi> <mrow><mo stretchy="false">|</mo><mi>A</mi><mo stretchy="false">|</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\Sigma^{{|A|}}</annotation></semantics></math>. The unit of the adjunction is called the <em>double dual embedding</em>.</p> <p> <div class='num_prop'> <h6>Proposition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math> precisely when the double dual embedding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>Frame</mi><mo stretchy="false">(</mo><mi>Top</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>Σ</mi><mo stretchy="false">)</mo><mo>,</mo><mi>Σ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X \to Frame(Top(X, \Sigma), \Sigma)</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/monomorphism">monomorphism</a>.</p> </div> </p> <p>The proof is trivial: the monomorphism condition translates to saying that for any points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">x, y \in X</annotation></semantics></math>, if the truth values of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">x \in U</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>y</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">y \in U</annotation></semantics></math> agree for every open set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x = y</annotation></semantics></math>.</p> <div> <h3 id="SeparationAxiomInTermsOfLiftingProperties">In terms of lifting properties</h3> <p>The <a class="existingWikiWord" href="/nlab/show/separation+conditions">separation conditions</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math> to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">T_4</annotation></semantics></math> may equivalently be understood as <a class="existingWikiWord" href="/nlab/show/lifting+properties">lifting properties</a> against certain maps of <a class="existingWikiWord" href="/nlab/show/finite+topological+spaces">finite topological spaces</a>, among others.</p> <p>This is discussed at <em><a class="existingWikiWord" href="/nlab/show/separation+axioms+in+terms+of+lifting+properties">separation axioms in terms of lifting properties</a></em>, to which we refer for further details. Here we just briefly indicate the corresponding lifting diagrams.</p> <p>In the following diagrams, the relevant <a class="existingWikiWord" href="/nlab/show/finite+topological+spaces">finite topological spaces</a> are indicated explicitly by illustration of their <a class="existingWikiWord" href="/nlab/show/underlying">underlying</a> point set and their <a class="existingWikiWord" href="/nlab/show/open+subsets">open subsets</a>:</p> <ul> <li> <p>points (elements) are denoted by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>•</mo></mrow><annotation encoding="application/x-tex">\bullet</annotation></semantics></math> with subscripts indicating where the points map to;</p> </li> <li> <p>boxes are put around <a class="existingWikiWord" href="/nlab/show/open+subsets">open subsets</a>,</p> </li> <li> <p>an arrow <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>•</mo> <mi>u</mi></msub><mo>→</mo><msub><mo>•</mo> <mi>c</mi></msub></mrow><annotation encoding="application/x-tex">\bullet_u \to \bullet_c</annotation></semantics></math> means that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>•</mo> <mi>c</mi></msub></mrow><annotation encoding="application/x-tex">\bullet_c</annotation></semantics></math> is in the <a class="existingWikiWord" href="/nlab/show/topological+closure">topological closure</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mo>•</mo> <mi>u</mi></msub></mrow><annotation encoding="application/x-tex">\bullet_u</annotation></semantics></math>.</p> </li> </ul> <p>In the lifting diagrams for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>2</mn></msub><mo>−</mo><msub><mi>T</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">T_2-T_4</annotation></semantics></math> below, an arrow out of the given <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/map">map</a> that determines (classifies) a decomposition of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> into a <a class="existingWikiWord" href="/nlab/show/union">union</a> of <a class="existingWikiWord" href="/nlab/show/subsets">subsets</a> with properties indicated by the picture of the finite space.</p> <p>Notice that the diagrams for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">T_2</annotation></semantics></math>-<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">T_4</annotation></semantics></math> below do not in themselves imply <a class="existingWikiWord" href="/nlab/show/T1"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation encoding="application/x-tex">T_1</annotation> </semantics> </math></a>.</p> <p> <div class="num_prop"> <h6>Proposition</h6> <p><strong>(Lifting property encoding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math>)</strong> <br /> The following <a class="existingWikiWord" href="/nlab/show/lifting+property">lifting property</a> in <a class="existingWikiWord" href="/nlab/show/Top">Top</a> equivalently encodes the <a class="existingWikiWord" href="/nlab/show/separation+axiom">separation axiom</a> <a class="existingWikiWord" href="/nlab/show/T0"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>T</mi> <mn>0</mn></msub> </mrow> <annotation encoding="application/x-tex">T_0</annotation> </semantics> </math></a>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="135.276" height="99.78" viewBox="0 0 135.276 99.78"> <defs> <g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-0"> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-1"> <path d="M 3.375 -7.375 C 3.375 -7.859375 3.6875 -8.625 5 -8.703125 C 5.0625 -8.71875 5.109375 -8.765625 5.109375 -8.828125 C 5.109375 -8.96875 5.015625 -8.96875 4.875 -8.96875 C 3.6875 -8.96875 2.59375 -8.359375 2.578125 -7.46875 L 2.578125 -4.75 C 2.578125 -4.28125 2.578125 -3.890625 2.109375 -3.5 C 1.6875 -3.15625 1.234375 -3.125 0.96875 -3.125 C 0.90625 -3.109375 0.859375 -3.0625 0.859375 -2.984375 C 0.859375 -2.875 0.9375 -2.875 1.046875 -2.859375 C 1.84375 -2.8125 2.421875 -2.375 2.546875 -1.796875 C 2.578125 -1.65625 2.578125 -1.640625 2.578125 -1.203125 L 2.578125 1.15625 C 2.578125 1.65625 2.578125 2.046875 3.15625 2.5 C 3.625 2.859375 4.40625 2.984375 4.875 2.984375 C 5.015625 2.984375 5.109375 2.984375 5.109375 2.859375 C 5.109375 2.734375 5.03125 2.734375 4.90625 2.71875 C 4.15625 2.671875 3.578125 2.296875 3.421875 1.6875 C 3.375 1.578125 3.375 1.546875 3.375 1.125 L 3.375 -1.390625 C 3.375 -1.9375 3.28125 -2.140625 2.90625 -2.515625 C 2.65625 -2.765625 2.3125 -2.890625 1.96875 -2.984375 C 2.953125 -3.265625 3.375 -3.8125 3.375 -4.5 Z M 3.375 -7.375 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-2"> <path d="M 5.3125 -2.984375 C 5.3125 -4.265625 4.25 -5.3125 2.984375 -5.3125 C 1.703125 -5.3125 0.65625 -4.25 0.65625 -2.984375 C 0.65625 -1.71875 1.703125 -0.671875 2.984375 -0.671875 C 4.25 -0.671875 5.3125 -1.703125 5.3125 -2.984375 Z M 5.3125 -2.984375 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-3"> <path d="M 1.96875 -3.234375 C 2.625 -3.734375 2.953125 -4.21875 3.046875 -4.375 C 3.578125 -5.203125 3.6875 -5.953125 3.6875 -5.96875 C 3.6875 -6.109375 3.53125 -6.109375 3.4375 -6.109375 C 3.234375 -6.109375 3.234375 -6.078125 3.171875 -5.875 C 2.90625 -4.703125 2.203125 -3.703125 0.84375 -3.140625 C 0.71875 -3.09375 0.671875 -3.078125 0.671875 -2.984375 C 0.671875 -2.90625 0.734375 -2.875 0.84375 -2.828125 C 2.09375 -2.3125 2.890625 -1.390625 3.1875 -0.046875 C 3.234375 0.09375 3.234375 0.125 3.4375 0.125 C 3.53125 0.125 3.6875 0.125 3.6875 -0.015625 C 3.6875 -0.03125 3.578125 -0.78125 3.078125 -1.59375 C 2.828125 -1.953125 2.484375 -2.359375 1.96875 -2.75 L 9.96875 -2.75 C 9.3125 -2.25 8.984375 -1.75 8.890625 -1.609375 C 8.359375 -0.78125 8.265625 -0.03125 8.265625 -0.015625 C 8.265625 0.125 8.40625 0.125 8.5 0.125 C 8.703125 0.125 8.71875 0.109375 8.765625 -0.109375 C 9.03125 -1.28125 9.734375 -2.28125 11.09375 -2.828125 C 11.234375 -2.875 11.265625 -2.90625 11.265625 -2.984375 C 11.265625 -3.078125 11.203125 -3.109375 11.171875 -3.125 C 10.65625 -3.328125 9.203125 -3.921875 8.75 -5.921875 C 8.71875 -6.078125 8.703125 -6.109375 8.5 -6.109375 C 8.40625 -6.109375 8.265625 -6.109375 8.265625 -5.96875 C 8.265625 -5.9375 8.359375 -5.1875 8.875 -4.390625 C 9.109375 -4.03125 9.453125 -3.609375 9.96875 -3.234375 Z M 1.96875 -3.234375 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-4"> <path d="M 2.578125 1.40625 C 2.578125 1.875 2.265625 2.640625 0.96875 2.71875 C 0.90625 2.734375 0.859375 2.78125 0.859375 2.859375 C 0.859375 2.984375 0.984375 2.984375 1.09375 2.984375 C 2.265625 2.984375 3.375 2.40625 3.375 1.5 L 3.375 -1.234375 C 3.375 -1.703125 3.375 -2.078125 3.859375 -2.46875 C 4.28125 -2.828125 4.734375 -2.84375 5 -2.859375 C 5.0625 -2.875 5.109375 -2.921875 5.109375 -2.984375 C 5.109375 -3.109375 5.03125 -3.109375 4.90625 -3.125 C 4.125 -3.171875 3.546875 -3.59375 3.421875 -4.1875 C 3.375 -4.3125 3.375 -4.34375 3.375 -4.765625 L 3.375 -7.140625 C 3.375 -7.640625 3.375 -8.015625 2.8125 -8.46875 C 2.328125 -8.84375 1.5 -8.96875 1.09375 -8.96875 C 0.984375 -8.96875 0.859375 -8.96875 0.859375 -8.828125 C 0.859375 -8.71875 0.9375 -8.71875 1.046875 -8.703125 C 1.8125 -8.65625 2.390625 -8.265625 2.546875 -7.65625 C 2.578125 -7.546875 2.578125 -7.53125 2.578125 -7.09375 L 2.578125 -4.59375 C 2.578125 -4.046875 2.671875 -3.84375 3.0625 -3.453125 C 3.3125 -3.203125 3.65625 -3.078125 4 -2.984375 C 3.015625 -2.71875 2.578125 -2.15625 2.578125 -1.46875 Z M 2.578125 1.40625 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-0"> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-1"> <path d="M 3.890625 -2.546875 C 3.890625 -3.390625 3.8125 -3.90625 3.546875 -4.421875 C 3.203125 -5.125 2.546875 -5.296875 2.109375 -5.296875 C 1.109375 -5.296875 0.734375 -4.546875 0.625 -4.328125 C 0.34375 -3.75 0.328125 -2.953125 0.328125 -2.546875 C 0.328125 -2.015625 0.34375 -1.21875 0.734375 -0.578125 C 1.09375 0.015625 1.6875 0.171875 2.109375 0.171875 C 2.5 0.171875 3.171875 0.046875 3.578125 -0.734375 C 3.875 -1.3125 3.890625 -2.03125 3.890625 -2.546875 Z M 2.109375 -0.0625 C 1.84375 -0.0625 1.296875 -0.1875 1.125 -1.015625 C 1.03125 -1.46875 1.03125 -2.21875 1.03125 -2.640625 C 1.03125 -3.1875 1.03125 -3.75 1.125 -4.1875 C 1.296875 -5 1.90625 -5.078125 2.109375 -5.078125 C 2.375 -5.078125 2.9375 -4.9375 3.09375 -4.21875 C 3.1875 -3.78125 3.1875 -3.171875 3.1875 -2.640625 C 3.1875 -2.171875 3.1875 -1.453125 3.09375 -1 C 2.921875 -0.171875 2.375 -0.0625 2.109375 -0.0625 Z M 2.109375 -0.0625 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-2"> <path d="M 2.5 -5.078125 C 2.5 -5.296875 2.484375 -5.296875 2.265625 -5.296875 C 1.9375 -4.984375 1.515625 -4.796875 0.765625 -4.796875 L 0.765625 -4.53125 C 0.984375 -4.53125 1.40625 -4.53125 1.875 -4.734375 L 1.875 -0.65625 C 1.875 -0.359375 1.84375 -0.265625 1.09375 -0.265625 L 0.8125 -0.265625 L 0.8125 0 C 1.140625 -0.03125 1.828125 -0.03125 2.1875 -0.03125 C 2.546875 -0.03125 3.234375 -0.03125 3.5625 0 L 3.5625 -0.265625 L 3.28125 -0.265625 C 2.53125 -0.265625 2.5 -0.359375 2.5 -0.65625 Z M 2.5 -5.078125 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-3"> <path d="M 5.828125 -2.65625 C 5.9375 -2.65625 6.109375 -2.65625 6.109375 -2.84375 C 6.109375 -3.015625 5.90625 -3.015625 5.796875 -3.015625 L 0.78125 -3.015625 C 0.65625 -3.015625 0.46875 -3.015625 0.46875 -2.84375 C 0.46875 -2.65625 0.625 -2.65625 0.75 -2.65625 Z M 5.796875 -0.96875 C 5.90625 -0.96875 6.109375 -0.96875 6.109375 -1.140625 C 6.109375 -1.328125 5.9375 -1.328125 5.828125 -1.328125 L 0.75 -1.328125 C 0.625 -1.328125 0.46875 -1.328125 0.46875 -1.140625 C 0.46875 -0.96875 0.65625 -0.96875 0.78125 -0.96875 Z M 5.796875 -0.96875 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-4"> <path d="M 2.65625 1.984375 C 2.71875 1.984375 2.8125 1.984375 2.8125 1.890625 C 2.8125 1.859375 2.8125 1.859375 2.703125 1.75 C 1.609375 0.71875 1.34375 -0.75 1.34375 -1.984375 C 1.34375 -4.28125 2.28125 -5.359375 2.6875 -5.734375 C 2.8125 -5.828125 2.8125 -5.84375 2.8125 -5.875 C 2.8125 -5.921875 2.78125 -5.96875 2.703125 -5.96875 C 2.578125 -5.96875 2.171875 -5.5625 2.109375 -5.5 C 1.046875 -4.375 0.828125 -2.953125 0.828125 -1.984375 C 0.828125 -0.203125 1.5625 1.234375 2.65625 1.984375 Z M 2.65625 1.984375 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-5"> <path d="M 2.46875 -1.984375 C 2.46875 -2.75 2.328125 -3.65625 1.84375 -4.59375 C 1.453125 -5.328125 0.71875 -5.96875 0.578125 -5.96875 C 0.5 -5.96875 0.484375 -5.921875 0.484375 -5.875 C 0.484375 -5.84375 0.484375 -5.828125 0.578125 -5.734375 C 1.6875 -4.671875 1.9375 -3.21875 1.9375 -1.984375 C 1.9375 0.296875 1 1.375 0.59375 1.75 C 0.484375 1.84375 0.484375 1.859375 0.484375 1.890625 C 0.484375 1.9375 0.5 1.984375 0.578125 1.984375 C 0.703125 1.984375 1.109375 1.578125 1.171875 1.515625 C 2.234375 0.390625 2.46875 -1.03125 2.46875 -1.984375 Z M 2.46875 -1.984375 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-2-0"> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-2-1"> <path d="M 5.671875 -4.859375 L 4.546875 -7.46875 C 4.703125 -7.75 5.0625 -7.8125 5.21875 -7.8125 C 5.28125 -7.8125 5.421875 -7.828125 5.421875 -8.03125 C 5.421875 -8.15625 5.3125 -8.15625 5.234375 -8.15625 C 5.03125 -8.15625 4.796875 -8.140625 4.59375 -8.140625 L 3.890625 -8.140625 C 3.171875 -8.140625 2.640625 -8.15625 2.625 -8.15625 C 2.53125 -8.15625 2.421875 -8.15625 2.421875 -7.9375 C 2.421875 -7.8125 2.515625 -7.8125 2.671875 -7.8125 C 3.375 -7.8125 3.421875 -7.703125 3.53125 -7.40625 L 4.953125 -4.09375 L 2.359375 -1.3125 C 1.9375 -0.84375 1.421875 -0.390625 0.53125 -0.34375 C 0.390625 -0.328125 0.296875 -0.328125 0.296875 -0.125 C 0.296875 -0.078125 0.3125 0 0.4375 0 C 0.609375 0 0.78125 -0.03125 0.953125 -0.03125 L 1.515625 -0.03125 C 1.90625 -0.03125 2.3125 0 2.6875 0 C 2.765625 0 2.921875 0 2.921875 -0.21875 C 2.921875 -0.328125 2.828125 -0.34375 2.765625 -0.34375 C 2.515625 -0.375 2.359375 -0.5 2.359375 -0.6875 C 2.359375 -0.890625 2.515625 -1.046875 2.859375 -1.40625 L 3.921875 -2.5625 C 4.1875 -2.828125 4.8125 -3.53125 5.078125 -3.796875 L 6.328125 -0.84375 C 6.34375 -0.828125 6.390625 -0.703125 6.390625 -0.6875 C 6.390625 -0.578125 6.125 -0.375 5.75 -0.34375 C 5.671875 -0.34375 5.546875 -0.328125 5.546875 -0.125 C 5.546875 0 5.671875 0 5.71875 0 C 5.921875 0 6.171875 -0.03125 6.375 -0.03125 L 7.6875 -0.03125 C 7.90625 -0.03125 8.125 0 8.328125 0 C 8.421875 0 8.546875 0 8.546875 -0.234375 C 8.546875 -0.34375 8.421875 -0.34375 8.3125 -0.34375 C 7.609375 -0.359375 7.578125 -0.421875 7.375 -0.859375 L 5.796875 -4.5625 L 7.3125 -6.1875 C 7.4375 -6.3125 7.703125 -6.609375 7.8125 -6.734375 C 8.328125 -7.265625 8.8125 -7.75 9.78125 -7.8125 C 9.890625 -7.828125 10.015625 -7.828125 10.015625 -8.03125 C 10.015625 -8.15625 9.90625 -8.15625 9.859375 -8.15625 C 9.6875 -8.15625 9.515625 -8.140625 9.34375 -8.140625 L 8.796875 -8.140625 C 8.421875 -8.140625 8 -8.15625 7.625 -8.15625 C 7.546875 -8.15625 7.40625 -8.15625 7.40625 -7.953125 C 7.40625 -7.828125 7.484375 -7.8125 7.546875 -7.8125 C 7.75 -7.796875 7.953125 -7.703125 7.953125 -7.46875 L 7.9375 -7.453125 C 7.921875 -7.359375 7.90625 -7.25 7.765625 -7.09375 Z M 5.671875 -4.859375 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-3-0"> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-3-1"> <path d="M 4.65625 -5.203125 C 4.703125 -5.3125 4.703125 -5.3125 4.703125 -5.34375 C 4.703125 -5.4375 4.625 -5.53125 4.515625 -5.53125 C 4.40625 -5.53125 4.359375 -5.4375 4.328125 -5.359375 L 3.625 -3.625 L 1.078125 -3.625 L 0.375 -5.34375 C 0.34375 -5.421875 0.3125 -5.53125 0.1875 -5.53125 C 0.09375 -5.53125 0 -5.453125 0 -5.34375 C 0 -5.328125 0 -5.3125 0.0625 -5.1875 L 2.15625 -0.015625 C 2.1875 0.0625 2.21875 0.171875 2.34375 0.171875 C 2.46875 0.171875 2.5 0.078125 2.546875 -0.015625 Z M 1.234375 -3.25 L 3.46875 -3.25 L 2.34375 -0.515625 Z M 1.234375 -3.25 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-3-2"> <path d="M 4.21875 -5.234375 C 4.21875 -5.484375 4.1875 -5.53125 3.921875 -5.53125 L 0.765625 -5.53125 C 0.640625 -5.53125 0.46875 -5.53125 0.46875 -5.34375 C 0.46875 -5.15625 0.640625 -5.15625 0.765625 -5.15625 L 3.859375 -5.15625 L 3.859375 -2.953125 L 0.890625 -2.953125 C 0.765625 -2.953125 0.59375 -2.953125 0.59375 -2.765625 C 0.59375 -2.578125 0.765625 -2.578125 0.890625 -2.578125 L 3.859375 -2.578125 L 3.859375 -0.359375 L 0.765625 -0.359375 C 0.640625 -0.359375 0.46875 -0.359375 0.46875 -0.1875 C 0.46875 0 0.640625 0 0.765625 0 L 3.921875 0 C 4.1875 0 4.21875 -0.03125 4.21875 -0.296875 Z M 4.21875 -5.234375 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-4-0"> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-4-1"> <path d="M 3.609375 -4.828125 C 3.671875 -5.109375 3.6875 -5.125 4.015625 -5.125 L 4.609375 -5.125 C 5.4375 -5.125 5.53125 -4.859375 5.53125 -4.46875 C 5.53125 -4.265625 5.484375 -3.921875 5.484375 -3.875 C 5.46875 -3.796875 5.453125 -3.71875 5.453125 -3.703125 C 5.453125 -3.609375 5.53125 -3.578125 5.578125 -3.578125 C 5.671875 -3.578125 5.703125 -3.625 5.71875 -3.78125 L 5.9375 -5.28125 C 5.9375 -5.390625 5.84375 -5.390625 5.703125 -5.390625 L 1 -5.390625 C 0.8125 -5.390625 0.78125 -5.390625 0.734375 -5.21875 L 0.25 -3.84375 C 0.234375 -3.796875 0.203125 -3.734375 0.203125 -3.6875 C 0.203125 -3.625 0.265625 -3.578125 0.328125 -3.578125 C 0.421875 -3.578125 0.4375 -3.625 0.484375 -3.75 C 0.9375 -5.03125 1.15625 -5.125 2.375 -5.125 L 2.6875 -5.125 C 2.921875 -5.125 2.9375 -5.109375 2.9375 -5.046875 C 2.9375 -5.03125 2.90625 -4.875 2.890625 -4.84375 L 1.84375 -0.65625 C 1.765625 -0.34375 1.75 -0.265625 0.921875 -0.265625 C 0.65625 -0.265625 0.578125 -0.265625 0.578125 -0.109375 C 0.578125 -0.109375 0.578125 0 0.71875 0 C 0.9375 0 1.484375 -0.03125 1.703125 -0.03125 L 2.375 -0.03125 C 2.59375 -0.03125 3.15625 0 3.375 0 C 3.4375 0 3.5625 0 3.5625 -0.15625 C 3.5625 -0.265625 3.46875 -0.265625 3.265625 -0.265625 C 3.0625 -0.265625 3 -0.265625 2.796875 -0.28125 C 2.546875 -0.296875 2.515625 -0.328125 2.515625 -0.4375 C 2.515625 -0.46875 2.515625 -0.5 2.546875 -0.578125 Z M 3.609375 -4.828125 "></path> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-5-0"> </g> <g id="1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-5-1"> <path d="M 3.296875 -1.90625 C 3.296875 -2.34375 3.296875 -3.984375 1.828125 -3.984375 C 0.359375 -3.984375 0.359375 -2.34375 0.359375 -1.90625 C 0.359375 -1.484375 0.359375 0.125 1.828125 0.125 C 3.296875 0.125 3.296875 -1.484375 3.296875 -1.90625 Z M 1.828125 -0.0625 C 1.578125 -0.0625 1.171875 -0.1875 1.015625 -0.6875 C 0.921875 -1.03125 0.921875 -1.609375 0.921875 -1.984375 C 0.921875 -2.390625 0.921875 -2.84375 1.015625 -3.171875 C 1.15625 -3.703125 1.609375 -3.78125 1.828125 -3.78125 C 2.09375 -3.78125 2.5 -3.65625 2.625 -3.203125 C 2.71875 -2.890625 2.71875 -2.453125 2.71875 -1.984375 C 2.71875 -1.609375 2.71875 -1 2.625 -0.671875 C 2.453125 -0.140625 2.015625 -0.0625 1.828125 -0.0625 Z M 1.828125 -0.0625 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-1" x="5.147" y="13.91"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-2" x="14.507922" y="13.91"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-1" x="20.49" y="15.704"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-3" x="28.543" y="13.91"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-2" x="43.821746" y="13.91"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-2" x="49.797" y="15.704"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0 -0.00115625 L 46.789062 -0.00115625 " transform="matrix(1, 0, 0, -1, 11.125, 5.409)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00021875 0.001375 L 0.00021875 13.481844 " transform="matrix(1, 0, 0, -1, 11.324, 18.892)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00175 0.001375 L 0.00175 13.481844 " transform="matrix(1, 0, 0, -1, 57.717, 18.892)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0 0.001375 L 46.789062 0.001375 " transform="matrix(1, 0, 0, -1, 11.125, 18.892)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-4" x="57.916" y="13.91"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-2-1" x="108.894" y="13.91"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-2" x="23.755" y="93.611"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-1" x="29.733" y="95.405"></use> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-3" x="33.967514" y="95.405"></use> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-2" x="40.554005" y="95.405"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-0-2" x="111.233" y="93.611"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 6.890281 39.252125 L 40.722313 39.252125 " transform="matrix(1, 0, 0, -1, 62.348, 50.174)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488367 2.869919 C -2.031336 1.147262 -1.019617 0.334762 -0.00008625 -0.001175 C -1.019617 -0.333206 -2.031336 -1.145706 -2.488367 -2.868363 " transform="matrix(1, 0, 0, -1, 103.30868, 10.9207)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-3-1" x="84.042" y="8.109"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -27.828469 26.509937 L -27.828469 -33.072094 " transform="matrix(1, 0, 0, -1, 62.348, 50.174)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488396 2.870685 C -2.031365 1.148029 -1.019646 0.335529 -0.000115 -0.00040875 C -1.019646 -0.336346 -2.031365 -1.148846 -2.488396 -2.867596 " transform="matrix(0, 1, 1, 0, 34.51994, 83.48449)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 51.874656 31.689625 L 51.874656 -33.072094 " transform="matrix(1, 0, 0, -1, 62.348, 50.174)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488396 2.867774 C -2.031365 1.149024 -1.019646 0.336524 -0.000115 0.00058625 C -1.019646 -0.335351 -2.031365 -1.147851 -2.488396 -2.870508 " transform="matrix(0, 1, 1, 0, 114.22207, 83.48449)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-4" x="117.034" y="53.097"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-4-1" x="120.328" y="53.097"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-5-1" x="125.258" y="54.204"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-1-5" x="129.409" y="53.097"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -11.715187 -40.447094 L 43.062156 -40.447094 " transform="matrix(1, 0, 0, -1, 62.348, 50.174)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487294 2.868934 C -2.034169 1.146277 -1.018544 0.333777 0.0009875 0.00174625 C -1.018544 -0.334191 -2.034169 -1.146691 -2.487294 -2.869348 " transform="matrix(1, 0, 0, -1, 105.64745, 90.62284)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="3.34735 1.91277" stroke-miterlimit="10" d="M -20.930031 -33.548656 L 43.976219 31.353687 " transform="matrix(1, 0, 0, -1, 62.348, 50.174)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487643 2.869948 C -2.031855 1.149103 -1.018116 0.334268 0.00114112 0.0000557021 C -1.018106 -0.334185 -2.031823 -1.149049 -2.487562 -2.869907 " transform="matrix(0.7071, -0.70708, -0.70708, -0.7071, 106.49142, 18.65319)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#1d_XmH7ZvqhH3-pcTRrAnIWvYFk=-glyph-3-2" x="66.522" y="48.291"></use> </g> </svg> <p></p> </div> </p> <p> <div class="num_prop"> <h6>Proposition</h6> <p><strong>(Lifting property encoding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">T_1</annotation></semantics></math>)</strong> <br /> The following <a class="existingWikiWord" href="/nlab/show/lifting+property">lifting property</a> in <a class="existingWikiWord" href="/nlab/show/Top">Top</a> equivalently encodes the <a class="existingWikiWord" href="/nlab/show/separation+axiom">separation axiom</a> <a class="existingWikiWord" href="/nlab/show/T1"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation encoding="application/x-tex">T_1</annotation> </semantics> </math></a>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="137.501" height="110.037" viewBox="0 0 137.501 110.037"> <defs> <g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-0"> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-1"> <path d="M 3.375 -7.375 C 3.375 -7.859375 3.6875 -8.625 5 -8.703125 C 5.0625 -8.71875 5.109375 -8.765625 5.109375 -8.828125 C 5.109375 -8.96875 5.015625 -8.96875 4.875 -8.96875 C 3.6875 -8.96875 2.59375 -8.359375 2.578125 -7.46875 L 2.578125 -4.75 C 2.578125 -4.28125 2.578125 -3.890625 2.109375 -3.5 C 1.6875 -3.15625 1.234375 -3.125 0.96875 -3.125 C 0.90625 -3.109375 0.859375 -3.0625 0.859375 -2.984375 C 0.859375 -2.875 0.9375 -2.875 1.046875 -2.859375 C 1.84375 -2.8125 2.421875 -2.375 2.546875 -1.796875 C 2.578125 -1.65625 2.578125 -1.640625 2.578125 -1.203125 L 2.578125 1.15625 C 2.578125 1.65625 2.578125 2.046875 3.15625 2.5 C 3.625 2.859375 4.40625 2.984375 4.875 2.984375 C 5.015625 2.984375 5.109375 2.984375 5.109375 2.859375 C 5.109375 2.734375 5.03125 2.734375 4.90625 2.71875 C 4.15625 2.671875 3.578125 2.296875 3.421875 1.6875 C 3.375 1.578125 3.375 1.546875 3.375 1.125 L 3.375 -1.390625 C 3.375 -1.9375 3.28125 -2.140625 2.90625 -2.515625 C 2.65625 -2.765625 2.3125 -2.890625 1.96875 -2.984375 C 2.953125 -3.265625 3.375 -3.8125 3.375 -4.5 Z M 3.375 -7.375 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-2"> <path d="M 5.3125 -2.984375 C 5.3125 -4.265625 4.25 -5.3125 2.984375 -5.3125 C 1.703125 -5.3125 0.65625 -4.25 0.65625 -2.984375 C 0.65625 -1.71875 1.703125 -0.671875 2.984375 -0.671875 C 4.25 -0.671875 5.3125 -1.703125 5.3125 -2.984375 Z M 5.3125 -2.984375 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-3"> <path d="M 10.140625 1.53125 C 9.9375 1.5 9.671875 1.46875 9.453125 1.46875 C 9.21875 1.46875 8.625 1.5 7.9375 1.75 C 7.859375 1.78125 6.96875 2.15625 6.96875 2.34375 C 6.96875 2.421875 7.15625 2.625 7.25 2.625 C 7.296875 2.625 7.328125 2.609375 7.40625 2.5625 C 8.34375 1.9375 9.171875 1.9375 9.46875 1.9375 C 10.203125 1.9375 10.734375 2.125 11.015625 2.265625 C 11.078125 2.296875 11.109375 2.3125 11.15625 2.3125 C 11.203125 2.3125 11.265625 2.28125 11.265625 2.1875 C 11.265625 2.15625 11.265625 2.140625 11.234375 2.046875 C 11.078125 1.71875 10.90625 1.203125 10.90625 0.5 C 10.90625 0 10.96875 -0.71875 11.515625 -1.5625 C 11.578125 -1.65625 11.578125 -1.671875 11.578125 -1.71875 C 11.578125 -1.8125 11.390625 -2 11.3125 -2 C 11.140625 -2 10.8125 -1.25 10.703125 -1.03125 C 10.453125 -0.359375 10.4375 0.21875 10.4375 0.484375 C 10.4375 0.875 10.4375 0.890625 10.5 1.1875 L 1.15625 -8.140625 C 1.015625 -8.28125 0.984375 -8.3125 0.890625 -8.3125 C 0.75 -8.3125 0.65625 -8.1875 0.65625 -8.0625 C 0.65625 -7.96875 0.6875 -7.953125 0.84375 -7.796875 Z M 10.140625 1.53125 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-4"> <path d="M 2.578125 1.40625 C 2.578125 1.875 2.265625 2.640625 0.96875 2.71875 C 0.90625 2.734375 0.859375 2.78125 0.859375 2.859375 C 0.859375 2.984375 0.984375 2.984375 1.09375 2.984375 C 2.265625 2.984375 3.375 2.40625 3.375 1.5 L 3.375 -1.234375 C 3.375 -1.703125 3.375 -2.078125 3.859375 -2.46875 C 4.28125 -2.828125 4.734375 -2.84375 5 -2.859375 C 5.0625 -2.875 5.109375 -2.921875 5.109375 -2.984375 C 5.109375 -3.109375 5.03125 -3.109375 4.90625 -3.125 C 4.125 -3.171875 3.546875 -3.59375 3.421875 -4.1875 C 3.375 -4.3125 3.375 -4.34375 3.375 -4.765625 L 3.375 -7.140625 C 3.375 -7.640625 3.375 -8.015625 2.8125 -8.46875 C 2.328125 -8.84375 1.5 -8.96875 1.09375 -8.96875 C 0.984375 -8.96875 0.859375 -8.96875 0.859375 -8.828125 C 0.859375 -8.71875 0.9375 -8.71875 1.046875 -8.703125 C 1.8125 -8.65625 2.390625 -8.265625 2.546875 -7.65625 C 2.578125 -7.546875 2.578125 -7.53125 2.578125 -7.09375 L 2.578125 -4.59375 C 2.578125 -4.046875 2.671875 -3.84375 3.0625 -3.453125 C 3.3125 -3.203125 3.65625 -3.078125 4 -2.984375 C 3.015625 -2.71875 2.578125 -2.15625 2.578125 -1.46875 Z M 2.578125 1.40625 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-0"> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-1"> <path d="M 3.890625 -2.546875 C 3.890625 -3.390625 3.8125 -3.90625 3.546875 -4.421875 C 3.203125 -5.125 2.546875 -5.296875 2.109375 -5.296875 C 1.109375 -5.296875 0.734375 -4.546875 0.625 -4.328125 C 0.34375 -3.75 0.328125 -2.953125 0.328125 -2.546875 C 0.328125 -2.015625 0.34375 -1.21875 0.734375 -0.578125 C 1.09375 0.015625 1.6875 0.171875 2.109375 0.171875 C 2.5 0.171875 3.171875 0.046875 3.578125 -0.734375 C 3.875 -1.3125 3.890625 -2.03125 3.890625 -2.546875 Z M 2.109375 -0.0625 C 1.84375 -0.0625 1.296875 -0.1875 1.125 -1.015625 C 1.03125 -1.46875 1.03125 -2.21875 1.03125 -2.640625 C 1.03125 -3.1875 1.03125 -3.75 1.125 -4.1875 C 1.296875 -5 1.90625 -5.078125 2.109375 -5.078125 C 2.375 -5.078125 2.9375 -4.9375 3.09375 -4.21875 C 3.1875 -3.78125 3.1875 -3.171875 3.1875 -2.640625 C 3.1875 -2.171875 3.1875 -1.453125 3.09375 -1 C 2.921875 -0.171875 2.375 -0.0625 2.109375 -0.0625 Z M 2.109375 -0.0625 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-2"> <path d="M 5.828125 -2.65625 C 5.9375 -2.65625 6.109375 -2.65625 6.109375 -2.84375 C 6.109375 -3.015625 5.90625 -3.015625 5.796875 -3.015625 L 0.78125 -3.015625 C 0.65625 -3.015625 0.46875 -3.015625 0.46875 -2.84375 C 0.46875 -2.65625 0.625 -2.65625 0.75 -2.65625 Z M 5.796875 -0.96875 C 5.90625 -0.96875 6.109375 -0.96875 6.109375 -1.140625 C 6.109375 -1.328125 5.9375 -1.328125 5.828125 -1.328125 L 0.75 -1.328125 C 0.625 -1.328125 0.46875 -1.328125 0.46875 -1.140625 C 0.46875 -0.96875 0.65625 -0.96875 0.78125 -0.96875 Z M 5.796875 -0.96875 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-3"> <path d="M 2.5 -5.078125 C 2.5 -5.296875 2.484375 -5.296875 2.265625 -5.296875 C 1.9375 -4.984375 1.515625 -4.796875 0.765625 -4.796875 L 0.765625 -4.53125 C 0.984375 -4.53125 1.40625 -4.53125 1.875 -4.734375 L 1.875 -0.65625 C 1.875 -0.359375 1.84375 -0.265625 1.09375 -0.265625 L 0.8125 -0.265625 L 0.8125 0 C 1.140625 -0.03125 1.828125 -0.03125 2.1875 -0.03125 C 2.546875 -0.03125 3.234375 -0.03125 3.5625 0 L 3.5625 -0.265625 L 3.28125 -0.265625 C 2.53125 -0.265625 2.5 -0.359375 2.5 -0.65625 Z M 2.5 -5.078125 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-4"> <path d="M 2.65625 1.984375 C 2.71875 1.984375 2.8125 1.984375 2.8125 1.890625 C 2.8125 1.859375 2.8125 1.859375 2.703125 1.75 C 1.609375 0.71875 1.34375 -0.75 1.34375 -1.984375 C 1.34375 -4.28125 2.28125 -5.359375 2.6875 -5.734375 C 2.8125 -5.828125 2.8125 -5.84375 2.8125 -5.875 C 2.8125 -5.921875 2.78125 -5.96875 2.703125 -5.96875 C 2.578125 -5.96875 2.171875 -5.5625 2.109375 -5.5 C 1.046875 -4.375 0.828125 -2.953125 0.828125 -1.984375 C 0.828125 -0.203125 1.5625 1.234375 2.65625 1.984375 Z M 2.65625 1.984375 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-5"> <path d="M 2.46875 -1.984375 C 2.46875 -2.75 2.328125 -3.65625 1.84375 -4.59375 C 1.453125 -5.328125 0.71875 -5.96875 0.578125 -5.96875 C 0.5 -5.96875 0.484375 -5.921875 0.484375 -5.875 C 0.484375 -5.84375 0.484375 -5.828125 0.578125 -5.734375 C 1.6875 -4.671875 1.9375 -3.21875 1.9375 -1.984375 C 1.9375 0.296875 1 1.375 0.59375 1.75 C 0.484375 1.84375 0.484375 1.859375 0.484375 1.890625 C 0.484375 1.9375 0.5 1.984375 0.578125 1.984375 C 0.703125 1.984375 1.109375 1.578125 1.171875 1.515625 C 2.234375 0.390625 2.46875 -1.03125 2.46875 -1.984375 Z M 2.46875 -1.984375 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-2-0"> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-2-1"> <path d="M 3.75 -1.984375 C 3.75 -2.90625 3.015625 -3.640625 2.109375 -3.640625 C 1.203125 -3.640625 0.46875 -2.90625 0.46875 -1.984375 C 0.46875 -1.078125 1.203125 -0.34375 2.109375 -0.34375 C 3.015625 -0.34375 3.75 -1.078125 3.75 -1.984375 Z M 3.75 -1.984375 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-2-2"> <path d="M 4.65625 -5.203125 C 4.703125 -5.3125 4.703125 -5.3125 4.703125 -5.34375 C 4.703125 -5.4375 4.625 -5.53125 4.515625 -5.53125 C 4.40625 -5.53125 4.359375 -5.4375 4.328125 -5.359375 L 3.625 -3.625 L 1.078125 -3.625 L 0.375 -5.34375 C 0.34375 -5.421875 0.3125 -5.53125 0.1875 -5.53125 C 0.09375 -5.53125 0 -5.453125 0 -5.34375 C 0 -5.328125 0 -5.3125 0.0625 -5.1875 L 2.15625 -0.015625 C 2.1875 0.0625 2.21875 0.171875 2.34375 0.171875 C 2.46875 0.171875 2.5 0.078125 2.546875 -0.015625 Z M 1.234375 -3.25 L 3.46875 -3.25 L 2.34375 -0.515625 Z M 1.234375 -3.25 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-2-3"> <path d="M 4.21875 -5.234375 C 4.21875 -5.484375 4.1875 -5.53125 3.921875 -5.53125 L 0.765625 -5.53125 C 0.640625 -5.53125 0.46875 -5.53125 0.46875 -5.34375 C 0.46875 -5.15625 0.640625 -5.15625 0.765625 -5.15625 L 3.859375 -5.15625 L 3.859375 -2.953125 L 0.890625 -2.953125 C 0.765625 -2.953125 0.59375 -2.953125 0.59375 -2.765625 C 0.59375 -2.578125 0.765625 -2.578125 0.890625 -2.578125 L 3.859375 -2.578125 L 3.859375 -0.359375 L 0.765625 -0.359375 C 0.640625 -0.359375 0.46875 -0.359375 0.46875 -0.1875 C 0.46875 0 0.640625 0 0.765625 0 L 3.921875 0 C 4.1875 0 4.21875 -0.03125 4.21875 -0.296875 Z M 4.21875 -5.234375 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-3-0"> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-3-1"> <path d="M 2.140625 -3.796875 C 2.140625 -3.984375 2.125 -3.984375 1.9375 -3.984375 C 1.546875 -3.59375 0.9375 -3.59375 0.71875 -3.59375 L 0.71875 -3.359375 C 0.875 -3.359375 1.28125 -3.359375 1.640625 -3.53125 L 1.640625 -0.515625 C 1.640625 -0.3125 1.640625 -0.234375 1.015625 -0.234375 L 0.765625 -0.234375 L 0.765625 0 C 1.09375 -0.03125 1.5625 -0.03125 1.890625 -0.03125 C 2.21875 -0.03125 2.6875 -0.03125 3.015625 0 L 3.015625 -0.234375 L 2.765625 -0.234375 C 2.140625 -0.234375 2.140625 -0.3125 2.140625 -0.515625 Z M 2.140625 -3.796875 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-4-0"> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-4-1"> <path d="M 5.671875 -4.859375 L 4.546875 -7.46875 C 4.703125 -7.75 5.0625 -7.8125 5.21875 -7.8125 C 5.28125 -7.8125 5.421875 -7.828125 5.421875 -8.03125 C 5.421875 -8.15625 5.3125 -8.15625 5.234375 -8.15625 C 5.03125 -8.15625 4.796875 -8.140625 4.59375 -8.140625 L 3.890625 -8.140625 C 3.171875 -8.140625 2.640625 -8.15625 2.625 -8.15625 C 2.53125 -8.15625 2.421875 -8.15625 2.421875 -7.9375 C 2.421875 -7.8125 2.515625 -7.8125 2.671875 -7.8125 C 3.375 -7.8125 3.421875 -7.703125 3.53125 -7.40625 L 4.953125 -4.09375 L 2.359375 -1.3125 C 1.9375 -0.84375 1.421875 -0.390625 0.53125 -0.34375 C 0.390625 -0.328125 0.296875 -0.328125 0.296875 -0.125 C 0.296875 -0.078125 0.3125 0 0.4375 0 C 0.609375 0 0.78125 -0.03125 0.953125 -0.03125 L 1.515625 -0.03125 C 1.90625 -0.03125 2.3125 0 2.6875 0 C 2.765625 0 2.921875 0 2.921875 -0.21875 C 2.921875 -0.328125 2.828125 -0.34375 2.765625 -0.34375 C 2.515625 -0.375 2.359375 -0.5 2.359375 -0.6875 C 2.359375 -0.890625 2.515625 -1.046875 2.859375 -1.40625 L 3.921875 -2.5625 C 4.1875 -2.828125 4.8125 -3.53125 5.078125 -3.796875 L 6.328125 -0.84375 C 6.34375 -0.828125 6.390625 -0.703125 6.390625 -0.6875 C 6.390625 -0.578125 6.125 -0.375 5.75 -0.34375 C 5.671875 -0.34375 5.546875 -0.328125 5.546875 -0.125 C 5.546875 0 5.671875 0 5.71875 0 C 5.921875 0 6.171875 -0.03125 6.375 -0.03125 L 7.6875 -0.03125 C 7.90625 -0.03125 8.125 0 8.328125 0 C 8.421875 0 8.546875 0 8.546875 -0.234375 C 8.546875 -0.34375 8.421875 -0.34375 8.3125 -0.34375 C 7.609375 -0.359375 7.578125 -0.421875 7.375 -0.859375 L 5.796875 -4.5625 L 7.3125 -6.1875 C 7.4375 -6.3125 7.703125 -6.609375 7.8125 -6.734375 C 8.328125 -7.265625 8.8125 -7.75 9.78125 -7.8125 C 9.890625 -7.828125 10.015625 -7.828125 10.015625 -8.03125 C 10.015625 -8.15625 9.90625 -8.15625 9.859375 -8.15625 C 9.6875 -8.15625 9.515625 -8.140625 9.34375 -8.140625 L 8.796875 -8.140625 C 8.421875 -8.140625 8 -8.15625 7.625 -8.15625 C 7.546875 -8.15625 7.40625 -8.15625 7.40625 -7.953125 C 7.40625 -7.828125 7.484375 -7.8125 7.546875 -7.8125 C 7.75 -7.796875 7.953125 -7.703125 7.953125 -7.46875 L 7.9375 -7.453125 C 7.921875 -7.359375 7.90625 -7.25 7.765625 -7.09375 Z M 5.671875 -4.859375 "></path> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-5-0"> </g> <g id="_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-5-1"> <path d="M 3.609375 -4.828125 C 3.671875 -5.109375 3.6875 -5.125 4.015625 -5.125 L 4.609375 -5.125 C 5.4375 -5.125 5.53125 -4.859375 5.53125 -4.46875 C 5.53125 -4.265625 5.484375 -3.921875 5.484375 -3.875 C 5.46875 -3.796875 5.453125 -3.71875 5.453125 -3.703125 C 5.453125 -3.609375 5.53125 -3.578125 5.578125 -3.578125 C 5.671875 -3.578125 5.703125 -3.625 5.71875 -3.78125 L 5.9375 -5.28125 C 5.9375 -5.390625 5.84375 -5.390625 5.703125 -5.390625 L 1 -5.390625 C 0.8125 -5.390625 0.78125 -5.390625 0.734375 -5.21875 L 0.25 -3.84375 C 0.234375 -3.796875 0.203125 -3.734375 0.203125 -3.6875 C 0.203125 -3.625 0.265625 -3.578125 0.328125 -3.578125 C 0.421875 -3.578125 0.4375 -3.625 0.484375 -3.75 C 0.9375 -5.03125 1.15625 -5.125 2.375 -5.125 L 2.6875 -5.125 C 2.921875 -5.125 2.9375 -5.109375 2.9375 -5.046875 C 2.9375 -5.03125 2.90625 -4.875 2.890625 -4.84375 L 1.84375 -0.65625 C 1.765625 -0.34375 1.75 -0.265625 0.921875 -0.265625 C 0.65625 -0.265625 0.578125 -0.265625 0.578125 -0.109375 C 0.578125 -0.109375 0.578125 0 0.71875 0 C 0.9375 0 1.484375 -0.03125 1.703125 -0.03125 L 2.375 -0.03125 C 2.59375 -0.03125 3.15625 0 3.375 0 C 3.4375 0 3.5625 0 3.5625 -0.15625 C 3.5625 -0.265625 3.46875 -0.265625 3.265625 -0.265625 C 3.0625 -0.265625 3 -0.265625 2.796875 -0.28125 C 2.546875 -0.296875 2.515625 -0.328125 2.515625 -0.4375 C 2.515625 -0.46875 2.515625 -0.5 2.546875 -0.578125 Z M 3.609375 -4.828125 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-1" x="5.147" y="24.167"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-2" x="17.9" y="17.658"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-1" x="23.877" y="19.452"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00028125 0.00075 L 17.484094 0.00075 " transform="matrix(1, 0, 0, -1, 14.512, 9.157)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0000625 -0.000625 L -0.0000625 13.48375 " transform="matrix(1, 0, 0, -1, 14.711, 22.64)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000125 -0.000625 L -0.000125 13.48375 " transform="matrix(1, 0, 0, -1, 31.797, 22.64)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00028125 -0.000625 L 17.484094 -0.000625 " transform="matrix(1, 0, 0, -1, 14.512, 22.64)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-3" x="35.318" y="24.167"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-2-1" x="50.594" y="31.34"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-3-1" x="54.828" y="32.447"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000000000000003553 -0.00021875 L 51.242188 -0.00021875 " transform="matrix(1, 0, 0, -1, 11.125, 4.574)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00021875 -0.00103125 L 0.00021875 32.256781 " transform="matrix(1, 0, 0, -1, 11.324, 36.831)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00096875 -0.00103125 L 0.00096875 32.256781 " transform="matrix(1, 0, 0, -1, 62.167, 36.831)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000000000000003553 -0.00103125 L 51.242188 -0.00103125 " transform="matrix(1, 0, 0, -1, 11.125, 36.831)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-4" x="62.366" y="24.167"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-4-1" x="111.119" y="24.167"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-2" x="25.98" y="103.868"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-1" x="31.958" y="105.662"></use> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-2" x="36.192514" y="105.662"></use> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-3" x="42.779005" y="105.662"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-0-2" x="113.458" y="103.868"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 10.230406 33.838313 L 41.835875 33.838313 " transform="matrix(1, 0, 0, -1, 63.461, 55.018)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487295 2.869196 C -2.03417 1.14654 -1.018545 0.33404 0.00098625 -0.0018975 C -1.018545 -0.333929 -2.03417 -1.146429 -2.487295 -2.869085 " transform="matrix(1, 0, 0, -1, 105.53417, 21.17779)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-2-2" x="87.379" y="18.366"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -26.714906 13.412531 L -26.714906 -38.485906 " transform="matrix(1, 0, 0, -1, 63.461, 55.018)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487684 2.867861 C -2.030653 1.149111 -1.018934 0.336611 0.0005975 0.00067375 C -1.018934 -0.335264 -2.030653 -1.147764 -2.487684 -2.87042 " transform="matrix(0, 1, 1, 0, 36.74542, 93.74159)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 52.988219 26.275813 L 52.988219 -38.485906 " transform="matrix(1, 0, 0, -1, 63.461, 55.018)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487684 2.868846 C -2.030653 1.14619 -1.018934 0.33369 0.0005975 0.00165875 C -1.018934 -0.334279 -2.030653 -1.146779 -2.487684 -2.869435 " transform="matrix(0, 1, 1, 0, 116.44756, 93.74159)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-4" x="119.259" y="63.354"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-5-1" x="122.553" y="63.354"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-3-1" x="127.483" y="64.461"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-1-5" x="131.634" y="63.354"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -10.601625 -45.860906 L 44.171813 -45.860906 " transform="matrix(1, 0, 0, -1, 63.461, 55.018)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486221 2.868201 C -2.033096 1.149451 -1.021377 0.333045 -0.00184625 0.00101375 C -1.021377 -0.334924 -2.033096 -1.147424 -2.486221 -2.87008 " transform="matrix(1, 0, 0, -1, 107.87294, 100.87992)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="3.34735 1.91277" stroke-miterlimit="10" d="M -19.816469 -38.962469 L 45.085875 25.939875 " transform="matrix(1, 0, 0, -1, 63.461, 55.018)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487395 2.868693 C -2.031608 1.147848 -1.020631 0.335775 0.00138863 -0.00119944 C -1.020621 -0.332678 -2.034338 -1.147542 -2.487314 -2.871162 " transform="matrix(0.7071, -0.70708, -0.70708, -0.7071, 108.71692, 28.91029)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#_LRz69Jx_2a04v6ALMCVhv8xxYw=-glyph-2-3" x="68.747" y="58.548"></use> </g> </svg> <p></p> </div> </p> <p> <div class="num_prop"> <h6>Proposition</h6> <p><strong>(Lifting property encoding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">T_2</annotation></semantics></math>)</strong> <br /> The following <a class="existingWikiWord" href="/nlab/show/lifting+property">lifting property</a> in <a class="existingWikiWord" href="/nlab/show/Top">Top</a> equivalently encodes the <a class="existingWikiWord" href="/nlab/show/separation+axiom">separation axiom</a> <a class="existingWikiWord" href="/nlab/show/T2"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>T</mi> <mn>2</mn></msub> </mrow> <annotation encoding="application/x-tex">T_2</annotation> </semantics> </math></a>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="231.836" height="131.601" viewBox="0 0 231.836 131.601"> <defs> <g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-0"> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-1"> <path d="M 3.375 -7.375 C 3.375 -7.859375 3.6875 -8.625 5 -8.703125 C 5.0625 -8.71875 5.109375 -8.765625 5.109375 -8.828125 C 5.109375 -8.96875 5.015625 -8.96875 4.875 -8.96875 C 3.6875 -8.96875 2.59375 -8.359375 2.578125 -7.46875 L 2.578125 -4.75 C 2.578125 -4.28125 2.578125 -3.890625 2.109375 -3.5 C 1.6875 -3.15625 1.234375 -3.125 0.96875 -3.125 C 0.90625 -3.109375 0.859375 -3.0625 0.859375 -2.984375 C 0.859375 -2.875 0.9375 -2.875 1.046875 -2.859375 C 1.84375 -2.8125 2.421875 -2.375 2.546875 -1.796875 C 2.578125 -1.65625 2.578125 -1.640625 2.578125 -1.203125 L 2.578125 1.15625 C 2.578125 1.65625 2.578125 2.046875 3.15625 2.5 C 3.625 2.859375 4.40625 2.984375 4.875 2.984375 C 5.015625 2.984375 5.109375 2.984375 5.109375 2.859375 C 5.109375 2.734375 5.03125 2.734375 4.90625 2.71875 C 4.15625 2.671875 3.578125 2.296875 3.421875 1.6875 C 3.375 1.578125 3.375 1.546875 3.375 1.125 L 3.375 -1.390625 C 3.375 -1.9375 3.28125 -2.140625 2.90625 -2.515625 C 2.65625 -2.765625 2.3125 -2.890625 1.96875 -2.984375 C 2.953125 -3.265625 3.375 -3.8125 3.375 -4.5 Z M 3.375 -7.375 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-2"> <path d="M 5.3125 -2.984375 C 5.3125 -4.265625 4.25 -5.3125 2.984375 -5.3125 C 1.703125 -5.3125 0.65625 -4.25 0.65625 -2.984375 C 0.65625 -1.71875 1.703125 -0.671875 2.984375 -0.671875 C 4.25 -0.671875 5.3125 -1.703125 5.3125 -2.984375 Z M 5.3125 -2.984375 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-3"> <path d="M 2.578125 1.40625 C 2.578125 1.875 2.265625 2.640625 0.96875 2.71875 C 0.90625 2.734375 0.859375 2.78125 0.859375 2.859375 C 0.859375 2.984375 0.984375 2.984375 1.09375 2.984375 C 2.265625 2.984375 3.375 2.40625 3.375 1.5 L 3.375 -1.234375 C 3.375 -1.703125 3.375 -2.078125 3.859375 -2.46875 C 4.28125 -2.828125 4.734375 -2.84375 5 -2.859375 C 5.0625 -2.875 5.109375 -2.921875 5.109375 -2.984375 C 5.109375 -3.109375 5.03125 -3.109375 4.90625 -3.125 C 4.125 -3.171875 3.546875 -3.59375 3.421875 -4.1875 C 3.375 -4.3125 3.375 -4.34375 3.375 -4.765625 L 3.375 -7.140625 C 3.375 -7.640625 3.375 -8.015625 2.8125 -8.46875 C 2.328125 -8.84375 1.5 -8.96875 1.09375 -8.96875 C 0.984375 -8.96875 0.859375 -8.96875 0.859375 -8.828125 C 0.859375 -8.71875 0.9375 -8.71875 1.046875 -8.703125 C 1.8125 -8.65625 2.390625 -8.265625 2.546875 -7.65625 C 2.578125 -7.546875 2.578125 -7.53125 2.578125 -7.09375 L 2.578125 -4.59375 C 2.578125 -4.046875 2.671875 -3.84375 3.0625 -3.453125 C 3.3125 -3.203125 3.65625 -3.078125 4 -2.984375 C 3.015625 -2.71875 2.578125 -2.15625 2.578125 -1.46875 Z M 2.578125 1.40625 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-4"> <path d="M 10.140625 1.53125 C 9.9375 1.5 9.671875 1.46875 9.453125 1.46875 C 9.21875 1.46875 8.625 1.5 7.9375 1.75 C 7.859375 1.78125 6.96875 2.15625 6.96875 2.34375 C 6.96875 2.421875 7.15625 2.625 7.25 2.625 C 7.296875 2.625 7.328125 2.609375 7.40625 2.5625 C 8.34375 1.9375 9.171875 1.9375 9.46875 1.9375 C 10.203125 1.9375 10.734375 2.125 11.015625 2.265625 C 11.078125 2.296875 11.109375 2.3125 11.15625 2.3125 C 11.203125 2.3125 11.265625 2.28125 11.265625 2.1875 C 11.265625 2.15625 11.265625 2.140625 11.234375 2.046875 C 11.078125 1.71875 10.90625 1.203125 10.90625 0.5 C 10.90625 0 10.96875 -0.71875 11.515625 -1.5625 C 11.578125 -1.65625 11.578125 -1.671875 11.578125 -1.71875 C 11.578125 -1.8125 11.390625 -2 11.3125 -2 C 11.140625 -2 10.8125 -1.25 10.703125 -1.03125 C 10.453125 -0.359375 10.4375 0.21875 10.4375 0.484375 C 10.4375 0.875 10.4375 0.890625 10.5 1.1875 L 1.15625 -8.140625 C 1.015625 -8.28125 0.984375 -8.3125 0.890625 -8.3125 C 0.75 -8.3125 0.65625 -8.1875 0.65625 -8.0625 C 0.65625 -7.96875 0.6875 -7.953125 0.84375 -7.796875 Z M 10.140625 1.53125 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-5"> <path d="M 11.109375 -7.796875 C 11.265625 -7.953125 11.28125 -7.96875 11.28125 -8.0625 C 11.28125 -8.1875 11.171875 -8.3125 11.046875 -8.3125 C 10.953125 -8.3125 10.921875 -8.28125 10.78125 -8.140625 L 1.453125 1.1875 C 1.484375 0.984375 1.5 0.703125 1.5 0.484375 C 1.5 0.25 1.484375 -0.328125 1.234375 -1.03125 C 1.171875 -1.171875 0.8125 -2 0.640625 -2 C 0.546875 -2 0.359375 -1.8125 0.359375 -1.71875 C 0.359375 -1.671875 0.375 -1.65625 0.421875 -1.5625 C 1 -0.65625 1.046875 0.078125 1.046875 0.5 C 1.046875 1.234375 0.84375 1.765625 0.71875 2.046875 C 0.6875 2.109375 0.671875 2.15625 0.671875 2.1875 C 0.671875 2.265625 0.71875 2.3125 0.78125 2.3125 C 0.8125 2.3125 0.84375 2.3125 0.9375 2.265625 C 1.25 2.109375 1.78125 1.9375 2.46875 1.9375 C 2.828125 1.9375 3.625 1.953125 4.546875 2.5625 C 4.609375 2.609375 4.65625 2.625 4.703125 2.625 C 4.78125 2.625 4.96875 2.421875 4.96875 2.34375 C 4.96875 2.171875 4.234375 1.84375 3.984375 1.75 C 3.28125 1.484375 2.703125 1.46875 2.484375 1.46875 C 2.109375 1.46875 2.09375 1.46875 1.796875 1.53125 Z M 11.109375 -7.796875 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-0"> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-1"> <path d="M 4 -3.171875 C 3.640625 -3.09375 3.625 -2.78125 3.625 -2.75 C 3.625 -2.578125 3.765625 -2.453125 3.9375 -2.453125 C 4.109375 -2.453125 4.375 -2.59375 4.375 -2.9375 C 4.375 -3.390625 3.875 -3.515625 3.578125 -3.515625 C 3.21875 -3.515625 2.90625 -3.25 2.71875 -2.9375 C 2.546875 -3.359375 2.140625 -3.515625 1.8125 -3.515625 C 0.9375 -3.515625 0.453125 -2.515625 0.453125 -2.296875 C 0.453125 -2.21875 0.515625 -2.1875 0.578125 -2.1875 C 0.671875 -2.1875 0.6875 -2.234375 0.703125 -2.328125 C 0.890625 -2.90625 1.375 -3.296875 1.78125 -3.296875 C 2.09375 -3.296875 2.25 -3.0625 2.25 -2.78125 C 2.25 -2.625 2.15625 -2.25 2.09375 -2 C 2.03125 -1.765625 1.859375 -1.0625 1.8125 -0.90625 C 1.703125 -0.484375 1.421875 -0.140625 1.0625 -0.140625 C 1.03125 -0.140625 0.828125 -0.140625 0.65625 -0.25 C 1.015625 -0.34375 1.015625 -0.671875 1.015625 -0.6875 C 1.015625 -0.875 0.875 -0.984375 0.703125 -0.984375 C 0.484375 -0.984375 0.25 -0.796875 0.25 -0.5 C 0.25 -0.125 0.640625 0.078125 1.046875 0.078125 C 1.46875 0.078125 1.765625 -0.234375 1.90625 -0.5 C 2.09375 -0.109375 2.453125 0.078125 2.84375 0.078125 C 3.703125 0.078125 4.1875 -0.921875 4.1875 -1.140625 C 4.1875 -1.21875 4.125 -1.25 4.0625 -1.25 C 3.96875 -1.25 3.953125 -1.1875 3.921875 -1.109375 C 3.765625 -0.578125 3.3125 -0.140625 2.859375 -0.140625 C 2.59375 -0.140625 2.40625 -0.3125 2.40625 -0.65625 C 2.40625 -0.8125 2.453125 -1 2.5625 -1.4375 C 2.609375 -1.6875 2.78125 -2.375 2.828125 -2.53125 C 2.9375 -2.953125 3.21875 -3.296875 3.578125 -3.296875 C 3.625 -3.296875 3.828125 -3.296875 4 -3.171875 Z M 4 -3.171875 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-2"> <path d="M 4.125 -3 C 4.15625 -3.109375 4.15625 -3.125 4.15625 -3.1875 C 4.15625 -3.390625 4 -3.4375 3.90625 -3.4375 C 3.859375 -3.4375 3.6875 -3.421875 3.578125 -3.21875 C 3.5625 -3.171875 3.484375 -2.890625 3.453125 -2.71875 L 2.96875 -0.8125 C 2.96875 -0.78125 2.625 -0.140625 2.046875 -0.140625 C 1.65625 -0.140625 1.515625 -0.4375 1.515625 -0.78125 C 1.515625 -1.25 1.78125 -1.953125 1.96875 -2.421875 C 2.046875 -2.625 2.078125 -2.6875 2.078125 -2.84375 C 2.078125 -3.28125 1.71875 -3.515625 1.359375 -3.515625 C 0.5625 -3.515625 0.234375 -2.390625 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.234375 0.5 -2.3125 C 0.703125 -3.015625 1.046875 -3.296875 1.328125 -3.296875 C 1.453125 -3.296875 1.515625 -3.21875 1.515625 -3.03125 C 1.515625 -2.859375 1.453125 -2.671875 1.40625 -2.53125 C 1.078125 -1.6875 0.9375 -1.28125 0.9375 -0.90625 C 0.9375 -0.125 1.53125 0.078125 2 0.078125 C 2.375 0.078125 2.640625 -0.09375 2.84375 -0.265625 C 2.71875 0.171875 2.640625 0.484375 2.34375 0.875 C 2.078125 1.1875 1.765625 1.40625 1.40625 1.40625 C 1.265625 1.40625 0.96875 1.375 0.8125 1.140625 C 1.234375 1.109375 1.265625 0.75 1.265625 0.703125 C 1.265625 0.515625 1.109375 0.40625 0.953125 0.40625 C 0.765625 0.40625 0.5 0.546875 0.5 0.9375 C 0.5 1.3125 0.84375 1.625 1.40625 1.625 C 2.21875 1.625 3.125 0.96875 3.375 0.015625 Z M 4.125 -3 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-3"> <path d="M 4.15625 -3.046875 C 4.546875 -3.4375 5.671875 -4.59375 5.859375 -4.75 C 6.203125 -5 6.40625 -5.140625 6.96875 -5.171875 C 7.015625 -5.1875 7.078125 -5.234375 7.078125 -5.328125 C 7.078125 -5.40625 7.015625 -5.4375 6.96875 -5.4375 C 6.890625 -5.4375 6.84375 -5.421875 6.21875 -5.421875 C 5.625 -5.421875 5.40625 -5.4375 5.375 -5.4375 C 5.34375 -5.4375 5.21875 -5.4375 5.21875 -5.296875 C 5.21875 -5.28125 5.21875 -5.1875 5.328125 -5.171875 C 5.390625 -5.171875 5.609375 -5.15625 5.609375 -4.96875 C 5.609375 -4.921875 5.5625 -4.828125 5.5 -4.765625 L 5.484375 -4.71875 C 5.453125 -4.703125 5.453125 -4.6875 5.375 -4.609375 L 4.046875 -3.265625 L 3.234375 -4.953125 C 3.34375 -5.140625 3.578125 -5.171875 3.6875 -5.171875 C 3.71875 -5.171875 3.828125 -5.1875 3.828125 -5.328125 C 3.828125 -5.390625 3.78125 -5.4375 3.703125 -5.4375 C 3.625 -5.4375 3.328125 -5.421875 3.25 -5.421875 C 3.203125 -5.421875 2.90625 -5.421875 2.734375 -5.421875 C 1.984375 -5.421875 1.890625 -5.4375 1.828125 -5.4375 C 1.796875 -5.4375 1.671875 -5.4375 1.671875 -5.296875 C 1.671875 -5.171875 1.765625 -5.171875 1.890625 -5.171875 C 2.296875 -5.171875 2.359375 -5.09375 2.4375 -4.953125 L 3.5 -2.71875 L 1.859375 -1.046875 C 1.390625 -0.578125 1.015625 -0.296875 0.453125 -0.265625 C 0.34375 -0.25 0.25 -0.25 0.25 -0.109375 C 0.25 -0.0625 0.296875 0 0.375 0 C 0.4375 0 0.515625 -0.03125 1.125 -0.03125 C 1.703125 -0.03125 1.9375 0 1.96875 0 C 2.015625 0 2.140625 0 2.140625 -0.15625 C 2.140625 -0.171875 2.125 -0.25 2.015625 -0.265625 C 1.859375 -0.265625 1.75 -0.328125 1.75 -0.46875 C 1.75 -0.59375 1.84375 -0.703125 1.953125 -0.828125 C 2.09375 -0.96875 2.515625 -1.390625 2.796875 -1.671875 C 2.984375 -1.84375 3.421875 -2.3125 3.609375 -2.484375 L 4.53125 -0.578125 C 4.5625 -0.5 4.5625 -0.5 4.5625 -0.484375 C 4.5625 -0.421875 4.40625 -0.28125 4.140625 -0.265625 C 4.078125 -0.265625 3.96875 -0.25 3.96875 -0.109375 C 3.96875 -0.109375 3.984375 0 4.109375 0 C 4.1875 0 4.484375 -0.015625 4.5625 -0.03125 L 5.078125 -0.03125 C 5.8125 -0.03125 5.921875 0 6 0 C 6.03125 0 6.140625 0 6.140625 -0.15625 C 6.140625 -0.265625 6.046875 -0.265625 5.921875 -0.265625 C 5.484375 -0.265625 5.4375 -0.359375 5.390625 -0.484375 Z M 4.15625 -3.046875 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-4"> <path d="M 3.609375 -4.828125 C 3.671875 -5.109375 3.6875 -5.125 4.015625 -5.125 L 4.609375 -5.125 C 5.4375 -5.125 5.53125 -4.859375 5.53125 -4.46875 C 5.53125 -4.265625 5.484375 -3.921875 5.484375 -3.875 C 5.46875 -3.796875 5.453125 -3.71875 5.453125 -3.703125 C 5.453125 -3.609375 5.53125 -3.578125 5.578125 -3.578125 C 5.671875 -3.578125 5.703125 -3.625 5.71875 -3.78125 L 5.9375 -5.28125 C 5.9375 -5.390625 5.84375 -5.390625 5.703125 -5.390625 L 1 -5.390625 C 0.8125 -5.390625 0.78125 -5.390625 0.734375 -5.21875 L 0.25 -3.84375 C 0.234375 -3.796875 0.203125 -3.734375 0.203125 -3.6875 C 0.203125 -3.625 0.265625 -3.578125 0.328125 -3.578125 C 0.421875 -3.578125 0.4375 -3.625 0.484375 -3.75 C 0.9375 -5.03125 1.15625 -5.125 2.375 -5.125 L 2.6875 -5.125 C 2.921875 -5.125 2.9375 -5.109375 2.9375 -5.046875 C 2.9375 -5.03125 2.90625 -4.875 2.890625 -4.84375 L 1.84375 -0.65625 C 1.765625 -0.34375 1.75 -0.265625 0.921875 -0.265625 C 0.65625 -0.265625 0.578125 -0.265625 0.578125 -0.109375 C 0.578125 -0.109375 0.578125 0 0.71875 0 C 0.9375 0 1.484375 -0.03125 1.703125 -0.03125 L 2.375 -0.03125 C 2.59375 -0.03125 3.15625 0 3.375 0 C 3.4375 0 3.5625 0 3.5625 -0.15625 C 3.5625 -0.265625 3.46875 -0.265625 3.265625 -0.265625 C 3.0625 -0.265625 3 -0.265625 2.796875 -0.28125 C 2.546875 -0.296875 2.515625 -0.328125 2.515625 -0.4375 C 2.515625 -0.46875 2.515625 -0.5 2.546875 -0.578125 Z M 3.609375 -4.828125 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-2-0"> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-2-1"> <path d="M 2.328125 0.046875 C 2.328125 -0.640625 2.109375 -1.15625 1.609375 -1.15625 C 1.234375 -1.15625 1.046875 -0.84375 1.046875 -0.578125 C 1.046875 -0.328125 1.21875 0 1.625 0 C 1.78125 0 1.90625 -0.046875 2.015625 -0.15625 C 2.046875 -0.171875 2.0625 -0.171875 2.0625 -0.171875 C 2.09375 -0.171875 2.09375 -0.015625 2.09375 0.046875 C 2.09375 0.4375 2.015625 1.21875 1.328125 2 C 1.1875 2.140625 1.1875 2.15625 1.1875 2.1875 C 1.1875 2.25 1.25 2.3125 1.3125 2.3125 C 1.40625 2.3125 2.328125 1.421875 2.328125 0.046875 Z M 2.328125 0.046875 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-2-2"> <path d="M 5.671875 -4.859375 L 4.546875 -7.46875 C 4.703125 -7.75 5.0625 -7.8125 5.21875 -7.8125 C 5.28125 -7.8125 5.421875 -7.828125 5.421875 -8.03125 C 5.421875 -8.15625 5.3125 -8.15625 5.234375 -8.15625 C 5.03125 -8.15625 4.796875 -8.140625 4.59375 -8.140625 L 3.890625 -8.140625 C 3.171875 -8.140625 2.640625 -8.15625 2.625 -8.15625 C 2.53125 -8.15625 2.421875 -8.15625 2.421875 -7.9375 C 2.421875 -7.8125 2.515625 -7.8125 2.671875 -7.8125 C 3.375 -7.8125 3.421875 -7.703125 3.53125 -7.40625 L 4.953125 -4.09375 L 2.359375 -1.3125 C 1.9375 -0.84375 1.421875 -0.390625 0.53125 -0.34375 C 0.390625 -0.328125 0.296875 -0.328125 0.296875 -0.125 C 0.296875 -0.078125 0.3125 0 0.4375 0 C 0.609375 0 0.78125 -0.03125 0.953125 -0.03125 L 1.515625 -0.03125 C 1.90625 -0.03125 2.3125 0 2.6875 0 C 2.765625 0 2.921875 0 2.921875 -0.21875 C 2.921875 -0.328125 2.828125 -0.34375 2.765625 -0.34375 C 2.515625 -0.375 2.359375 -0.5 2.359375 -0.6875 C 2.359375 -0.890625 2.515625 -1.046875 2.859375 -1.40625 L 3.921875 -2.5625 C 4.1875 -2.828125 4.8125 -3.53125 5.078125 -3.796875 L 6.328125 -0.84375 C 6.34375 -0.828125 6.390625 -0.703125 6.390625 -0.6875 C 6.390625 -0.578125 6.125 -0.375 5.75 -0.34375 C 5.671875 -0.34375 5.546875 -0.328125 5.546875 -0.125 C 5.546875 0 5.671875 0 5.71875 0 C 5.921875 0 6.171875 -0.03125 6.375 -0.03125 L 7.6875 -0.03125 C 7.90625 -0.03125 8.125 0 8.328125 0 C 8.421875 0 8.546875 0 8.546875 -0.234375 C 8.546875 -0.34375 8.421875 -0.34375 8.3125 -0.34375 C 7.609375 -0.359375 7.578125 -0.421875 7.375 -0.859375 L 5.796875 -4.5625 L 7.3125 -6.1875 C 7.4375 -6.3125 7.703125 -6.609375 7.8125 -6.734375 C 8.328125 -7.265625 8.8125 -7.75 9.78125 -7.8125 C 9.890625 -7.828125 10.015625 -7.828125 10.015625 -8.03125 C 10.015625 -8.15625 9.90625 -8.15625 9.859375 -8.15625 C 9.6875 -8.15625 9.515625 -8.140625 9.34375 -8.140625 L 8.796875 -8.140625 C 8.421875 -8.140625 8 -8.15625 7.625 -8.15625 C 7.546875 -8.15625 7.40625 -8.15625 7.40625 -7.953125 C 7.40625 -7.828125 7.484375 -7.8125 7.546875 -7.8125 C 7.75 -7.796875 7.953125 -7.703125 7.953125 -7.46875 L 7.9375 -7.453125 C 7.921875 -7.359375 7.90625 -7.25 7.765625 -7.09375 Z M 5.671875 -4.859375 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-3-0"> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-3-1"> <path d="M 3.75 -1.984375 C 3.75 -2.90625 3.015625 -3.640625 2.109375 -3.640625 C 1.203125 -3.640625 0.46875 -2.90625 0.46875 -1.984375 C 0.46875 -1.078125 1.203125 -0.34375 2.109375 -0.34375 C 3.015625 -0.34375 3.75 -1.078125 3.75 -1.984375 Z M 3.75 -1.984375 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-3-2"> <path d="M 4.65625 -5.203125 C 4.703125 -5.3125 4.703125 -5.3125 4.703125 -5.34375 C 4.703125 -5.4375 4.625 -5.53125 4.515625 -5.53125 C 4.40625 -5.53125 4.359375 -5.4375 4.328125 -5.359375 L 3.625 -3.625 L 1.078125 -3.625 L 0.375 -5.34375 C 0.34375 -5.421875 0.3125 -5.53125 0.1875 -5.53125 C 0.09375 -5.53125 0 -5.453125 0 -5.34375 C 0 -5.328125 0 -5.3125 0.0625 -5.1875 L 2.15625 -0.015625 C 2.1875 0.0625 2.21875 0.171875 2.34375 0.171875 C 2.46875 0.171875 2.5 0.078125 2.546875 -0.015625 Z M 1.234375 -3.25 L 3.46875 -3.25 L 2.34375 -0.515625 Z M 1.234375 -3.25 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-3-3"> <path d="M 4.21875 -5.234375 C 4.21875 -5.484375 4.1875 -5.53125 3.921875 -5.53125 L 0.765625 -5.53125 C 0.640625 -5.53125 0.46875 -5.53125 0.46875 -5.34375 C 0.46875 -5.15625 0.640625 -5.15625 0.765625 -5.15625 L 3.859375 -5.15625 L 3.859375 -2.953125 L 0.890625 -2.953125 C 0.765625 -2.953125 0.59375 -2.953125 0.59375 -2.765625 C 0.59375 -2.578125 0.765625 -2.578125 0.890625 -2.578125 L 3.859375 -2.578125 L 3.859375 -0.359375 L 0.765625 -0.359375 C 0.640625 -0.359375 0.46875 -0.359375 0.46875 -0.1875 C 0.46875 0 0.640625 0 0.765625 0 L 3.921875 0 C 4.1875 0 4.21875 -0.03125 4.21875 -0.296875 Z M 4.21875 -5.234375 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-4-0"> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-4-1"> <path d="M 3.578125 -2.203125 C 3.578125 -2.203125 3.546875 -2.265625 3.546875 -2.28125 C 3.546875 -2.28125 3.546875 -2.28125 3.671875 -2.40625 L 4.640625 -3.34375 C 4.796875 -3.484375 5 -3.625 5.0625 -3.65625 C 5.296875 -3.796875 5.5 -3.84375 5.703125 -3.84375 C 5.796875 -3.859375 5.875 -3.859375 5.875 -4 C 5.875 -4.03125 5.828125 -4.09375 5.78125 -4.09375 C 5.59375 -4.09375 5.375 -4.0625 5.1875 -4.0625 L 4.828125 -4.0625 C 4.71875 -4.0625 4.59375 -4.09375 4.46875 -4.09375 C 4.4375 -4.09375 4.34375 -4.09375 4.34375 -3.9375 C 4.34375 -3.859375 4.421875 -3.84375 4.453125 -3.84375 C 4.53125 -3.84375 4.640625 -3.8125 4.640625 -3.703125 C 4.640625 -3.625 4.578125 -3.578125 4.40625 -3.390625 L 3.90625 -2.9375 C 3.875 -2.890625 3.5 -2.53125 3.421875 -2.484375 L 2.796875 -3.640625 C 2.78125 -3.65625 2.765625 -3.703125 2.765625 -3.71875 C 2.765625 -3.75 2.890625 -3.84375 3.0625 -3.84375 C 3.125 -3.84375 3.203125 -3.859375 3.203125 -4 C 3.203125 -4.015625 3.203125 -4.09375 3.09375 -4.09375 C 2.96875 -4.09375 2.828125 -4.0625 2.703125 -4.0625 C 2.703125 -4.0625 2.296875 -4.0625 2.296875 -4.0625 C 2.171875 -4.0625 2.0625 -4.0625 1.9375 -4.0625 C 1.8125 -4.0625 1.6875 -4.09375 1.578125 -4.09375 C 1.515625 -4.09375 1.4375 -4.0625 1.4375 -3.9375 C 1.4375 -3.84375 1.515625 -3.84375 1.640625 -3.84375 C 1.984375 -3.84375 2.015625 -3.78125 2.078125 -3.6875 L 2.96875 -2.046875 C 2.84375 -1.9375 2.546875 -1.65625 2.34375 -1.453125 C 1.34375 -0.484375 1.125 -0.265625 0.546875 -0.234375 C 0.46875 -0.234375 0.390625 -0.234375 0.390625 -0.09375 C 0.390625 -0.046875 0.421875 0 0.484375 0 C 0.65625 0 0.875 -0.03125 1.0625 -0.03125 C 1.234375 -0.03125 1.625 0 1.78125 0 C 1.8125 0 1.921875 0 1.921875 -0.15625 C 1.921875 -0.234375 1.84375 -0.234375 1.8125 -0.234375 C 1.71875 -0.25 1.609375 -0.28125 1.609375 -0.375 C 1.609375 -0.40625 1.625 -0.4375 1.6875 -0.515625 C 1.6875 -0.53125 1.703125 -0.5625 1.71875 -0.5625 L 3.078125 -1.84375 L 3.84375 -0.453125 C 3.875 -0.40625 3.890625 -0.390625 3.890625 -0.375 C 3.890625 -0.328125 3.765625 -0.25 3.578125 -0.234375 C 3.53125 -0.234375 3.4375 -0.234375 3.4375 -0.09375 C 3.4375 -0.078125 3.453125 0 3.546875 0 C 3.671875 0 3.8125 -0.015625 3.9375 -0.015625 C 3.9375 -0.015625 4.34375 -0.03125 4.34375 -0.03125 C 4.46875 -0.03125 4.578125 -0.015625 4.703125 -0.015625 C 4.828125 -0.015625 4.953125 0 5.0625 0 C 5.140625 0 5.203125 -0.03125 5.203125 -0.15625 C 5.203125 -0.234375 5.109375 -0.234375 5.03125 -0.234375 C 4.65625 -0.234375 4.625 -0.296875 4.5625 -0.40625 Z M 3.578125 -2.203125 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-0"> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-1"> <path d="M 5.828125 -2.65625 C 5.9375 -2.65625 6.109375 -2.65625 6.109375 -2.84375 C 6.109375 -3.015625 5.90625 -3.015625 5.796875 -3.015625 L 0.78125 -3.015625 C 0.65625 -3.015625 0.46875 -3.015625 0.46875 -2.84375 C 0.46875 -2.65625 0.625 -2.65625 0.75 -2.65625 Z M 5.796875 -0.96875 C 5.90625 -0.96875 6.109375 -0.96875 6.109375 -1.140625 C 6.109375 -1.328125 5.9375 -1.328125 5.828125 -1.328125 L 0.75 -1.328125 C 0.625 -1.328125 0.46875 -1.328125 0.46875 -1.140625 C 0.46875 -0.96875 0.65625 -0.96875 0.78125 -0.96875 Z M 5.796875 -0.96875 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-2"> <path d="M 2.65625 1.984375 C 2.71875 1.984375 2.8125 1.984375 2.8125 1.890625 C 2.8125 1.859375 2.8125 1.859375 2.703125 1.75 C 1.609375 0.71875 1.34375 -0.75 1.34375 -1.984375 C 1.34375 -4.28125 2.28125 -5.359375 2.6875 -5.734375 C 2.8125 -5.828125 2.8125 -5.84375 2.8125 -5.875 C 2.8125 -5.921875 2.78125 -5.96875 2.703125 -5.96875 C 2.578125 -5.96875 2.171875 -5.5625 2.109375 -5.5 C 1.046875 -4.375 0.828125 -2.953125 0.828125 -1.984375 C 0.828125 -0.203125 1.5625 1.234375 2.65625 1.984375 Z M 2.65625 1.984375 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-3"> <path d="M 2.46875 -1.984375 C 2.46875 -2.75 2.328125 -3.65625 1.84375 -4.59375 C 1.453125 -5.328125 0.71875 -5.96875 0.578125 -5.96875 C 0.5 -5.96875 0.484375 -5.921875 0.484375 -5.875 C 0.484375 -5.84375 0.484375 -5.828125 0.578125 -5.734375 C 1.6875 -4.671875 1.9375 -3.21875 1.9375 -1.984375 C 1.9375 0.296875 1 1.375 0.59375 1.75 C 0.484375 1.84375 0.484375 1.859375 0.484375 1.890625 C 0.484375 1.9375 0.5 1.984375 0.578125 1.984375 C 0.703125 1.984375 1.109375 1.578125 1.171875 1.515625 C 2.234375 0.390625 2.46875 -1.03125 2.46875 -1.984375 Z M 2.46875 -1.984375 "></path> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-6-0"> </g> <g id="J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-6-1"> <path d="M 3.21875 -1.125 L 3 -1.125 C 2.984375 -1.03125 2.921875 -0.640625 2.84375 -0.578125 C 2.796875 -0.53125 2.3125 -0.53125 2.21875 -0.53125 L 1.109375 -0.53125 L 1.875 -1.15625 C 2.078125 -1.328125 2.609375 -1.703125 2.796875 -1.890625 C 2.96875 -2.0625 3.21875 -2.375 3.21875 -2.796875 C 3.21875 -3.546875 2.546875 -3.984375 1.734375 -3.984375 C 0.96875 -3.984375 0.4375 -3.46875 0.4375 -2.90625 C 0.4375 -2.609375 0.6875 -2.5625 0.75 -2.5625 C 0.90625 -2.5625 1.078125 -2.671875 1.078125 -2.890625 C 1.078125 -3.015625 1 -3.21875 0.734375 -3.21875 C 0.875 -3.515625 1.234375 -3.75 1.65625 -3.75 C 2.28125 -3.75 2.609375 -3.28125 2.609375 -2.796875 C 2.609375 -2.375 2.328125 -1.9375 1.921875 -1.546875 L 0.5 -0.25 C 0.4375 -0.1875 0.4375 -0.1875 0.4375 0 L 3.03125 0 Z M 3.21875 -1.125 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-1" x="8.535" y="40.794"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-2" x="17.895922" y="40.794"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-1" x="23.877" y="42.588"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00028125 0.00003125 L 18.015344 0.00003125 " transform="matrix(1, 0, 0, -1, 14.512, 32.293)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0010625 -0.00134375 L -0.0010625 13.483031 " transform="matrix(1, 0, 0, -1, 14.712, 45.776)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.001875 -0.00134375 L -0.001875 13.483031 " transform="matrix(1, 0, 0, -1, 32.33, 45.776)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00028125 -0.00134375 L 18.015344 -0.00134375 " transform="matrix(1, 0, 0, -1, 14.512, 45.776)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-2-1" x="32.529" y="40.794"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-2" x="41.161" y="40.794"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-2" x="47.139" y="42.588"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0005625 0.00003125 L 17.722094 0.00003125 " transform="matrix(1, 0, 0, -1, 37.774, 32.293)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00034375 0.00078125 L -0.00034375 15.032031 " transform="matrix(1, 0, 0, -1, 37.973, 47.325)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.000875 0.00078125 L 0.000875 15.032031 " transform="matrix(1, 0, 0, -1, 55.296, 47.325)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0005625 0.00078125 L 17.722094 0.00078125 " transform="matrix(1, 0, 0, -1, 37.774, 47.325)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-3" x="55.496" y="40.794"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0014375 -0.000625 L 59.712375 -0.000625 " transform="matrix(1, 0, 0, -1, 5.147, 28.64)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00065625 -0.00184375 L 0.00065625 22.072375 " transform="matrix(1, 0, 0, -1, 5.347, 50.713)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00084375 -0.00184375 L -0.00084375 22.072375 " transform="matrix(1, 0, 0, -1, 64.661, 50.713)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0014375 -0.00184375 L 59.712375 -0.00184375 " transform="matrix(1, 0, 0, -1, 5.147, 50.713)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-2" x="172.286" y="21.046"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-1" x="178.264" y="22.839"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0005625 -0.001875 L 18.015062 -0.001875 " transform="matrix(1, 0, 0, -1, 168.899, 12.545)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00034375 -0.00034375 L -0.00034375 13.484031 " transform="matrix(1, 0, 0, -1, 169.098, 26.027)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00175 -0.00034375 L 0.00175 13.484031 " transform="matrix(1, 0, 0, -1, 186.717, 26.027)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0005625 -0.00034375 L 18.015062 -0.00034375 " transform="matrix(1, 0, 0, -1, 168.899, 26.027)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-2" x="205.579" y="21.046"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-2" x="211.557" y="22.839"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00059375 -0.001875 L 17.722062 -0.001875 " transform="matrix(1, 0, 0, -1, 202.192, 12.545)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000375 -0.001125 L -0.000375 15.034031 " transform="matrix(1, 0, 0, -1, 202.391, 27.577)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00084375 -0.001125 L 0.00084375 15.034031 " transform="matrix(1, 0, 0, -1, 219.714, 27.577)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00059375 -0.001125 L 17.722062 -0.001125 " transform="matrix(1, 0, 0, -1, 202.192, 27.577)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00071875 0.00075 L 57.789781 0.00075 " transform="matrix(1, 0, 0, -1, 165.511, 9.157)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0000625 0.00015625 L -0.0000625 21.80875 " transform="matrix(1, 0, 0, -1, 165.711, 30.965)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0004375 0.00015625 L -0.0004375 21.80875 " transform="matrix(1, 0, 0, -1, 223.102, 30.965)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00071875 -0.00084375 L 57.789781 -0.00084375 " transform="matrix(1, 0, 0, -1, 165.511, 30.964)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-4" x="179.794" y="40.794"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-5" x="197.057309" y="40.794"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-3-1" x="188.816" y="50.292"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-4-1" x="193.05" y="51.631"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.001 0.00078125 L 64.5635 0.00078125 " transform="matrix(1, 0, 0, -1, 162.124, 4.575)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00121875 -0.000625 L 0.00121875 51.440781 " transform="matrix(1, 0, 0, -1, 162.323, 56.015)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00071875 -0.000625 L -0.00071875 51.440781 " transform="matrix(1, 0, 0, -1, 226.489, 56.015)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.001 -0.000625 L 64.5635 -0.000625 " transform="matrix(1, 0, 0, -1, 162.124, 56.015)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-2-2" x="29.676" y="120.495"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-1" x="166.804" y="120.495"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-2" x="176.164922" y="120.495"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-1" x="182.147" y="122.289"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-1" x="186.914" y="122.289"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-3" x="193.5" y="122.289"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-1" x="201.087" y="122.289"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-2" x="207.673" y="122.289"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00075 0.0018125 L 43.24925 0.0018125 " transform="matrix(1, 0, 0, -1, 172.782, 111.994)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00053125 -0.00134375 L -0.00053125 15.033812 " transform="matrix(1, 0, 0, -1, 172.981, 127.026)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00103125 -0.00134375 L 0.00103125 15.033812 " transform="matrix(1, 0, 0, -1, 215.831, 127.026)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00075 -0.00134375 L 43.24925 -0.00134375 " transform="matrix(1, 0, 0, -1, 172.782, 127.026)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-0-3" x="216.031" y="120.495"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -45.710969 27.996313 L 40.382781 27.996313 " transform="matrix(1, 0, 0, -1, 115.918, 65.801)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488279 2.86812 C -2.031248 1.14937 -1.019529 0.332964 0.0000025 0.0009325 C -1.019529 -0.335005 -2.031248 -1.147505 -2.488279 -2.870161 " transform="matrix(1, 0, 0, -1, 156.53906, 37.80562)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -80.914094 8.593969 L -80.914094 -41.472437 " transform="matrix(1, 0, 0, -1, 115.918, 65.801)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00120875 2.344556 C 0.817615 2.344556 1.481678 1.817213 1.481678 1.172681 C 1.481678 0.524244 0.817615 0.00080625 0.00120875 0.00080625 " transform="matrix(0, -1, 1, 0, 35.0031, 57.20824)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486106 2.867994 C -2.032981 1.149244 -1.021263 0.332838 -0.00173125 0.00080625 C -1.021263 -0.335131 -2.032981 -1.147631 -2.486106 -2.870287 " transform="matrix(0, 1, 1, 0, 35.0031, 107.51345)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-3-2" x="27.486" y="84.386"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-2" x="37.817" y="83.611"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-1-4" x="41.11" y="83.611"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-6-1" x="46.04" y="84.718"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-5-3" x="50.191" y="83.611"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 78.48825 5.011938 L 78.48825 -40.675562 " transform="matrix(1, 0, 0, -1, 115.918, 65.801)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485931 2.869964 C -2.032806 1.147308 -1.021087 0.334808 -0.00155625 -0.00113 C -1.021087 -0.333161 -2.032806 -1.149567 -2.485931 -2.868317 " transform="matrix(0, 1, 1, 0, 194.40738, 106.7164)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -70.242219 -51.706812 L 45.062469 -51.706812 " transform="matrix(1, 0, 0, -1, 115.918, 65.801)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484835 2.871041 C -2.03171 1.148385 -1.019991 0.335885 -0.00046 -0.0000525 C -1.019991 -0.33599 -2.03171 -1.14849 -2.484835 -2.86724 " transform="matrix(1, 0, 0, -1, 161.21921, 117.50776)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="3.34735 1.91277" stroke-miterlimit="10" d="M -70.242219 -46.370875 L 40.433562 8.996313 " transform="matrix(1, 0, 0, -1, 115.918, 65.801)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485171 2.868546 C -2.031274 1.147636 -1.018154 0.335073 -0.00144827 0.00119553 C -1.021777 -0.335785 -2.031716 -1.149706 -2.486274 -2.870441 " transform="matrix(0.89429, -0.44736, -0.44736, -0.89429, 156.56433, 56.69964)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#J93l4iDU14g_p7R1ul1qa9DDid8=-glyph-3-3" x="93.71" y="81.568"></use> </g> </svg> <p></p> </div> </p> <p> <div class="num_prop"> <h6>Proposition</h6> <p><strong>(Lifting property encoding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">T_3</annotation></semantics></math>)</strong> <br /> The following <a class="existingWikiWord" href="/nlab/show/lifting+property">lifting property</a> in <a class="existingWikiWord" href="/nlab/show/Top">Top</a> equivalently encodes the <a class="existingWikiWord" href="/nlab/show/separation+axiom">separation axiom</a> <a class="existingWikiWord" href="/nlab/show/T3"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>T</mi> <mn>3</mn></msub> </mrow> <annotation encoding="application/x-tex">T_3</annotation> </semantics> </math></a>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="212.503" height="124.727" viewBox="0 0 212.503 124.727"> <defs> <g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-0"> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-1"> <path d="M 3.375 -7.375 C 3.375 -7.859375 3.6875 -8.625 5 -8.703125 C 5.0625 -8.71875 5.109375 -8.765625 5.109375 -8.828125 C 5.109375 -8.96875 5.015625 -8.96875 4.875 -8.96875 C 3.6875 -8.96875 2.59375 -8.359375 2.578125 -7.46875 L 2.578125 -4.75 C 2.578125 -4.28125 2.578125 -3.890625 2.109375 -3.5 C 1.6875 -3.15625 1.234375 -3.125 0.96875 -3.125 C 0.90625 -3.109375 0.859375 -3.0625 0.859375 -2.984375 C 0.859375 -2.875 0.9375 -2.875 1.046875 -2.859375 C 1.84375 -2.8125 2.421875 -2.375 2.546875 -1.796875 C 2.578125 -1.65625 2.578125 -1.640625 2.578125 -1.203125 L 2.578125 1.15625 C 2.578125 1.65625 2.578125 2.046875 3.15625 2.5 C 3.625 2.859375 4.40625 2.984375 4.875 2.984375 C 5.015625 2.984375 5.109375 2.984375 5.109375 2.859375 C 5.109375 2.734375 5.03125 2.734375 4.90625 2.71875 C 4.15625 2.671875 3.578125 2.296875 3.421875 1.6875 C 3.375 1.578125 3.375 1.546875 3.375 1.125 L 3.375 -1.390625 C 3.375 -1.9375 3.28125 -2.140625 2.90625 -2.515625 C 2.65625 -2.765625 2.3125 -2.890625 1.96875 -2.984375 C 2.953125 -3.265625 3.375 -3.8125 3.375 -4.5 Z M 3.375 -7.375 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-2"> <path d="M 5.3125 -2.984375 C 5.3125 -4.265625 4.25 -5.3125 2.984375 -5.3125 C 1.703125 -5.3125 0.65625 -4.25 0.65625 -2.984375 C 0.65625 -1.71875 1.703125 -0.671875 2.984375 -0.671875 C 4.25 -0.671875 5.3125 -1.703125 5.3125 -2.984375 Z M 5.3125 -2.984375 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-3"> <path d="M 2.578125 1.40625 C 2.578125 1.875 2.265625 2.640625 0.96875 2.71875 C 0.90625 2.734375 0.859375 2.78125 0.859375 2.859375 C 0.859375 2.984375 0.984375 2.984375 1.09375 2.984375 C 2.265625 2.984375 3.375 2.40625 3.375 1.5 L 3.375 -1.234375 C 3.375 -1.703125 3.375 -2.078125 3.859375 -2.46875 C 4.28125 -2.828125 4.734375 -2.84375 5 -2.859375 C 5.0625 -2.875 5.109375 -2.921875 5.109375 -2.984375 C 5.109375 -3.109375 5.03125 -3.109375 4.90625 -3.125 C 4.125 -3.171875 3.546875 -3.59375 3.421875 -4.1875 C 3.375 -4.3125 3.375 -4.34375 3.375 -4.765625 L 3.375 -7.140625 C 3.375 -7.640625 3.375 -8.015625 2.8125 -8.46875 C 2.328125 -8.84375 1.5 -8.96875 1.09375 -8.96875 C 0.984375 -8.96875 0.859375 -8.96875 0.859375 -8.828125 C 0.859375 -8.71875 0.9375 -8.71875 1.046875 -8.703125 C 1.8125 -8.65625 2.390625 -8.265625 2.546875 -7.65625 C 2.578125 -7.546875 2.578125 -7.53125 2.578125 -7.09375 L 2.578125 -4.59375 C 2.578125 -4.046875 2.671875 -3.84375 3.0625 -3.453125 C 3.3125 -3.203125 3.65625 -3.078125 4 -2.984375 C 3.015625 -2.71875 2.578125 -2.15625 2.578125 -1.46875 Z M 2.578125 1.40625 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-4"> <path d="M 10.140625 1.53125 C 9.9375 1.5 9.671875 1.46875 9.453125 1.46875 C 9.21875 1.46875 8.625 1.5 7.9375 1.75 C 7.859375 1.78125 6.96875 2.15625 6.96875 2.34375 C 6.96875 2.421875 7.15625 2.625 7.25 2.625 C 7.296875 2.625 7.328125 2.609375 7.40625 2.5625 C 8.34375 1.9375 9.171875 1.9375 9.46875 1.9375 C 10.203125 1.9375 10.734375 2.125 11.015625 2.265625 C 11.078125 2.296875 11.109375 2.3125 11.15625 2.3125 C 11.203125 2.3125 11.265625 2.28125 11.265625 2.1875 C 11.265625 2.15625 11.265625 2.140625 11.234375 2.046875 C 11.078125 1.71875 10.90625 1.203125 10.90625 0.5 C 10.90625 0 10.96875 -0.71875 11.515625 -1.5625 C 11.578125 -1.65625 11.578125 -1.671875 11.578125 -1.71875 C 11.578125 -1.8125 11.390625 -2 11.3125 -2 C 11.140625 -2 10.8125 -1.25 10.703125 -1.03125 C 10.453125 -0.359375 10.4375 0.21875 10.4375 0.484375 C 10.4375 0.875 10.4375 0.890625 10.5 1.1875 L 1.15625 -8.140625 C 1.015625 -8.28125 0.984375 -8.3125 0.890625 -8.3125 C 0.75 -8.3125 0.65625 -8.1875 0.65625 -8.0625 C 0.65625 -7.96875 0.6875 -7.953125 0.84375 -7.796875 Z M 10.140625 1.53125 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-5"> <path d="M 11.109375 -7.796875 C 11.265625 -7.953125 11.28125 -7.96875 11.28125 -8.0625 C 11.28125 -8.1875 11.171875 -8.3125 11.046875 -8.3125 C 10.953125 -8.3125 10.921875 -8.28125 10.78125 -8.140625 L 1.453125 1.1875 C 1.484375 0.984375 1.5 0.703125 1.5 0.484375 C 1.5 0.25 1.484375 -0.328125 1.234375 -1.03125 C 1.171875 -1.171875 0.8125 -2 0.640625 -2 C 0.546875 -2 0.359375 -1.8125 0.359375 -1.71875 C 0.359375 -1.671875 0.375 -1.65625 0.421875 -1.5625 C 1 -0.65625 1.046875 0.078125 1.046875 0.5 C 1.046875 1.234375 0.84375 1.765625 0.71875 2.046875 C 0.6875 2.109375 0.671875 2.15625 0.671875 2.1875 C 0.671875 2.265625 0.71875 2.3125 0.78125 2.3125 C 0.8125 2.3125 0.84375 2.3125 0.9375 2.265625 C 1.25 2.109375 1.78125 1.9375 2.46875 1.9375 C 2.828125 1.9375 3.625 1.953125 4.546875 2.5625 C 4.609375 2.609375 4.65625 2.625 4.703125 2.625 C 4.78125 2.625 4.96875 2.421875 4.96875 2.34375 C 4.96875 2.171875 4.234375 1.84375 3.984375 1.75 C 3.28125 1.484375 2.703125 1.46875 2.484375 1.46875 C 2.109375 1.46875 2.09375 1.46875 1.796875 1.53125 Z M 11.109375 -7.796875 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-0"> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-1"> <path d="M 4 -3.171875 C 3.640625 -3.09375 3.625 -2.78125 3.625 -2.75 C 3.625 -2.578125 3.765625 -2.453125 3.9375 -2.453125 C 4.109375 -2.453125 4.375 -2.59375 4.375 -2.9375 C 4.375 -3.390625 3.875 -3.515625 3.578125 -3.515625 C 3.21875 -3.515625 2.90625 -3.25 2.71875 -2.9375 C 2.546875 -3.359375 2.140625 -3.515625 1.8125 -3.515625 C 0.9375 -3.515625 0.453125 -2.515625 0.453125 -2.296875 C 0.453125 -2.21875 0.515625 -2.1875 0.578125 -2.1875 C 0.671875 -2.1875 0.6875 -2.234375 0.703125 -2.328125 C 0.890625 -2.90625 1.375 -3.296875 1.78125 -3.296875 C 2.09375 -3.296875 2.25 -3.0625 2.25 -2.78125 C 2.25 -2.625 2.15625 -2.25 2.09375 -2 C 2.03125 -1.765625 1.859375 -1.0625 1.8125 -0.90625 C 1.703125 -0.484375 1.421875 -0.140625 1.0625 -0.140625 C 1.03125 -0.140625 0.828125 -0.140625 0.65625 -0.25 C 1.015625 -0.34375 1.015625 -0.671875 1.015625 -0.6875 C 1.015625 -0.875 0.875 -0.984375 0.703125 -0.984375 C 0.484375 -0.984375 0.25 -0.796875 0.25 -0.5 C 0.25 -0.125 0.640625 0.078125 1.046875 0.078125 C 1.46875 0.078125 1.765625 -0.234375 1.90625 -0.5 C 2.09375 -0.109375 2.453125 0.078125 2.84375 0.078125 C 3.703125 0.078125 4.1875 -0.921875 4.1875 -1.140625 C 4.1875 -1.21875 4.125 -1.25 4.0625 -1.25 C 3.96875 -1.25 3.953125 -1.1875 3.921875 -1.109375 C 3.765625 -0.578125 3.3125 -0.140625 2.859375 -0.140625 C 2.59375 -0.140625 2.40625 -0.3125 2.40625 -0.65625 C 2.40625 -0.8125 2.453125 -1 2.5625 -1.4375 C 2.609375 -1.6875 2.78125 -2.375 2.828125 -2.53125 C 2.9375 -2.953125 3.21875 -3.296875 3.578125 -3.296875 C 3.625 -3.296875 3.828125 -3.296875 4 -3.171875 Z M 4 -3.171875 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-2"> <path d="M 5.3125 -4.578125 C 5.40625 -4.96875 5.59375 -5.15625 6.15625 -5.171875 C 6.234375 -5.171875 6.296875 -5.234375 6.296875 -5.328125 C 6.296875 -5.375 6.265625 -5.4375 6.1875 -5.4375 C 6.140625 -5.4375 5.96875 -5.421875 5.390625 -5.421875 C 4.75 -5.421875 4.65625 -5.4375 4.578125 -5.4375 C 4.453125 -5.4375 4.4375 -5.359375 4.4375 -5.296875 C 4.4375 -5.1875 4.53125 -5.171875 4.609375 -5.171875 C 5.09375 -5.15625 5.09375 -4.953125 5.09375 -4.84375 C 5.09375 -4.796875 5.078125 -4.75 5.078125 -4.703125 C 5.0625 -4.640625 4.40625 -1.96875 4.359375 -1.875 C 4.078125 -0.71875 3.078125 -0.09375 2.28125 -0.09375 C 1.734375 -0.09375 1.25 -0.421875 1.25 -1.15625 C 1.25 -1.296875 1.265625 -1.5 1.296875 -1.640625 L 2.09375 -4.828125 C 2.171875 -5.109375 2.1875 -5.171875 2.765625 -5.171875 C 2.921875 -5.171875 3.015625 -5.171875 3.015625 -5.328125 C 3.015625 -5.34375 3.015625 -5.4375 2.890625 -5.4375 C 2.734375 -5.4375 2.546875 -5.421875 2.390625 -5.421875 L 1.890625 -5.421875 C 1.125 -5.421875 0.921875 -5.4375 0.859375 -5.4375 C 0.828125 -5.4375 0.703125 -5.4375 0.703125 -5.296875 C 0.703125 -5.171875 0.8125 -5.171875 0.9375 -5.171875 C 1.1875 -5.171875 1.421875 -5.171875 1.421875 -5.046875 C 1.421875 -5 1.359375 -4.71875 1.3125 -4.5625 L 1.125 -3.859375 L 0.71875 -2.171875 C 0.609375 -1.734375 0.578125 -1.609375 0.578125 -1.390625 C 0.578125 -0.46875 1.3125 0.171875 2.25 0.171875 C 3.34375 0.171875 4.359375 -0.75 4.609375 -1.78125 Z M 5.3125 -4.578125 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-3"> <path d="M 4.15625 -3.046875 C 4.546875 -3.4375 5.671875 -4.59375 5.859375 -4.75 C 6.203125 -5 6.40625 -5.140625 6.96875 -5.171875 C 7.015625 -5.1875 7.078125 -5.234375 7.078125 -5.328125 C 7.078125 -5.40625 7.015625 -5.4375 6.96875 -5.4375 C 6.890625 -5.4375 6.84375 -5.421875 6.21875 -5.421875 C 5.625 -5.421875 5.40625 -5.4375 5.375 -5.4375 C 5.34375 -5.4375 5.21875 -5.4375 5.21875 -5.296875 C 5.21875 -5.28125 5.21875 -5.1875 5.328125 -5.171875 C 5.390625 -5.171875 5.609375 -5.15625 5.609375 -4.96875 C 5.609375 -4.921875 5.5625 -4.828125 5.5 -4.765625 L 5.484375 -4.71875 C 5.453125 -4.703125 5.453125 -4.6875 5.375 -4.609375 L 4.046875 -3.265625 L 3.234375 -4.953125 C 3.34375 -5.140625 3.578125 -5.171875 3.6875 -5.171875 C 3.71875 -5.171875 3.828125 -5.1875 3.828125 -5.328125 C 3.828125 -5.390625 3.78125 -5.4375 3.703125 -5.4375 C 3.625 -5.4375 3.328125 -5.421875 3.25 -5.421875 C 3.203125 -5.421875 2.90625 -5.421875 2.734375 -5.421875 C 1.984375 -5.421875 1.890625 -5.4375 1.828125 -5.4375 C 1.796875 -5.4375 1.671875 -5.4375 1.671875 -5.296875 C 1.671875 -5.171875 1.765625 -5.171875 1.890625 -5.171875 C 2.296875 -5.171875 2.359375 -5.09375 2.4375 -4.953125 L 3.5 -2.71875 L 1.859375 -1.046875 C 1.390625 -0.578125 1.015625 -0.296875 0.453125 -0.265625 C 0.34375 -0.25 0.25 -0.25 0.25 -0.109375 C 0.25 -0.0625 0.296875 0 0.375 0 C 0.4375 0 0.515625 -0.03125 1.125 -0.03125 C 1.703125 -0.03125 1.9375 0 1.96875 0 C 2.015625 0 2.140625 0 2.140625 -0.15625 C 2.140625 -0.171875 2.125 -0.25 2.015625 -0.265625 C 1.859375 -0.265625 1.75 -0.328125 1.75 -0.46875 C 1.75 -0.59375 1.84375 -0.703125 1.953125 -0.828125 C 2.09375 -0.96875 2.515625 -1.390625 2.796875 -1.671875 C 2.984375 -1.84375 3.421875 -2.3125 3.609375 -2.484375 L 4.53125 -0.578125 C 4.5625 -0.5 4.5625 -0.5 4.5625 -0.484375 C 4.5625 -0.421875 4.40625 -0.28125 4.140625 -0.265625 C 4.078125 -0.265625 3.96875 -0.25 3.96875 -0.109375 C 3.96875 -0.109375 3.984375 0 4.109375 0 C 4.1875 0 4.484375 -0.015625 4.5625 -0.03125 L 5.078125 -0.03125 C 5.8125 -0.03125 5.921875 0 6 0 C 6.03125 0 6.140625 0 6.140625 -0.15625 C 6.140625 -0.265625 6.046875 -0.265625 5.921875 -0.265625 C 5.484375 -0.265625 5.4375 -0.359375 5.390625 -0.484375 Z M 4.15625 -3.046875 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-4"> <path d="M 3.609375 -4.828125 C 3.671875 -5.109375 3.6875 -5.125 4.015625 -5.125 L 4.609375 -5.125 C 5.4375 -5.125 5.53125 -4.859375 5.53125 -4.46875 C 5.53125 -4.265625 5.484375 -3.921875 5.484375 -3.875 C 5.46875 -3.796875 5.453125 -3.71875 5.453125 -3.703125 C 5.453125 -3.609375 5.53125 -3.578125 5.578125 -3.578125 C 5.671875 -3.578125 5.703125 -3.625 5.71875 -3.78125 L 5.9375 -5.28125 C 5.9375 -5.390625 5.84375 -5.390625 5.703125 -5.390625 L 1 -5.390625 C 0.8125 -5.390625 0.78125 -5.390625 0.734375 -5.21875 L 0.25 -3.84375 C 0.234375 -3.796875 0.203125 -3.734375 0.203125 -3.6875 C 0.203125 -3.625 0.265625 -3.578125 0.328125 -3.578125 C 0.421875 -3.578125 0.4375 -3.625 0.484375 -3.75 C 0.9375 -5.03125 1.15625 -5.125 2.375 -5.125 L 2.6875 -5.125 C 2.921875 -5.125 2.9375 -5.109375 2.9375 -5.046875 C 2.9375 -5.03125 2.90625 -4.875 2.890625 -4.84375 L 1.84375 -0.65625 C 1.765625 -0.34375 1.75 -0.265625 0.921875 -0.265625 C 0.65625 -0.265625 0.578125 -0.265625 0.578125 -0.109375 C 0.578125 -0.109375 0.578125 0 0.71875 0 C 0.9375 0 1.484375 -0.03125 1.703125 -0.03125 L 2.375 -0.03125 C 2.59375 -0.03125 3.15625 0 3.375 0 C 3.4375 0 3.5625 0 3.5625 -0.15625 C 3.5625 -0.265625 3.46875 -0.265625 3.265625 -0.265625 C 3.0625 -0.265625 3 -0.265625 2.796875 -0.28125 C 2.546875 -0.296875 2.515625 -0.328125 2.515625 -0.4375 C 2.515625 -0.46875 2.515625 -0.5 2.546875 -0.578125 Z M 3.609375 -4.828125 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-0"> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-1"> <path d="M 3.75 -1.984375 C 3.75 -2.90625 3.015625 -3.640625 2.109375 -3.640625 C 1.203125 -3.640625 0.46875 -2.90625 0.46875 -1.984375 C 0.46875 -1.078125 1.203125 -0.34375 2.109375 -0.34375 C 3.015625 -0.34375 3.75 -1.078125 3.75 -1.984375 Z M 3.75 -1.984375 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-2"> <path d="M 4.65625 -5.203125 C 4.703125 -5.3125 4.703125 -5.3125 4.703125 -5.34375 C 4.703125 -5.4375 4.625 -5.53125 4.515625 -5.53125 C 4.40625 -5.53125 4.359375 -5.4375 4.328125 -5.359375 L 3.625 -3.625 L 1.078125 -3.625 L 0.375 -5.34375 C 0.34375 -5.421875 0.3125 -5.53125 0.1875 -5.53125 C 0.09375 -5.53125 0 -5.453125 0 -5.34375 C 0 -5.328125 0 -5.3125 0.0625 -5.1875 L 2.15625 -0.015625 C 2.1875 0.0625 2.21875 0.171875 2.34375 0.171875 C 2.46875 0.171875 2.5 0.078125 2.546875 -0.015625 Z M 1.234375 -3.25 L 3.46875 -3.25 L 2.34375 -0.515625 Z M 1.234375 -3.25 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-3"> <path d="M 4.21875 -5.234375 C 4.21875 -5.484375 4.1875 -5.53125 3.921875 -5.53125 L 0.765625 -5.53125 C 0.640625 -5.53125 0.46875 -5.53125 0.46875 -5.34375 C 0.46875 -5.15625 0.640625 -5.15625 0.765625 -5.15625 L 3.859375 -5.15625 L 3.859375 -2.953125 L 0.890625 -2.953125 C 0.765625 -2.953125 0.59375 -2.953125 0.59375 -2.765625 C 0.59375 -2.578125 0.765625 -2.578125 0.890625 -2.578125 L 3.859375 -2.578125 L 3.859375 -0.359375 L 0.765625 -0.359375 C 0.640625 -0.359375 0.46875 -0.359375 0.46875 -0.1875 C 0.46875 0 0.640625 0 0.765625 0 L 3.921875 0 C 4.1875 0 4.21875 -0.03125 4.21875 -0.296875 Z M 4.21875 -5.234375 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-3-0"> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-3-1"> <path d="M 3.578125 -2.203125 C 3.578125 -2.203125 3.546875 -2.265625 3.546875 -2.28125 C 3.546875 -2.28125 3.546875 -2.28125 3.671875 -2.40625 L 4.640625 -3.34375 C 4.796875 -3.484375 5 -3.625 5.0625 -3.65625 C 5.296875 -3.796875 5.5 -3.84375 5.703125 -3.84375 C 5.796875 -3.859375 5.875 -3.859375 5.875 -4 C 5.875 -4.03125 5.828125 -4.09375 5.78125 -4.09375 C 5.59375 -4.09375 5.375 -4.0625 5.1875 -4.0625 L 4.828125 -4.0625 C 4.71875 -4.0625 4.59375 -4.09375 4.46875 -4.09375 C 4.4375 -4.09375 4.34375 -4.09375 4.34375 -3.9375 C 4.34375 -3.859375 4.421875 -3.84375 4.453125 -3.84375 C 4.53125 -3.84375 4.640625 -3.8125 4.640625 -3.703125 C 4.640625 -3.625 4.578125 -3.578125 4.40625 -3.390625 L 3.90625 -2.9375 C 3.875 -2.890625 3.5 -2.53125 3.421875 -2.484375 L 2.796875 -3.640625 C 2.78125 -3.65625 2.765625 -3.703125 2.765625 -3.71875 C 2.765625 -3.75 2.890625 -3.84375 3.0625 -3.84375 C 3.125 -3.84375 3.203125 -3.859375 3.203125 -4 C 3.203125 -4.015625 3.203125 -4.09375 3.09375 -4.09375 C 2.96875 -4.09375 2.828125 -4.0625 2.703125 -4.0625 C 2.703125 -4.0625 2.296875 -4.0625 2.296875 -4.0625 C 2.171875 -4.0625 2.0625 -4.0625 1.9375 -4.0625 C 1.8125 -4.0625 1.6875 -4.09375 1.578125 -4.09375 C 1.515625 -4.09375 1.4375 -4.0625 1.4375 -3.9375 C 1.4375 -3.84375 1.515625 -3.84375 1.640625 -3.84375 C 1.984375 -3.84375 2.015625 -3.78125 2.078125 -3.6875 L 2.96875 -2.046875 C 2.84375 -1.9375 2.546875 -1.65625 2.34375 -1.453125 C 1.34375 -0.484375 1.125 -0.265625 0.546875 -0.234375 C 0.46875 -0.234375 0.390625 -0.234375 0.390625 -0.09375 C 0.390625 -0.046875 0.421875 0 0.484375 0 C 0.65625 0 0.875 -0.03125 1.0625 -0.03125 C 1.234375 -0.03125 1.625 0 1.78125 0 C 1.8125 0 1.921875 0 1.921875 -0.15625 C 1.921875 -0.234375 1.84375 -0.234375 1.8125 -0.234375 C 1.71875 -0.25 1.609375 -0.28125 1.609375 -0.375 C 1.609375 -0.40625 1.625 -0.4375 1.6875 -0.515625 C 1.6875 -0.53125 1.703125 -0.5625 1.71875 -0.5625 L 3.078125 -1.84375 L 3.84375 -0.453125 C 3.875 -0.40625 3.890625 -0.390625 3.890625 -0.375 C 3.890625 -0.328125 3.765625 -0.25 3.578125 -0.234375 C 3.53125 -0.234375 3.4375 -0.234375 3.4375 -0.09375 C 3.4375 -0.078125 3.453125 0 3.546875 0 C 3.671875 0 3.8125 -0.015625 3.9375 -0.015625 C 3.9375 -0.015625 4.34375 -0.03125 4.34375 -0.03125 C 4.46875 -0.03125 4.578125 -0.015625 4.703125 -0.015625 C 4.828125 -0.015625 4.953125 0 5.0625 0 C 5.140625 0 5.203125 -0.03125 5.203125 -0.15625 C 5.203125 -0.234375 5.109375 -0.234375 5.03125 -0.234375 C 4.65625 -0.234375 4.625 -0.296875 4.5625 -0.40625 Z M 3.578125 -2.203125 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-3-2"> <path d="M 2.171875 -1.921875 L 2.859375 -1.921875 C 3.34375 -1.921875 3.421875 -1.84375 3.421875 -1.640625 C 3.421875 -1.5625 3.390625 -1.375 3.359375 -1.296875 C 3.359375 -1.296875 3.375 -1.21875 3.484375 -1.21875 C 3.5625 -1.21875 3.578125 -1.25 3.59375 -1.34375 L 3.953125 -2.765625 C 3.953125 -2.78125 3.9375 -2.859375 3.84375 -2.859375 C 3.75 -2.859375 3.734375 -2.8125 3.71875 -2.734375 C 3.59375 -2.265625 3.453125 -2.15625 2.890625 -2.15625 L 2.25 -2.15625 L 2.609375 -3.625 C 2.65625 -3.8125 2.65625 -3.828125 2.921875 -3.828125 L 3.890625 -3.828125 C 4.6875 -3.828125 4.890625 -3.671875 4.890625 -3.125 C 4.890625 -2.984375 4.875 -2.78125 4.875 -2.765625 C 4.875 -2.65625 4.953125 -2.65625 4.984375 -2.65625 C 5.078125 -2.65625 5.09375 -2.703125 5.09375 -2.8125 L 5.203125 -3.875 C 5.21875 -4.0625 5.171875 -4.0625 5.03125 -4.0625 L 1.65625 -4.0625 C 1.546875 -4.0625 1.453125 -4.0625 1.453125 -3.90625 C 1.453125 -3.828125 1.546875 -3.828125 1.65625 -3.828125 C 1.765625 -3.828125 1.921875 -3.828125 2.046875 -3.78125 C 2.046875 -3.71875 2.046875 -3.6875 2.015625 -3.59375 L 1.234375 -0.5 C 1.1875 -0.28125 1.171875 -0.234375 0.71875 -0.234375 C 0.59375 -0.234375 0.578125 -0.234375 0.5625 -0.21875 C 0.53125 -0.203125 0.5 -0.125 0.5 -0.078125 C 0.515625 -0.0625 0.515625 0 0.609375 0 C 0.734375 0 0.875 -0.015625 1.015625 -0.015625 C 1.15625 -0.015625 1.296875 -0.03125 1.4375 -0.03125 C 1.59375 -0.03125 1.765625 -0.015625 1.9375 -0.015625 C 2.078125 -0.015625 2.25 0 2.390625 0 C 2.421875 0 2.53125 0 2.53125 -0.15625 C 2.53125 -0.234375 2.453125 -0.234375 2.3125 -0.234375 C 2.296875 -0.234375 2.140625 -0.234375 2 -0.25 C 1.8125 -0.265625 1.796875 -0.28125 1.796875 -0.34375 C 1.796875 -0.359375 1.796875 -0.390625 1.8125 -0.46875 Z M 2.171875 -1.921875 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-4-0"> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-4-1"> <path d="M 5.671875 -4.859375 L 4.546875 -7.46875 C 4.703125 -7.75 5.0625 -7.8125 5.21875 -7.8125 C 5.28125 -7.8125 5.421875 -7.828125 5.421875 -8.03125 C 5.421875 -8.15625 5.3125 -8.15625 5.234375 -8.15625 C 5.03125 -8.15625 4.796875 -8.140625 4.59375 -8.140625 L 3.890625 -8.140625 C 3.171875 -8.140625 2.640625 -8.15625 2.625 -8.15625 C 2.53125 -8.15625 2.421875 -8.15625 2.421875 -7.9375 C 2.421875 -7.8125 2.515625 -7.8125 2.671875 -7.8125 C 3.375 -7.8125 3.421875 -7.703125 3.53125 -7.40625 L 4.953125 -4.09375 L 2.359375 -1.3125 C 1.9375 -0.84375 1.421875 -0.390625 0.53125 -0.34375 C 0.390625 -0.328125 0.296875 -0.328125 0.296875 -0.125 C 0.296875 -0.078125 0.3125 0 0.4375 0 C 0.609375 0 0.78125 -0.03125 0.953125 -0.03125 L 1.515625 -0.03125 C 1.90625 -0.03125 2.3125 0 2.6875 0 C 2.765625 0 2.921875 0 2.921875 -0.21875 C 2.921875 -0.328125 2.828125 -0.34375 2.765625 -0.34375 C 2.515625 -0.375 2.359375 -0.5 2.359375 -0.6875 C 2.359375 -0.890625 2.515625 -1.046875 2.859375 -1.40625 L 3.921875 -2.5625 C 4.1875 -2.828125 4.8125 -3.53125 5.078125 -3.796875 L 6.328125 -0.84375 C 6.34375 -0.828125 6.390625 -0.703125 6.390625 -0.6875 C 6.390625 -0.578125 6.125 -0.375 5.75 -0.34375 C 5.671875 -0.34375 5.546875 -0.328125 5.546875 -0.125 C 5.546875 0 5.671875 0 5.71875 0 C 5.921875 0 6.171875 -0.03125 6.375 -0.03125 L 7.6875 -0.03125 C 7.90625 -0.03125 8.125 0 8.328125 0 C 8.421875 0 8.546875 0 8.546875 -0.234375 C 8.546875 -0.34375 8.421875 -0.34375 8.3125 -0.34375 C 7.609375 -0.359375 7.578125 -0.421875 7.375 -0.859375 L 5.796875 -4.5625 L 7.3125 -6.1875 C 7.4375 -6.3125 7.703125 -6.609375 7.8125 -6.734375 C 8.328125 -7.265625 8.8125 -7.75 9.78125 -7.8125 C 9.890625 -7.828125 10.015625 -7.828125 10.015625 -8.03125 C 10.015625 -8.15625 9.90625 -8.15625 9.859375 -8.15625 C 9.6875 -8.15625 9.515625 -8.140625 9.34375 -8.140625 L 8.796875 -8.140625 C 8.421875 -8.140625 8 -8.15625 7.625 -8.15625 C 7.546875 -8.15625 7.40625 -8.15625 7.40625 -7.953125 C 7.40625 -7.828125 7.484375 -7.8125 7.546875 -7.8125 C 7.75 -7.796875 7.953125 -7.703125 7.953125 -7.46875 L 7.9375 -7.453125 C 7.921875 -7.359375 7.90625 -7.25 7.765625 -7.09375 Z M 5.671875 -4.859375 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-0"> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-1"> <path d="M 5.828125 -2.65625 C 5.9375 -2.65625 6.109375 -2.65625 6.109375 -2.84375 C 6.109375 -3.015625 5.90625 -3.015625 5.796875 -3.015625 L 0.78125 -3.015625 C 0.65625 -3.015625 0.46875 -3.015625 0.46875 -2.84375 C 0.46875 -2.65625 0.625 -2.65625 0.75 -2.65625 Z M 5.796875 -0.96875 C 5.90625 -0.96875 6.109375 -0.96875 6.109375 -1.140625 C 6.109375 -1.328125 5.9375 -1.328125 5.828125 -1.328125 L 0.75 -1.328125 C 0.625 -1.328125 0.46875 -1.328125 0.46875 -1.140625 C 0.46875 -0.96875 0.65625 -0.96875 0.78125 -0.96875 Z M 5.796875 -0.96875 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-2"> <path d="M 2.65625 1.984375 C 2.71875 1.984375 2.8125 1.984375 2.8125 1.890625 C 2.8125 1.859375 2.8125 1.859375 2.703125 1.75 C 1.609375 0.71875 1.34375 -0.75 1.34375 -1.984375 C 1.34375 -4.28125 2.28125 -5.359375 2.6875 -5.734375 C 2.8125 -5.828125 2.8125 -5.84375 2.8125 -5.875 C 2.8125 -5.921875 2.78125 -5.96875 2.703125 -5.96875 C 2.578125 -5.96875 2.171875 -5.5625 2.109375 -5.5 C 1.046875 -4.375 0.828125 -2.953125 0.828125 -1.984375 C 0.828125 -0.203125 1.5625 1.234375 2.65625 1.984375 Z M 2.65625 1.984375 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-3"> <path d="M 2.46875 -1.984375 C 2.46875 -2.75 2.328125 -3.65625 1.84375 -4.59375 C 1.453125 -5.328125 0.71875 -5.96875 0.578125 -5.96875 C 0.5 -5.96875 0.484375 -5.921875 0.484375 -5.875 C 0.484375 -5.84375 0.484375 -5.828125 0.578125 -5.734375 C 1.6875 -4.671875 1.9375 -3.21875 1.9375 -1.984375 C 1.9375 0.296875 1 1.375 0.59375 1.75 C 0.484375 1.84375 0.484375 1.859375 0.484375 1.890625 C 0.484375 1.9375 0.5 1.984375 0.578125 1.984375 C 0.703125 1.984375 1.109375 1.578125 1.171875 1.515625 C 2.234375 0.390625 2.46875 -1.03125 2.46875 -1.984375 Z M 2.46875 -1.984375 "></path> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-6-0"> </g> <g id="A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-6-1"> <path d="M 1.765625 -1.984375 C 2.265625 -1.984375 2.609375 -1.640625 2.609375 -1.03125 C 2.609375 -0.375 2.21875 -0.09375 1.78125 -0.09375 C 1.609375 -0.09375 1 -0.125 0.734375 -0.46875 C 0.96875 -0.5 1.0625 -0.65625 1.0625 -0.8125 C 1.0625 -1.015625 0.921875 -1.15625 0.71875 -1.15625 C 0.5625 -1.15625 0.375 -1.046875 0.375 -0.796875 C 0.375 -0.203125 1.03125 0.125 1.796875 0.125 C 2.6875 0.125 3.265625 -0.4375 3.265625 -1.03125 C 3.265625 -1.46875 2.9375 -1.9375 2.21875 -2.109375 C 2.703125 -2.265625 3.078125 -2.65625 3.078125 -3.140625 C 3.078125 -3.625 2.515625 -3.984375 1.796875 -3.984375 C 1.09375 -3.984375 0.5625 -3.65625 0.5625 -3.171875 C 0.5625 -2.90625 0.765625 -2.84375 0.890625 -2.84375 C 1.046875 -2.84375 1.203125 -2.9375 1.203125 -3.15625 C 1.203125 -3.34375 1.078125 -3.453125 0.90625 -3.46875 C 1.1875 -3.78125 1.734375 -3.78125 1.796875 -3.78125 C 2.09375 -3.78125 2.484375 -3.640625 2.484375 -3.140625 C 2.484375 -2.8125 2.296875 -2.234375 1.6875 -2.203125 C 1.578125 -2.203125 1.421875 -2.1875 1.375 -2.1875 C 1.3125 -2.171875 1.25 -2.171875 1.25 -2.078125 C 1.25 -1.984375 1.3125 -1.984375 1.40625 -1.984375 Z M 1.765625 -1.984375 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-1" x="5.147" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-2" x="14.507922" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-1" x="20.49" y="29.349"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000000000000003553 -0.0006875 L 18.015625 -0.0006875 " transform="matrix(1, 0, 0, -1, 11.125, 19.054)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00021875 0.00184375 L 0.00021875 13.482312 " transform="matrix(1, 0, 0, -1, 11.324, 32.537)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00159375 0.00184375 L -0.00159375 13.482312 " transform="matrix(1, 0, 0, -1, 28.943, 32.537)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000000000000003553 0.00184375 L 18.015625 0.00184375 " transform="matrix(1, 0, 0, -1, 11.125, 32.537)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-3" x="29.142" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-1" x="72.015" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-2" x="88.154" y="21.046"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-1" x="94.132" y="22.84"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.001375 -0.001875 L 18.018156 -0.001875 " transform="matrix(1, 0, 0, -1, 84.767, 12.545)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00115625 0.00065625 L -0.00115625 13.481125 " transform="matrix(1, 0, 0, -1, 84.966, 26.028)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0009375 0.00065625 L 0.0009375 13.481125 " transform="matrix(1, 0, 0, -1, 102.585, 26.028)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.001375 0.00065625 L 18.018156 0.00065625 " transform="matrix(1, 0, 0, -1, 84.767, 26.028)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-4" x="106.105" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-1" x="121.381" y="34.728"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-3-1" x="125.615" y="36.068"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-5" x="135.882" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-2" x="154.546" y="21.046"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-2" x="160.523" y="22.84"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00175 -0.001875 L 19.826375 -0.001875 " transform="matrix(1, 0, 0, -1, 151.158, 12.545)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00153125 0.00065625 L -0.00153125 13.481125 " transform="matrix(1, 0, 0, -1, 151.357, 26.028)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00184375 0.00065625 L -0.00184375 13.481125 " transform="matrix(1, 0, 0, -1, 170.787, 26.028)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00175 0.00065625 L 19.826375 0.00065625 " transform="matrix(1, 0, 0, -1, 151.158, 26.028)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00109375 0.0010625 L 92.995 0.0010625 " transform="matrix(1, 0, 0, -1, 81.38, 7.962)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000875 0.00178125 L -0.000875 32.490062 " transform="matrix(1, 0, 0, -1, 81.579, 40.451)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00178125 0.00178125 L 0.00178125 32.490062 " transform="matrix(1, 0, 0, -1, 174.174, 40.451)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00109375 0.00178125 L 92.995 0.00178125 " transform="matrix(1, 0, 0, -1, 81.38, 40.451)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-4" x="172.381" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-1" x="187.657" y="34.728"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-3-2" x="191.891" y="36.068"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0001875 0.00078125 L 123.386906 0.00078125 " transform="matrix(1, 0, 0, -1, 77.992, 4.575)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00059375 -0.00084375 L -0.00059375 39.264781 " transform="matrix(1, 0, 0, -1, 78.192, 43.839)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0006875 -0.00084375 L 0.0006875 39.264781 " transform="matrix(1, 0, 0, -1, 201.179, 43.839)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0001875 -0.00084375 L 123.386906 -0.00084375 " transform="matrix(1, 0, 0, -1, 77.992, 43.839)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-3" x="201.378" y="27.555"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-4-1" x="14.806" y="107.256"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-1" x="93.178" y="107.256"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-2" x="105.93" y="100.747"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-1" x="111.907" y="102.541"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-1" x="116.674" y="102.541"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-3" x="123.261" y="102.541"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-1" x="130.848" y="102.541"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-2" x="137.434" y="102.541"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00003125 -0.00009375 L 45.355437 -0.00009375 " transform="matrix(1, 0, 0, -1, 102.543, 92.246)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0001875 -0.00146875 L 0.0001875 13.482906 " transform="matrix(1, 0, 0, -1, 102.742, 105.729)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00121875 -0.00146875 L 0.00121875 13.482906 " transform="matrix(1, 0, 0, -1, 147.698, 105.729)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00003125 -0.00146875 L 45.355437 -0.00146875 " transform="matrix(1, 0, 0, -1, 102.543, 105.729)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-4" x="151.218" y="107.256"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-1" x="166.494" y="114.429"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-3-2" x="170.729" y="115.769"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00125 -0.0010625 L 81.059844 -0.0010625 " transform="matrix(1, 0, 0, -1, 99.155, 87.663)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00046875 -0.00034375 L 0.00046875 32.487937 " transform="matrix(1, 0, 0, -1, 99.355, 120.152)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000375 -0.00034375 L -0.000375 32.487937 " transform="matrix(1, 0, 0, -1, 180.016, 120.152)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00125 -0.00034375 L 81.059844 -0.00034375 " transform="matrix(1, 0, 0, -1, 99.155, 120.152)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-0-3" x="180.215" y="107.256"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -86.119187 25.055406 L -86.119187 -31.671156 " transform="matrix(1, 0, 0, -1, 106.252, 62.364)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485107 2.870956 C -2.031982 1.1483 -1.020264 0.3358 -0.0007325 -0.0001375 C -1.020264 -0.336075 -2.031982 -1.148575 -2.485107 -2.867325 " transform="matrix(0, 1, 1, 0, 20.13295, 94.27417)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-2" x="12.616" y="68.679"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-2" x="22.946" y="67.904"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-1-4" x="26.24" y="67.904"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-6-1" x="31.17" y="69.011"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-5-3" x="35.321" y="67.904"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -65.787156 37.797594 L -40.060594 37.797594 " transform="matrix(1, 0, 0, -1, 106.252, 62.364)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487704 2.871048 C -2.030672 1.148391 -1.018954 0.335891 0.0005775 -0.00004625 C -1.018954 -0.335984 -2.030672 -1.148484 -2.487704 -2.867234 " transform="matrix(1, 0, 0, -1, 66.42911, 24.56636)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 33.4355 13.750719 L 33.4355 -20.046156 " transform="matrix(1, 0, 0, -1, 106.252, 62.364)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486897 2.868527 C -2.033772 1.145871 -1.018147 0.333371 0.00138375 0.00134 C -1.018147 -0.334598 -2.033772 -1.147098 -2.486897 -2.869754 " transform="matrix(0, 1, 1, 0, 139.68616, 82.65096)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -75.443406 -41.905531 L -18.900437 -41.905531 " transform="matrix(1, 0, 0, -1, 106.252, 62.364)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486741 2.870063 C -2.033616 1.147406 -1.021897 0.334906 0.00154 -0.00103125 C -1.021897 -0.333062 -2.033616 -1.149469 -2.486741 -2.868219 " transform="matrix(1, 0, 0, -1, 87.59221, 104.2685)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="3.34735 1.91277" stroke-miterlimit="10" d="M -75.443406 -34.788344 L -3.025437 13.485094 " transform="matrix(1, 0, 0, -1, 106.252, 62.364)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487871 2.868654 C -2.03382 1.148142 -1.020748 0.336679 -0.00119648 -0.000228536 C -1.021799 -0.333982 -2.033712 -1.147708 -2.486517 -2.869346 " transform="matrix(0.83203, -0.55463, -0.55463, -0.83203, 103.42665, 48.74524)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#A_LG5PqGwMF9qFH4yZlgCmYaimQ=-glyph-2-3" x="59.7" y="70.07"></use> </g> </svg> <p></p> </div> </p> <p> <div class="num_prop"> <h6>Proposition</h6> <p><strong>(Lifting property encoding <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">T_4</annotation></semantics></math>)</strong> <br /> The following <a class="existingWikiWord" href="/nlab/show/lifting+property">lifting property</a> in <a class="existingWikiWord" href="/nlab/show/Top">Top</a> equivalently encodes the <a class="existingWikiWord" href="/nlab/show/separation+axiom">separation axiom</a> <a class="existingWikiWord" href="/nlab/show/T4"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <msub><mi>T</mi> <mn>4</mn></msub> </mrow> <annotation encoding="application/x-tex">T_4</annotation> </semantics> </math></a>:</p> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="203.354" height="128.933" viewBox="0 0 203.354 128.933"> <defs> <g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-0-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-0-1"> <path d="M 8.453125 -6.484375 C 8.625 -6.640625 8.625 -6.703125 8.625 -6.75 C 8.625 -6.984375 8.40625 -7 8.375 -7 C 8.296875 -7 8.265625 -6.96875 8.046875 -6.78125 L 7.125 -5.96875 C 6.875 -6.234375 5.984375 -7 4.65625 -7 C 2.734375 -7 1.140625 -5.46875 1.140625 -3.484375 C 1.140625 -2.359375 1.609375 -1.703125 1.84375 -1.359375 C 1.65625 -1.1875 1.640625 -1.171875 0.9375 -0.5625 C 0.6875 -0.34375 0.671875 -0.328125 0.671875 -0.21875 C 0.671875 -0.078125 0.765625 0.03125 0.90625 0.03125 C 0.984375 0.03125 1.015625 0.03125 1.234375 -0.171875 L 2.15625 -0.984375 C 2.265625 -0.875 3.15625 0.03125 4.640625 0.03125 C 6.671875 0.03125 8.15625 -1.625 8.15625 -3.484375 C 8.15625 -4.59375 7.671875 -5.28125 7.453125 -5.609375 C 7.453125 -5.625 7.53125 -5.671875 7.578125 -5.71875 Z M 2.203125 -1.671875 C 1.609375 -2.5 1.609375 -3.21875 1.609375 -3.484375 C 1.609375 -5.203125 2.984375 -6.515625 4.640625 -6.515625 C 5.921875 -6.515625 6.640625 -5.78125 6.75 -5.65625 Z M 7.078125 -5.296875 C 7.46875 -4.765625 7.671875 -4.171875 7.671875 -3.484375 C 7.671875 -1.765625 6.296875 -0.453125 4.65625 -0.453125 C 3.375 -0.453125 2.65625 -1.1875 2.53125 -1.3125 Z M 7.078125 -5.296875 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-1"> <path d="M 3.75 -1.984375 C 3.75 -2.90625 3.015625 -3.640625 2.109375 -3.640625 C 1.203125 -3.640625 0.46875 -2.90625 0.46875 -1.984375 C 0.46875 -1.078125 1.203125 -0.34375 2.109375 -0.34375 C 3.015625 -0.34375 3.75 -1.078125 3.75 -1.984375 Z M 3.75 -1.984375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-2"> <path d="M 4.21875 -5.234375 C 4.21875 -5.484375 4.1875 -5.53125 3.921875 -5.53125 L 0.765625 -5.53125 C 0.640625 -5.53125 0.46875 -5.53125 0.46875 -5.34375 C 0.46875 -5.15625 0.640625 -5.15625 0.765625 -5.15625 L 3.859375 -5.15625 L 3.859375 -2.953125 L 0.890625 -2.953125 C 0.765625 -2.953125 0.59375 -2.953125 0.59375 -2.765625 C 0.59375 -2.578125 0.765625 -2.578125 0.890625 -2.578125 L 3.859375 -2.578125 L 3.859375 -0.359375 L 0.765625 -0.359375 C 0.640625 -0.359375 0.46875 -0.359375 0.46875 -0.1875 C 0.46875 0 0.640625 0 0.765625 0 L 3.921875 0 C 4.1875 0 4.21875 -0.03125 4.21875 -0.296875 Z M 4.21875 -5.234375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-1"> <path d="M 3.375 -2.359375 C 3.15625 -2.296875 3.109375 -2.125 3.109375 -2.03125 C 3.109375 -1.84375 3.265625 -1.796875 3.34375 -1.796875 C 3.53125 -1.796875 3.703125 -1.9375 3.703125 -2.171875 C 3.703125 -2.5 3.34375 -2.640625 3.046875 -2.640625 C 2.640625 -2.640625 2.40625 -2.328125 2.34375 -2.21875 C 2.265625 -2.375 2.03125 -2.640625 1.578125 -2.640625 C 0.890625 -2.640625 0.484375 -1.921875 0.484375 -1.71875 C 0.484375 -1.6875 0.515625 -1.640625 0.59375 -1.640625 C 0.6875 -1.640625 0.703125 -1.671875 0.71875 -1.71875 C 0.875 -2.203125 1.28125 -2.4375 1.5625 -2.4375 C 1.859375 -2.4375 1.953125 -2.25 1.953125 -2.046875 C 1.953125 -1.984375 1.953125 -1.921875 1.90625 -1.734375 C 1.765625 -1.1875 1.640625 -0.640625 1.609375 -0.5625 C 1.515625 -0.34375 1.296875 -0.140625 1.046875 -0.140625 C 1.015625 -0.140625 0.84375 -0.140625 0.703125 -0.234375 C 0.9375 -0.3125 0.96875 -0.5 0.96875 -0.546875 C 0.96875 -0.703125 0.84375 -0.78125 0.71875 -0.78125 C 0.5625 -0.78125 0.375 -0.65625 0.375 -0.40625 C 0.375 -0.0625 0.75 0.0625 1.03125 0.0625 C 1.375 0.0625 1.625 -0.171875 1.734375 -0.359375 C 1.859375 -0.109375 2.140625 0.0625 2.484375 0.0625 C 3.1875 0.0625 3.578125 -0.671875 3.578125 -0.859375 C 3.578125 -0.875 3.578125 -0.953125 3.46875 -0.953125 C 3.390625 -0.953125 3.375 -0.90625 3.359375 -0.84375 C 3.1875 -0.328125 2.765625 -0.140625 2.5 -0.140625 C 2.28125 -0.140625 2.125 -0.265625 2.125 -0.515625 C 2.125 -0.640625 2.140625 -0.765625 2.203125 -0.96875 L 2.390625 -1.75 C 2.453125 -1.984375 2.484375 -2.09375 2.609375 -2.234375 C 2.6875 -2.328125 2.84375 -2.4375 3.03125 -2.4375 C 3.0625 -2.4375 3.234375 -2.4375 3.375 -2.359375 Z M 3.375 -2.359375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-2"> <path d="M 3.578125 -2.203125 C 3.578125 -2.203125 3.546875 -2.265625 3.546875 -2.28125 C 3.546875 -2.28125 3.546875 -2.28125 3.671875 -2.40625 L 4.640625 -3.34375 C 4.796875 -3.484375 5 -3.625 5.0625 -3.65625 C 5.296875 -3.796875 5.5 -3.84375 5.703125 -3.84375 C 5.796875 -3.859375 5.875 -3.859375 5.875 -4 C 5.875 -4.03125 5.828125 -4.09375 5.78125 -4.09375 C 5.59375 -4.09375 5.375 -4.0625 5.1875 -4.0625 L 4.828125 -4.0625 C 4.71875 -4.0625 4.59375 -4.09375 4.46875 -4.09375 C 4.4375 -4.09375 4.34375 -4.09375 4.34375 -3.9375 C 4.34375 -3.859375 4.421875 -3.84375 4.453125 -3.84375 C 4.53125 -3.84375 4.640625 -3.8125 4.640625 -3.703125 C 4.640625 -3.625 4.578125 -3.578125 4.40625 -3.390625 L 3.90625 -2.9375 C 3.875 -2.890625 3.5 -2.53125 3.421875 -2.484375 L 2.796875 -3.640625 C 2.78125 -3.65625 2.765625 -3.703125 2.765625 -3.71875 C 2.765625 -3.75 2.890625 -3.84375 3.0625 -3.84375 C 3.125 -3.84375 3.203125 -3.859375 3.203125 -4 C 3.203125 -4.015625 3.203125 -4.09375 3.09375 -4.09375 C 2.96875 -4.09375 2.828125 -4.0625 2.703125 -4.0625 C 2.703125 -4.0625 2.296875 -4.0625 2.296875 -4.0625 C 2.171875 -4.0625 2.0625 -4.0625 1.9375 -4.0625 C 1.8125 -4.0625 1.6875 -4.09375 1.578125 -4.09375 C 1.515625 -4.09375 1.4375 -4.0625 1.4375 -3.9375 C 1.4375 -3.84375 1.515625 -3.84375 1.640625 -3.84375 C 1.984375 -3.84375 2.015625 -3.78125 2.078125 -3.6875 L 2.96875 -2.046875 C 2.84375 -1.9375 2.546875 -1.65625 2.34375 -1.453125 C 1.34375 -0.484375 1.125 -0.265625 0.546875 -0.234375 C 0.46875 -0.234375 0.390625 -0.234375 0.390625 -0.09375 C 0.390625 -0.046875 0.421875 0 0.484375 0 C 0.65625 0 0.875 -0.03125 1.0625 -0.03125 C 1.234375 -0.03125 1.625 0 1.78125 0 C 1.8125 0 1.921875 0 1.921875 -0.15625 C 1.921875 -0.234375 1.84375 -0.234375 1.8125 -0.234375 C 1.71875 -0.25 1.609375 -0.28125 1.609375 -0.375 C 1.609375 -0.40625 1.625 -0.4375 1.6875 -0.515625 C 1.6875 -0.53125 1.703125 -0.5625 1.71875 -0.5625 L 3.078125 -1.84375 L 3.84375 -0.453125 C 3.875 -0.40625 3.890625 -0.390625 3.890625 -0.375 C 3.890625 -0.328125 3.765625 -0.25 3.578125 -0.234375 C 3.53125 -0.234375 3.4375 -0.234375 3.4375 -0.09375 C 3.4375 -0.078125 3.453125 0 3.546875 0 C 3.671875 0 3.8125 -0.015625 3.9375 -0.015625 C 3.9375 -0.015625 4.34375 -0.03125 4.34375 -0.03125 C 4.46875 -0.03125 4.578125 -0.015625 4.703125 -0.015625 C 4.828125 -0.015625 4.953125 0 5.0625 0 C 5.140625 0 5.203125 -0.03125 5.203125 -0.15625 C 5.203125 -0.234375 5.109375 -0.234375 5.03125 -0.234375 C 4.65625 -0.234375 4.625 -0.296875 4.5625 -0.40625 Z M 3.578125 -2.203125 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-3"> <path d="M 3.5625 -2.296875 C 3.578125 -2.34375 3.578125 -2.359375 3.578125 -2.375 C 3.578125 -2.453125 3.53125 -2.578125 3.375 -2.578125 C 3.265625 -2.578125 3.171875 -2.515625 3.125 -2.421875 C 3.09375 -2.390625 3.0625 -2.203125 3.03125 -2.09375 L 2.71875 -0.84375 C 2.671875 -0.671875 2.65625 -0.578125 2.40625 -0.359375 C 2.34375 -0.296875 2.15625 -0.140625 1.890625 -0.140625 C 1.453125 -0.140625 1.453125 -0.53125 1.453125 -0.640625 C 1.453125 -0.890625 1.53125 -1.171875 1.796875 -1.828125 C 1.84375 -1.96875 1.859375 -2.015625 1.859375 -2.125 C 1.859375 -2.453125 1.5625 -2.640625 1.265625 -2.640625 C 0.65625 -2.640625 0.359375 -1.84375 0.359375 -1.71875 C 0.359375 -1.6875 0.390625 -1.640625 0.46875 -1.640625 C 0.5625 -1.640625 0.578125 -1.671875 0.59375 -1.71875 C 0.765625 -2.296875 1.078125 -2.4375 1.25 -2.4375 C 1.359375 -2.4375 1.40625 -2.359375 1.40625 -2.21875 C 1.40625 -2.09375 1.328125 -1.890625 1.265625 -1.734375 C 1.046875 -1.203125 0.984375 -0.9375 0.984375 -0.71875 C 0.984375 -0.15625 1.40625 0.0625 1.875 0.0625 C 1.953125 0.0625 2.234375 0.0625 2.5625 -0.21875 C 2.484375 0.109375 2.421875 0.34375 2.140625 0.65625 C 2.03125 0.78125 1.765625 1.015625 1.40625 1.015625 C 1.34375 1.015625 1.09375 1.015625 0.953125 0.859375 C 1.21875 0.8125 1.25 0.578125 1.25 0.53125 C 1.25 0.359375 1.125 0.296875 1 0.296875 C 0.859375 0.296875 0.65625 0.421875 0.65625 0.6875 C 0.65625 0.984375 0.9375 1.21875 1.40625 1.21875 C 2.046875 1.21875 2.8125 0.75 2.984375 0 Z M 3.5625 -2.296875 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-1"> <path d="M 11.109375 -7.796875 C 11.265625 -7.953125 11.28125 -7.96875 11.28125 -8.0625 C 11.28125 -8.1875 11.171875 -8.3125 11.046875 -8.3125 C 10.953125 -8.3125 10.921875 -8.28125 10.78125 -8.140625 L 1.453125 1.1875 C 1.484375 0.984375 1.5 0.703125 1.5 0.484375 C 1.5 0.25 1.484375 -0.328125 1.234375 -1.03125 C 1.171875 -1.171875 0.8125 -2 0.640625 -2 C 0.546875 -2 0.359375 -1.8125 0.359375 -1.71875 C 0.359375 -1.671875 0.375 -1.65625 0.421875 -1.5625 C 1 -0.65625 1.046875 0.078125 1.046875 0.5 C 1.046875 1.234375 0.84375 1.765625 0.71875 2.046875 C 0.6875 2.109375 0.671875 2.15625 0.671875 2.1875 C 0.671875 2.265625 0.71875 2.3125 0.78125 2.3125 C 0.8125 2.3125 0.84375 2.3125 0.9375 2.265625 C 1.25 2.109375 1.78125 1.9375 2.46875 1.9375 C 2.828125 1.9375 3.625 1.953125 4.546875 2.5625 C 4.609375 2.609375 4.65625 2.625 4.703125 2.625 C 4.78125 2.625 4.96875 2.421875 4.96875 2.34375 C 4.96875 2.171875 4.234375 1.84375 3.984375 1.75 C 3.28125 1.484375 2.703125 1.46875 2.484375 1.46875 C 2.109375 1.46875 2.09375 1.46875 1.796875 1.53125 Z M 11.109375 -7.796875 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-2"> <path d="M 5.3125 -2.984375 C 5.3125 -4.265625 4.25 -5.3125 2.984375 -5.3125 C 1.703125 -5.3125 0.65625 -4.25 0.65625 -2.984375 C 0.65625 -1.71875 1.703125 -0.671875 2.984375 -0.671875 C 4.25 -0.671875 5.3125 -1.703125 5.3125 -2.984375 Z M 5.3125 -2.984375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-3"> <path d="M 10.140625 1.53125 C 9.9375 1.5 9.671875 1.46875 9.453125 1.46875 C 9.21875 1.46875 8.625 1.5 7.9375 1.75 C 7.859375 1.78125 6.96875 2.15625 6.96875 2.34375 C 6.96875 2.421875 7.15625 2.625 7.25 2.625 C 7.296875 2.625 7.328125 2.609375 7.40625 2.5625 C 8.34375 1.9375 9.171875 1.9375 9.46875 1.9375 C 10.203125 1.9375 10.734375 2.125 11.015625 2.265625 C 11.078125 2.296875 11.109375 2.3125 11.15625 2.3125 C 11.203125 2.3125 11.265625 2.28125 11.265625 2.1875 C 11.265625 2.15625 11.265625 2.140625 11.234375 2.046875 C 11.078125 1.71875 10.90625 1.203125 10.90625 0.5 C 10.90625 0 10.96875 -0.71875 11.515625 -1.5625 C 11.578125 -1.65625 11.578125 -1.671875 11.578125 -1.71875 C 11.578125 -1.8125 11.390625 -2 11.3125 -2 C 11.140625 -2 10.8125 -1.25 10.703125 -1.03125 C 10.453125 -0.359375 10.4375 0.21875 10.4375 0.484375 C 10.4375 0.875 10.4375 0.890625 10.5 1.1875 L 1.15625 -8.140625 C 1.015625 -8.28125 0.984375 -8.3125 0.890625 -8.3125 C 0.75 -8.3125 0.65625 -8.1875 0.65625 -8.0625 C 0.65625 -7.96875 0.6875 -7.953125 0.84375 -7.796875 Z M 10.140625 1.53125 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-4"> <path d="M 3.375 -7.375 C 3.375 -7.859375 3.6875 -8.625 5 -8.703125 C 5.0625 -8.71875 5.109375 -8.765625 5.109375 -8.828125 C 5.109375 -8.96875 5.015625 -8.96875 4.875 -8.96875 C 3.6875 -8.96875 2.59375 -8.359375 2.578125 -7.46875 L 2.578125 -4.75 C 2.578125 -4.28125 2.578125 -3.890625 2.109375 -3.5 C 1.6875 -3.15625 1.234375 -3.125 0.96875 -3.125 C 0.90625 -3.109375 0.859375 -3.0625 0.859375 -2.984375 C 0.859375 -2.875 0.9375 -2.875 1.046875 -2.859375 C 1.84375 -2.8125 2.421875 -2.375 2.546875 -1.796875 C 2.578125 -1.65625 2.578125 -1.640625 2.578125 -1.203125 L 2.578125 1.15625 C 2.578125 1.65625 2.578125 2.046875 3.15625 2.5 C 3.625 2.859375 4.40625 2.984375 4.875 2.984375 C 5.015625 2.984375 5.109375 2.984375 5.109375 2.859375 C 5.109375 2.734375 5.03125 2.734375 4.90625 2.71875 C 4.15625 2.671875 3.578125 2.296875 3.421875 1.6875 C 3.375 1.578125 3.375 1.546875 3.375 1.125 L 3.375 -1.390625 C 3.375 -1.9375 3.28125 -2.140625 2.90625 -2.515625 C 2.65625 -2.765625 2.3125 -2.890625 1.96875 -2.984375 C 2.953125 -3.265625 3.375 -3.8125 3.375 -4.5 Z M 3.375 -7.375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-5"> <path d="M 2.578125 1.40625 C 2.578125 1.875 2.265625 2.640625 0.96875 2.71875 C 0.90625 2.734375 0.859375 2.78125 0.859375 2.859375 C 0.859375 2.984375 0.984375 2.984375 1.09375 2.984375 C 2.265625 2.984375 3.375 2.40625 3.375 1.5 L 3.375 -1.234375 C 3.375 -1.703125 3.375 -2.078125 3.859375 -2.46875 C 4.28125 -2.828125 4.734375 -2.84375 5 -2.859375 C 5.0625 -2.875 5.109375 -2.921875 5.109375 -2.984375 C 5.109375 -3.109375 5.03125 -3.109375 4.90625 -3.125 C 4.125 -3.171875 3.546875 -3.59375 3.421875 -4.1875 C 3.375 -4.3125 3.375 -4.34375 3.375 -4.765625 L 3.375 -7.140625 C 3.375 -7.640625 3.375 -8.015625 2.8125 -8.46875 C 2.328125 -8.84375 1.5 -8.96875 1.09375 -8.96875 C 0.984375 -8.96875 0.859375 -8.96875 0.859375 -8.828125 C 0.859375 -8.71875 0.9375 -8.71875 1.046875 -8.703125 C 1.8125 -8.65625 2.390625 -8.265625 2.546875 -7.65625 C 2.578125 -7.546875 2.578125 -7.53125 2.578125 -7.09375 L 2.578125 -4.59375 C 2.578125 -4.046875 2.671875 -3.84375 3.0625 -3.453125 C 3.3125 -3.203125 3.65625 -3.078125 4 -2.984375 C 3.015625 -2.71875 2.578125 -2.15625 2.578125 -1.46875 Z M 2.578125 1.40625 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-1"> <path d="M 2.984375 -0.875 C 2.953125 -0.71875 2.578125 -0.140625 2.046875 -0.140625 C 1.65625 -0.140625 1.515625 -0.4375 1.515625 -0.78125 C 1.515625 -1.265625 1.796875 -1.96875 1.96875 -2.421875 C 2.046875 -2.625 2.078125 -2.6875 2.078125 -2.84375 C 2.078125 -3.28125 1.71875 -3.515625 1.359375 -3.515625 C 0.5625 -3.515625 0.234375 -2.390625 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.234375 0.5 -2.3125 C 0.703125 -3.03125 1.046875 -3.296875 1.328125 -3.296875 C 1.453125 -3.296875 1.515625 -3.21875 1.515625 -3.03125 C 1.515625 -2.84375 1.453125 -2.65625 1.34375 -2.375 C 1.015625 -1.53125 0.9375 -1.1875 0.9375 -0.90625 C 0.9375 -0.125 1.53125 0.078125 2 0.078125 C 2.59375 0.078125 2.96875 -0.390625 3 -0.4375 C 3.125 -0.0625 3.484375 0.078125 3.765625 0.078125 C 4.140625 0.078125 4.328125 -0.234375 4.375 -0.359375 C 4.546875 -0.640625 4.65625 -1.109375 4.65625 -1.140625 C 4.65625 -1.1875 4.625 -1.25 4.53125 -1.25 C 4.4375 -1.25 4.421875 -1.203125 4.359375 -1 C 4.265625 -0.59375 4.125 -0.140625 3.796875 -0.140625 C 3.609375 -0.140625 3.53125 -0.296875 3.53125 -0.515625 C 3.53125 -0.65625 3.609375 -0.921875 3.65625 -1.125 C 3.703125 -1.328125 3.828125 -1.796875 3.859375 -1.9375 L 4.015625 -2.546875 C 4.0625 -2.765625 4.15625 -3.140625 4.15625 -3.1875 C 4.15625 -3.390625 4 -3.4375 3.90625 -3.4375 C 3.796875 -3.4375 3.625 -3.359375 3.5625 -3.171875 Z M 2.984375 -0.875 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-2"> <path d="M 3.953125 -2.90625 C 3.953125 -3.515625 3.609375 -3.515625 3.5625 -3.515625 C 3.375 -3.515625 3.15625 -3.3125 3.15625 -3.109375 C 3.15625 -2.984375 3.21875 -2.921875 3.296875 -2.859375 C 3.46875 -2.703125 3.578125 -2.484375 3.578125 -2.21875 C 3.578125 -1.859375 3.0625 -0.140625 2.140625 -0.140625 C 1.796875 -0.140625 1.515625 -0.328125 1.515625 -0.828125 C 1.515625 -1.265625 1.765625 -1.890625 1.953125 -2.375 C 2.046875 -2.625 2.078125 -2.6875 2.078125 -2.84375 C 2.078125 -3.265625 1.71875 -3.515625 1.359375 -3.515625 C 0.5625 -3.515625 0.234375 -2.390625 0.234375 -2.296875 C 0.234375 -2.21875 0.296875 -2.1875 0.359375 -2.1875 C 0.46875 -2.1875 0.46875 -2.234375 0.5 -2.3125 C 0.703125 -3.015625 1.046875 -3.296875 1.328125 -3.296875 C 1.453125 -3.296875 1.515625 -3.21875 1.515625 -3.03125 C 1.515625 -2.84375 1.453125 -2.65625 1.375 -2.46875 C 0.984375 -1.453125 0.953125 -1.1875 0.953125 -0.953125 C 0.953125 -0.078125 1.65625 0.078125 2.109375 0.078125 C 3.4375 0.078125 3.953125 -2.296875 3.953125 -2.90625 Z M 3.953125 -2.90625 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-3"> <path d="M 5.3125 -4.578125 C 5.40625 -4.96875 5.59375 -5.15625 6.15625 -5.171875 C 6.234375 -5.171875 6.296875 -5.234375 6.296875 -5.328125 C 6.296875 -5.375 6.265625 -5.4375 6.1875 -5.4375 C 6.140625 -5.4375 5.96875 -5.421875 5.390625 -5.421875 C 4.75 -5.421875 4.65625 -5.4375 4.578125 -5.4375 C 4.453125 -5.4375 4.4375 -5.359375 4.4375 -5.296875 C 4.4375 -5.1875 4.53125 -5.171875 4.609375 -5.171875 C 5.09375 -5.15625 5.09375 -4.953125 5.09375 -4.84375 C 5.09375 -4.796875 5.078125 -4.75 5.078125 -4.703125 C 5.0625 -4.640625 4.40625 -1.96875 4.359375 -1.875 C 4.078125 -0.71875 3.078125 -0.09375 2.28125 -0.09375 C 1.734375 -0.09375 1.25 -0.421875 1.25 -1.15625 C 1.25 -1.296875 1.265625 -1.5 1.296875 -1.640625 L 2.09375 -4.828125 C 2.171875 -5.109375 2.1875 -5.171875 2.765625 -5.171875 C 2.921875 -5.171875 3.015625 -5.171875 3.015625 -5.328125 C 3.015625 -5.34375 3.015625 -5.4375 2.890625 -5.4375 C 2.734375 -5.4375 2.546875 -5.421875 2.390625 -5.421875 L 1.890625 -5.421875 C 1.125 -5.421875 0.921875 -5.4375 0.859375 -5.4375 C 0.828125 -5.4375 0.703125 -5.4375 0.703125 -5.296875 C 0.703125 -5.171875 0.8125 -5.171875 0.9375 -5.171875 C 1.1875 -5.171875 1.421875 -5.171875 1.421875 -5.046875 C 1.421875 -5 1.359375 -4.71875 1.3125 -4.5625 L 1.125 -3.859375 L 0.71875 -2.171875 C 0.609375 -1.734375 0.578125 -1.609375 0.578125 -1.390625 C 0.578125 -0.46875 1.3125 0.171875 2.25 0.171875 C 3.34375 0.171875 4.359375 -0.75 4.609375 -1.78125 Z M 5.3125 -4.578125 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-4"> <path d="M 4.15625 -3.046875 C 4.546875 -3.4375 5.671875 -4.59375 5.859375 -4.75 C 6.203125 -5 6.40625 -5.140625 6.96875 -5.171875 C 7.015625 -5.1875 7.078125 -5.234375 7.078125 -5.328125 C 7.078125 -5.40625 7.015625 -5.4375 6.96875 -5.4375 C 6.890625 -5.4375 6.84375 -5.421875 6.21875 -5.421875 C 5.625 -5.421875 5.40625 -5.4375 5.375 -5.4375 C 5.34375 -5.4375 5.21875 -5.4375 5.21875 -5.296875 C 5.21875 -5.28125 5.21875 -5.1875 5.328125 -5.171875 C 5.390625 -5.171875 5.609375 -5.15625 5.609375 -4.96875 C 5.609375 -4.921875 5.5625 -4.828125 5.5 -4.765625 L 5.484375 -4.71875 C 5.453125 -4.703125 5.453125 -4.6875 5.375 -4.609375 L 4.046875 -3.265625 L 3.234375 -4.953125 C 3.34375 -5.140625 3.578125 -5.171875 3.6875 -5.171875 C 3.71875 -5.171875 3.828125 -5.1875 3.828125 -5.328125 C 3.828125 -5.390625 3.78125 -5.4375 3.703125 -5.4375 C 3.625 -5.4375 3.328125 -5.421875 3.25 -5.421875 C 3.203125 -5.421875 2.90625 -5.421875 2.734375 -5.421875 C 1.984375 -5.421875 1.890625 -5.4375 1.828125 -5.4375 C 1.796875 -5.4375 1.671875 -5.4375 1.671875 -5.296875 C 1.671875 -5.171875 1.765625 -5.171875 1.890625 -5.171875 C 2.296875 -5.171875 2.359375 -5.09375 2.4375 -4.953125 L 3.5 -2.71875 L 1.859375 -1.046875 C 1.390625 -0.578125 1.015625 -0.296875 0.453125 -0.265625 C 0.34375 -0.25 0.25 -0.25 0.25 -0.109375 C 0.25 -0.0625 0.296875 0 0.375 0 C 0.4375 0 0.515625 -0.03125 1.125 -0.03125 C 1.703125 -0.03125 1.9375 0 1.96875 0 C 2.015625 0 2.140625 0 2.140625 -0.15625 C 2.140625 -0.171875 2.125 -0.25 2.015625 -0.265625 C 1.859375 -0.265625 1.75 -0.328125 1.75 -0.46875 C 1.75 -0.59375 1.84375 -0.703125 1.953125 -0.828125 C 2.09375 -0.96875 2.515625 -1.390625 2.796875 -1.671875 C 2.984375 -1.84375 3.421875 -2.3125 3.609375 -2.484375 L 4.53125 -0.578125 C 4.5625 -0.5 4.5625 -0.5 4.5625 -0.484375 C 4.5625 -0.421875 4.40625 -0.28125 4.140625 -0.265625 C 4.078125 -0.265625 3.96875 -0.25 3.96875 -0.109375 C 3.96875 -0.109375 3.984375 0 4.109375 0 C 4.1875 0 4.484375 -0.015625 4.5625 -0.03125 L 5.078125 -0.03125 C 5.8125 -0.03125 5.921875 0 6 0 C 6.03125 0 6.140625 0 6.140625 -0.15625 C 6.140625 -0.265625 6.046875 -0.265625 5.921875 -0.265625 C 5.484375 -0.265625 5.4375 -0.359375 5.390625 -0.484375 Z M 4.15625 -3.046875 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-5"> <path d="M 5.34375 -4.5 C 5.734375 -5.09375 6.046875 -5.15625 6.359375 -5.171875 C 6.453125 -5.1875 6.484375 -5.265625 6.484375 -5.328125 C 6.484375 -5.359375 6.46875 -5.4375 6.359375 -5.4375 C 6.265625 -5.4375 6.296875 -5.421875 5.71875 -5.421875 C 5.21875 -5.421875 5 -5.4375 4.96875 -5.4375 C 4.921875 -5.4375 4.8125 -5.4375 4.8125 -5.296875 C 4.8125 -5.1875 4.90625 -5.171875 4.953125 -5.171875 C 5.15625 -5.15625 5.265625 -5.078125 5.265625 -4.9375 C 5.265625 -4.8125 5.203125 -4.703125 5.15625 -4.640625 L 2.5625 -0.71875 L 1.90625 -4.828125 C 1.890625 -4.890625 1.890625 -4.9375 1.890625 -4.953125 C 1.890625 -5.0625 2.015625 -5.171875 2.421875 -5.171875 C 2.515625 -5.171875 2.609375 -5.171875 2.609375 -5.328125 C 2.609375 -5.359375 2.59375 -5.4375 2.484375 -5.4375 C 2.421875 -5.4375 2.09375 -5.421875 2.03125 -5.421875 L 1.53125 -5.421875 C 0.8125 -5.421875 0.703125 -5.4375 0.640625 -5.4375 C 0.609375 -5.4375 0.484375 -5.4375 0.484375 -5.296875 C 0.484375 -5.171875 0.59375 -5.171875 0.703125 -5.171875 C 1.109375 -5.171875 1.125 -5.109375 1.15625 -4.90625 L 1.9375 -0.0625 C 1.953125 0.109375 1.96875 0.171875 2.125 0.171875 C 2.25 0.171875 2.296875 0.09375 2.359375 0.015625 Z M 5.34375 -4.5 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-6"> <path d="M 3.609375 -4.828125 C 3.671875 -5.109375 3.6875 -5.125 4.015625 -5.125 L 4.609375 -5.125 C 5.4375 -5.125 5.53125 -4.859375 5.53125 -4.46875 C 5.53125 -4.265625 5.484375 -3.921875 5.484375 -3.875 C 5.46875 -3.796875 5.453125 -3.71875 5.453125 -3.703125 C 5.453125 -3.609375 5.53125 -3.578125 5.578125 -3.578125 C 5.671875 -3.578125 5.703125 -3.625 5.71875 -3.78125 L 5.9375 -5.28125 C 5.9375 -5.390625 5.84375 -5.390625 5.703125 -5.390625 L 1 -5.390625 C 0.8125 -5.390625 0.78125 -5.390625 0.734375 -5.21875 L 0.25 -3.84375 C 0.234375 -3.796875 0.203125 -3.734375 0.203125 -3.6875 C 0.203125 -3.625 0.265625 -3.578125 0.328125 -3.578125 C 0.421875 -3.578125 0.4375 -3.625 0.484375 -3.75 C 0.9375 -5.03125 1.15625 -5.125 2.375 -5.125 L 2.6875 -5.125 C 2.921875 -5.125 2.9375 -5.109375 2.9375 -5.046875 C 2.9375 -5.03125 2.90625 -4.875 2.890625 -4.84375 L 1.84375 -0.65625 C 1.765625 -0.34375 1.75 -0.265625 0.921875 -0.265625 C 0.65625 -0.265625 0.578125 -0.265625 0.578125 -0.109375 C 0.578125 -0.109375 0.578125 0 0.71875 0 C 0.9375 0 1.484375 -0.03125 1.703125 -0.03125 L 2.375 -0.03125 C 2.59375 -0.03125 3.15625 0 3.375 0 C 3.4375 0 3.5625 0 3.5625 -0.15625 C 3.5625 -0.265625 3.46875 -0.265625 3.265625 -0.265625 C 3.0625 -0.265625 3 -0.265625 2.796875 -0.28125 C 2.546875 -0.296875 2.515625 -0.328125 2.515625 -0.4375 C 2.515625 -0.46875 2.515625 -0.5 2.546875 -0.578125 Z M 3.609375 -4.828125 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-5-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-5-1"> <path d="M 5.671875 -4.859375 L 4.546875 -7.46875 C 4.703125 -7.75 5.0625 -7.8125 5.21875 -7.8125 C 5.28125 -7.8125 5.421875 -7.828125 5.421875 -8.03125 C 5.421875 -8.15625 5.3125 -8.15625 5.234375 -8.15625 C 5.03125 -8.15625 4.796875 -8.140625 4.59375 -8.140625 L 3.890625 -8.140625 C 3.171875 -8.140625 2.640625 -8.15625 2.625 -8.15625 C 2.53125 -8.15625 2.421875 -8.15625 2.421875 -7.9375 C 2.421875 -7.8125 2.515625 -7.8125 2.671875 -7.8125 C 3.375 -7.8125 3.421875 -7.703125 3.53125 -7.40625 L 4.953125 -4.09375 L 2.359375 -1.3125 C 1.9375 -0.84375 1.421875 -0.390625 0.53125 -0.34375 C 0.390625 -0.328125 0.296875 -0.328125 0.296875 -0.125 C 0.296875 -0.078125 0.3125 0 0.4375 0 C 0.609375 0 0.78125 -0.03125 0.953125 -0.03125 L 1.515625 -0.03125 C 1.90625 -0.03125 2.3125 0 2.6875 0 C 2.765625 0 2.921875 0 2.921875 -0.21875 C 2.921875 -0.328125 2.828125 -0.34375 2.765625 -0.34375 C 2.515625 -0.375 2.359375 -0.5 2.359375 -0.6875 C 2.359375 -0.890625 2.515625 -1.046875 2.859375 -1.40625 L 3.921875 -2.5625 C 4.1875 -2.828125 4.8125 -3.53125 5.078125 -3.796875 L 6.328125 -0.84375 C 6.34375 -0.828125 6.390625 -0.703125 6.390625 -0.6875 C 6.390625 -0.578125 6.125 -0.375 5.75 -0.34375 C 5.671875 -0.34375 5.546875 -0.328125 5.546875 -0.125 C 5.546875 0 5.671875 0 5.71875 0 C 5.921875 0 6.171875 -0.03125 6.375 -0.03125 L 7.6875 -0.03125 C 7.90625 -0.03125 8.125 0 8.328125 0 C 8.421875 0 8.546875 0 8.546875 -0.234375 C 8.546875 -0.34375 8.421875 -0.34375 8.3125 -0.34375 C 7.609375 -0.359375 7.578125 -0.421875 7.375 -0.859375 L 5.796875 -4.5625 L 7.3125 -6.1875 C 7.4375 -6.3125 7.703125 -6.609375 7.8125 -6.734375 C 8.328125 -7.265625 8.8125 -7.75 9.78125 -7.8125 C 9.890625 -7.828125 10.015625 -7.828125 10.015625 -8.03125 C 10.015625 -8.15625 9.90625 -8.15625 9.859375 -8.15625 C 9.6875 -8.15625 9.515625 -8.140625 9.34375 -8.140625 L 8.796875 -8.140625 C 8.421875 -8.140625 8 -8.15625 7.625 -8.15625 C 7.546875 -8.15625 7.40625 -8.15625 7.40625 -7.953125 C 7.40625 -7.828125 7.484375 -7.8125 7.546875 -7.8125 C 7.75 -7.796875 7.953125 -7.703125 7.953125 -7.46875 L 7.9375 -7.453125 C 7.921875 -7.359375 7.90625 -7.25 7.765625 -7.09375 Z M 5.671875 -4.859375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-1"> <path d="M 5.828125 -2.65625 C 5.9375 -2.65625 6.109375 -2.65625 6.109375 -2.84375 C 6.109375 -3.015625 5.90625 -3.015625 5.796875 -3.015625 L 0.78125 -3.015625 C 0.65625 -3.015625 0.46875 -3.015625 0.46875 -2.84375 C 0.46875 -2.65625 0.625 -2.65625 0.75 -2.65625 Z M 5.796875 -0.96875 C 5.90625 -0.96875 6.109375 -0.96875 6.109375 -1.140625 C 6.109375 -1.328125 5.9375 -1.328125 5.828125 -1.328125 L 0.75 -1.328125 C 0.625 -1.328125 0.46875 -1.328125 0.46875 -1.140625 C 0.46875 -0.96875 0.65625 -0.96875 0.78125 -0.96875 Z M 5.796875 -0.96875 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-2"> <path d="M 2.65625 1.984375 C 2.71875 1.984375 2.8125 1.984375 2.8125 1.890625 C 2.8125 1.859375 2.8125 1.859375 2.703125 1.75 C 1.609375 0.71875 1.34375 -0.75 1.34375 -1.984375 C 1.34375 -4.28125 2.28125 -5.359375 2.6875 -5.734375 C 2.8125 -5.828125 2.8125 -5.84375 2.8125 -5.875 C 2.8125 -5.921875 2.78125 -5.96875 2.703125 -5.96875 C 2.578125 -5.96875 2.171875 -5.5625 2.109375 -5.5 C 1.046875 -4.375 0.828125 -2.953125 0.828125 -1.984375 C 0.828125 -0.203125 1.5625 1.234375 2.65625 1.984375 Z M 2.65625 1.984375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-3"> <path d="M 2.46875 -1.984375 C 2.46875 -2.75 2.328125 -3.65625 1.84375 -4.59375 C 1.453125 -5.328125 0.71875 -5.96875 0.578125 -5.96875 C 0.5 -5.96875 0.484375 -5.921875 0.484375 -5.875 C 0.484375 -5.84375 0.484375 -5.828125 0.578125 -5.734375 C 1.6875 -4.671875 1.9375 -3.21875 1.9375 -1.984375 C 1.9375 0.296875 1 1.375 0.59375 1.75 C 0.484375 1.84375 0.484375 1.859375 0.484375 1.890625 C 0.484375 1.9375 0.5 1.984375 0.578125 1.984375 C 0.703125 1.984375 1.109375 1.578125 1.171875 1.515625 C 2.234375 0.390625 2.46875 -1.03125 2.46875 -1.984375 Z M 2.46875 -1.984375 "></path> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-7-0"> </g> <g id="ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-7-1"> <path d="M 3.375 -0.984375 L 3.375 -1.21875 L 2.671875 -1.21875 L 2.671875 -3.859375 C 2.671875 -4 2.671875 -4.046875 2.53125 -4.046875 C 2.421875 -4.046875 2.40625 -4.015625 2.359375 -3.953125 L 0.28125 -1.21875 L 0.28125 -0.984375 L 2.140625 -0.984375 L 2.140625 -0.5 C 2.140625 -0.3125 2.140625 -0.234375 1.640625 -0.234375 L 1.453125 -0.234375 L 1.453125 0 C 1.578125 0 2.140625 -0.03125 2.40625 -0.03125 C 2.671875 -0.03125 3.234375 0 3.34375 0 L 3.34375 -0.234375 L 3.171875 -0.234375 C 2.671875 -0.234375 2.671875 -0.3125 2.671875 -0.5 L 2.671875 -0.984375 Z M 2.171875 -3.390625 L 2.171875 -1.21875 L 0.53125 -1.21875 Z M 2.171875 -3.390625 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-0-1" x="5.826" y="30.942"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-1" x="68.621" y="38.115"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-1" x="72.855" y="39.111"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-1" x="80.846" y="30.942"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.000375 -0.001125 L 44.902719 -0.001125 " transform="matrix(1, 0, 0, -1, 65.234, 19.452)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00059375 -0.00109375 L 0.00059375 24.041875 " transform="matrix(1, 0, 0, -1, 65.433, 43.495)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0005 -0.00109375 L 0.0005 24.041875 " transform="matrix(1, 0, 0, -1, 109.937, 43.495)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.000375 -0.00109375 L 44.902719 -0.00109375 " transform="matrix(1, 0, 0, -1, 65.234, 43.495)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00065625 -0.00140625 L 119.422531 -0.00140625 " transform="matrix(1, 0, 0, -1, 61.847, 16.065)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.000875 -0.0008125 L 0.000875 30.8195 " transform="matrix(1, 0, 0, -1, 62.046, 46.882)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0013125 -0.0008125 L 0.0013125 30.8195 " transform="matrix(1, 0, 0, -1, 181.069, 46.882)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00065625 -0.0008125 L 119.422531 -0.0008125 " transform="matrix(1, 0, 0, -1, 61.847, 46.882)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-2" x="87.82" y="24.433"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-1" x="93.798" y="26.226"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00059375 -0.00159375 L 18.152937 -0.00159375 " transform="matrix(1, 0, 0, -1, 84.433, 15.932)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0008125 0.0009375 L 0.0008125 13.481406 " transform="matrix(1, 0, 0, -1, 84.632, 29.415)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00028125 0.0009375 L -0.00028125 13.481406 " transform="matrix(1, 0, 0, -1, 102.387, 29.415)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00059375 -0.0000625 L 18.152937 -0.0000625 " transform="matrix(1, 0, 0, -1, 84.433, 29.414)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-3" x="105.907" y="30.942"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-1" x="121.183" y="38.115"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-2" x="125.417" y="39.455"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-1" x="135.684" y="30.942"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-2" x="157.735" y="24.433"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-2" x="163.713" y="26.226"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00034375 -0.00159375 L 17.659812 -0.00159375 " transform="matrix(1, 0, 0, -1, 154.348, 15.932)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.000125 0.0009375 L -0.000125 13.481406 " transform="matrix(1, 0, 0, -1, 154.547, 29.415)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00059375 0.0009375 L 0.00059375 13.481406 " transform="matrix(1, 0, 0, -1, 171.808, 29.415)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00034375 -0.0000625 L 17.659812 -0.0000625 " transform="matrix(1, 0, 0, -1, 154.348, 29.414)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-3" x="170.015" y="30.942"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-1" x="185.291" y="38.115"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-3" x="189.525" y="39.111"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0009375 0.00134375 L 46.450156 0.00134375 " transform="matrix(1, 0, 0, -1, 150.96, 11.349)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00015625 0.00075 L 0.00015625 33.309344 " transform="matrix(1, 0, 0, -1, 151.16, 44.657)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0009375 0.00075 L 0.0009375 33.309344 " transform="matrix(1, 0, 0, -1, 197.21, 44.657)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0009375 0.00075 L 46.450156 0.00075 " transform="matrix(1, 0, 0, -1, 150.96, 44.657)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.000875 0.0010625 L 95.840719 0.0010625 " transform="matrix(1, 0, 0, -1, 81.046, 7.962)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00109375 -0.001875 L 0.00109375 40.084063 " transform="matrix(1, 0, 0, -1, 81.245, 48.045)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0005 -0.001875 L -0.0005 40.084063 " transform="matrix(1, 0, 0, -1, 176.688, 48.045)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.000875 -0.001875 L 95.840719 -0.001875 " transform="matrix(1, 0, 0, -1, 81.046, 48.045)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00115625 -0.00021875 L 120.548031 -0.00021875 " transform="matrix(1, 0, 0, -1, 77.659, 4.574)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.001375 -0.00159375 L 0.001375 46.857781 " transform="matrix(1, 0, 0, -1, 77.858, 51.432)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.0008125 -0.00159375 L 0.0008125 46.857781 " transform="matrix(1, 0, 0, -1, 198.007, 51.432)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00115625 -0.00159375 L 120.548031 -0.00159375 " transform="matrix(1, 0, 0, -1, 77.659, 51.432)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-5-1" x="5.147" y="110.643"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-4" x="72.801" y="110.643"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-1" x="82.166" y="117.816"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-1" x="86.4" y="118.813"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-1" x="91.07" y="110.643"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00065625 0.00065625 L 89.401687 0.00065625 " transform="matrix(1, 0, 0, -1, 78.778, 99.153)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.0014375 0.0006875 L -0.0014375 24.043656 " transform="matrix(1, 0, 0, -1, 78.978, 123.196)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00053125 0.0006875 L -0.00053125 24.043656 " transform="matrix(1, 0, 0, -1, 167.981, 123.196)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00065625 0.0006875 L 89.401687 0.0006875 " transform="matrix(1, 0, 0, -1, 78.778, 123.196)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-2" x="113.187" y="104.134"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-3" x="119.165" y="105.928"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-1" x="125.742" y="105.928"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-4" x="132.329" y="105.928"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-1" x="139.916" y="105.928"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-5" x="146.502" y="105.928"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00078125 0.0001875 L 47.403125 0.0001875 " transform="matrix(1, 0, 0, -1, 109.8, 95.633)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.001 -0.0011875 L 0.001 13.483187 " transform="matrix(1, 0, 0, -1, 109.999, 109.116)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00190625 -0.0011875 L 0.00190625 13.483187 " transform="matrix(1, 0, 0, -1, 157.002, 109.116)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00078125 -0.0011875 L 47.403125 -0.0011875 " transform="matrix(1, 0, 0, -1, 109.8, 109.116)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-3" x="157.201" y="110.643"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-1" x="169.156" y="117.816"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-2-3" x="173.391" y="118.813"></use> </g> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00184375 -0.00078125 L 74.861437 -0.00078125 " transform="matrix(1, 0, 0, -1, 106.412, 91.05)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 0.00128125 -0.001375 L 0.00128125 33.307219 " transform="matrix(1, 0, 0, -1, 106.612, 124.358)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00178125 -0.001375 L -0.00178125 33.307219 " transform="matrix(1, 0, 0, -1, 181.076, 124.358)"></path> <path fill="none" stroke-width="0.398" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -0.00184375 -0.001375 L 74.861437 -0.001375 " transform="matrix(1, 0, 0, -1, 106.412, 124.358)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-3-5" x="181.275" y="110.643"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -91.204344 27.973812 L -91.204344 -32.955875 " transform="matrix(1, 0, 0, -1, 101.677, 64.466)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488395 2.86997 C -2.031364 1.147314 -1.019645 0.334814 -0.00011375 -0.00112375 C -1.019645 -0.333155 -2.031364 -1.149561 -2.488395 -2.868311 " transform="matrix(0, 1, 1, 0, 10.47378, 97.66027)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-2" x="13.288" y="69.189"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-4-6" x="16.581" y="69.189"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-7-1" x="21.511" y="70.296"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-6-3" x="25.662" y="69.189"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -81.20825 36.512875 L -45.657469 36.512875 " transform="matrix(1, 0, 0, -1, 101.677, 64.466)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486962 2.870419 C -2.033837 1.147762 -1.018212 0.335262 0.00131875 -0.000675 C -1.018212 -0.336613 -2.033837 -1.149113 -2.486962 -2.867863 " transform="matrix(1, 0, 0, -1, 56.2604, 27.95245)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 28.350344 8.258969 L 28.350344 -21.330875 " transform="matrix(1, 0, 0, -1, 101.677, 64.466)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.486259 2.867541 C -2.033134 1.148791 -1.021415 0.336291 -0.00188375 0.00035375 C -1.021415 -0.335584 -2.033134 -1.148084 -2.486259 -2.87074 " transform="matrix(0, 1, 1, 0, 130.02699, 86.03704)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -80.528562 -43.19025 L -34.700437 -43.19025 " transform="matrix(1, 0, 0, -1, 101.677, 64.466)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488077 2.869424 C -2.031046 1.146767 -1.019327 0.334267 0.00020375 -0.00167 C -1.019327 -0.333701 -2.031046 -1.146201 -2.488077 -2.868858 " transform="matrix(1, 0, 0, -1, 67.21464, 107.65458)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-dasharray="3.34735 1.91277" stroke-miterlimit="10" d="M -80.528562 -36.080875 L -14.415281 7.99725 " transform="matrix(1, 0, 0, -1, 101.677, 64.466)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484075 2.869708 C -2.03231 1.145929 -1.0193 0.334405 0.00238742 0.000682961 C -1.020396 -0.33625 -2.032355 -1.149902 -2.488521 -2.869328 " transform="matrix(0.832, -0.55469, -0.55469, -0.832, 87.45933, 56.33783)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#ciWwWK3VtzzU8FkNssdLWNRGT8A=-glyph-1-2" x="46.886" y="75.564"></use> </g> </svg> <p></p> </div> </p> </div> <h3 id="reflection">Reflection</h3> <div class="num_prop" id="KolmogorovQuotient"> <h6 id="proposition">Proposition</h6> <p><strong>(Kolmogorov quotient)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(X,\tau)</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>. Consider the <a class="existingWikiWord" href="/nlab/show/relation">relation</a> on the underlying set by which <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mn>1</mn></msub><mo>∼</mo><msub><mi>x</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">x_1 \sim x_1</annotation></semantics></math> precisely if neither <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math> has an <a class="existingWikiWord" href="/nlab/show/open+neighbourhood">open neighbourhood</a> not containing the other. This is an <a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a>. The <a class="existingWikiWord" href="/nlab/show/quotient+topological+space">quotient topological space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><mi>X</mi><mo stretchy="false">/</mo><mo>∼</mo></mrow><annotation encoding="application/x-tex">X \to X/\sim</annotation></semantics></math> by this equivalence relation is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>0</mn></msub></mrow><annotation encoding="application/x-tex">T_0</annotation></semantics></math>-space.</p> <p>This construction is the reflector exhibiting Kolmogorov spaces as a <a class="existingWikiWord" href="/nlab/show/reflective+subcategory">reflective subcategory</a> of the <a class="existingWikiWord" href="/nlab/show/category">category</a> <a class="existingWikiWord" href="/nlab/show/Top">Top</a> of all topological spaces.</p> </div> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hausdorff+topological+space">Hausdorff topological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nice+topological+space">nice topological space</a></p> </li> </ul> <table><thead><tr><th><a class="existingWikiWord" href="/nlab/show/preorder">preorder</a></th><th><a class="existingWikiWord" href="/nlab/show/partial+order">partial order</a></th><th><a class="existingWikiWord" href="/nlab/show/equivalence+relation">equivalence relation</a></th><th><a class="existingWikiWord" href="/nlab/show/equality">equality</a></th></tr></thead><tbody><tr><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/Kolmogorov+topological+space">Kolmogorov topological space</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/symmetric+topological+space">symmetric topological space</a></td><td style="text-align: left;"><a class="existingWikiWord" href="/nlab/show/accessible+topological+space">accessible topological space</a></td></tr> </tbody></table> <h2 id="references">References</h2> <ul> <li>Wikipedia, <em><a href="https://en.wikipedia.org/wiki/Kolmogorov_space">Kolmogorov space</a></em></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on June 6, 2023 at 11:08:40. See the <a href="/nlab/history/Kolmogorov+topological+space" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/Kolmogorov+topological+space" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/14939/#Item_16">Discuss</a><span class="backintime"><a href="/nlab/revision/Kolmogorov+topological+space/16" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/Kolmogorov+topological+space" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/Kolmogorov+topological+space" accesskey="S" class="navlink" id="history" rel="nofollow">History (16 revisions)</a> <a href="/nlab/show/Kolmogorov+topological+space/cite" style="color: black">Cite</a> <a href="/nlab/print/Kolmogorov+topological+space" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/Kolmogorov+topological+space" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>