CINXE.COM

Search results for: plastic bottles

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plastic bottles</title> <meta name="description" content="Search results for: plastic bottles"> <meta name="keywords" content="plastic bottles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plastic bottles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plastic bottles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1070</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plastic bottles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1070</span> Recovery of Post-Consumer PET Bottles in a Composite Material Preparation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafenomananjara%20Tsinjo%20Nirina">Rafenomananjara Tsinjo Nirina</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoo%20Sekito"> Tomoo Sekito</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrianaivoravelona%20Jaconnet%20Oliva"> Andrianaivoravelona Jaconnet Oliva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PET%20recycling" title="PET recycling">PET recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20concrete" title=" polymer concrete"> polymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20building%20materials" title=" ecological building materials"> ecological building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20mitigation" title=" pollution mitigation"> pollution mitigation</a> </p> <a href="https://publications.waset.org/abstracts/109148/recovery-of-post-consumer-pet-bottles-in-a-composite-material-preparation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1069</span> Valorisation of Polyethylene and Plastic Bottle Wastes as Pavement Blocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babagana%20Mohammed">Babagana Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fidelis%20Patrick%20Afangide"> Fidelis Patrick Afangide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated the possibility of using waste low-dense polyethylene and waste plastic bottles for the production of interlock pavement blocks. In many parts of the world, interlock pavement block is used widely as modern day solution to outdoor flooring applications and the blocks have different shapes, sizes and colours suiting the imagination of landscape architects. Using suitable and conventional mould having a 220 x 135 x 50 mm³ shape, the interlock blocks were produced. The material constituents of the produced blocks were waste low-dense polyethylene and waste plastic bottles mixed in varying, respective percentage-weight proportions of; 100%+0%, 75%+25%, 50%+50% and 25%+75%. The blocks were then tested for unconfined compressive strength and water absorption properties. The test results compared well with those of conventional concrete interlock blocks and the research demonstrates the possibility of value recovery from the waste streams which are currently dumped in open-spaces thereby affecting the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pavement%20blocks" title="pavement blocks">pavement blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20bottle" title=" plastic bottle"> plastic bottle</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes" title=" wastes"> wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/79947/valorisation-of-polyethylene-and-plastic-bottle-wastes-as-pavement-blocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1068</span> Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ploysook">N. Ploysook</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rugsaj"> R. Rugsaj</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Suvanjumrat"> C. Suvanjumrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=bottle" title=" bottle"> bottle</a>, <a href="https://publications.waset.org/abstracts/search?q=die%20shaping" title=" die shaping"> die shaping</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/16970/suitable-die-shaping-for-a-rectangular-shape-bottle-by-application-of-fem-and-ai-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1067</span> Behavior of Pet Packaging on Quality Characteristics of an Algerian Virgin Olive Oil Under Various Conditions of Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamitri-Guerfi%20Fatiha">Hamitri-Guerfi Fatiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekimene%20Lekhder"> Mekimene Lekhder</a>, <a href="https://publications.waset.org/abstracts/search?q=Madani%20Khodir"> Madani Khodir</a>, <a href="https://publications.waset.org/abstracts/search?q=Youyou%20Ahcene"> Youyou Ahcene </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Virgin olive oil is appreciated by consumers, the quality of the oil is regulated by the international olive oil council depends on its chemical composition, so, the correct packing conditions are a prerequisite to preserve oil color, flavor, and nutriments, from production to consumption. The contact of food with various materials of packaging, since the production, until their consumption constitutes one of the essential aspects of food safety (directive 76/833/CEE). In Algeria, plastic bottles, although, they are economic and light are largely used at packaging olive oil but not used in other countries. This is due to migration phenomena that can occur from these materials. Thus, the goal of this work is to examine the physicochemical behavior of the couple packaging plastic-oil during their exposure to three temperatures corresponding to the conditions of storage applied in Algeria. Like, it is difficult to compare blowers of bottles which are heavy engineering, it comes out from this study that the effect of heat, the absorption of water, the constraints of storage of acidity, as well as the composition of oil, the PET bottles showed a remarkable structural instability, this defect of quality was confirmed by the analysis of morphology by electronic scan microscopy. These bottles present a total migration significantly higher than the threshold of acceptance. Moreover, a metal contamination of oil by its packaging was confirmed by the spectroscopy of atomic absorption and a microanalysis. The differences observed between the results of the microanalysis applied and the mechanical characterizations of the various bottles are reported, showing the reality of the container-contents exchanges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interaction" title="interaction">interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=pet" title=" pet"> pet</a>, <a href="https://publications.waset.org/abstracts/search?q=virgin%20olive%20oil" title=" virgin olive oil"> virgin olive oil</a> </p> <a href="https://publications.waset.org/abstracts/34480/behavior-of-pet-packaging-on-quality-characteristics-of-an-algerian-virgin-olive-oil-under-various-conditions-of-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Meftahi">Maryam Meftahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Hamidzadeh"> Yashar Hamidzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silty%20soil" title="silty soil">silty soil</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/108863/influence-of-plastic-waste-reinforcement-on-compaction-and-consolidation-behavior-of-silty-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Possible Number of Dwelling Units Using Waste Plastic Bottle for Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dibya%20Jivan%20Pati">Dibya Jivan Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuhisa%20Iki"> Kazuhisa Iki</a>, <a href="https://publications.waset.org/abstracts/search?q=Riken%20Homma"> Riken Homma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unlike other metro cities of India, Bhubaneswar&ndash;the capital city of Odisha, is expected to reach 1-million-mark population by now. The demands of dwelling unit requirement mostly among urban poor belonging to Economically Weaker section (EWS) and Low Income groups (LIG) is becoming a challenge due to high housing cost and rents. As a matter of fact, it&rsquo;s also noted that, with increase in population, the solid waste generation also increases subsequently affecting the environment due to inefficiency in collection of waste by local government bodies. Methods of utilizing Solid Waste - especially in form of Plastic bottles, Glass bottles and Metal cans (PGM) are now widely used as an alternative material for construction of low-cost building by Non-Government Organizations (NGOs) in developing countries like India to help the urban poor afford a shelter. The application of disposed plastic bottle used in construction of single dwelling significantly reduces the overall cost of construction to as much as 14% compared to traditional construction material. Therefore, considering its cost-benefit result, it&rsquo;s possible to provide housing to EWS and LIGs at an affordable price. In this paper, we estimated the quantity of plastic bottles generated in Bhubaneswar which further helped to estimate the possible number of single dwelling unit that can be constructed on yearly basis so as to refrain from further housing shortage. The estimation results will be practically used for planning and managing low-cost housing business by local government and NGOs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=dwelling%20unit" title=" dwelling unit"> dwelling unit</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20bottle" title=" plastic bottle"> plastic bottle</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20generation" title=" solid waste generation"> solid waste generation</a>, <a href="https://publications.waset.org/abstracts/search?q=groups" title=" groups"> groups</a> </p> <a href="https://publications.waset.org/abstracts/30508/possible-number-of-dwelling-units-using-waste-plastic-bottle-for-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1064</span> AI-based Optimization Model for Plastics Biodegradable Substitutes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Almahmoud">Zaid Almahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Mahmoud"> Rana Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To mitigate the environmental impacts of throwing away plastic waste, there has been a recent interest in manufacturing and producing biodegradable plastics. Here, we study a new class of biodegradable plastics which are mixed with external natural additives, including catalytic additives that lead to a successful degradation of the resulting material. To recommend the best alternative among multiple materials, we propose a multi-objective AI model that evaluates the material against multiple objectives given the material properties. As a proof of concept, the AI model was implemented in an expert system and evaluated using multiple materials. Our findings showed that Polyethylene Terephalate is potentially the best biodegradable plastic substitute based on its material properties. Therefore, it is recommended that governments shift the attention to the use of Polyethylene Terephalate in the manufacturing of bottles to gain a great environmental and sustainable benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20bottles" title="plastic bottles">plastic bottles</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20model" title=" multi-objective model"> multi-objective model</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20substitutes" title=" biodegradable substitutes"> biodegradable substitutes</a> </p> <a href="https://publications.waset.org/abstracts/158655/ai-based-optimization-model-for-plastics-biodegradable-substitutes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1063</span> Joint Modeling of Bottle Use, Daily Milk Intake from Bottles, and Daily Energy Intake in Toddlers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yungtai%20Lo">Yungtai Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study follows an educational intervention on bottle-weaning to simultaneously evaluate the effect of the bottle-weaning intervention on reducing bottle use, daily milk intake from bottles, and daily energy intake in toddlers aged 11 to 13 months. A shared parameter model and a random effects model are used to jointly model bottle use, daily milk intake from bottles, and daily energy intake. We show in the two joint models that the bottle-weaning intervention promotes bottleweaning, and reduces daily milk intake from bottles in toddlers not off bottles and daily energy intake. We also show that the odds of drinking from a bottle were positively associated with the amount of milk intake from bottles and increased daily milk intake from bottles was associated with increased daily energy intake. The effect of bottle use on daily energy intake is through its effect on increasing daily milk intake from bottles that in turn increases daily energy intake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-part%20model" title="two-part model">two-part model</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-continuous%20variable" title=" semi-continuous variable"> semi-continuous variable</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20model" title=" joint model"> joint model</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20regression" title=" gamma regression"> gamma regression</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20parameter%20model" title=" shared parameter model"> shared parameter model</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20effects%20model" title=" random effects model"> random effects model</a> </p> <a href="https://publications.waset.org/abstracts/46749/joint-modeling-of-bottle-use-daily-milk-intake-from-bottles-and-daily-energy-intake-in-toddlers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1062</span> Polyethylene Terephthalate Plastic Degradation by Fungus Rasamsonia Emersonii</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Kumar">Naveen Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microplastics, tiny plastic particles less than 5 mm in size formed by the disposal and breakdown of industrial and consumer products, have become a primary environmental concern due to their ubiquitous presence and application in the environment and their potential to cause harm to the ecosystem, wildlife and human health. In this, we study the ability of the fungus Rasamsonia emersonii IMI 393752 to degrade the rigid microplastics of Coke bottles. Microplastics were extracted from Coke bottles and incubated with Rasamsonia emersonii in Sabouraud dextrose agar media. Microplastics were pre-sterilized without altering the chemistry of microplastic. Preliminary analysis was performed by observing radial growth assessment of microplastic-containing media enriched with fungi vs. control. The assay confirmed no impedance or change in the fungi's growth pattern and rate by introducing microplastics. The degradation of the microplastics was monitored over time using microscopy and FTIR, and biodegradation/deterioration on the plastic surface was observed. Furthermore, the liquid assay was performed. HPLC and GCMS will be conducted to check the biodegradation and presence of enzyme release by fungi to counteract the presence of microplastics. These findings have important implications for managing plastic waste, as they suggest that fungi such as Rasamsonia emersonii can potentially degrade microplastics safely and effectively. However, further research to optimise the conditions for microplastic degradation by Rasamsonia emersonii and to develop strategies for scaling up the process for industrial applications will be beneficial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=mycoremediation" title=" mycoremediation"> mycoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20degradtion" title=" plastic degradtion"> plastic degradtion</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20terephthalate" title=" polyethylene terephthalate"> polyethylene terephthalate</a> </p> <a href="https://publications.waset.org/abstracts/167061/polyethylene-terephthalate-plastic-degradation-by-fungus-rasamsonia-emersonii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1061</span> Gap between Knowledge and Behaviour in Recycling Domestic Solid Waste: Evidence from Manipal, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vidya%20Pratap">Vidya Pratap</a>, <a href="https://publications.waset.org/abstracts/search?q=Seena%20Biju"> Seena Biju</a>, <a href="https://publications.waset.org/abstracts/search?q=Keshavdev%20A."> Keshavdev A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the educational town of Manipal (located in southern India) households dispose their wastes without segregation. Mixed wastes (organic, inorganic and hazardous items) are collected either by private collectors or by the local municipal body in trucks and taken to dump yards. These collectors select certain recyclables from the collected trash and sell them to scrap merchants to earn some extra money. Rag pickers play a major role in picking up card board boxes, glass bottles and milk sachets from dump yards and public areas and scrap iron from construction sites for recycling. In keeping with the Indian Prime Minister’s mission of Swachh Bharat (A Clean India), the local municipal administration is taking efforts to ensure segregation of domestic waste at source. With this in mind, each household in a residential area in Manipal was given two buckets – for wet and dry wastes (wet waste referred to organic waste while dry waste included recyclable and hazardous items). A study was conducted in this locality covering a cluster of 145 households to assess the residents’ knowledge of recyclable, organic and hazardous items commonly disposed by households. Another objective of this research was to evaluate the extent to which the residents actually dispose their wastes appropriately. Questionnaires were self-administered to a member of each household with the assistance of individuals speaking the local language whenever needed. Respondents’ knowledge of whether an item was organic, inorganic or hazardous was captured through a questionnaire containing a list of 50 common items. Their behaviour was captured by asking how they disposed these items. Results show that more than 70% of respondents are aware that banana and orange peels, potato skin, egg shells and dried leaves are organic; similarly, more than 70% of them consider newspapers, notebook and printed paper are recyclable. Less than 65% of respondents are aware that plastic bags and covers and plastic bottles are recyclable. However, the results of the respondents’ recycling behaviour is less impressive. Fewer than 35% of respondents recycle card board boxes, milk sachets and glass bottles. Unfortunately, since plastic items like plastic bags and covers and plastic bottles are not accepted by scrap merchants, they are not recycled. This study shows that the local municipal authorities must find ways to recycle plastic into products, alternate fuel etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour" title="behaviour">behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge" title=" knowledge"> knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste%20management" title=" plastic waste management"> plastic waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=recyclables" title=" recyclables"> recyclables</a> </p> <a href="https://publications.waset.org/abstracts/74169/gap-between-knowledge-and-behaviour-in-recycling-domestic-solid-waste-evidence-from-manipal-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1060</span> Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ludmilla%20Wikkeling-Scott">Ludmilla Wikkeling-Scott</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Karim"> Amira Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20foot%20print" title="ecological foot print">ecological foot print</a>, <a href="https://publications.waset.org/abstracts/search?q=emirati%20students" title=" emirati students"> emirati students</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20bottle%20consumption" title=" plastic bottle consumption"> plastic bottle consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20campus" title=" sustainable campus"> sustainable campus</a> </p> <a href="https://publications.waset.org/abstracts/72272/assessing-water-bottle-consumption-on-college-campus-in-abu-dhabi-towards-a-sustainable-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1059</span> Processing Studies and Challenges Faced in Development of High-Pressure Titanium Alloy Cryogenic Gas Bottles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Pant">Bhanu Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20H.%20Upadhyay"> Sanjay H. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequently, the upper stage of high-performance launch vehicles utilizes cryogenic tank-submerged pressurization gas bottles with high volume-to-weight efficiency to achieve a direct gain in the satellite payload. Titanium alloys, owing to their high specific strength coupled with excellent compatibility with various fluids, are the materials of choice for these applications. Amongst the Titanium alloys, there are two alloys suitable for cryogenic applications, namely Ti6Al4V-ELI and Ti5Al2.5Sn-ELI. The two-phase alpha-beta alloy Ti6Al4V-ELI is usable up to LOX temperature of 90K, while the single-phase alpha alloy Ti5Al2.5Sn-ELI can be used down to LHe temperature of 4 K. The high-pressure gas bottles submerged in the LH2 (20K) can store more amount of gas in as compared to those submerged in LOX (90K) bottles the same volume. Thus, the use of these alpha alloy gas bottles stored at 20K gives a distinct advantage with respect to the need for a lesser number of gas bottles to store the same amount of high-pressure gas, which in turn leads to a one-to-one advantage in the payload in the satellite. The cost advantage to the tune of 15000$/ kg of weight is saved in the upper stages, and, thereby, the satellite payload gain is expected by this change. However, the processing of alpha Ti5Al2.5Sn-ELI alloy gas bottles poses challenges due to the lower forgeability of the alloy and mode of qualification for the critical severe application environment. The present paper describes the processing and challenges/ solutions during the development of these advanced gas bottles for LH2 (20K) applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20gas%20bottles" title=" cryogenic gas bottles"> cryogenic gas bottles</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20titanium%20alloy" title=" alpha titanium alloy"> alpha titanium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha-beta%20titanium%20alloy" title=" alpha-beta titanium alloy"> alpha-beta titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/185204/processing-studies-and-challenges-faced-in-development-of-high-pressure-titanium-alloy-cryogenic-gas-bottles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1058</span> Reducing Environmental Impact of Olive Oil Production in Sakaka City Using Combined Chemical, Physical, and Biological Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alhajoj">Abdullah Alhajoj</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassam%20Alowaiesh"> Bassam Alowaiesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to reduce the risks of discharging olive mill waste directly to the environment without treatment in Sakaka City, KSA. The organic loads expressed by chemical oxygen demand (COD) and biological oxygen demand (BOD) of the produced wastewater (OMWW) as well as the solid waste (OMW) were evaluated. The wastes emitted from the three-phase centrifuge decanters was found to be higher than that emitted from the two-phase centrifuge decanters. The olive mill wastewater (OMWW) was treated using advanced oxidation combined with filtration treatment. The results indicated that the concentration of COD, BOD, TSS, oil and grease and phenol was reduced by using complex sand filtration from 72150, 21660 10256, 36430, and 1470 mg/l to 980, 421, 58, 68, and 0.35 mg/l for three-phase OMWW and from 150562, 17955, 15325, 19658 and 2153 mg/l to 1050, 501, 29, 0.75, and 0.29 mg/l, respectively. While, by using modified trickling filter (packed with the neck of waste plastic bottles the concentration of the previously mentioned parameters was reduced to 1190, 570, 55, 0.85, and 0.3 mg/l, respectively. This work supports the application of such treatment technique for reducing the environmental threats of olive mill waste effluents in Saudi Arabia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-phase" title="two-phase">two-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=three-phase" title=" three-phase"> three-phase</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20mill" title=" olive mill"> olive mill</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20treatment" title=" waste treatment"> waste treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation" title=" advanced oxidation"> advanced oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic%20bottles" title=" waste plastic bottles"> waste plastic bottles</a> </p> <a href="https://publications.waset.org/abstracts/94956/reducing-environmental-impact-of-olive-oil-production-in-sakaka-city-using-combined-chemical-physical-and-biological-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1057</span> A Criterion for Evaluating Plastic Loads: Plastic Work-Tangent Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhang">Ying Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In ASME Boiler and Pressure Vessel Code, the plastic load is defined by applying the twice elastic slope (TES) criterion of plastic collapse to a characteristic load-deformation curve for the vessel. Several other plastic criterion such as tangent intersection (TI) criterion, plastic work (PW) criterion have been proposed in the literature, but all exhibit a practical limitation: difficult to define the load parameter for vessels subject to several combined loads. An alternative criterion: plastic work-tangent (PWT) criterion for evaluating plastic load in pressure vessel design by analysis is presented in this paper. According to the plastic work-load curve, when the tangent variation is less than a given value in the plastic phase, the corresponding load is the plastic load. Application of the proposed criterion is illustrated by considering the elastic-plastic response of the lower head of reactor pressure vessel (RPV) and nozzle intersection of (RPV). It is proposed that this is because the PWT criterion more fully represents the constraining effect of material strain hardening on the spread of plastic deformation and more efficiently ton evaluating the plastic load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20load" title="plastic load">plastic load</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20work" title=" plastic work"> plastic work</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20hardening" title=" strain hardening"> strain hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20work-tangent%20criterion" title=" plastic work-tangent criterion"> plastic work-tangent criterion</a> </p> <a href="https://publications.waset.org/abstracts/59204/a-criterion-for-evaluating-plastic-loads-plastic-work-tangent-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1056</span> Comparison of Bactec plus Blood Culture Media to BacT/Alert FAN plus Blood Culture Media for Identification of Bacterial Pathogens in Clinical Samples Containing Antibiotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recep%20Kesli">Recep Kesli</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Bilgin"> Huseyin Bilgin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ela%20Tasdogan"> Ela Tasdogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Kurtipek"> Ercan Kurtipek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The aim of this study was to compare resin based Bactec plus aerobic/anaerobic blood culture bottles (Becton Dickinson, MD, USA) and polymeric beads based BacT/Alert FA/FN plus blood culture bottles (bioMerieux, NC, USA) in terms of microorganisms recovery rates and time to detection (TTD) in the patients receiving antibiotic treatment. Method: Blood culture samples were taken from the patients who admitted to the intensive care unit and received antibiotic treatment. Forty milliliters of blood from patients were equally distributed into four types of bottles: Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus. Bactec Plus and BacT/Alert Plus media were compared to culture recovery rates and TTD. Results: Blood culture samples were collected from 382 patients hospitalized in the intensive care unit and 245 patients who were diagnosed as having bloodstream infections were included in the study. A total of 1528 Bactec Plus aerobic, Bactec Plus anaerobic, BacT/Alert FA Plus, BacT/Alert FN Plus blood culture bottles analyzed and 176, 144, 154, 126 bacteria or fungi were isolated, respectively. Gram-negative and gram-positive bacteria were significantly more frequently isolated in the resin-based Bactec Plus bottles than in the polymeric beads based BacT/Alert Plus bottles. The Bactec Plus and BacT/Alert Plus media recovery rates were similar for fungi and anaerobic bacteria. The mean TTDs in the Bactec Plus bottles were shorter than those in the BacT/Alert Plus bottles regardless of the microorganisms. Conclusion: The results of this study showed that resin-containing media is a reliable and time-saving tool for patients who are receiving antibiotic treatment due to sepsis in the intensive care unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bactec%20Plus" title="Bactec Plus">Bactec Plus</a>, <a href="https://publications.waset.org/abstracts/search?q=BacT%2FAlert%20Plus" title=" BacT/Alert Plus"> BacT/Alert Plus</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20culture" title=" blood culture"> blood culture</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title=" antibiotic"> antibiotic</a> </p> <a href="https://publications.waset.org/abstracts/92409/comparison-of-bactec-plus-blood-culture-media-to-bactalert-fan-plus-blood-culture-media-for-identification-of-bacterial-pathogens-in-clinical-samples-containing-antibiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1055</span> Algorithms of ABS-Plastic Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Starikov">Dmitrii Starikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgeny%20Rybakov"> Evgeny Rybakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Zhuravlev"> Denis Zhuravlev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic for 3D printing is very necessary material part for printers. But plastic production is technological process, which implies application of different control algorithms. Possible algorithms of providing set diameter of plastic fiber are proposed and described in the article. Results of research were proved by existing unit of filament production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS-plastic" title="ABS-plastic">ABS-plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=extruder" title=" extruder"> extruder</a>, <a href="https://publications.waset.org/abstracts/search?q=filament" title=" filament"> filament</a>, <a href="https://publications.waset.org/abstracts/search?q=PID-algorithm" title=" PID-algorithm"> PID-algorithm</a> </p> <a href="https://publications.waset.org/abstracts/17456/algorithms-of-abs-plastic-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1054</span> Experimental Investigation of Bituminous Roads with Waste Plastic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjita%20Biswas">Arjita Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Potnis"> Sandeep Potnis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic roads (bituminous roads using waste plastic in the wearing course ) have now become familiar in the Road Construction Sector in India. With the Indian Road Congress Code (IRC SP: 98 -2013), many agencies are coming forward to implement Plastic Roads in India. This paper discuss and compare about the various properties of bituminous mix with 8% waste plastic and normal bituminous mix. This paper also signifies the performance of both the types of roads after 4 months of age under loading conditions. Experiments were carried out to evaluate its performance. The result shows improved performance of plastic roads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bituminous%20roads" title="bituminous roads">bituminous roads</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20roads" title=" plastic roads"> plastic roads</a> </p> <a href="https://publications.waset.org/abstracts/86281/experimental-investigation-of-bituminous-roads-with-waste-plastic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1053</span> Complex Rigid-Plastic Deformation Model of Tow Degree of Freedom Mechanical System under Impulsive Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelouaheb%20Rouabhi">Abdelouaheb Rouabhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the plastic resource of structures, the elastic-plastic single degree of freedom model described by Prandtl diagram is widely used. The generalization of this model to tow degree of freedom beyond the scope of a simple rigid-plastic system allows investigating the plastic resource of structures under complex disproportionate by individual components of deformation (earthquake). This macro-model greatly increases the accuracy of the calculations carried out. At the same time, the implementation of the proposed macro-model calculations easier than the detailed dynamic elastic-plastic calculations existing software systems such as ANSYS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic-plastic" title="elastic-plastic">elastic-plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20degree%20of%20freedom%20model" title=" single degree of freedom model"> single degree of freedom model</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid-plastic%20system" title=" rigid-plastic system"> rigid-plastic system</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20resource" title=" plastic resource"> plastic resource</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20plastic%20deformation" title=" complex plastic deformation"> complex plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-model" title=" macro-model"> macro-model</a> </p> <a href="https://publications.waset.org/abstracts/11998/complex-rigid-plastic-deformation-model-of-tow-degree-of-freedom-mechanical-system-under-impulsive-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> An Investigation on Fresh and Hardened Properties of Concrete While Using Polyethylene Terephthalate (PET) as Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Jahidul%20Islam">Md. Jahidul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Rakinul%20Islam"> A. K. M. Rakinul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Salamah%20Meherier"> M. Salamah Meherier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the suitability of using plastic, such as polyethylene terephthalate (PET), as a partial replacement of natural coarse and fine aggregates (for example, brick chips and natural sand) to produce lightweight concrete for load bearing structural members. The plastic coarse aggregate (PCA) and plastic fine aggregate (PFA) were produced from melted polyethylene terephthalate (PET) bottles. Tests were conducted using three different water–cement (w/c) ratios, such as 0.42, 0.48, and 0.57, where PCA and PFA were used as 50% replacement of coarse and fine aggregate respectively. Fresh and hardened properties of concrete have been compared for natural aggregate concrete (NAC), PCA concrete (PCC) and PFA concrete (PFC). The compressive strength of concrete at 28 days varied with the water–cement ratio for both the PCC and PFC. Between PCC and PFC, PFA concrete showed the highest compressive strength (23.7 MPa) at 0.42 w/c ratio and also the lowest compressive strength (13.7 MPa) at 0.57 w/c ratio. Significant reduction in concrete density was mostly observed for PCC samples, ranging between 1977–1924 kg/m³. With the increase in water–cement ratio PCC achieved higher workability compare to both NAC and PFC. It was found that both the PCA and PFA contained concrete achieved the required compressive strength to be used for structural purpose as partial replacement of the natural aggregate; but to obtain the desired lower density as lightweight concrete the PCA is most suited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20terephthalate" title="polyethylene terephthalate">polyethylene terephthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20aggregate" title=" plastic aggregate"> plastic aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20and%20hardened%20properties" title=" fresh and hardened properties"> fresh and hardened properties</a> </p> <a href="https://publications.waset.org/abstracts/26288/an-investigation-on-fresh-and-hardened-properties-of-concrete-while-using-polyethylene-terephthalate-pet-as-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> Levels of Plastic Waste and Fish Landed By Beach Seine Fishers in Coastal Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20Gbogbo">Francis Gbogbo</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelica%20Ama%20Essandoh"> Angelica Ama Essandoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wendy%20Teresa%20Baffoe"> Wendy Teresa Baffoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Groos"> Henry Groos</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mario%20Boateng"> Charles Mario Boateng</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Robert%20Blankson"> Emmanuel Robert Blankson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Baseline data on plastic landing by fishers and monitoring of this is important in evaluating the success of plastic waste management efforts. This study investigated plastic and fish landed by beach seine fishers in Ghana, together with the rate of plastic deposition on an adjoining beach. Plastic constituted 31.6% of the total catch, and 41.7% of the fish landed by weight. There were significant differences between the average weight of fish (139.58±53.6kg) and plastic (65.73±14.6kg) landed per fishing session and the catch per unit effort of fish (183.4±76.7 kg/day) and plastic (88.4±35.2 kg/day). The mean weight of plastic landed per fishing session was higher than the mean weight of each of the 26 species of fisheries. The rate of plastic deposition on the beach was 8.1±2.5 plastic items per m2 per tidal cycle or 0.35±0.11kg plastic per m2 per tidal cycle, with food packs and tableware dominating the deposited plastic. The results suggested that ongoing water sachets and plastic bottle recycling in Ghana are yielding results and calls for targeted efforts in plastic food packs and tableware management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fishig" title="fishig">fishig</a>, <a href="https://publications.waset.org/abstracts/search?q=landing" title=" landing"> landing</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste" title=" plastic waste"> plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=intertidal%20area" title=" intertidal area"> intertidal area</a>, <a href="https://publications.waset.org/abstracts/search?q=fishing%20effort" title=" fishing effort"> fishing effort</a> </p> <a href="https://publications.waset.org/abstracts/181875/levels-of-plastic-waste-and-fish-landed-by-beach-seine-fishers-in-coastal-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Assessing Effects of an Intervention on Bottle-Weaning and Reducing Daily Milk Intake from Bottles in Toddlers Using Two-Part Random Effects Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yungtai%20Lo">Yungtai Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-part random effects models have been used to fit semi-continuous longitudinal data where the response variable has a point mass at 0 and a continuous right-skewed distribution for positive values. We review methods proposed in the literature for analyzing data with excess zeros. A two-part logit-log-normal random effects model, a two-part logit-truncated normal random effects model, a two-part logit-gamma random effects model, and a two-part logit-skew normal random effects model were used to examine effects of a bottle-weaning intervention on reducing bottle use and daily milk intake from bottles in toddlers aged 11 to 13 months in a randomized controlled trial. We show in all four two-part models that the intervention promoted bottle-weaning and reduced daily milk intake from bottles in toddlers drinking from a bottle. We also show that there are no differences in model fit using either the logit link function or the probit link function for modeling the probability of bottle-weaning in all four models. Furthermore, prediction accuracy of the logit or probit link function is not sensitive to the distribution assumption on daily milk intake from bottles in toddlers not off bottles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-part%20model" title="two-part model">two-part model</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-continuous%20variable" title=" semi-continuous variable"> semi-continuous variable</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20normal" title=" truncated normal"> truncated normal</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20regression" title=" gamma regression"> gamma regression</a>, <a href="https://publications.waset.org/abstracts/search?q=skew%20normal" title=" skew normal"> skew normal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pearson%20residual" title=" Pearson residual"> Pearson residual</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20curve" title=" receiver operating characteristic curve"> receiver operating characteristic curve</a> </p> <a href="https://publications.waset.org/abstracts/46920/assessing-effects-of-an-intervention-on-bottle-weaning-and-reducing-daily-milk-intake-from-bottles-in-toddlers-using-two-part-random-effects-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Retail Managers’ Perception on Coca-Cola Company’s Success of Glass Package Recovery and Recycling in Nairobi, Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brigitte%20Wabuyabo-Okonga">Brigitte Wabuyabo-Okonga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Little research has been done to establish the level of success of Coca Cola Company in recycling and reusing their glass bottles. This paper attempts to establish retail managers’ perception of the company’s self acclaimed success. Retail managers of supermarkets in the CBD of Nairobi, Kenya were considered for the study. Data were collected through questionnaires and analyzed using descriptive (mean, frequencies and percentages) and inferential statistics (correlation analysis) were used to analyze the data. The study found out that there is relative success although a lot needs to be done. For example, improving in communicating policy issues and in practice enhance the actual collection of broken and/or non-broken Coca Cola Company glass bottles through providing drop-off points in open areas such as on the streets and in parks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coca%20Cola%20Company%20glass%20bottles" title="Coca Cola Company glass bottles">Coca Cola Company glass bottles</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenya" title=" Kenya"> Kenya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nairobi" title=" Nairobi"> Nairobi</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=retail%20manager" title=" retail manager"> retail manager</a> </p> <a href="https://publications.waset.org/abstracts/25572/retail-managers-perception-on-coca-cola-companys-success-of-glass-package-recovery-and-recycling-in-nairobi-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Investigating the Rate of Migration of Plasticizers from PET Bottles into Salad Oil during Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simin%20Asadollahi">Simin Asadollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20H.%20Soruri"> Amir H. Soruri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moghimi"> Ali Moghimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, salad oils are used in many countries around the world. Therefore, it is of great importance to ensure the safety of these food products which are usually packaged in Polyethylene terephthalate (PET) bottles and come on the market. This study investigated the effects of storage time and temperature on the migration rate of phthalate compounds from PET bottle to salad oil. In more detail, migration rate of bis (2-ethylhexyl) phthalate from bottles to salad oil samples was measured in 1st, the 30th, and the 60th days of storage at a temperature of either 20 or 40 °C. At both storage temperatures, an increase in the storage time led to a statistically significant increase in the migration rate of phthalate compounds (p<.01). Regarding this, the highest migration rate occurred after 60 days of storage in to the samples. Furthermore, it was revealed bis (2-ethylhexyl) phthalate had a higher migration rate at 40 °C than at 20 °C which showed that an increase in the storage temperature would lead to an increase in the migration rate. The highest migration rate occurred in relation to salad oil stored at 40 °C and after 60 days of storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salad%20oil" title="salad oil">salad oil</a>, <a href="https://publications.waset.org/abstracts/search?q=migration%20rate" title=" migration rate"> migration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20terephthalate" title=" polyethylene terephthalate"> polyethylene terephthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=bis%20%282-ethylhexyl%29%20phthalate" title=" bis (2-ethylhexyl) phthalate"> bis (2-ethylhexyl) phthalate</a> </p> <a href="https://publications.waset.org/abstracts/34909/investigating-the-rate-of-migration-of-plasticizers-from-pet-bottles-into-salad-oil-during-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> Design Consideration of a Plastic Shredder in Recycling Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tolulope%20A.%20Olukunle">Tolulope A. Olukunle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=machine" title=" machine"> machine</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste" title=" plastic waste"> plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/53521/design-consideration-of-a-plastic-shredder-in-recycling-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najat%20El-Kurdi">Najat El-Kurdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Hammad"> Sherif Hammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ghazi"> Mohamed Ghazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20El-Shatoury"> Sahar El-Shatoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Zakaria"> Khaled Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mealworm" title="mealworm">mealworm</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic-degrading%20bacteria" title=" plastic-degrading bacteria"> plastic-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiome" title=" gut microbiome"> gut microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20sp" title=" Bacillus sp"> Bacillus sp</a> </p> <a href="https://publications.waset.org/abstracts/146184/plastic-degradation-activity-of-bacillus-sp-isolated-from-the-gut-of-plastic-fed-yellow-mealworm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Experimental Assessment of Polypropylene Plastic Aggregates(PPA) for Pavement Construction: Their Mechanical Properties via Marshall Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samiullah%20Bhatti">Samiullah Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Safdar%20Abbas%20Zaidi"> Safdar Abbas Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Murtaza%20Ali%20Jafri"> Syed Murtaza Ali Jafri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper presents the results of using plastic aggregate in flexible pavement. Plastic aggregates have been prepared with polypropylene (PP) recycled products and have been tested with Marshall apparatus. Grade 60/70 bitumen has been chosen for this research with a total content of 2.5 %, 3 % and 3.5 %. Plastic aggregates are mixed with natural aggregates with different proportions and it ranges from 10 % to 100 % with an increment of 10 %. Therefore, a total of 10 Marshall cakes were prepared with plastic aggregates in addition to a standard pavement sample. In total 33 samples have been tested for Marshall stability, flow and voids in mineral aggregates. The results show an increase in the value when it changes from 2.5 % bitumen to 3 % and after then it goes again toward declination. Thus, 3 % bitumen content has been found as the most optimum value for flexible pavements. Among all the samples, 20 % PP aggregates sample has been found satisfactory with respect to all the standards provided by ASTM. Therefore, it is suggested to use 20 plastic aggregates in flexible pavement construction. A comparison of bearing capacity and skid resistance is also observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marshall%20test" title="marshall test">marshall test</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20plastic" title=" polypropylene plastic"> polypropylene plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20aggregates" title=" plastic aggregates"> plastic aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20alternative" title=" flexible pavement alternative"> flexible pavement alternative</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20of%20plastic%20waste" title=" recycling of plastic waste"> recycling of plastic waste</a> </p> <a href="https://publications.waset.org/abstracts/148528/experimental-assessment-of-polypropylene-plastic-aggregatesppa-for-pavement-construction-their-mechanical-properties-via-marshall-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Continuous Manufacturing of Ultra Fine Grained Materials by Severe Plastic Deformation Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asl%C4%B1%20G%C3%BCnay%20Bulutsuz">Aslı Günay Bulutsuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Emin%20Yurci"> Mehmet Emin Yurci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Severe plastic deformation techniques are top-down deformation methods which enable superior mechanical properties by decreasing grain size. Different kind severe plastic deformation methods have been widely being used at various process temperature and geometries. Besides manufacturing advantages of severe plastic deformation technique, most of the types are being used only at the laboratory level. They cannot be adapted to industrial usage due to their continuous manufacturability and manufacturing costs. In order to enhance these manufacturing difficulties and enable widespread usage, different kinds of methods have been developed. In this review, a comprehensive literature research was fulfilled in order to highlight continuous severe plastic deformation methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20manufacturing" title="continuous manufacturing">continuous manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20grains" title=" ultrafine grains"> ultrafine grains</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size%20refinement" title=" grain size refinement"> grain size refinement</a> </p> <a href="https://publications.waset.org/abstracts/73489/continuous-manufacturing-of-ultra-fine-grained-materials-by-severe-plastic-deformation-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> PLA Plastic as Biodegradable Material for 3D Printers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Beniak">Juraj Beniak</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%BDubom%C3%ADr%20%C5%A0oo%C5%A1"> Ľubomír Šooš</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kri%C5%BEan"> Peter Križan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Mat%C3%BA%C5%A1"> Miloš Matúš</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials which are biodegradable and also available for 3D printing within Fused Deposition Modelling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20plastic" title=" biodegradable plastic"> biodegradable plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20plastic" title=" PLA plastic"> PLA plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/37301/pla-plastic-as-biodegradable-material-for-3d-printers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gigih%20Priyandoko">Gigih Priyandoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fairusham%20Ghazali"> Mohd Fairusham Ghazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Siew%20Fun"> Tan Siew Fun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20pipe" title="plastic pipe">plastic pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20detection" title=" defect detection"> defect detection</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20acoustic%20modulation" title=" nonlinear acoustic modulation"> nonlinear acoustic modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation" title=" excitation"> excitation</a> </p> <a href="https://publications.waset.org/abstracts/16837/plastic-pipe-defect-detection-using-nonlinear-acoustic-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Impacts of Low-Density Polyethylene (Plastic Shopping Bags) on Structural Strength and Permeability of Hot-Mix-Asphalt Pavements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chayanon%20Boonyuid">Chayanon Boonyuid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper experiments the effects of low-density polyethylene (LDPE) on the structural strength and permeability of hot-mix-asphalt (HMA) pavements. Different proportions of bitumen (4%, 4.5%, 5%, 5.5% and 6% of total aggregates) and plastic (5%, 10% and 15% of bitumen) contents in HMA mixtures were investigated to estimate the optimum mixture of bitumen and plastic in HMA pavement with long-term performance. Marshall Tests and Falling Head Tests were performed to experiment the structure strength and permeability of HMA mixtures with different percentages of plastic materials and bitumen. The laboratory results show that the optimum binder content was 5.5% by weight of aggregates with higher contents of plastic materials, increase structural stability, reduce permanent deformation, increase ductility, and improve fatigue life of HMA pavements. The use of recycled plastic shopping bags can reduce the use of bitumen content by 0.5% - 1% in HMA mixtures resulting in cheaper material costs with better long-term performance. The plastic materials increase the impermeability of HMA pavements. This study has two-fold contributions: optimum contents of both bitumen and plastic materials in HMA mixtures and the impacts of plastic materials on the permeability of HMA pavements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20bags" title="plastic bags">plastic bags</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20strength" title=" structural strength"> structural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a> </p> <a href="https://publications.waset.org/abstracts/115964/impacts-of-low-density-polyethylene-plastic-shopping-bags-on-structural-strength-and-permeability-of-hot-mix-asphalt-pavements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plastic%20bottles&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10