CINXE.COM
Search results for: micro-organisms
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: micro-organisms</title> <meta name="description" content="Search results for: micro-organisms"> <meta name="keywords" content="micro-organisms"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="micro-organisms" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="micro-organisms"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 634</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: micro-organisms</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> The Effect of Some Microorganisms from Gastrointestinal Tracts on the Nutritive Value of Broiler Diets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sangsoponjit">S. Sangsoponjit</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Suphalucksana"> W. Suphalucksana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Soytong"> K. Soytong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2x2 factorial experiment was carried out to determine the effects of two levels of diet supplemented with and without microorganisms in combination with and without feed sterilisation on the nutritive value of broiler diets with four replications in each treatment. Some microorganisms from the gastrointestinal tracts of chickens were supplemented in commercial broiler diets. They were bacterial (BC-NA-01), actinomycetes (BI-NA-03, BC-NA-02 and BL-NA-02), Aspergillus niger sp.(BD-PDA-01), Mucor sp.(BL-PDA-02), Rhizopus stolonifer sp.(BI-PDA-02) and Trichoderma sp.(BL-PDA-02). The results of the proximate analysis revealed that the diet supplemented with microorganisms had a higher percentage of DM and CF in the starter diet(0-3 wks), grower diet(4-5wks) and finisher diet (last period) than the diet without microorganisms (p<0.05). Also, they were higher in the percentage of CP in the starter diet and EE in both the starter diet and grower diet than the diet without microorganisms (p<0.05). The sterilised diet had a higher percentage of moisture than the non-sterilized diet (p<0.01). Also, they were higher in the percentage of CP in the starter diet and CF in both the grower diet and finisher diet than the non-sterilized diet (p<0.05). The sterilized diet supplemented with microorganisms was higher in ME than the non-sterilize diet without microorganisms in the starter diet, grower diet and finisher diet (P<0.01). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title="microorganisms">microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20tract" title=" gastrointestinal tract"> gastrointestinal tract</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive%20value" title=" nutritive value"> nutritive value</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20diets" title=" broiler diets"> broiler diets</a> </p> <a href="https://publications.waset.org/abstracts/15538/the-effect-of-some-microorganisms-from-gastrointestinal-tracts-on-the-nutritive-value-of-broiler-diets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Influence of Locally Made Effective Microorganisms on the Compressive Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nura%20Isa">Muhammad Nura Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=Magaji%20Muhammad%20Garba"> Magaji Muhammad Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Dauda%20Dahiru%20Danwata">Dauda Dahiru Danwata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lot of research was carried out to improve the technology of concrete, some of which include the introduction of new admixture in concrete production such as effective microorganisms. Researches carried out in Japan and Malaysia indicated that the Effective Microorganisms improve the strength and durability of concrete. Therefore, the main objective of this research is to assess the effect of the locally made effective microorganisms on the compressive strength of concrete in Nigeria. The effective microorganisms were produced locally. The locally made effective microorganism was added in 3%, 5%, 10% and 15% to replace the mixing water required. The results of the tests indicated that the concrete specimens with 3% content of locally made EM-A possessed the highest compressive strength, this proved the 3% to be the optimum dosage of locally made EM-A in the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=locally%20made%20effective%20microorganisms" title="locally made effective microorganisms">locally made effective microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=admixture" title=" admixture"> admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits%20and%20vegetable%20wastes" title=" fruits and vegetable wastes"> fruits and vegetable wastes</a> </p> <a href="https://publications.waset.org/abstracts/37475/influence-of-locally-made-effective-microorganisms-on-the-compressive-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> Evaluation of DNA Microarray System in the Identification of Microorganisms Isolated from Blood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merih%20%C5%9Eim%C5%9Fek">Merih Şimşek</a>, <a href="https://publications.waset.org/abstracts/search?q=Recep%20Ke%C5%9Fli"> Recep Keşli</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCl%20%C3%87etinkaya"> Özgül Çetinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Demir"> Cengiz Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Adem%20Aslan"> Adem Aslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteremia is a clinical entity with high morbidity and mortality rates when immediate diagnose, or treatment cannot be achieved. Microorganisms which can cause sepsis or bacteremia are easily isolated from blood cultures. Fifty-five positive blood cultures were included in this study. Microorganisms in 55 blood cultures were isolated by conventional microbiological methods; afterwards, microorganisms were defined in terms of the phenotypic aspects by the Vitek-2 system. The same microorganisms in all blood culture samples were defined in terms of genotypic aspects again by Multiplex-PCR DNA Low-Density Microarray System. At the end of the identification process, the DNA microarray system’s success in identification was evaluated based on the Vitek-2 system. The Vitek-2 system and DNA Microarray system were able to identify the same microorganisms in 53 samples; on the other hand, different microorganisms were identified in the 2 blood cultures by DNA Microarray system. The microorganisms identified by Vitek-2 system were found to be identical to 96.4 % of microorganisms identified by DNA Microarrays system. In addition to bacteria identified by Vitek-2, the presence of a second bacterium has been detected in 5 blood cultures by the DNA Microarray system. It was identified 18 of 55 positive blood culture as E.coli strains with both Vitek 2 and DNA microarray systems. The same identification numbers were found 6 and 8 for Acinetobacter baumanii, 10 and 10 for K.pneumoniae, 5 and 5 for S.aureus, 7 and 11 for Enterococcus spp, 5 and 5 for P.aeruginosa, 2 and 2 for C.albicans respectively. According to these results, DNA Microarray system requires both a technical device and experienced staff support; besides, it requires more expensive kits than Vitek-2. However, this method should be used in conjunction with conventional microbiological methods. Thus, large microbiology laboratories will produce faster, more sensitive and more successful results in the identification of cultured microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microarray" title="microarray">microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitek-2" title=" Vitek-2"> Vitek-2</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20culture" title=" blood culture"> blood culture</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteremia" title=" bacteremia"> bacteremia</a> </p> <a href="https://publications.waset.org/abstracts/72604/evaluation-of-dna-microarray-system-in-the-identification-of-microorganisms-isolated-from-blood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> Antimicrobial Agents Produced by Yeasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20B%C3%BCy%C3%BCks%C4%B1r%C4%B1t">T. Büyüksırıt</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kulea%C5%9Fan"> H. Kuleaşan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agents" title="antimicrobial agents">antimicrobial agents</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20protein" title=" toxic protein"> toxic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=glycoprotein" title=" glycoprotein"> glycoprotein</a> </p> <a href="https://publications.waset.org/abstracts/9513/antimicrobial-agents-produced-by-yeasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> Diversity of Culturable Forms of Microorganisms in Soils with Long-term Exposure to Petroleum Hydrocarbons and Prospects for Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yessentayeva%20K.%20Y.">Yessentayeva K. Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Berzhanova%20R.%20Z."> Berzhanova R. Z.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukasheva%20T.%20D."> Mukasheva T. D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to study the microbial diversity of soils with long-standing hydrocarbon pollution in the S. Balgimbayev field (Kazakhstan), where the transformation of meadow coastal soils technogenic solonchak soils, as well as the assessment of the degradation potential of microorganisms perspective for the use for bioremediation. In the present work autochthonous microorganisms of the surface horizon of soils were investigated. In samples with a low degree of pollution the number of microorganisms, was comparable to the number in the uncontaminated soil and was 103 - 104 CFU/g. and one and two orders of magnitude lower in samples with high oil content. A collection of microorganisms was created using different culture media, which made it possible to isolate isolates that play a key role in different successional stages of biodegradation of petroleum hydrocarbons. The collection included the main bacterial filiiments, Protobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Mycelial fungi andyeast-like fungwere assigned to the Ascomycota division. Studies showed that the percentage of isolates capable of growth in hydrocarbons varied. More than 50 % of the isolates grew on crude oil, a low percentage of less than 10 % of the isolates grew on an anthracene, phenanthrene and naphthalene, more than 20 % of the isolates belonging to different genera Pseudomonas, Bacillus, Rhodococcus, Achromobacter, Gordonia, Microbacterium, and Trichosporon, characterized the growth on two or three different hydrocarbons. The ability to grow using all hydrocarbons, associated with the synthesis of biosurfactants, was detected only in a few isolates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20bioremediation" title=" number of bioremediation"> number of bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons%20%E2%80%93%20oxidizing%20microorganisms" title=" hydrocarbons – oxidizing microorganisms"> hydrocarbons – oxidizing microorganisms</a> </p> <a href="https://publications.waset.org/abstracts/182428/diversity-of-culturable-forms-of-microorganisms-in-soils-with-long-term-exposure-to-petroleum-hydrocarbons-and-prospects-for-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Sur">I. M. Sur</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Chirila-Babau"> A. M. Chirila-Babau</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gabor"> T. Gabor</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Micle"> V. Micle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of <em>Thiobacillus ferrooxidans</em> bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (<em>Thiobacillus ferooxidans</em>) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioleaching" title="bioleaching">bioleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted" title=" polluted"> polluted</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiobacillus%20ferooxidans" title=" Thiobacillus ferooxidans"> Thiobacillus ferooxidans</a> </p> <a href="https://publications.waset.org/abstracts/91874/the-use-of-microorganisms-in-the-bioleaching-of-soils-polluted-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> Physical and Chemical Alternative Methods of Fresh Produce Disinfection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tuji%20Jemal%20Ahmed">Tuji Jemal Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh produce is an essential component of a healthy diet. However, it can also be a potential source of pathogenic microorganisms that can cause foodborne illnesses. Traditional disinfection methods, such as washing with water and chlorine, have limitations and may not effectively remove or inactivate all microorganisms. This has led to the development of alternative/new methods of fresh produce disinfection, including physical and chemical methods. In this paper, we explore the physical and chemical new methods of fresh produce disinfection, their advantages and disadvantages, and their suitability for different types of produce. Physical methods of disinfection, such as ultraviolet (UV) radiation and high-pressure processing (HPP), are crucial in ensuring the microbiological safety of fresh produce. UV radiation uses short-wavelength UV-C light to damage the DNA and RNA of microorganisms, and HPP applies high levels of pressure to fresh produce to reduce the microbial load. These physical methods are highly effective in killing a wide range of microorganisms, including bacteria, viruses, and fungi. However, they may not penetrate deep enough into the product to kill all microorganisms and can alter the sensory characteristics of the product. Chemical methods of disinfection, such as acidic electrolyzed water (AEW), ozone, and peroxyacetic acid (PAA), are also important in ensuring the microbiological safety of fresh produce. AEW uses a low concentration of hypochlorous acid and a high concentration of hydrogen ions to inactivate microorganisms, ozone uses ozone gas to damage the cell membranes and DNA of microorganisms, and PAA uses a combination of hydrogen peroxide and acetic acid to inactivate microorganisms. These chemical methods are highly effective in killing a wide range of microorganisms, but they may cause discoloration or changes in the texture and flavor of some products and may require specialized equipment and trained personnel to produce and apply. In conclusion, the selection of the most suitable method of fresh produce disinfection should take into consideration the type of product, the level of microbial contamination, the effectiveness of the method in reducing the microbial load, and any potential negative impacts on the sensory characteristics, nutritional composition, and safety of the produce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fresh%20produce" title="fresh produce">fresh produce</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenic%20microorganisms" title=" pathogenic microorganisms"> pathogenic microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20illnesses" title=" foodborne illnesses"> foodborne illnesses</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection%20methods" title=" disinfection methods"> disinfection methods</a> </p> <a href="https://publications.waset.org/abstracts/165774/physical-and-chemical-alternative-methods-of-fresh-produce-disinfection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Antimicrobial Activity of Oil Extracted from the Almonds of the Fruits of Argania spinosa in the West of Algeria (Mostaganem)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Behidj-Benyounes">Nassima Behidj-Benyounes</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Chebouti"> Nadjiba Chebouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Thoraya%20Dahmane"> Thoraya Dahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Henni"> Amina Henni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work examines the study of the antimicrobrial effect of oil extracted from the seeds of Argania spinosa L. (Sapotaceae) in the area of Stida (Mostaganem). This natural substance is extracted by using the Soxhlet. The antimicrobial activity of this oil is evaluated on several microorganisms. It has been tested on five bacterial strains; Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Bacillus subtilis and Staphylococcus aureus. The extract has been studied by using Candida albicans. It should be noted that these agents are characterized by a high frequency of contamination and pathogenicity. Through this study, we note that these microorganisms are moderately sensitive to the argan oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argania%20spinosa" title="Argania spinosa">Argania spinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=several%20microorganisms" title=" several microorganisms"> several microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=almonds" title=" almonds"> almonds</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/8822/antimicrobial-activity-of-oil-extracted-from-the-almonds-of-the-fruits-of-argania-spinosa-in-the-west-of-algeria-mostaganem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Pintaric">Robert Pintaric</a>, <a href="https://publications.waset.org/abstracts/search?q=Joze%20Matela"> Joze Matela</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Pintaric"> Stefan Pintaric</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanka%20Vadnjal"> Stanka Vadnjal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocide" title="biocide">biocide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29" title=" electrolyzed oxidizing water (EOW)"> electrolyzed oxidizing water (EOW)</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection" title=" disinfection"> disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=OPTI-JET%20CS%20MD1MR" title=" OPTI-JET CS MD1MR"> OPTI-JET CS MD1MR</a> </p> <a href="https://publications.waset.org/abstracts/35512/use-of-opti-jet-cs-md1mr-device-for-biocide-aerosolisation-in-3t-magnetic-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> Drug Sensitivity Pattern of Organisms Causing Suppurative Otitis Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagat%20M.%20Saeed">Nagat M. Saeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mabruka%20S.%20Elashheb"> Mabruka S. Elashheb</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20M.%20Ben%20Rabaha"> Fatma M. Ben Rabaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20M%20Edrah"> Aisha M Edrah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to determine the type and pattern of antibiotic susceptibility of the pathogenic microorganisms causing chronic suppurative otitis media (CSOM), which could lead to better therapeutic decisions and consequently avoidance of appearance of resistance to specific antibiotics. Most frequently isolated agents were Pseudomonas aeruginosa 28.5%; followed by Staphylococcus aureus 18.2%; proteus mirabilis 13.9%; Providencia stuartti 6.7%; Bacteroides melaninogenicus, Aspergillus sp., candida sp., 4.2% each; and other microorganisms were represented in 3-0.2%. Drug sensitivities pattern of Pseudomonas aeruginosa showed that ciprofloxacin was active against the majority of isolates (93.9%) followed by ceftazidime 86.2%, amikacin 76.2% and gentamicin 40.8%. However, Staphylococcus aureus isolates were resistant to penicillin 72.7%, erythromycin 28.6%, cephalothin 18.2%, cloxacillin 8.3% and ciprofloxacin was active against 96.2% of isolates. The resistance pattern of proteus mirabilis was 55.6% to ampicillin, 47.1% to carbencillin, 29.4% to cephalothin, 14.3% to gentamicin and 4.8% to amikacin while 100% were sensitive to ciprofloxacin. We conclude that ciprofloxacin is the best drug of choice in the treatment of CSOM caused by the common microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=otitis%20media" title="otitis media">otitis media</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20suppurative%20otitis%20media%20%28CSOM%29" title=" chronic suppurative otitis media (CSOM)"> chronic suppurative otitis media (CSOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20sensitivity" title=" drug sensitivity"> drug sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/4426/drug-sensitivity-pattern-of-organisms-causing-suppurative-otitis-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Shafaei">Shirin Shafaei</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20R.%20Bolton"> James R. Bolton</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gamal%20El%20Din"> Mohamed Gamal El Din</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm<sup>2</sup>) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoreactivation" title="photoreactivation">photoreactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivation%20fluence" title=" reactivation fluence"> reactivation fluence</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20water" title=" river water"> river water</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20disinfection" title=" ultraviolet disinfection"> ultraviolet disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20effluent" title=" wastewater effluent"> wastewater effluent</a> </p> <a href="https://publications.waset.org/abstracts/42212/effect-of-environmental-factors-on-photoreactivation-of-microorganisms-under-indoor-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">623</span> Plants and Microorganisms for Phytoremediation of Soils Polluted with Organochlorine Pesticides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maritsa%20Kurashvili">Maritsa Kurashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Adamia"> George Adamia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Ananiashvili"> Tamar Ananiashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Lia%20Amiranasvili"> Lia Amiranasvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Varazi"> Tamar Varazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Pruidze"> Marina Pruidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlen%20Gordeziani"> Marlen Gordeziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gia%20Khatisashvili"> Gia Khatisashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of plants and microorganisms. For this aim the selection of plants and microorganisms with corresponding capabilities towards three organochlorine pesticides (Lindane, DDT and PCP) has been carried out. The tolerance of plants to tested pesticides and induction degree of plant detoxification enzymes by these compounds have been used as main criteria for estimating the applicability of plants in proposed technology. Obtained results show that alfalfa, maize and soybean among tested six plant species have highest tolerance to pesticides. As a result of screening, more than 30 strains from genera Pseudomonas have been selected. As a result of GC analysis of incubation area, 11 active cultures for investigated pesticides are carefully chosen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDT" title="DDT">DDT</a>, <a href="https://publications.waset.org/abstracts/search?q=Lindane" title=" Lindane"> Lindane</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticides" title=" organochlorine pesticides"> organochlorine pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=PCP" title=" PCP"> PCP</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/3753/plants-and-microorganisms-for-phytoremediation-of-soils-polluted-with-organochlorine-pesticides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">622</span> Effective Microorganisms as a Sustainable Environment Product and Their Application: A Study in Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaffar%20Hussain">Jaffar Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ali%20Shah"> Farman Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As we know that Pakistan is the developing country so it adopts new technologies for progress. In last three decays, some new technologies were introduced in the world in which Effective Microorganism was one of them. Microorganisms are one of the most power full living forces on earth. Originally, EM was developed as an odor control, farm, and animal health, human health many industrial treatments. Effective Microorganism is an organic fertilizer that contains a mixture of co-existing valuable microorganism composed from the environment. There are vast application of the EM in the world in which the researchers are explained in literature .In Pakistan work on EM technologies are under process, researcher are doing work to make them most valuable. At that time the application of EM are in agriculture, water treatment, to increase Cement strength, improving saline soil etc. Effective microorganisms are environmentally friendly , not-naturally organized, not chemically synthesized, not dangerous and not pathogenic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=developing%20country" title="developing country">developing country</a>, <a href="https://publications.waset.org/abstracts/search?q=technologies" title=" technologies"> technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20microorganism" title=" effective microorganism"> effective microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=researchers" title=" researchers"> researchers</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/22671/effective-microorganisms-as-a-sustainable-environment-product-and-their-application-a-study-in-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">621</span> The Production of Biofertilizer from Naturally Occurring Microorganisms by Using Nuclear Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Al-Mugren">K. S. Al-Mugren</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yahya"> A. Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alodah"> S. Alodah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Alharbi"> R. Alharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Almsaid"> S. H. Almsaid </a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alqahtani"> A. Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jaber"> H. Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Basaqer"> A. Basaqer</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Alajra"> N. Alajra</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Almoghati"> N. Almoghati</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alsalman"> A. Alsalman</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Alharbi"> Khalid Alharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The production of biofertilizers from naturally occurring microorganisms is an area of research that aims to enhance agricultural practices by utilizing local resources. This research project focuses on isolating and screening indigenous microorganisms with PK-fixing and phosphate solubilizing characteristics from local sources. Research Aim: The aim of this project is to develop a biofertilizer product using indigenous microorganisms and composted agro waste as a carrier. The objective is to enhance crop productivity and soil fertility through the application of biofertilizers. Methodology: The research methodology includes several key steps. Firstly, indigenous microorganisms will be isolated from local resources using the ten-fold serial dilutions technique. Screening assays will be conducted to identify microorganisms with phosphate solubilizing and PK-fixing activities. Agro-waste materials will be collected from local agricultural sources, and composting experiments will be conducted to convert them into organic matter-rich compost. Physicochemical analysis will be performed to assess the composition of the composted agro-waste. Gamma and X-ray irradiation will be used to sterilize the carrier material. The sterilized carrier will be tested for sterility using the ten-fold serial dilutions technique. Finally, selected indigenous microorganisms will be developed into biofertilizer products. Findings: The research aims to find suitable indigenous microorganisms with phosphate solubilizing and PK-fixing characteristics for biofertilizer production. Additionally, the research aims to assess the suitability of composted agro waste as a carrier for biofertilizers. The impact of gamma irradiation sterilization on pathogen elimination will also be investigated. Theoretical Importance: This research contributes to the understanding of utilizing indigenous microorganisms and composted agro waste for biofertilizer production. It expands knowledge on the potential benefits of biofertilizers in enhancing crop productivity and soil fertility. Data Collection and Analysis Procedures: The data collection process involves isolating indigenous microorganisms, conducting screening assays, collecting and composting agro waste, analyzing the physicochemical composition of composted agro waste, and testing carrier sterilization. The analysis procedures include assessing the abilities of indigenous microorganisms, evaluating the composition of composted agro waste, and determining the sterility of the carrier material. Conclusion: The research project aims to develop biofertilizer products using indigenous microorganisms and composted agro waste as a carrier. Through the isolation and screening of indigenous microorganisms, the project aims to enhance crop productivity and soil fertility by utilizing local resources. The research findings will contribute to the understanding of the suitability of composted agro waste as a carrier and the efficacy of gamma irradiation sterilization. The research outcomes will have theoretical importance in the field of biofertilizer production and agricultural practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title="biofertilizer">biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=agro%20waste" title=" agro waste"> agro waste</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20technologies" title=" nuclear technologies"> nuclear technologies</a> </p> <a href="https://publications.waset.org/abstracts/173328/the-production-of-biofertilizer-from-naturally-occurring-microorganisms-by-using-nuclear-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">620</span> Study on the Heavy Oil Degradation Performance and Kinetics of Immobilized Bacteria on Modified Zeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao%20L%20Dai">Xiao L Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20X%20Wei"> Wen X Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Wang"> Shuo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20B%20Li"> Jia B Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wei"> Yan Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy oil pollution generated from both natural and anthropogenic sources could cause significant damages to the ecological environment, due to the toxicity of some of its constituents. Nowadays, microbial remediation is becoming a promising technology to treat oil pollution owing to its low cost and prevention of secondary pollution; microorganisms are key players in the process. Compared to the free microorganisms, immobilized microorganisms possess several advantages, including high metabolic activity rates, strong resistance to toxic chemicals and natural competition with the indigenous microorganisms, and effective resistance to washing away (in open water system). Many immobilized microorganisms have been successfully used for bioremediation of heavy oil pollution. Considering the broad choices, low cost, simple process, large specific surface area and less impact on microbial activity, modified zeolite were selected as a bio-carrier for bacteria immobilization. Three strains of heavy oil-degrading bacteria Bacillus sp. DL-13, Brevibacillus sp. DL-1 and Acinetobacter sp. DL-34 were immobilized on the modified zeolite under mild conditions, and the bacterial load (bacteria /modified zeolite) was 1.12 mg/g, 1.11 mg/g, and 1.13 mg/g, respectively. SEM results showed that the bacteria mainly adsorbed on the surface or punctured in the void of modified zeolite. The heavy oil degradation efficiency of immobilized bacteria was 62.96%, higher than that of the free bacteria (59.83%). The heavy oil degradation process of immobilized bacteria accords with the first-order reaction equation, and the reaction rate constant is 0.1483 d⁻¹, which was significantly higher than the free bacteria (0.1123 d⁻¹), suggesting that the immobilized bacteria can rapidly start up the heavy oil degradation and has a high activity of heavy oil degradation. The results suggested that immobilized bacteria are promising technology for bioremediation of oil pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20oil%20pollution" title="heavy oil pollution">heavy oil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20remediation" title=" microbial remediation"> microbial remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20zeolite" title=" modified zeolite"> modified zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20bacteria" title=" immobilized bacteria"> immobilized bacteria</a> </p> <a href="https://publications.waset.org/abstracts/110195/study-on-the-heavy-oil-degradation-performance-and-kinetics-of-immobilized-bacteria-on-modified-zeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">619</span> Findings in Vascular Catheter Cultures at the Laboratory of Microbiology of General Hospital during One Year</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Christodoulou">P. Christodoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gerasimou"> M. Gerasimou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mantzoukis"> S. Mantzoukis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Varsamis"> N. Varsamis</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kolliopoulou"> G. Kolliopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zotos"> N. Zotos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract— Purpose: The Intensive Care Unit (ICU) environment is conducive to the growth of microorganisms. A variety of microorganisms gain access to the intravascular area and are transported throughout the circulatory system. Therefore, examination of the catheters used in ICU patients is of paramount importance. Material and Method: The culture medium is a catheter tip, which is enriched with Tryptic soy broth (TSB). After one day of incubation, the broth is passaged in the following selective media: Blood, Mac conkey No. 2, chocolate, Mueller Hinton, Chapman, and Saboureaud agar. The above selective media is incubated for 2 days. After this period, if any number of microbial colonies is detected, gram staining is performed and then the microorganisms are identified by biochemical techniques in the automated Microscan (Siemens) system followed by a sensitivity test in the same system using the minimum inhibitory concentration (MIC) technique. The sensitivity test is verified by a Kirby Bauer test. Results: In 2017, the Microbiology Laboratory received 84 catheters from the ICU. 42 were found positive. Of these, S. epidermidis was identified at 8, A. baumannii in 10, K. pneumoniae in 6, P. aeruginosa in 6, P. mirabilis in 3, S. simulans in 1, S. haemolyticus in 4, S. aureus in 3 and S. hominis in 1. Conclusions: The results show that the placement and maintenance of the catheters in ICU patients are relatively successful, despite the unfavorable environment of the unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culture" title="culture">culture</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care%20unit" title=" intensive care unit"> intensive care unit</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20catheters" title=" vascular catheters"> vascular catheters</a> </p> <a href="https://publications.waset.org/abstracts/103186/findings-in-vascular-catheter-cultures-at-the-laboratory-of-microbiology-of-general-hospital-during-one-year" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">618</span> Single-Section Fermentation Reactor with Cellular Mixing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski">Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski"> Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This publication presents a reactor designed for methane fermentation of organic substrates. The design is based on rotating cellular cylinders connected to a biomass feeder and an ultrasonic generator. This allows for simultaneous mixing and partial disintegration of the biomass, as well as stimulating higher metabolic rates within the microorganisms. Such a design allows from 2-fold to 14-fold reduction of power usage when compared to conventional mixing systems. The sludge does not undergo mechanical deformation during the mixing process, which improves substrate biodegradation efficiency by 10-15%. Cavitation occurs near the surface of the rods, partially releasing the biomass and separating it from the destroyed microorganisms. Biogas is released further away from the cellular cylinder rods due to the effect of the ultrasonic waves, in addition to increased biochemical activity of the microorganisms and increased exchange of the nutrient medium with metabolic products, which results in biogas production increase by about 15%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title="methane fermentation">methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactors" title=" bioreactors"> bioreactors</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20system" title=" mixing system"> mixing system</a> </p> <a href="https://publications.waset.org/abstracts/3540/single-section-fermentation-reactor-with-cellular-mixing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">617</span> The Impact of the Genetic Groups of Microorganisms on the Production of Mousy-Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Moulis">Pierre Moulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Herderich"> Markus Herderich</a>, <a href="https://publications.waset.org/abstracts/search?q=Doris%20Rauhut"> Doris Rauhut</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Ballestra"> Patricia Ballestra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, it is starting to be more frequent to detect wines with mousy off-flavor. The reasons behind this could be the significant decrease in sulphur dioxide, the increase in pH, and the trend for spontaneous fermentation in wine. This off-flavor can be produced by Brettanomyces bruxellensis or some Lactic acid bacteria. So far there is no study working on the influence of the genetic group on the production of these microorganisms. Objectives: The objectives of this research are to increase knowledge and to have a better understanding of the microbiological phenomena related to the production of the mousy off-flavor in the wine. Methodologies: In this research, microorganisms were screened in an N-heterocycle assay medium (this medium contained all known precursors) and the production of mousy compounds was quantified by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry (SBSE-GC-MS). Main contributions: Brettanomyces bruxellensis and Oenococcus oeni could produce mousiness at a different amount depending on the strain. But there is no group effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mousy%20off-flavor" title="mousy off-flavor">mousy off-flavor</a>, <a href="https://publications.waset.org/abstracts/search?q=wine" title=" wine"> wine</a>, <a href="https://publications.waset.org/abstracts/search?q=Brettanomyces%20bruxellensis" title=" Brettanomyces bruxellensis"> Brettanomyces bruxellensis</a>, <a href="https://publications.waset.org/abstracts/search?q=Oenococcus%20oeni" title=" Oenococcus oeni"> Oenococcus oeni</a> </p> <a href="https://publications.waset.org/abstracts/154006/the-impact-of-the-genetic-groups-of-microorganisms-on-the-production-of-mousy-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">616</span> Microbial Dark Matter Analysis Using 16S rRNA Gene Metagenomics Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%20Barak">Hana Barak</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Sivan"> Alex Sivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariel%20Kushmaro"> Ariel Kushmaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microorganisms are the most diverse and abundant life forms on Earth and account for a large portion of the Earth’s biomass and biodiversity. To date though, our knowledge regarding microbial life is lacking, as it is based mainly on information from cultivated organisms. Indeed, microbiologists have borrowed from astrophysics and termed the ‘uncultured microbial majority’ as ‘microbial dark matter’. The realization of how diverse and unexplored microorganisms are, actually stems from recent advances in molecular biology, and in particular from novel methods for sequencing microbial small subunit ribosomal RNA genes directly from environmental samples termed next-generation sequencing (NGS). This has led us to use NGS that generates several gigabases of sequencing data in a single experimental run, to identify and classify environmental samples of microorganisms. In metagenomics sequencing analysis (both 16S and shotgun), sequences are compared to reference databases that contain only small part of the existing microorganisms and therefore their taxonomy assignment may reveal groups of unknown microorganisms or origins. These unknowns, or the ‘microbial sequences dark matter’, are usually ignored in spite of their great importance. The goal of this work was to develop an improved bioinformatics method that enables more complete analyses of the microbial communities in numerous environments. Therefore, NGS was used to identify previously unknown microorganisms from three different environments (industrials wastewater, Negev Desert’s rocks and water wells at the Arava valley). 16S rRNA gene metagenome analysis of the microorganisms from those three environments produce about ~4 million reads for 75 samples. Between 0.1-12% of the sequences in each sample were tagged as ‘Unassigned’. Employing relatively simple methodology for resequencing of original gDNA samples through Sanger or MiSeq Illumina with specific primers, this study demonstrates that the mysterious ‘Unassigned’ group apparently contains sequences of candidate phyla. Those unknown sequences can be located on a phylogenetic tree and thus provide a better understanding of the ‘sequences dark matter’ and its role in the research of microbial communities and diversity. Studying this ‘dark matter’ will extend the existing databases and could reveal the hidden potential of the ‘microbial dark matter’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Next%20Generation%20Sequencing" title=" Next Generation Sequencing"> Next Generation Sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=unknown" title=" unknown"> unknown</a> </p> <a href="https://publications.waset.org/abstracts/97387/microbial-dark-matter-analysis-using-16s-rrna-gene-metagenomics-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">615</span> Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameen%20Tariq">Sameen Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Saira%20Bano"> Saira Bano</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayyada%20Ghufrana%20Nadeem"> Sayyada Ghufrana Nadeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20microorganisms" title="marine microorganisms">marine microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=fungi" title=" fungi"> fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=gram-positive" title=" gram-positive"> gram-positive</a>, <a href="https://publications.waset.org/abstracts/search?q=gram-negative" title=" gram-negative"> gram-negative</a> </p> <a href="https://publications.waset.org/abstracts/186163/isolation-and-identification-of-microorganisms-from-marine-associated-samples-under-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">614</span> Identifying Dominant Anaerobic Microorganisms for Degradation of Benzene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Peng">Jian Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhui%20Xiong"> Wenhui Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Lu"> Zheng Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An optimal recipe of amendment (nutrients and electron acceptors) was developed and dominant indigenous benzene-degrading microorganisms were characterized in this study. Lessons were learnt from the development of the optimal amendment recipe: (1) salinity and substantial initial concentration of benzene were detrimental for benzene biodegradation; (2) large dose of amendments can shorten the lag time for benzene biodegradation occurrence; (3) toluene was an essential co-substance for promoting benzene degradation activity. The stable isotope probing study identified incorporation 13C from 13C-benzene into microorganisms, which can be considered as a direct evidence of the occurrence of benzene biodegradation. The dominant mechanism for benzene removal was identified by quantitative polymerase chain reaction analysis to be nitrate reduction. Microbial analyses (denaturing gradient gel electrophoresis and 16S ribosomal RNA) demonstrated that members of genus Dokdonella spp., Pusillimonas spp., and Advenella spp. were predominant within the microbial community and involved in the anaerobic benzene bioremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzene" title="benzene">benzene</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20anaerobic%20bioremediation" title=" enhanced anaerobic bioremediation"> enhanced anaerobic bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope%20probing" title=" stable isotope probing"> stable isotope probing</a>, <a href="https://publications.waset.org/abstracts/search?q=biosep%20biotrap" title=" biosep biotrap"> biosep biotrap</a> </p> <a href="https://publications.waset.org/abstracts/50612/identifying-dominant-anaerobic-microorganisms-for-degradation-of-benzene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">613</span> Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20E.%20Okere">Samuel E. Okere</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20E.%20Ataga"> Anthony E. Ataga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20substrate" title=" spent substrate"> spent substrate</a> </p> <a href="https://publications.waset.org/abstracts/113310/characterization-of-the-microorganisms-associated-with-pleurotus-ostractus-and-pleurotus-tuber-regium-spent-mushroom-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">612</span> Impact of Gold and Silver Nanoparticles on Terrestrial Flora and Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Steponavi%C4%8Di%C5%ABt%C4%97">L. Steponavičiūtė</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Steponavi%C4%8Dien%C4%97"> L. Steponavičienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the rapid nanotechnology progress and recognition, its potential impact in ecosystems and health of humans is still not fully known. In this paper, the study of ecotoxicological dangers of nanomaterials is presented. By chemical reduction method, silver (AgNPs) and gold (AuNPs) nanoparticles were synthesized, characterized and used in experiments to examine their impact on microorganisms (<em>Escherichia coli</em>, <em>Staphylococcus aureus</em> and <em>Candida albicans</em>) and terrestrial flora (<em>Phaseolus vulgaris</em> and <em>Lepidium sativum</em>). The results collected during experiments with terrestrial flora show tendentious growth stimulations caused by gold nanoparticles. In contrast to these results, silver nanoparticle solutions inhibited growth of beans and garden cress, compared to control samples. The results obtained from experiments with microorganisms show similarities with ones collected from experiments with terrestrial plants. Samples treated with AuNPs of size 13 nm showed stimulation in the growth of the colonies compared with 3,5 nm size nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title="nanomaterials">nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotoxicology" title=" ecotoxicology"> ecotoxicology</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystems" title=" ecosystems"> ecosystems</a> </p> <a href="https://publications.waset.org/abstracts/44974/impact-of-gold-and-silver-nanoparticles-on-terrestrial-flora-and-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">611</span> Natural Preservatives: An Alternative for Chemical Preservative Used in Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerrin%20Erginkaya">Zerrin Erginkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6zde%20Konuray"> Gözde Konuray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=animal%20origin%20preservatives" title="animal origin preservatives">animal origin preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20preservatives" title=" chemical preservatives"> chemical preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20preservatives" title=" herbal preservatives"> herbal preservatives</a> </p> <a href="https://publications.waset.org/abstracts/61833/natural-preservatives-an-alternative-for-chemical-preservative-used-in-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">610</span> Drug Sensitivity Pattern of Organisms Causing Chronic Suppurative Otitis Media </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20M.%20Benrabha">Fatma M. Benrabha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to determine the type and pattern of antibiotic susceptibility of the pathogenic microorganisms causing chronic suppurative otitis media (CSOM), which could lead to better therapeutic decisions and consequently avoidance of appearance of resistance to specific antibiotics. Most frequently isolated agents were Pseudomonas aeruginosa 28.5%; followed by Staphylococcus aureus 18.2%; proteus mirabilis 13.9%; Providencia stuartti 6.7%; Bacteroides melaninogenicus, Aspergillus sp., candida sp., 4.2% each; and other microorganisms were represented in 3-0.2%. Drug sensitivities pattern of Pseudomonas aeruginosa showed that ciprofloxacin was active against the majority of isolates (93.9%) followed by ceftazidime 86.2%, amikacin 76.2% and gentamicin 40.8%. However, Staphylococcus aureus isolates were resistant to penicillin 72.7%, erythromycin 28.6%, cephalothin 18.2%, cloxacillin 8.3% and ciprofloxacin was active against 96.2% of isolates. The resistance pattern of proteus mirabilis were 55.6% to ampicillin, 47.1% to carbencillin, 29.4% to cephalothin, 14.3% to gentamicin and 4.8% to amikacin while 100% were sensitive to ciprofloxacin. We conclude that ciprofloxacin is the best drug of choice in treatment of CSOM caused by the common microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=otitis%20media" title="otitis media">otitis media</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20suppurative%20otitis%20media%20%28CSOM%29" title=" chronic suppurative otitis media (CSOM)"> chronic suppurative otitis media (CSOM)</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20sensitivity" title=" drug sensitivity"> drug sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/3018/drug-sensitivity-pattern-of-organisms-causing-chronic-suppurative-otitis-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">609</span> Bioremediation of PAHs-Contaminated Soil Using Land Treatment Processes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Eskandary">Somaye Eskandary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are present in crude oil and its derivatives contaminate soil and also increase carcinogen and mutagen contamination, which is a concern for researchers. Land farming is one of the methods that remove pollutants from the soil by native microorganisms. It seems that this technology is cost-effective, environmentally friendly and causes less debris problem to be disposed. This study aimed to refine the polycyclic aromatic hydrocarbons from oil-contaminated soil using the land farming method. In addition to examine the concentration of polycyclic aromatic hydrocarbons by GC-FID, some characteristics such as soil microbial respiration and dehydrogenase, peroxidase, urease, acid and alkaline phosphatase enzyme concentration were also measured. The results showed that after land farming process the concentrations of some polycyclic aromatic hydrocarbons dropped to 50 percent. The results showed that the enzyme concentration is reduced by reducing the concentration of hydrocarbons and microbial respiration. These results emphasize the process of land farming for removal of polycyclic aromatic hydrocarbons from soil by indigenous microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title="soil contamination">soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20microorganisms" title=" native microorganisms"> native microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzymes" title=" soil enzymes"> soil enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20respiration" title=" microbial respiration"> microbial respiration</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogen" title=" carcinogen"> carcinogen</a> </p> <a href="https://publications.waset.org/abstracts/5748/bioremediation-of-pahs-contaminated-soil-using-land-treatment-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">608</span> Microbial Corrosion on Oil and Gas Facilities: A Case Study of Oil and Gas Facilities in the Niger-Delta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frederick%20Otite%20Ighovojah">Frederick Otite Ighovojah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion in the oil and gas industries is one of the most common causes of failure. Such failure includes leaks in above-ground storage tanks (AGST). The involvement of microorganisms in the corrosion process in AGST systems is often ignored, and this outlines the need to investigate the effect of microbial corrosion in oil and gas facilities. This study's methodology comprised gathering generated water samples from a nearby AGST oil facility that was operating, which were then equally divided into two batch reactors, 1 and 2. Each batch reactor was filled with five prepared X60 coupons using sterilized forceps. To provide nutrients for the microorganisms in batch reactor 1 during the test period, 2g of NPK 15- 15-15 fertilizer was added on a weekly basis. To kill the microorganisms and significantly lower their concentration in the generated water, 5ml of dissolved ozone (a biocide) with a 0.5ppm concentration was added to batch reactor 2. The weight loss measurement (WLM) was used to evaluate for corrosion. Coupons were removed from each batch reactor, and weight loss was measured at every interval of 336 hrs for 2016 hrs. The overall results obtained indicated that coupons from the batch 1 reactor showed a higher corrosion rate and higher mass loss, and this was due to the metabolic production of an aggressive compound in the medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AGST" title="AGST">AGST</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20corrosion" title=" microbial corrosion"> microbial corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=X60%20steel" title=" X60 steel"> X60 steel</a> </p> <a href="https://publications.waset.org/abstracts/165728/microbial-corrosion-on-oil-and-gas-facilities-a-case-study-of-oil-and-gas-facilities-in-the-niger-delta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">607</span> Antibacterial and Antifungal Activities of the Essential Oil of Pulicaria jaubertii Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Methaq%20Algabr">Methaq Algabr</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Al-Hajj"> Nabil Al-Hajj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameerh%20Jaber"> Ameerh Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Amtellah%20Alshotobi"> Amtellah Alshotobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaima%27a%20Al-suryhi"> Shaima'a Al-suryhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gadah%20Whaban"> Gadah Whaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Nawal%20Alshehari"> Nawal Alshehari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steam distillation of the essential oil of P. jaubertii was performed using a Clevenger apparatus. Essential oils were analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled to chromatography–mass spectrometry (GC-MS). The major chemical components identified in P. jaubertii essential oil include carvotanacetone (63.975%), 1-methyl-1,2-propanedione (5.887%), 2,5-dimethoxy-para-cymene (3.303%) and ar-curcumene (3.276%). The antimicrobial activity of the essential oil of P. jaubertii was evaluated against all tested microorganisms. P. jaubertii essential oil inhibited all tested microorganisms except Escherichia coli with a minimum inhibitory concentration (MIC) of 5.0 μg/mL against Staphylococcus aureus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pulicaria%20jaubertii" title="Pulicaria jaubertii">Pulicaria jaubertii</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=Carvotancetone" title=" Carvotancetone"> Carvotancetone</a> </p> <a href="https://publications.waset.org/abstracts/160906/antibacterial-and-antifungal-activities-of-the-essential-oil-of-pulicaria-jaubertii-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">606</span> Effect of Antimony on Microorganisms in Aerobic and Anaerobic Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barrera%20C.%20Monserrat">Barrera C. Monserrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sierra-Alvarez%20Reyes"> Sierra-Alvarez Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Pat-Espadas%20Aurora"> Pat-Espadas Aurora</a>, <a href="https://publications.waset.org/abstracts/search?q=Moreno%20Andrade%20Ivan"> Moreno Andrade Ivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antimony is a toxic and carcinogenic metalloid considered a pollutant of priority interest by the United States Environmental Protection Agency. It is present in the environment in two oxidation states: antimonite (Sb (III)) and antimony (Sb (V)). Sb (III) is toxic to several aquatic organisms, but the potential inhibitory effect of Sb species for microorganisms has not been extensively evaluated. The fate and possible toxic impact of antimony on aerobic and anaerobic wastewater treatment systems are unknown. For this reason, the objective of this study was to evaluate the microbial toxicity of Sb (V) and Sb (III) in aerobic and anaerobic environments. Sb(V) and Sb(III) were used as potassium hexahydroxoantimonate (V) and potassium antimony tartrate, respectively (Sigma-Aldrich). The toxic effect of both Sb species in anaerobic environments was evaluated on methanogenic activity and the inhibition of hydrogen production of microorganisms from a wastewater treatment bioreactor. For the methanogenic activity, batch experiments were carried out in 160 mL serological bottles; each bottle contained basal mineral medium (100 mL), inoculum (1.5 g of VSS/L), acetate (2.56 g/L) as substrate, and variable concentrations of Sb (V) or Sb (III). Duplicate bioassays were incubated at 30 ± 2°C on an orbital shaker (105 rpm) in the dark. Methane production was monitored by gas chromatography. The hydrogen production inhibition tests were carried out in glass bottles with a working volume of 0.36 L. Glucose (50 g/L) was used as a substrate, pretreated inoculum (5 g VSS/L), mineral medium and varying concentrations of the two species of antimony. The bottles were kept under stirring and at a temperature of 35°C in an AMPTSII device that recorded hydrogen production. The toxicity of Sb on aerobic microorganisms (from a wastewater activated sludge treatment plant) was tested with a Microtox standardized toxicity test and respirometry. Results showed that Sb (III) is more toxic than Sb (V) for methanogenic microorganisms. Sb (V) caused a 50% decrease in methanogenic activity at 250 mg/L. In contrast, exposure to Sb (III) resulted in a 50% inhibition at a concentration of only 11 mg/L, and an almost complete inhibition (95%) at 25 mg/L. For hydrogen-producing microorganisms, Sb (III) and Sb (V) inhibited 50% of this production with 12.6 mg/L and 87.7 mg/L, respectively. The results for aerobic environments showed that 500 mg/L of Sb (V) do not inhibit the Allivibrio fischeri (Microtox) activity or specific oxygen uptake rate of activated sludge. In the case of Sb (III), this caused a loss of 50% of the respiration of the microorganisms at concentrations below 40 mg/L. The results obtained indicate that the toxicity of the antimony will depend on the speciation of this metalloid and that Sb (III) has a significantly higher inhibitory potential compared to Sb (V). It was shown that anaerobic microorganisms can reduce Sb (V) to Sb (III). Acknowledgments: This work was funded in part by grants from the UA-CONACYT Binational Consortium for the Regional Scientific Development and Innovation (CAZMEX), the National Institute of Health (NIH ES- 04940), and PAPIIT-DGAPA-UNAM (IN105220). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20inhibition" title="aerobic inhibition">aerobic inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=antimony%20reduction" title=" antimony reduction"> antimony reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20inhibition" title=" hydrogen inhibition"> hydrogen inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenic%20toxicity" title=" methanogenic toxicity"> methanogenic toxicity</a> </p> <a href="https://publications.waset.org/abstracts/124138/effect-of-antimony-on-microorganisms-in-aerobic-and-anaerobic-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">605</span> High Touch Objects and Infection Control in Intensive Care Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shakiera%20Sallie">Shakiera Sallie</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20James"> Angela James</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global concern about healthcare-associated infections through the transmission of microorganisms, resulting in outbreaks in overcrowded intensive care units (ICU), is current. Medical equipment and surfaces in the immediate patient zone, the high-touch objects, may become contaminated. A study was conducted across six intensive care units in a healthcare facility to determine the understanding and practice of the cleaning of high-touch objects (HTO), and an intervention program was undertaken. A mixed-method approach with the selection of ICUs, HTOs, and healthcare personnel was undertaken. Data collection included Ultra-Violet instruments, a questionnaire, and an intervention. In the pre-intervention, 41 (52.5%) of the healthcare personnel (n=78) rated their understanding of HTOs as “sufficient”; post-intervention, it was 67 (75%), (n=89), p=0.0015, indicates an improvement. The UV stamp percentage compliance to indicate whether cleaning of the HTOs had taken place across the six intensive care units before the intervention ranged from 0% compliance to 88% compliance, and after, it ranged from 67% to 91%. An intervention program on the cleaning of HTOs and the transmission cycle of microorganisms in the ICUs enhanced the healthcare personnel’s understanding and practices on the importance of environmental cleaning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20touch%20objects" title="high touch objects">high touch objects</a>, <a href="https://publications.waset.org/abstracts/search?q=infections" title=" infections"> infections</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care%20units" title=" intensive care units"> intensive care units</a>, <a href="https://publications.waset.org/abstracts/search?q=intervention%20program" title=" intervention program"> intervention program</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a> </p> <a href="https://publications.waset.org/abstracts/156780/high-touch-objects-and-infection-control-in-intensive-care-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=micro-organisms&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>