CINXE.COM

Search results for: rotavator blades

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rotavator blades</title> <meta name="description" content="Search results for: rotavator blades"> <meta name="keywords" content="rotavator blades"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rotavator blades" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rotavator blades"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 170</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rotavator blades</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Reduction of Wear via Hardfacing of Rotavator Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh%20Randhawa">Gurjinder Singh Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonny%20Garg"> Jonny Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhraj%20Singh"> Sukhraj Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema"> Gurmeet Singh Cheema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major problem related to the use of rotavator is wear of rotavator blades due to abrasion by soil hard particles, as it seriously affects tillage quality and agricultural production economy. The objective of this study was to increase the wear resistance by covering the rotavator blades with two different hard facing electrodes. These blades are generally produced from low carbon or low alloy steel. During the field work i.e. preparing land for the cultivation these blades are subjected to severe wear conditions. Comparative wear tests on a regular rotavator blade and two kinds of hardfacing with electrodes were conducted in the field. These two different hardfacing electrodes, which are designated HARD ALLOY-400 and HARD ALLOY-650, were used for hardfacing. The wear rate in the field tests was found to be significantly different statistically. When the cost is taken into consideration; HARD ALLOY-650 and HARD ALLOY-400 have been found to be the best hardfacing electrodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardfacing" title="hardfacing">hardfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotavator%20blades" title=" rotavator blades"> rotavator blades</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20alloy-400" title=" hard alloy-400"> hard alloy-400</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasive%20wear" title=" abrasive wear"> abrasive wear</a> </p> <a href="https://publications.waset.org/abstracts/52466/reduction-of-wear-via-hardfacing-of-rotavator-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Effect of Various Tillage Systems on Soil Compaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar">Sushil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Jain"> Mukesh Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijaya%20Rani"> Vijaya Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prime importance of tillage is that it prepares the land where the seed easily germinate and later the plant can well establish. Using different types of equipments driven manually or by powered, machines make the soil suitable to place the seeds into the desirable depth. Moreover, tillage loosens the compacted layers. Heavy equipment and tillage implements can cause damage to the soil structure. Effect of various tillage methods on soil compaction was studied in Rabi season of 2013-14 at village Ladwa, Hisar, Haryana (India). The experiments studied the effect of six tillage treatments i.e. no tillage or zero tillage (T1), tillage with rotavator (T2), disc harrow (T3), rotavator + sub soiler (T4), disc harrow + sub soiler (T5) and power harrow (T6) on soil compaction. Soil compaction was measured before tillage and after sowing at 0, 30, 60 and 90 days after sowing. No change in soil resistance was recorded before and after no tillage treatment. Maximum soil resistance was found in zero tillage followed by disc harrow up to 150 mm soil depth. Minimum soil resistance was found in rotavator immediately after the tillage treatment. However, the soil resistance approached the same level as it had been before the tillage after the soil strata where the implement cannot reach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage" title="tillage">tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20tillage" title=" no tillage"> no tillage</a>, <a href="https://publications.waset.org/abstracts/search?q=rotavator" title=" rotavator"> rotavator</a>, <a href="https://publications.waset.org/abstracts/search?q=subsoiler" title=" subsoiler"> subsoiler</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction" title=" compaction"> compaction</a> </p> <a href="https://publications.waset.org/abstracts/92819/effect-of-various-tillage-systems-on-soil-compaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kalvin">Roman Kalvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Anam%20Nadeem"> Anam Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Arif"> Saba Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbocharger" title="turbocharger">turbocharger</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blades" title=" turbine blades"> turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20steel" title=" structural steel"> structural steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/97552/stress-analysis-of-turbine-blades-of-turbocharger-using-structural-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Environmental Impacts on the Appearance of Disbonds in Metal Rotor Blades of Mi-2 Helicopters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Synaszko">Piotr Synaszko</a>, <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Sa%C5%82aci%C5%84ski"> Michał Sałaciński</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Leski"> Andrzej Leski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the analysis of construction Mi-2 helicopter rotor blades in order to determine the causes of appearance disbonds. Authors describe construction of rotor blade with impact on bonded joins and areas of water migration. They also made analysis which determines possibility of disbond between critical parts of rotor blades based on more than one hundred non-destructive inspections results. They showed which parts of the blades most likely to damage. The main source of damage is water presence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disbonds" title="disbonds">disbonds</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20effect" title=" environmental effect"> environmental effect</a>, <a href="https://publications.waset.org/abstracts/search?q=helicopter%20rotor%20blades" title=" helicopter rotor blades"> helicopter rotor blades</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20life%20extension" title=" service life extension"> service life extension</a> </p> <a href="https://publications.waset.org/abstracts/46613/environmental-impacts-on-the-appearance-of-disbonds-in-metal-rotor-blades-of-mi-2-helicopters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Improvement of Fatigue and Fatigue Corrosion Resistances of Turbine Blades Using Laser Cladding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sami%20I.%20Jafar">Sami I. Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20A.%20Ajeel"> Sami A. Ajeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaman%20A.%20Abdulwahab"> Zaman A. Abdulwahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbine blades used in electric power plants are made of low alloy steel type 52. These blades will be subjected to fatigue and also at other times to fatigue corrosion with aging time. Due to their continuous exposure to cyclic rotational stresses in corrosive steam environments, The current research aims to deal with this problem using the laser cladding method for low alloy steel type 52, which works to re-compose the metallurgical structure and improve the mechanical properties by strengthening the resulting structure, which leads to an increase in fatigue and wears resistance, therefore, an increase in the life of these blades is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20corrosion" title=" fatigue corrosion"> fatigue corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blades" title=" turbine blades"> turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cladding" title=" laser cladding"> laser cladding</a> </p> <a href="https://publications.waset.org/abstracts/143461/improvement-of-fatigue-and-fatigue-corrosion-resistances-of-turbine-blades-using-laser-cladding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Analyzing the Feasibility of Low-Cost Composite Wind Turbine Blades for Residential Energy Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aravindhan%20Nepolean">Aravindhan Nepolean</a>, <a href="https://publications.waset.org/abstracts/search?q=Chidamabaranathan%20Bibin"> Chidamabaranathan Bibin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K."> Rajesh K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopinath%20S."> Gopinath S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20R."> Ashok Kumar R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar%20S."> Arun Kumar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadasivan%20N."> Sadasivan N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind turbine blades are an important parameter for surging renewable energy production. Optimizing blade profiles and developing new materials for wind turbine blades take a lot of time and effort. Even though many standards for wind turbine blades have been developed for large-scale applications, they are not more effective in small-scale applications. We used acrylonitrile-butadiene-styrene to make small-scale wind turbine blades in this study (ABS). We chose the material because it is inexpensive and easy to machine into the desired form. They also have outstanding chemical, stress, and creep resistance. The blade measures 332 mm in length and has a 664 mm rotor diameter. A modal study of blades is carried out, as well as a comparison with current e-glass fiber. They were able to balance the output with less vibration, according to the findings. Q blade software is used to simulate rotating output. The modal analysis testing and prototype validation of wind turbine blades were used for experimental validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylonitrile-butadiene-styrene" title="acrylonitrile-butadiene-styrene">acrylonitrile-butadiene-styrene</a>, <a href="https://publications.waset.org/abstracts/search?q=e-glass%20fiber" title=" e-glass fiber"> e-glass fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=modal" title=" modal"> modal</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=q-blade" title=" q-blade"> q-blade</a> </p> <a href="https://publications.waset.org/abstracts/137455/analyzing-the-feasibility-of-low-cost-composite-wind-turbine-blades-for-residential-energy-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Wind Turbine Powered Car Uses 3 Single Big C-Section Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Youssef">K. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87.%20H%C3%BCseyin"> Ç. Hüseyin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The blades of a wind turbine have the most important job of any wind turbine component; they must capture the wind and convert it into usable mechanical energy. The objective of this work is to determine the mechanical power of single big C-section of vertical wind turbine for wind car in a two-dimensional model. The wind car has a vertical axis with 3 single big C-section blades mounted at an angle of 120°. Moreover, the three single big C-section blades are directly connected to wheels by using various kinds of links. Gears are used to convert the wind energy to mechanical energy to overcome the load exercised on the main shaft under low speed. This work allowed a comparison of drag characteristics and the mechanical power between the single big C-section blades with the previous work on 3 C-section and 3 double C-section blades for wind car. As a result obtained from the flow chart the torque and power curves of each case study are illustrated and compared with each other. In particular, drag force and torque acting on each types of blade was taken at an airflow speed of 4 m/s, and an angular velocity of 13.056 rad/s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20wind%20turbine" title=" vertical wind turbine"> vertical wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20characteristics" title=" drag characteristics"> drag characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20power" title=" mechanical power"> mechanical power</a> </p> <a href="https://publications.waset.org/abstracts/16229/wind-turbine-powered-car-uses-3-single-big-c-section-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Vibration Signals of Small Vertical Axis Wind Turbines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqoul%20H.%20H.%20Alanezy">Aqoul H. H. Alanezy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Abdelsalam"> Ali M. Abdelsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouby%20M.%20Ghazaly"> Nouby M. Ghazaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savonius%20type%20wind%20turbine" title="Savonius type wind turbine">Savonius type wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20blades" title=" number of blades"> number of blades</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signals" title=" vibration signals "> vibration signals </a> </p> <a href="https://publications.waset.org/abstracts/106098/vibration-signals-of-small-vertical-axis-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Design and Analysis of Blade Length and Number of Blades of Small Horizontal Axis Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Gul">Ali Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhart%20Kumar"> Bhart Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Samiullah%20Ansari"> Samiullah Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current research is focused on the study of various lengths of blades (i.e. 1 to 5m) and several bladed rotors (3,5,7 & 9) of small horizontal axis wind turbine under low wind conditions usingQBlade software. Initially, the rotor was designed using airfoil SG6043 with five different lengths of the blades. Subsequently, simulations were carried out in which, under low wind regimes, the power output was observed. Further, four rotors having 3,5,7 & 9 blades were analyzed. However, the most promising coefficient of performance (CP) was observed at the 3-bladed rotor. Both studies established a clear view of harvesting wind energy at low wind speeds that can be mobilized in the energy sector. That suggests the utilization of wind energy at the domestic levelwhich is acceleratory growing in the last few decades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20HAWT" title="small HAWT">small HAWT</a>, <a href="https://publications.waset.org/abstracts/search?q=QBlade" title=" QBlade"> QBlade</a>, <a href="https://publications.waset.org/abstracts/search?q=BEM" title=" BEM"> BEM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/145078/design-and-analysis-of-blade-length-and-number-of-blades-of-small-horizontal-axis-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahimi%20Dehgolan">F. Rahimi Dehgolan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Khadem"> S. E. Khadem</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bab"> S. Bab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafee"> M. Najafee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20shaft" title="rotating shaft">rotating shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20blades" title=" flexible blades"> flexible blades</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20stiffness" title=" centrifugal stiffness"> centrifugal stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/56540/linear-dynamic-stability-analysis-of-a-continuous-rotor-disk-blades-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Aerodynamics of Nature Inspired Turbine Blade Using Computational Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung%20Ki%20Lee">Seung Ki Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kyung"> Richard Kyung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the airfoil analysis, as the camber is greater, the minimal angle of attack causing the stall and maximum lift force increases. The shape of the turbine blades is similar to the shape of the wings of planes. After major wars, many remarkable blade shapes are made through researches about optimal blade shape. The blade shapes developed by National Advisory Committee for Aeronautics, NACA, is well known. In this paper, using computational and numerical analysis, the NACA airfoils are analyzed. This research shows that the blades vary with their thickness, which thinner blades are expected to be better. There is no significant difference of coefficient of lift due to the difference in thickness, but the coefficient of drag increases as the thickness increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blades" title="blades">blades</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20force" title=" drag force"> drag force</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20advisory%20committee%20for%20aeronautics%20airfoils" title=" national advisory committee for aeronautics airfoils"> national advisory committee for aeronautics airfoils</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine" title=" turbine "> turbine </a> </p> <a href="https://publications.waset.org/abstracts/73860/aerodynamics-of-nature-inspired-turbine-blade-using-computational-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Calculus of Turbojet Performances for Ideal Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bennoud">S. Bennoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hocine"> S. Hocine</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Slme"> H. Slme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developments in turbine cooling technology play an important role in increasing the thermal efficiency and the power output of recent gas turbines, in particular the turbojets. Advanced turbojets operate at high temperatures to improve thermal efficiency and power output. These temperatures are far above the permissible metal temperatures. Therefore, there is a critical need to cool the blades in order to give theirs a maximum life period for safe operation. The focused objective of this work is to calculate the turbojet performances, as well as the calculation of turbine blades cooling. The developed application able the calculation of turbojet performances to different altitudes in order to find a point of optimal use making possible to maintain the turbine blades at an acceptable maximum temperature and to limit the local variations in temperatures in order to guarantee their integrity during all the lifespan of the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brayton%20cycle" title="brayton cycle">brayton cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blades%20cooling" title=" turbine blades cooling"> turbine blades cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=turbojet%20cycle" title=" turbojet cycle"> turbojet cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=turbojet%20performances" title=" turbojet performances"> turbojet performances</a> </p> <a href="https://publications.waset.org/abstracts/4365/calculus-of-turbojet-performances-for-ideal-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liubov%20Magerramova">Liubov Magerramova</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Kratt"> Eugene Kratt</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Presniakov"> Pavel Presniakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20technologies" title="additive technologies">additive technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20engine" title=" gas turbine engine"> gas turbine engine</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20technology" title=" powder technology"> powder technology</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20wheel" title=" turbine wheel"> turbine wheel</a> </p> <a href="https://publications.waset.org/abstracts/66360/application-of-powder-metallurgy-technologies-for-gas-turbine-engine-wheel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Sediment Trapping by Seagrass Blades under Oscillatory Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aina%20Barcelona">Aina Barcelona</a>, <a href="https://publications.waset.org/abstracts/search?q=Carolyn%20Oldham"> Carolyn Oldham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Colomer"> Jordi Colomer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordi%20Garcia-Orellana"> Jordi Garcia-Orellana</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20Serra"> Teresa Serra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seagrass meadows increase the sedimentation within the canopy. However, there is still a lack of knowledge about how seagrasses impact the vertical distribution of sediment coming from external sources and reaches the meadow. This study aims to determine the number of particles retained by a seagrass meadow. Based on the hydrodynamics in the vertical direction, a meadow can be separated into different compartments: the blades, the seabed, within the canopy layer, and the above canopy layer. A set of laboratory experiments were conducted under different hydrodynamic conditions and canopy densities with the purpose to mimic the real field conditions. This study demonstrates and quantifies that seagrass meadows decrease the volume of the suspended sediment by two mechanisms: capturing the suspended sediment by the seagrass blades and promoting the particle sedimentation to the seabed. This study also demonstrates that the number of sediment particles trapped by single seagrass blades decreases with canopy density. However, when considering the trapping by the total number of blades, the sediment captured by all the blades of the meadow increases with canopy density. Furthermore, comparing with the bare seabed, this study demonstrated that there is a reduction in the suspended particles within the canopy, which implies an improvement in the water clarity. In addition, the particle sedimentation on the seabed increases with the canopy density compared with the bare seabed, making evident the contribution of the vegetation in enhancing sedimentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seagrass" title="seagrass">seagrass</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20capture" title=" sediment capture"> sediment capture</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20kinetic%20energy" title=" turbulent kinetic energy"> turbulent kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatory%20flow" title=" oscillatory flow"> oscillatory flow</a> </p> <a href="https://publications.waset.org/abstracts/135085/sediment-trapping-by-seagrass-blades-under-oscillatory-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations&#039; Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliia%20N.%20Butymova">Liliia N. Butymova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Y.%20Modorsky"> Vladimir Y. Modorsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20A.%20Shevelev"> Nikolai A. Shevelev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroelasticity" title="aeroelasticity">aeroelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20CFX" title=" ANSYS CFX"> ANSYS CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillation" title=" oscillation"> oscillation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20shift" title=" phase shift"> phase shift</a>, <a href="https://publications.waset.org/abstracts/search?q=clocking%20effect" title=" clocking effect"> clocking effect</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a> </p> <a href="https://publications.waset.org/abstracts/45119/numerical-simulation-of-aeroelastic-influence-exerted-by-kinematic-and-geometrical-parameters-on-oscillations-frequencies-and-phase-shift-angles-in-a-simulated-compressor-of-gas-transmittal-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Fracture Energy Corresponding to the Puncture/Cutting of Nitrile Rubber by Pointed Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ennouri%20Triki">Ennouri Triki</a>, <a href="https://publications.waset.org/abstracts/search?q=Toan%20Vu-Khanh"> Toan Vu-Khanh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resistance to combined puncture/cutting by pointed blades is an important property of gloves materials. The purpose of this study is to propose an approach derived from the fracture mechanics theory to calculate the fracture energy associated to the puncture/cutting of nitrile rubber. The proposed approach is also based on the application of a sample pre-strained during the puncture/cutting test in order to remove the contribution of friction. It was validated with two different pointed blade angles of 22.5° and 35°. Results show that the applied total fracture energy corresponding to puncture/cutting is controlled by three energies, one is the fracture energy or the intrinsic strength of the material, the other reflects the friction energy between a pointed blade and the material. For an applied pre-strain energy (or tearing energy) of high value, the friction energy is completely removed. Without friction, the total fracture energy is constant. In that case, the fracture contribution of the tearing energy is marginal. Growth of the crack is thus completely caused by the puncture/cutting by a pointed blade. Finally, results suggest that the value of the fracture energy corresponding to puncture/cutting by pointed blades is obtained at a frictional contribution of zero. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomer" title="elastomer">elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=pointed%20blades" title=" pointed blades"> pointed blades</a> </p> <a href="https://publications.waset.org/abstracts/35346/fracture-energy-corresponding-to-the-puncturecutting-of-nitrile-rubber-by-pointed-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Reusing of HSS Hacksaw Blades as Rough Machining Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raja%20V.">Raja V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokkalingam%20B."> Chokkalingam B.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20steels" title=" high speed steels"> high speed steels</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20hacksaw%20blade" title=" power hacksaw blade"> power hacksaw blade</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/23057/reusing-of-hss-hacksaw-blades-as-rough-machining-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi%20Zhang">Chi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hua-Peng%20Chen"> Hua-Peng Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reinforced%20fibre%20composite" title="Reinforced fibre composite">Reinforced fibre composite</a>, <a href="https://publications.waset.org/abstracts/search?q=Wind%20turbine%20blades" title=" Wind turbine blades"> Wind turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatigue%20delamination" title=" Fatigue delamination"> Fatigue delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Mixed%20failure%20mode" title=" Mixed failure mode"> Mixed failure mode</a>, <a href="https://publications.waset.org/abstracts/search?q=Stochastic%20process." title=" Stochastic process."> Stochastic process.</a> </p> <a href="https://publications.waset.org/abstracts/36619/stochastic-modelling-for-mixed-mode-fatigue-delamination-growth-of-wind-turbine-composite-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> The High Temperature Damage of DV–2 Turbine Blade Made from Ni–Base Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Belan">Juraj Belan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Hurtalov%C3%A1"> Lenka Hurtalová</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Tillov%C3%A1"> Eva Tillová</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Va%C5%A1ko"> Alan Vaško</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Uhr%C3%AD%C4%8Dik"> Milan Uhríčik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-pressure turbine (HPT) blades of DV–2 jet engines are made from Ni–base superalloy, a former Soviet Union production, specified as ŽS6K. For improving its high-temperature resistance are blades covered with Al–Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An over-crossing working temperature range causes degradation of protective alitize layer as well as base material–gamma matrix and gamma prime particles what decreases turbine blade lifetime. High-temperature degradation has mainly diffusion mechanism and causes coarsening of strengthening phase gamma prime and protective alitize layer thickness growing. All changes have a significant influence on high-temperature properties of base material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alitize%20layer" title="alitize layer">alitize layer</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20prime%20phase" title=" gamma prime phase"> gamma prime phase</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20degradation" title=" high-temperature degradation"> high-temperature degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%E2%80%93base%20superalloy%20%C5%BDS6K" title=" Ni–base superalloy ŽS6K"> Ni–base superalloy ŽS6K</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade" title=" turbine blade"> turbine blade</a> </p> <a href="https://publications.waset.org/abstracts/20085/the-high-temperature-damage-of-dv-2-turbine-blade-made-from-ni-base-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Mistuning in Radial Inflow Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Futoryanova">Valentina Futoryanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugh%20Hunt"> Hugh Hunt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the common failure modes of the diesel engine turbochargers is high cycle fatigue of the turbine wheel blades. Mistuning of the blades due to the casting process is believed to contribute to the failure mode. Laser vibrometer is used to characterize mistuning for a population of turbine wheels through the analysis of the blade response to piezo speaker induced noise. The turbine wheel design under investigation is radial and is typically used in 6-12 L diesel engine applications. Amplitudes and resonance frequencies are reviewed and summarized. The study also includes test results for a paddle wheel that represents a perfectly tuned system and acts as a reference. Mass spring model is developed for the paddle wheel and the model suitability is tested against the actual data. Randomization is applied to the stiffness matrix to model the mistuning effect in the turbine wheels. Experimental data is shown to have good agreement with the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20turbines" title=" radial turbines"> radial turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=mistuning" title=" mistuning"> mistuning</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blades" title=" turbine blades"> turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20structures" title=" periodic structures"> periodic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a> </p> <a href="https://publications.waset.org/abstracts/19840/mistuning-in-radial-inflow-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samah%20Laalej">Samah Laalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfattah%20Bouatem"> Abdelfattah Bouatem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade%20element%20momentum" title="blade element momentum">blade element momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20forces" title=" aerodynamic forces"> aerodynamic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blades" title=" wind turbine blades"> wind turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20approach" title=" computational fluid dynamics approach"> computational fluid dynamics approach</a> </p> <a href="https://publications.waset.org/abstracts/183094/application-of-a-hybrid-modified-blade-element-momentum-theorycomputational-fluid-dynamics-approach-for-wine-turbine-aerodynamic-performances-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Evaluation of an Air Energy Recovery System in Greenhouse Fed by an Axial Air Extractor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugueni%20Romantchik">Eugueni Romantchik</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilbero%20Lopez"> Gilbero Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Terrazas"> Diego Terrazas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The residual wind energy recovery from axial air extractors in greenhouses represents a constant source of clean energy production, which reduces production costs by reducing energy consumption costs. The objective of this work is to design, build and evaluate a residual wind energy recovery system. This system consists of a wind turbine placed at an optimal distance, a cone in the air discharge and a mechanism to vary the blades angle of the wind turbine. The system energy balance was analyzed, measuring the main energy parameters such as voltage, amperage, air velocities and angular speeds of the rotors. Tests were carried in a greenhouse with extractor Multifan 130 (1.2 kW, 550 rpm and 1.3 m of diameter) without cone and with cone, with the wind turbine (3 blades with 1.2 m in diameter). The implementation of the system allowed recovering up to 55% of the motor's energy. With the cone installed, the electric energy recovered was increased by 10%. Experimentally, it was shown that changing in 3 degrees the original angle of the wind turbine blades, the angular velocity increases 17.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20energy" title="air energy">air energy</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20fan" title=" exhaust fan"> exhaust fan</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/105900/evaluation-of-an-air-energy-recovery-system-in-greenhouse-fed-by-an-axial-air-extractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Liu">T. Y. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Lin"> C. H. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Ferng"> Y. M. Ferng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horizontal%20axis%20wind%20turbine" title="horizontal axis wind turbine">horizontal axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/3783/investigations-of-flow-field-with-different-turbulence-models-on-nrel-phase-vi-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> The Characteristics of the Operating Parameters of the Vertical Axis Wind Turbine for the Selected Wind Speed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kaminski">Zdzislaw Kaminski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Czyz"> Zbigniew Czyz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the results of the research into a wind turbine with a vertical axis of rotation which was performed with the open return wind tunnel, Gunt HM 170, at the laboratory of the Department of Thermodynamics, Fluid Mechanics and Propulsion Aviation Systems of Lublin University of Technology. Wind tunnel experiments are a necessary step to construct any new type of wind turbine, to validate design assumptions and numerical results. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angle α increases, the working surface which absorbs wind kinetic energy also increases. The study was performed on scaled and geometrically similar models with the criteria of similarity relevant for the type of research preserved. The rotors with varied angular apertures of their blades were printed for the research with a powder 3D printer, ZPrinter® 450. This paper presents the research results for the selected flow speed of 6.5 m/s for the three angular apertures of the rotor blades, i.e. 30°, 60°, 90° at varied speeds. The test stand enables the turbine rotor to be braked to achieve the required speed and airflow speed and torque to be recorded. Accordingly, the torque and power as a function of airflow were plotted. The rotor with its adjustable blades enables turbine power to be adjusted within a wide range of wind speeds. A variable angular aperture of blade working surfaces α in a wind turbine enables us to control the speed of the turbine and consequently its output power. Reducing the angular aperture of working surfaces results in reduced speed, and if a special current generator applied, electrical output power is reduced, too. Speed adjusted by changing angle α enables the maximum load acting on rotor blades to be controlled. The solution under study is a kind of safety against a damage of a turbine due to possible high wind speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drive%20torque" title="drive torque">drive torque</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a> </p> <a href="https://publications.waset.org/abstracts/50086/the-characteristics-of-the-operating-parameters-of-the-vertical-axis-wind-turbine-for-the-selected-wind-speed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayandi%20Ramanathan">Mayandi Ramanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20materials" title="high temperature materials">high temperature materials</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20strength" title=" specific strength"> specific strength</a>, <a href="https://publications.waset.org/abstracts/search?q=creep%20strain" title=" creep strain"> creep strain</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20composition" title=" phase composition"> phase composition</a> </p> <a href="https://publications.waset.org/abstracts/96645/phase-composition-analysis-of-ternary-alloy-materials-for-gas-turbine-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Phase Optimized Ternary Alloy Material for Gas Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayandi%20Ramanathan">Mayandi Ramanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title="gas turbine">gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=aerospace" title=" aerospace"> aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20strength" title=" specific strength"> specific strength</a>, <a href="https://publications.waset.org/abstracts/search?q=creep" title=" creep"> creep</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20materials" title=" high temperature materials"> high temperature materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alloys" title=" alloys"> alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20optimization" title=" phase optimization"> phase optimization</a> </p> <a href="https://publications.waset.org/abstracts/77173/phase-optimized-ternary-alloy-material-for-gas-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingchen%20Yang">Yingchen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unidirectional" title="unidirectional">unidirectional</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20axis" title=" vertical axis"> vertical axis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converter" title=" wave energy converter"> wave energy converter</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20rotor" title=" wave rotor"> wave rotor</a> </p> <a href="https://publications.waset.org/abstracts/94935/a-vertical-axis-unidirectional-rotor-with-nested-blades-for-wave-energy-conversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Environmental Life Cycle Assessment of Two Technologic Scenario of Wind Turbine Blades Composition for an Optimized Wind Turbine Design Using the Impact 2002+ Method and Using 15 Environmental Impact Indicators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jarrou">A. Jarrou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Iranzo"> A. Iranzo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Nana"> C. Nana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid development of the onshore/offshore wind industry and the continuous, strong, and long-term support from governments have made it possible to create factories specializing in the manufacture of the different parts of wind turbines, but in the literature, Life Cycle Assessment (LCA) analyzes consider the wind turbine as a whole and do not allow the allocation of impacts to the different components of the wind turbine. Here we propose to treat each part of the wind turbine as a system in its own right. This is more in line with the current production system. Environmental Life Cycle Assessment of two technological scenarios of wind turbine blades composition for an optimized wind turbine design using the impact 2002+ method and using 15 environmental impact indicators. This article aims to assess the environmental impacts associated with 1 kg of wind turbine blades. In order to carry out a realistic and precise study, the different stages of the life cycle of a wind turbine installation are included in the study (manufacture, installation, use, maintenance, dismantling, and waste treatment). The Impact 2002+ method used makes it possible to assess 15 impact indicators (human toxicity, terrestrial and aquatic ecotoxicity, climate change, land use, etc.). Finally, a sensitivity study is carried out to analyze the different types of uncertainties in the data collected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine%20blade" title=" turbine blade"> turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a> </p> <a href="https://publications.waset.org/abstracts/152116/environmental-life-cycle-assessment-of-two-technologic-scenario-of-wind-turbine-blades-composition-for-an-optimized-wind-turbine-design-using-the-impact-2002-method-and-using-15-environmental-impact-indicators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Pashayev">A. M. Pashayev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Samedov"> A. S. Samedov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Usubaliyev"> T. B. Usubaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Sh.%20Yusifov"> N. Sh. Yusifov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blades" title="gas turbine blades">gas turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20barrier%20coating" title=" thermal barrier coating"> thermal barrier coating</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20bond%20coat" title=" metallic bond coat"> metallic bond coat</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20metals" title=" strategic metals"> strategic metals</a>, <a href="https://publications.waset.org/abstracts/search?q=physical-chemical%20features" title=" physical-chemical features"> physical-chemical features</a> </p> <a href="https://publications.waset.org/abstracts/45588/the-role-of-strategic-metals-in-cr-al-pt-v-composition-of-protective-bond-coats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Vibro-Acoustic Modulation for Crack Detection in Windmill Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alnutayfat">Abdullah Alnutayfat</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Sutin"> Alexander Sutin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important types of renewable energy resources is wind energy which can be produced by wind turbines. The blades of the wind turbine are exposed to the pressure of the harsh environment, which causes a significant issue for the wind power industry in terms of the maintenance cost and failure of blades. One of the reliable methods for blade inspection is the vibroacoustic structural health monitoring (SHM) method which examines information obtained from the structural vibrations of the blade. However, all vibroacoustic SHM techniques are based on comparing the structural vibration of intact and damaged structures, which places a practical limit on their use. Methods for nonlinear vibroacoustic SHM are more sensitive to damage and cracking and do not need to be compared to data from the intact structure. This paper presents the Vibro-Acoustic Modulation (VAM) method based on the modulation of high-frequency (probe wave) by low-frequency loads (pump wave) produced by the blade rotation. The blade rotation alternates bending stress due to gravity, leading to crack size variations and variations in the blade resonance frequency. This method can be used with the classical SHM vibration method in which the blade is excited by piezoceramic actuator patches bonded to the blade and receives the vibration response from another piezoceramic sensor. The VAM modification of this method analyzes the spectra of the detected signal and their sideband components. We suggest the VAM model as the simple mechanical oscillator, where the parameters of the oscillator (resonance frequency and damping) are varied due to low-frequency blade rotation. This model uses the blade vibration parameters and crack influence on the blade resonance properties from previous research papers to predict the modulation index (MI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20blades" title="wind turbine blades">wind turbine blades</a>, <a href="https://publications.waset.org/abstracts/search?q=damaged%20detection" title=" damaged detection"> damaged detection</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic%20structural%20health%20monitoring" title=" vibro-acoustic structural health monitoring"> vibro-acoustic structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=vibro-acoustic%20modulation" title=" vibro-acoustic modulation"> vibro-acoustic modulation</a> </p> <a href="https://publications.waset.org/abstracts/161089/vibro-acoustic-modulation-for-crack-detection-in-windmill-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotavator%20blades&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotavator%20blades&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotavator%20blades&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotavator%20blades&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotavator%20blades&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rotavator%20blades&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10