CINXE.COM
Cauchy–Kovalevskaya theorem - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Cauchy–Kovalevskaya theorem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"12ab27cf-76cb-495f-bae4-84a794f0b94e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Cauchy–Kovalevskaya_theorem","wgTitle":"Cauchy–Kovalevskaya theorem","wgCurRevisionId":1184501270,"wgRevisionId":1184501270,"wgArticleId":46230112,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Augustin-Louis Cauchy","Partial differential equations","Theorems in analysis","Uniqueness theorems"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Cauchy–Kovalevskaya_theorem","wgRelevantArticleId":46230112,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[], "wgRestrictionMove":[],"wgRedirectedFrom":"Cauchy–Kowalevski_theorem","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":7000,"wgInternalRedirectTargetUrl":"/wiki/Cauchy%E2%80%93Kovalevskaya_theorem","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1614464","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform" ,"platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Cauchy–Kovalevskaya theorem - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Cauchy%E2%80%93Kovalevskaya_theorem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Cauchy%E2%80%93Kovalevskaya_theorem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Cauchy–Kovalevskaya_theorem rootpage-Cauchy–Kovalevskaya_theorem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Cauchy%E2%80%93Kovalevskaya+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Cauchy%E2%80%93Kovalevskaya+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Cauchy%E2%80%93Kovalevskaya+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Cauchy%E2%80%93Kovalevskaya+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-First_order_Cauchy–Kovalevskaya_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#First_order_Cauchy–Kovalevskaya_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>First order Cauchy–Kovalevskaya theorem</span> </div> </a> <ul id="toc-First_order_Cauchy–Kovalevskaya_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proof_by_analytic_majorization" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proof_by_analytic_majorization"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Proof by analytic majorization</span> </div> </a> <ul id="toc-Proof_by_analytic_majorization-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higher-order_Cauchy–Kovalevskaya_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Higher-order_Cauchy–Kovalevskaya_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Higher-order Cauchy–Kovalevskaya theorem</span> </div> </a> <button aria-controls="toc-Higher-order_Cauchy–Kovalevskaya_theorem-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Higher-order Cauchy–Kovalevskaya theorem subsection</span> </button> <ul id="toc-Higher-order_Cauchy–Kovalevskaya_theorem-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cauchy–Kovalevskaya–Kashiwara_theorem" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Cauchy–Kovalevskaya–Kashiwara_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Cauchy–Kovalevskaya–Kashiwara theorem</span> </div> </a> <button aria-controls="toc-Cauchy–Kovalevskaya–Kashiwara_theorem-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Cauchy–Kovalevskaya–Kashiwara theorem subsection</span> </button> <ul id="toc-Cauchy–Kovalevskaya–Kashiwara_theorem-sublist" class="vector-toc-list"> <li id="toc-Example_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Example</span> </div> </a> <ul id="toc-Example_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Cauchy–Kovalevskaya theorem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 9 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-9" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">9 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Teorema_de_Cauchy-Koval%C3%A9vskaia" title="Teorema de Cauchy-Kovalévskaia – Catalan" lang="ca" hreflang="ca" data-title="Teorema de Cauchy-Kovalévskaia" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Satz_von_Cauchy-Kowalewskaja" title="Satz von Cauchy-Kowalewskaja – German" lang="de" hreflang="de" data-title="Satz von Cauchy-Kowalewskaja" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teorema_de_Cauchy-Koval%C3%A9vskaya" title="Teorema de Cauchy-Kovalévskaya – Spanish" lang="es" hreflang="es" data-title="Teorema de Cauchy-Kovalévskaya" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Cauchy-Kowalevski" title="Théorème de Cauchy-Kowalevski – French" lang="fr" hreflang="fr" data-title="Théorème de Cauchy-Kowalevski" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%BD%94%EC%8B%9C-%EC%BD%94%EB%B0%9C%EB%A0%99%EC%8A%A4%EC%B9%B4%EC%95%BC_%EC%A0%95%EB%A6%AC" title="코시-코발렙스카야 정리 – Korean" lang="ko" hreflang="ko" data-title="코시-코발렙스카야 정리" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teorema_di_Cauchy-Kovalevskaya" title="Teorema di Cauchy-Kovalevskaya – Italian" lang="it" hreflang="it" data-title="Teorema di Cauchy-Kovalevskaya" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%EF%BC%9D%E3%82%B3%E3%83%AF%E3%83%AC%E3%83%95%E3%82%B9%E3%82%AB%E3%83%A4%E3%81%AE%E5%AE%9A%E7%90%86" title="コーシー=コワレフスカヤの定理 – Japanese" lang="ja" hreflang="ja" data-title="コーシー=コワレフスカヤの定理" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D0%BE%D1%88%D0%B8_%E2%80%94_%D0%9A%D0%BE%D0%B2%D0%B0%D0%BB%D0%B5%D0%B2%D1%81%D0%BA%D0%BE%D0%B9" title="Теорема Коши — Ковалевской – Russian" lang="ru" hreflang="ru" data-title="Теорема Коши — Ковалевской" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D0%BE%D1%88%D1%96_%E2%80%94_%D0%9A%D0%BE%D0%B2%D0%B0%D0%BB%D0%B5%D0%B2%D1%81%D1%8C%D0%BA%D0%BE%D1%97" title="Теорема Коші — Ковалевської – Ukrainian" lang="uk" hreflang="uk" data-title="Теорема Коші — Ковалевської" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1614464#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Cauchy%E2%80%93Kovalevskaya_theorem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Cauchy%E2%80%93Kovalevskaya_theorem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Cauchy%E2%80%93Kovalevskaya_theorem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Cauchy%E2%80%93Kovalevskaya_theorem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Cauchy%E2%80%93Kovalevskaya_theorem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Cauchy%E2%80%93Kovalevskaya_theorem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&oldid=1184501270" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Cauchy%E2%80%93Kovalevskaya_theorem&id=1184501270&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCauchy%25E2%2580%2593Kovalevskaya_theorem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCauchy%25E2%2580%2593Kovalevskaya_theorem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Cauchy%E2%80%93Kovalevskaya_theorem&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1614464" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Cauchy%E2%80%93Kowalevski_theorem&redirect=no" class="mw-redirect" title="Cauchy–Kowalevski theorem">Cauchy–Kowalevski theorem</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Existence and uniqueness theorem for certain partial differential equations</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks plainlist"><tbody><tr><th class="sidebar-title" style="background:#ccccff;display:block;margin-bottom:0.2em;"><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a></th></tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> Scope</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Fields</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><th class="sidebar-heading" style="padding-bottom:0;"> <div class="hlist"><ul><li><a href="/wiki/Natural_science" title="Natural science">Natural sciences</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;"> <ul><li><a href="/wiki/Astronomy" title="Astronomy">Astronomy</a></li> <li><a href="/wiki/Physics" title="Physics">Physics</a></li> <li><a href="/wiki/Chemistry" title="Chemistry">Chemistry</a></li> <li><br /><a href="/wiki/Biology" title="Biology">Biology</a></li> <li><a href="/wiki/Geology" title="Geology">Geology</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0;"> <a href="/wiki/Applied_mathematics" title="Applied mathematics">Applied mathematics</a></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;"> <ul><li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Chaos_theory" title="Chaos theory">Chaos theory</a></li> <li><a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">Dynamical systems</a></li></ul></td> </tr><tr><th class="sidebar-heading" style="padding-bottom:0;"> <a href="/wiki/Social_science" title="Social science">Social sciences</a></th></tr><tr><td class="sidebar-content hlist" style="padding-bottom:0.6em;;padding-bottom:0;"> <ul><li><a href="/wiki/Economics" title="Economics">Economics</a></li> <li><a href="/wiki/Population_dynamics" title="Population dynamics">Population dynamics</a></li></ul></td> </tr></tbody></table> <hr /> <a href="/wiki/List_of_named_differential_equations" title="List of named differential equations">List of named differential equations</a></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;;display:block;margin-top:0.1em;"> Classification</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Types</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial</a></li> <li><a href="/wiki/Differential-algebraic_system_of_equations" title="Differential-algebraic system of equations">Differential-algebraic</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential</a></li> <li><a href="/wiki/Fractional_differential_equations" class="mw-redirect" title="Fractional differential equations">Fractional</a></li> <li><a href="/wiki/Linear_differential_equation" title="Linear differential equation">Linear</a></li> <li><a href="/wiki/Non-linear_differential_equation" class="mw-redirect" title="Non-linear differential equation">Non-linear</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> By variable type</th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Dependent_and_independent_variables" title="Dependent and independent variables">Dependent and independent variables</a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Autonomous_differential_equation" class="mw-redirect" title="Autonomous differential equation">Autonomous</a></li> <li>Coupled / Decoupled</li> <li><a href="/wiki/Exact_differential_equation" title="Exact differential equation">Exact</a></li> <li><a href="/wiki/Homogeneous_differential_equation" title="Homogeneous differential equation">Homogeneous</a> / <a href="/wiki/Non-homogeneous_differential_equation" class="mw-redirect" title="Non-homogeneous differential equation">Nonhomogeneous</a></li></ul> </div></td> </tr><tr><th class="sidebar-heading"> Features</th></tr><tr><td class="sidebar-content"> <div class="hlist"> <ul><li><a href="/wiki/Ordinary_differential_equation#Definitions" title="Ordinary differential equation">Order</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Operator</a></li></ul> </div> <ul><li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Relation to processes</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Difference_equation" class="mw-redirect" title="Difference equation">Difference <span style="font-size:85%;">(discrete analogue)</span></a></li></ul> <div class="hlist"> <ul><li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic</a> <ul><li><a href="/wiki/Stochastic_partial_differential_equation" title="Stochastic partial differential equation">Stochastic partial</a></li></ul></li> <li><a href="/wiki/Delay_differential_equation" title="Delay differential equation">Delay</a></li></ul> </div></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> Solution</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Existence and uniqueness</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"> <ul><li><a href="/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem" title="Picard–Lindelöf theorem">Picard–Lindelöf theorem </a></li> <li><a href="/wiki/Peano_existence_theorem" title="Peano existence theorem">Peano existence theorem</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_existence_theorem" title="Carathéodory's existence theorem">Carathéodory's existence theorem</a></li> <li><a href="/wiki/Cauchy%E2%80%93Kowalevski_theorem" class="mw-redirect" title="Cauchy–Kowalevski theorem">Cauchy–Kowalevski theorem</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">General topics</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist"> <ul><li><a href="/wiki/Initial_condition" title="Initial condition">Initial conditions</a></li> <li><a href="/wiki/Boundary_value_problem" title="Boundary value problem">Boundary values</a> <ul><li><a href="/wiki/Dirichlet_boundary_condition" title="Dirichlet boundary condition">Dirichlet</a></li> <li><a href="/wiki/Neumann_boundary_condition" title="Neumann boundary condition">Neumann</a></li> <li><a href="/wiki/Robin_boundary_condition" title="Robin boundary condition">Robin</a></li> <li><a href="/wiki/Cauchy_problem" title="Cauchy problem">Cauchy problem</a></li></ul></li> <li><a href="/wiki/Wronskian" title="Wronskian">Wronskian</a></li> <li><a href="/wiki/Phase_portrait" title="Phase portrait">Phase portrait</a></li> <li><a href="/wiki/Lyapunov_stability" title="Lyapunov stability">Lyapunov</a> / <a href="/wiki/Asymptotic_stability" class="mw-redirect" title="Asymptotic stability">Asymptotic</a> / <a href="/wiki/Exponential_stability" title="Exponential stability">Exponential stability</a></li> <li><a href="/wiki/Rate_of_convergence" title="Rate of convergence">Rate of convergence</a></li> <li><span class="nowrap"><a href="/wiki/Power_series_solution_of_differential_equations" title="Power series solution of differential equations">Series</a> / Integral solutions</span></li> <li><a href="/wiki/Numerical_integration" title="Numerical integration">Numerical integration</a></li> <li><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">Solution methods</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist"> <ul><li>Inspection</li> <li><a href="/wiki/Method_of_characteristics" title="Method of characteristics">Method of characteristics</a></li> <li><br /><a href="/wiki/Euler_method" title="Euler method">Euler</a></li> <li><a href="/wiki/Exponential_response_formula" title="Exponential response formula">Exponential response formula</a></li> <li><a href="/wiki/Finite_difference_method" title="Finite difference method">Finite difference</a> <span style="font-size:85%;">(<a href="/wiki/Crank%E2%80%93Nicolson_method" title="Crank–Nicolson method">Crank–Nicolson</a>)</span></li> <li><a href="/wiki/Finite_element_method" title="Finite element method">Finite element</a> <ul><li><a href="/wiki/Infinite_element_method" title="Infinite element method">Infinite element</a></li></ul></li> <li><a href="/wiki/Finite_volume_method" title="Finite volume method">Finite volume</a></li> <li><a href="/wiki/Galerkin_method" title="Galerkin method">Galerkin</a> <ul><li><a href="/wiki/Petrov%E2%80%93Galerkin_method" title="Petrov–Galerkin method">Petrov–Galerkin</a></li></ul></li> <li><a href="/wiki/Green%27s_function" title="Green's function">Green's function</a></li> <li><a href="/wiki/Integrating_factor" title="Integrating factor">Integrating factor</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transforms</a></li> <li><a href="/wiki/Perturbation_theory" title="Perturbation theory">Perturbation theory</a></li> <li><a href="/wiki/Runge%E2%80%93Kutta_methods" title="Runge–Kutta methods">Runge–Kutta</a></li></ul> </div> <ul><li><a href="/wiki/Separation_of_variables" title="Separation of variables">Separation of variables</a></li> <li><a href="/wiki/Method_of_undetermined_coefficients" title="Method of undetermined coefficients">Undetermined coefficients</a></li> <li><a href="/wiki/Variation_of_parameters" title="Variation of parameters">Variation of parameters</a></li></ul></div></div></td> </tr><tr><th class="sidebar-heading" style="background:#ddddff;font-size:105%;display:block;margin-bottom:0.4em;"> People</th></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="text-align:center;padding-bottom:0;;color: var(--color-base)">List</div><div class="sidebar-list-content mw-collapsible-content" style="padding-top:0;"><div class="hlist" style="padding-top:0.5em"> <ul><li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a></li> <li><a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Joseph-Louis_Lagrange" title="Joseph-Louis Lagrange">Joseph-Louis Lagrange</a></li> <li><a href="/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski" title="Józef Maria Hoene-Wroński">Józef Maria Hoene-Wroński</a></li> <li><a href="/wiki/Joseph_Fourier" title="Joseph Fourier">Joseph Fourier</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/George_Green_(mathematician)" title="George Green (mathematician)">George Green</a></li> <li><a href="/wiki/Carl_David_Tolm%C3%A9_Runge" class="mw-redirect" title="Carl David Tolmé Runge">Carl David Tolmé Runge</a></li> <li><a href="/wiki/Martin_Kutta" title="Martin Kutta">Martin Kutta</a></li> <li><a href="/wiki/Rudolf_Lipschitz" title="Rudolf Lipschitz">Rudolf Lipschitz</a></li> <li><a href="/wiki/Ernst_Lindel%C3%B6f" class="mw-redirect" title="Ernst Lindelöf">Ernst Lindelöf</a></li> <li><a href="/wiki/%C3%89mile_Picard" title="Émile Picard">Émile Picard</a></li> <li><a href="/wiki/Phyllis_Nicolson" title="Phyllis Nicolson">Phyllis Nicolson</a></li> <li><a href="/wiki/John_Crank" title="John Crank">John Crank</a></li></ul> </div></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differential_equations" title="Template:Differential equations"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differential_equations" title="Template talk:Differential equations"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differential_equations" title="Special:EditPage/Template:Differential equations"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Cauchy–Kovalevskaya theorem</b> (also written as the <b>Cauchy–Kowalevski theorem</b>) is the main local <a href="/wiki/Existence_theorem" title="Existence theorem">existence</a> and uniqueness theorem for <a href="/wiki/Analytic_function" title="Analytic function">analytic</a> <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equations</a> associated with <a href="/wiki/Cauchy_problem" title="Cauchy problem">Cauchy initial value problems</a>. A special case was proven by <a href="/wiki/Augustin_Cauchy" class="mw-redirect" title="Augustin Cauchy">Augustin Cauchy</a> (<a href="#CITEREFCauchy1842">1842</a>), and the full result by <a href="/wiki/Sofia_Kovalevskaya" class="mw-redirect" title="Sofia Kovalevskaya">Sofya Kovalevskaya</a> (<a href="#CITEREFKovalevskaya1874">1874</a>). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="First_order_Cauchy–Kovalevskaya_theorem"><span id="First_order_Cauchy.E2.80.93Kovalevskaya_theorem"></span>First order Cauchy–Kovalevskaya theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=1" title="Edit section: First order Cauchy–Kovalevskaya theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This theorem is about the existence of solutions to a system of <i>m</i> differential equations in <i>n</i> dimensions when the coefficients are <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a>. The theorem and its proof are valid for analytic functions of either real or complex variables. </p><p>Let <i>K</i> denote either the <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a> of real or complex numbers, and let <i>V</i> = <i>K</i><sup><i>m</i></sup> and <i>W</i> = <i>K</i><sup><i>n</i></sup>. Let <i>A</i><sub>1</sub>, ..., <i>A</i><sub><i>n</i>−1</sub> be <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a> defined on some <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighbourhood</a> of (0, 0) in <i>W</i> × <i>V</i> and taking values in the <i>m</i> × <i>m</i> matrices, and let <i>b</i> be an analytic function with values in <i>V</i> defined on the same neighbourhood. Then there is a neighbourhood of 0 in <i>W</i> on which the <a href="/wiki/Partial_differential_equation#Linear_and_nonlinear_equations" title="Partial differential equation">quasilinear</a> <a href="/wiki/Cauchy_problem" title="Cauchy problem">Cauchy problem</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{x_{n}}f=A_{1}(x,f)\partial _{x_{1}}f+\cdots +A_{n-1}(x,f)\partial _{x_{n-1}}f+b(x,f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mi>f</mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mi>f</mi> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mi>f</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{x_{n}}f=A_{1}(x,f)\partial _{x_{1}}f+\cdots +A_{n-1}(x,f)\partial _{x_{n-1}}f+b(x,f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e45676c70a499b430aee5015405602f373ba1561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:55.078ex; height:3.009ex;" alt="{\displaystyle \partial _{x_{n}}f=A_{1}(x,f)\partial _{x_{1}}f+\cdots +A_{n-1}(x,f)\partial _{x_{n-1}}f+b(x,f)}"></span></dd></dl> <p>with initial condition </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf85883d74b75fe35ca8d3f2b44802df078e4fa1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.678ex; height:2.843ex;" alt="{\displaystyle f(x)=0}"></span></dd></dl> <p>on the hypersurface </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{n}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{n}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbfea86310aa3db4720d6d0ab82a1016c749c97d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.809ex; height:2.509ex;" alt="{\displaystyle x_{n}=0}"></span></dd></dl> <p>has a unique analytic solution <i>ƒ</i> : <i>W</i> → <i>V</i> near 0. </p><p><a href="/wiki/Lewy%27s_example" title="Lewy's example">Lewy's example</a> shows that the theorem is not more generally valid for all smooth functions. </p><p>The theorem can also be stated in abstract (real or complex) vector spaces. Let <i>V</i> and <i>W</i> be finite-dimensional real or complex vector spaces, with <i>n</i> = dim <i>W</i>. Let <i>A</i><sub>1</sub>, ..., <i>A</i><sub><i>n</i>−1</sub> be <a href="/wiki/Analytic_function" title="Analytic function">analytic functions</a> with values in <a href="/wiki/Endomorphism" title="Endomorphism">End (<i>V</i>)</a> and <i>b</i> an analytic function with values in <i>V</i>, defined on some <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighbourhood</a> of (0, 0) in <i>W</i> × <i>V</i>. In this case, the same result holds. </p> <div class="mw-heading mw-heading2"><h2 id="Proof_by_analytic_majorization">Proof by analytic majorization</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=2" title="Edit section: Proof by analytic majorization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Both sides of the <a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial differential equation</a> can be expanded as <a href="/wiki/Formal_power_series" title="Formal power series">formal power series</a> and give recurrence relations for the coefficients of the formal power series for <i>f</i> that uniquely determine the coefficients. The <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> coefficients of the <i>A</i><sub><i>i</i></sub>'s and <i>b</i> are <a href="/wiki/Majorization" title="Majorization">majorized</a> in matrix and vector norm by a simple scalar rational analytic function. The corresponding scalar Cauchy problem involving this function instead of the <i>A</i><sub><i>i</i></sub>'s and <i>b</i> has an explicit local analytic solution. The absolute values of its coefficients majorize the norms of those of the original problem; so the formal power series solution must converge where the scalar solution converges. </p> <div class="mw-heading mw-heading2"><h2 id="Higher-order_Cauchy–Kovalevskaya_theorem"><span id="Higher-order_Cauchy.E2.80.93Kovalevskaya_theorem"></span>Higher-order Cauchy–Kovalevskaya theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=3" title="Edit section: Higher-order Cauchy–Kovalevskaya theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <i>F</i> and <i>f</i><sub><i>j</i></sub> are analytic functions near 0, then the <a href="/wiki/Non-linear" class="mw-redirect" title="Non-linear">non-linear</a> Cauchy problem </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{t}^{k}h=F\left(x,t,\partial _{t}^{j}\,\partial _{x}^{\alpha }h\right),{\text{ where }}j<k{\text{ and }}|\alpha |+j\leq k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msubsup> <mi>h</mi> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>,</mo> <msubsup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <msubsup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msubsup> <mi>h</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> where </mtext> </mrow> <mi>j</mi> <mo><</mo> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{t}^{k}h=F\left(x,t,\partial _{t}^{j}\,\partial _{x}^{\alpha }h\right),{\text{ where }}j<k{\text{ and }}|\alpha |+j\leq k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f75123b2049704891c0c95ffc5ce8b30f1097820" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:52.859ex; height:4.843ex;" alt="{\displaystyle \partial _{t}^{k}h=F\left(x,t,\partial _{t}^{j}\,\partial _{x}^{\alpha }h\right),{\text{ where }}j<k{\text{ and }}|\alpha |+j\leq k,}"></span></dd></dl> <p>with initial conditions </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{t}^{j}h(x,0)=f_{j}(x),\qquad 0\leq j<k,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msubsup> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="2em" /> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>j</mi> <mo><</mo> <mi>k</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{t}^{j}h(x,0)=f_{j}(x),\qquad 0\leq j<k,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1563a4534688d469049b8c1fe80b948296bda365" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.068ex; height:3.509ex;" alt="{\displaystyle \partial _{t}^{j}h(x,0)=f_{j}(x),\qquad 0\leq j<k,}"></span></dd></dl> <p>has a unique analytic solution near 0. </p><p>This follows from the first order problem by considering the derivatives of <i>h</i> appearing on the right hand side as components of a vector-valued function. </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=4" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Heat_equation" title="Heat equation">heat equation</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{t}h=\partial _{x}^{2}h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mi>h</mi> <mo>=</mo> <msubsup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{t}h=\partial _{x}^{2}h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/375becb4026e26b41495ce510d304732fe81bf66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.244ex; height:2.843ex;" alt="{\displaystyle \partial _{t}h=\partial _{x}^{2}h}"></span></dd></dl> <p>with the condition </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h(0,x)={1 \over 1+x^{2}}{\text{ for }}t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext> for </mtext> </mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h(0,x)={1 \over 1+x^{2}}{\text{ for }}t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78d773319e0443b902018d5bdada66e105c591ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.043ex; height:5.676ex;" alt="{\displaystyle h(0,x)={1 \over 1+x^{2}}{\text{ for }}t=0}"></span></dd></dl> <p>has a unique formal power series solution (expanded around (0, 0)). However this formal power series does not converge for any non-zero values of <i>t</i>, so there are no analytic solutions in a neighborhood of the origin. This shows that the condition |<i>α</i>| + <i>j</i> ≤ <i>k</i> above cannot be dropped. (This example is due to Kowalevski.) </p> <div class="mw-heading mw-heading2"><h2 id="Cauchy–Kovalevskaya–Kashiwara_theorem"><span id="Cauchy.E2.80.93Kovalevskaya.E2.80.93Kashiwara_theorem"></span>Cauchy–Kovalevskaya–Kashiwara theorem</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=5" title="Edit section: Cauchy–Kovalevskaya–Kashiwara theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There is a wide generalization of the Cauchy–Kovalevskaya theorem for systems of linear partial differential equations with analytic coefficients, the <a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya%E2%80%93Kashiwara_theorem&action=edit&redlink=1" class="new" title="Cauchy–Kovalevskaya–Kashiwara theorem (page does not exist)">Cauchy–Kovalevskaya–Kashiwara theorem</a>, due to <a href="/wiki/Masaki_Kashiwara" title="Masaki Kashiwara">Masaki Kashiwara</a> (<a href="#CITEREFKashiwara1983">1983</a>). This theorem involves a <a href="/wiki/Cohomological" class="mw-redirect" title="Cohomological">cohomological</a> formulation, presented in the language of <a href="/wiki/D-modules" class="mw-redirect" title="D-modules">D-modules</a>. The existence condition involves a compatibility condition among the non homogeneous parts of each equation and the vanishing of a <a href="/wiki/Derived_functor" title="Derived functor">derived functor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Ext^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi>x</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Ext^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f95bd54a6abfe9a2efb90b0b8ff3d88df50f8b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.999ex; height:2.676ex;" alt="{\displaystyle Ext^{1}}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Example_2">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=6" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\leq m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≤<!-- ≤ --></mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\leq m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1be80a749be067190db51891139a12d4886fc054" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.534ex; height:2.176ex;" alt="{\displaystyle n\leq m}"></span>. Set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=\{x_{1}=\cdots =x_{n}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=\{x_{1}=\cdots =x_{n}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b24674fc22b1ec33500432a646bfe408965a5d4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.049ex; height:2.843ex;" alt="{\displaystyle Y=\{x_{1}=\cdots =x_{n}\}}"></span>. The system <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{x_{i}}f=g_{i},i=1,\ldots ,n,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mi>f</mi> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{x_{i}}f=g_{i},i=1,\ldots ,n,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/477b945db65fb6030c6a8df41c3584bcae9e9e16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.635ex; height:2.843ex;" alt="{\displaystyle \partial _{x_{i}}f=g_{i},i=1,\ldots ,n,}"></span> has a solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in \mathbb {C} \{x_{1},\ldots ,x_{m}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in \mathbb {C} \{x_{1},\ldots ,x_{m}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f75f42e837131bc1d4931c4447fce855ac8f3eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.689ex; height:2.843ex;" alt="{\displaystyle f\in \mathbb {C} \{x_{1},\ldots ,x_{m}\}}"></span> if and only if the compatibility conditions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial _{x_{i}}g_{j}=\partial _{x_{j}}g_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial _{x_{i}}g_{j}=\partial _{x_{j}}g_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b9c2896899a93bdab83258d75a8d5fa6826028e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:13.179ex; height:3.009ex;" alt="{\displaystyle \partial _{x_{i}}g_{j}=\partial _{x_{j}}g_{i}}"></span> are verified. In order to have a unique solution we must include an initial condition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f|_{Y}=h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f|_{Y}=h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52fdeab09695124b66260bc88e808d8b67eaf95c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.849ex; height:2.843ex;" alt="{\displaystyle f|_{Y}=h}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\in \mathbb {C} \{x_{n+1},\ldots ,x_{m}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\in \mathbb {C} \{x_{n+1},\ldots ,x_{m}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41b1cfe840c8fe948feb2c967ddfbb20e6accf23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.014ex; height:2.843ex;" alt="{\displaystyle h\in \mathbb {C} \{x_{n+1},\ldots ,x_{m}\}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=7" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCauchy1842" class="citation cs2">Cauchy, Augustin (1842), <a rel="nofollow" class="external text" href="https://archive.org/stream/oeuvresdaugusti107caucrich#page/n27/mode/2up">"Mémoire sur l'emploi du calcul des limites dans l'intégration des équations aux dérivées partielles"</a>, <i>Comptes rendus</i>, <b>15</b></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comptes+rendus&rft.atitle=M%C3%A9moire+sur+l%27emploi+du+calcul+des+limites+dans+l%27int%C3%A9gration+des+%C3%A9quations+aux+d%C3%A9riv%C3%A9es+partielles&rft.volume=15&rft.date=1842&rft.aulast=Cauchy&rft.aufirst=Augustin&rft_id=https%3A%2F%2Farchive.org%2Fstream%2Foeuvresdaugusti107caucrich%23page%2Fn27%2Fmode%2F2up&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%E2%80%93Kovalevskaya+theorem" class="Z3988"></span> Reprinted in Oeuvres completes, 1 serie, Tome VII, pages 17–58.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFolland1995" class="citation cs2">Folland, Gerald B. (1995), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=c0WFd3X_R20C&q=%22Cauchy%E2%80%93Kowalevski%22"><i>Introduction to Partial Differential Equations</i></a>, Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-691-04361-2" title="Special:BookSources/0-691-04361-2"><bdi>0-691-04361-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Partial+Differential+Equations&rft.pub=Princeton+University+Press&rft.date=1995&rft.isbn=0-691-04361-2&rft.aulast=Folland&rft.aufirst=Gerald+B.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dc0WFd3X_R20C%26q%3D%2522Cauchy%25E2%2580%2593Kowalevski%2522&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%E2%80%93Kovalevskaya+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHörmander1983" class="citation cs2">Hörmander, L. (1983), <i>The analysis of linear partial differential operators I</i>, Grundl. Math. Wissenschaft., vol. 256, Springer, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-96750-4">10.1007/978-3-642-96750-4</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/3-540-12104-8" title="Special:BookSources/3-540-12104-8"><bdi>3-540-12104-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0717035">0717035</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+analysis+of+linear+partial+differential+operators+I&rft.series=Grundl.+Math.+Wissenschaft.&rft.pub=Springer&rft.date=1983&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0717035%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-3-642-96750-4&rft.isbn=3-540-12104-8&rft.aulast=H%C3%B6rmander&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%E2%80%93Kovalevskaya+theorem" class="Z3988"></span> (linear case)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKashiwara1983" class="citation cs2">Kashiwara, M. (1983), <i>Systems of microdifferential equations</i>, Progress in Mathematics, vol. 34, Birkhäuser, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0817631380" title="Special:BookSources/0817631380"><bdi>0817631380</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Systems+of+microdifferential+equations&rft.series=Progress+in+Mathematics&rft.pub=Birkh%C3%A4user&rft.date=1983&rft.isbn=0817631380&rft.aulast=Kashiwara&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%E2%80%93Kovalevskaya+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Kowalevsky1875" class="citation cs2">von Kowalevsky, Sophie (1875), <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0080&DMDID=DMDLOG_0005">"Zur Theorie der partiellen Differentialgleichung"</a>, <i>Journal für die reine und angewandte Mathematik</i>, <b>80</b>: 1–32</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+reine+und+angewandte+Mathematik&rft.atitle=Zur+Theorie+der+partiellen+Differentialgleichung&rft.volume=80&rft.pages=1-32&rft.date=1875&rft.aulast=von+Kowalevsky&rft.aufirst=Sophie&rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Fdms%2Fload%2Fimg%2F%3FPPN%3DPPN243919689_0080%26DMDID%3DDMDLOG_0005&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%E2%80%93Kovalevskaya+theorem" class="Z3988"></span> (German spelling of her surname used at that time.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNakhushev2001" class="citation cs2">Nakhushev, A.M. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Cauchy–Kovalevskaya_theorem">"Cauchy–Kovalevskaya theorem"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Cauchy%E2%80%93Kovalevskaya+theorem&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft.aulast=Nakhushev&rft.aufirst=A.M.&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DCauchy%E2%80%93Kovalevskaya_theorem&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy%E2%80%93Kovalevskaya+theorem" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&action=edit&section=8" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://planetmath.org/cauchykowalewskitheorem">PlanetMath</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐r24xm Cached time: 20241122150158 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.346 seconds Real time usage: 0.488 seconds Preprocessor visited node count: 1426/1000000 Post‐expand include size: 47622/2097152 bytes Template argument size: 1513/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 1/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 80581/5000000 bytes Lua time usage: 0.219/10.000 seconds Lua memory usage: 4923683/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 356.787 1 -total 40.33% 143.893 1 Template:Differential_equations 39.17% 139.755 1 Template:Sidebar_with_collapsible_lists 30.10% 107.388 5 Template:Citation 27.14% 96.820 2 Template:Sidebar 21.41% 76.379 1 Template:Short_description 12.49% 44.549 1 Template:Hlist 11.84% 42.232 2 Template:Pagetype 6.55% 23.371 3 Template:Main_other 5.87% 20.929 1 Template:SDcat --> <!-- Saved in parser cache with key enwiki:pcache:idhash:46230112-0!canonical and timestamp 20241122150158 and revision id 1184501270. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Cauchy–Kovalevskaya_theorem&oldid=1184501270">https://en.wikipedia.org/w/index.php?title=Cauchy–Kovalevskaya_theorem&oldid=1184501270</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Augustin-Louis_Cauchy" title="Category:Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li><li><a href="/wiki/Category:Partial_differential_equations" title="Category:Partial differential equations">Partial differential equations</a></li><li><a href="/wiki/Category:Theorems_in_analysis" title="Category:Theorems in analysis">Theorems in analysis</a></li><li><a href="/wiki/Category:Uniqueness_theorems" title="Category:Uniqueness theorems">Uniqueness theorems</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 10 November 2023, at 20:27<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Cauchy%E2%80%93Kovalevskaya_theorem&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-knhz5","wgBackendResponseTime":136,"wgPageParseReport":{"limitreport":{"cputime":"0.346","walltime":"0.488","ppvisitednodes":{"value":1426,"limit":1000000},"postexpandincludesize":{"value":47622,"limit":2097152},"templateargumentsize":{"value":1513,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":80581,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 356.787 1 -total"," 40.33% 143.893 1 Template:Differential_equations"," 39.17% 139.755 1 Template:Sidebar_with_collapsible_lists"," 30.10% 107.388 5 Template:Citation"," 27.14% 96.820 2 Template:Sidebar"," 21.41% 76.379 1 Template:Short_description"," 12.49% 44.549 1 Template:Hlist"," 11.84% 42.232 2 Template:Pagetype"," 6.55% 23.371 3 Template:Main_other"," 5.87% 20.929 1 Template:SDcat"]},"scribunto":{"limitreport-timeusage":{"value":"0.219","limit":"10.000"},"limitreport-memusage":{"value":4923683,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-r24xm","timestamp":"20241122150158","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Cauchy\u2013Kovalevskaya theorem","url":"https:\/\/en.wikipedia.org\/wiki\/Cauchy%E2%80%93Kovalevskaya_theorem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1614464","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1614464","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-01-07T01:46:01Z","dateModified":"2023-11-10T20:27:05Z","headline":"local existence and uniqueness theorem for analytic partial differential equations associated with Cauchy initial value problems"}</script> </body> </html>