CINXE.COM
Search results for: frequency hopping
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: frequency hopping</title> <meta name="description" content="Search results for: frequency hopping"> <meta name="keywords" content="frequency hopping"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="frequency hopping" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="frequency hopping"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4026</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: frequency hopping</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4026</span> Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andre%20Slonopas">Andre Slonopas</a>, <a href="https://publications.waset.org/abstracts/search?q=Zona%20Kostic"> Zona Kostic</a>, <a href="https://publications.waset.org/abstracts/search?q=Warren%20Thompson"> Warren Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moving%20target%20defense" title="moving target defense">moving target defense</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security" title=" network security"> network security</a>, <a href="https://publications.waset.org/abstracts/search?q=hopping%20randomization" title=" hopping randomization"> hopping randomization</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20network" title=" software defined network"> software defined network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20security%20theory" title=" network security theory"> network security theory</a> </p> <a href="https://publications.waset.org/abstracts/147592/cyber-security-enhancement-via-software-defined-pseudo-random-private-ip-address-hopping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4025</span> A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Xu">Jie Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zengshan%20Tian"> Zengshan Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ze%20Li"> Ze Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20hopping" title="frequency hopping">frequency hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20error%20elimination" title=" phase error elimination"> phase error elimination</a>, <a href="https://publications.waset.org/abstracts/search?q=carrier%20phase" title=" carrier phase"> carrier phase</a>, <a href="https://publications.waset.org/abstracts/search?q=ranging" title=" ranging"> ranging</a> </p> <a href="https://publications.waset.org/abstracts/155142/a-carrier-phase-high-precision-ranging-theory-based-on-frequency-hopping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4024</span> Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Qasaymeh">M. M. Qasaymeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Khodeir"> M. A. Khodeir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Subspace channel estimation methods have been studied widely. It depends on subspace decomposition of the covariance matrix to separate signal subspace from noise subspace. The decomposition normally is done by either Eigenvalue Decomposition (EVD) or Singular Value Decomposition (SVD) of the Auto-Correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. In this paper, the multipath channel estimation problem for a Slow Frequency Hopping (SFH) system using noise space based method is considered. An efficient method to estimate multipath the time delays basically is proposed, by applying MUltiple Signal Classification (MUSIC) algorithm which used the null space extracted by the Rank Revealing LU factorization (RRLU). The RRLU provides accurate information about the rank and the numerical null space which make it a valuable tool in numerical linear algebra. The proposed novel method decreases the computational complexity approximately to the half compared with RRQR methods keeping the same performance. Computer simulations are also included to demonstrate the effectiveness of the proposed scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20hopping" title="frequency hopping">frequency hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20model" title=" channel model"> channel model</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20delay%20estimation" title=" time delay estimation"> time delay estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=RRLU" title=" RRLU"> RRLU</a>, <a href="https://publications.waset.org/abstracts/search?q=RRQR" title=" RRQR"> RRQR</a>, <a href="https://publications.waset.org/abstracts/search?q=MUSIC" title=" MUSIC"> MUSIC</a>, <a href="https://publications.waset.org/abstracts/search?q=LS-ESPRIT" title=" LS-ESPRIT"> LS-ESPRIT</a> </p> <a href="https://publications.waset.org/abstracts/27149/blind-channel-estimation-for-frequency-hopping-system-using-subspace-based-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4023</span> Nature of Polaronic Hopping Conduction Mechanism in Polycrystalline and Nanocrystalline Gd0.5Sr0.5MnO3 Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soma%20Chatterjee">Soma Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Das"> I. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, we have investigated the structural, electrical and magneto-transport properties of polycrystalline and nanocrystalline Gd0.5Sr0.5MnO3 compounds. The variation of transport properties is modified by tuning the grain size of the material. In the high-temperature semiconducting region, temperature-dependent resistivity data can be well explained by the non-adiabatic small polaron hopping (SPH) mechanism. In addition, the resistivity data for all compounds in the low-temperature paramagnetic region can also be well explained by the variable range hopping (VRH) model. The parameters obtained from SPH and VRH mechanisms are found to be reasonable. In the case of nanocrystalline compounds, there is an overlapping temperature range where both SPH and VRH models are valid simultaneously, and a new conduction mechanism - variable range hopping of small polaron s(VR-SPH) is satisfactorily valid for the whole temperature range of these compounds. However, for the polycrystalline compound, the overlapping temperature region between VRH and SPH models does not exist and the VR-SPH mechanism is not valid here. Thus, polarons play a leading role in selecting different conduction mechanisms in different temperature ranges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=manganite" title=" manganite"> manganite</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20polaron%20hopping" title=" small polaron hopping"> small polaron hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20range%20hopping" title=" variable range hopping"> variable range hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20range%20of%20small%20polaron%20hopping" title=" variable range of small polaron hopping"> variable range of small polaron hopping</a> </p> <a href="https://publications.waset.org/abstracts/166291/nature-of-polaronic-hopping-conduction-mechanism-in-polycrystalline-and-nanocrystalline-gd05sr05mno3-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4022</span> Thickness Dependence of AC Conductivity in Plasma Poly(Ethylene Oxide) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yakut">S. Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Deger"> D. Deger</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ulutas"> K. Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bozoglu"> D. Bozoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma poly(ethylene oxide) (pPEO) thin films were deposited between Aluminum (Al) electrodes on glass substrates by plasma assisted physical vapor deposition (PAPVD). The deposition was operated inside Argon plasma under 10⁻³ Torr and the thicknesses of samples were determined as 20, 100, 250, 500 nm. The plasma was produced at 5 W by magnetron connected to RF power supply. The capacitance C and dielectric loss factor tan δ were measured by Novovontrol Alpha-A high frequency empedance analyzer at freqquency and temperature intervals of 0,1 Hz and 1MHz, 193-353K, respectively. AC conductivity was derived from these values. AC conductivity results exhibited three different conductivity regions except for 20 nm. These regions can be classified as low, mid and high frequency regions. Low frequency region is observed at around 10 Hz and 300 K while mid frequency region is observed at around 1 kHz and 300 K. The last one, high frequency region, is observed at around 1 kHz and 200 K. There are some coinciding definitions for conduction regions, because these regions shift depending on temperature. Low frequency region behaves as DC-like conductivity while mid and high frequency regions show conductivities corresponding to mechanisms such as classical hopping, tunneling, etc. which are observed for amorphous materials. Unlike other thicknesses, for 20 nm sample low frequency region can not be detected in the investigated freuency range. It is thought that this is arised because of the presence of dead layer behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymers" title="plasma polymers">plasma polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=dead%20layer" title=" dead layer"> dead layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20conductivity" title=" AC conductivity"> AC conductivity</a> </p> <a href="https://publications.waset.org/abstracts/92911/thickness-dependence-of-ac-conductivity-in-plasma-polyethylene-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4021</span> Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Halder">Monalisa Halder</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20K.%20Das"> Amit K. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20K.%20Meikap"> Ajit K. Meikap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlated%20barrier%20hopping" title="correlated barrier hopping">correlated barrier hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=schottky%20diode" title=" schottky diode"> schottky diode</a>, <a href="https://publications.waset.org/abstracts/search?q=TbMnO%E2%82%83" title=" TbMnO₃"> TbMnO₃</a>, <a href="https://publications.waset.org/abstracts/search?q=TGA" title=" TGA"> TGA</a> </p> <a href="https://publications.waset.org/abstracts/93130/enhanced-thermal-and-electrical-properties-of-terbium-manganate-polyvinyl-alcohol-nanocomposite-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4020</span> Design of Jumping Structure of Spherical Robot Based on Archimedes' Helix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Zijian">Zhang Zijian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, spherical robots have played an important role in many fields, but the insufficient ability of obstacle surmounting limits their wider application fields. To solve this problem, a jumping system of a spherical robot is designed based on Archimedes helix. The jumping system of the robot utilizes the characteristics of Archimedes helix and isovelocity helix to achieve constant speed and stable contraction, which ensures the stability of the system. Also, the jumping action of the robot is realized by instantaneous release of elastic potential energy. In order to verify the effectiveness of the jumping system, we designed a spherical robot and its jumping system. The experimental results show that the jumping system has the advantages of light weight, small size, high energy conversion efficiency, and can realize the spherical jumping function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hopping%20mechanism" title="hopping mechanism">hopping mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Archimedes%27%20Helix" title=" Archimedes' Helix"> Archimedes' Helix</a>, <a href="https://publications.waset.org/abstracts/search?q=hopping%20robot" title=" hopping robot"> hopping robot</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20robot" title=" spherical robot"> spherical robot</a> </p> <a href="https://publications.waset.org/abstracts/106835/design-of-jumping-structure-of-spherical-robot-based-on-archimedes-helix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4019</span> Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim">Hiesik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Beom%20Kim"> Yong-Beom Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaheon%20Gu"> Jaheon Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/71867/changing-arbitrary-data-transmission-period-by-using-bluetooth-module-on-gas-sensor-node-of-arduino-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4018</span> Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiesik%20Kim">Hiesik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=YongBeum%20Kim"> YongBeum Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arduino" title="Arduino">Arduino</a>, <a href="https://publications.waset.org/abstracts/search?q=Bluetooth" title=" Bluetooth"> Bluetooth</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20Speed" title=" transmission Speed"> transmission Speed</a> </p> <a href="https://publications.waset.org/abstracts/65582/speed-up-data-transmission-by-using-bluetooth-module-on-gas-sensor-node-of-arduino-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4017</span> A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qinglin%20Liu">Qinglin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyong%20Lin"> Zhiyong Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zongheng%20Wei"> Zongheng Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianfeng%20Wen"> Jianfeng Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Congming%20Yi"> Congming Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hai%20Liu"> Hai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20hopping" title="channel hopping">channel hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20rendezvous" title=" blind rendezvous"> blind rendezvous</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio%20networks" title=" cognitive radio networks"> cognitive radio networks</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternary-quinary%20coding" title=" quaternary-quinary coding"> quaternary-quinary coding</a> </p> <a href="https://publications.waset.org/abstracts/153152/a-quinary-coding-and-matrix-structure-based-channel-hopping-algorithm-for-blind-rendezvous-in-cognitive-radio-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4016</span> Electrical and Magnetoelectric Properties of (y)Li0.5Ni0.7Zn0.05Fe2O4 + (1-y)Ba0.5Sr0.5TiO3 Magnetoelectric Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Durgadsimi">S. U. Durgadsimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chouguleb"> S. Chouguleb</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Belladc"> S. Belladc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> (y) Li0.5Ni0.7Zn0.05Fe2O4 + (1-y) Ba0.5Sr0.5TiO3 magnetoelectric composites with y = 0.1, 0.3 and 0.5 were prepared by a conventional standard double sintering ceramic technique. X-ray diffraction analysis confirmed the phase formation of ferrite, ferroelectric and their composites. logρdc Vs 1/T graphs reveal that the dc resistivity decreases with increasing temperature exhibiting semiconductor behavior. The plots of logσac Vs logω2 are almost linear indicating that the conductivity increases with increase in frequency i.e, conductivity in the composites is due to small polaron hopping. Dielectric constant (έ) and dielectric loss (tan δ) were studied as a function of frequency in the range 100Hz–1MHz which reveals the normal dielectric behavior except the composite with y=0.1 and as a function of temperature at four fixed frequencies (i.e. 100Hz, 1KHz, 10KHz, 100KHz). ME voltage coefficient decreases with increase in ferrite content and was observed to be maximum of about 7.495 mV/cmOe for (0.1) Li0.5Ni0.7Zn0.05Fe2O4 + (0.9) Ba0.5Sr0.5TiO3 composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=XRD" title="XRD">XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20constant" title=" dielectric constant"> dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20loss" title=" dielectric loss"> dielectric loss</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20and%20AC%20conductivity" title=" DC and AC conductivity"> DC and AC conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ME%20voltage%20coefficient" title=" ME voltage coefficient"> ME voltage coefficient</a> </p> <a href="https://publications.waset.org/abstracts/6422/electrical-and-magnetoelectric-properties-of-yli05ni07zn005fe2o4-1-yba05sr05tio3-magnetoelectric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4015</span> Raman and Dielectric Relaxation Investigations of Polyester-CoFe₂O₄ Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alhulw%20H.%20Alshammari">Alhulw H. Alshammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Iraqi"> Ahmed Iraqi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Saad"> S. A. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Taha"> T. A. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present for the first time the study of Raman spectra and dielectric relaxation of polyester polymer-CoFe₂O₄ (5.0, 10.0, 15.0, and 20.0 wt%) nanocomposites. Raman spectroscopy was applied as a sensitive structural identification technique to characterize the polyester-CoFe₂O₄ nanocomposites. The images of AFM confirmed the uniform distribution of CoFe₂O₄ inside the polymer matrix. Dielectric relaxation was employed as an important analytical technique to obtain information about the ability of the polymer nanocomposites to store and filter electrical signals. The dielectric relaxation analyses were carried out on the polyester-CoFe₂O₄ nanocomposites at different temperatures. An increase in dielectric constant ε₁ was observed for all samples with increasing temperatures due to the alignment of the electric dipoles with the applied electric field. In contrast, ε₁ decreased with increasing frequency. This is attributed to the difficulty for the electric dipoles to follow the electric field. The α relaxation peak that appeared at a high frequency shifted to higher frequencies when increasing the temperature. The activation energies for Maxwell-Wagner Sillar (MWS) changed from 0.84 to 1.01 eV, while the activation energies for α relaxations were 0.54 – 0.94 eV. The conduction mechanism for the polyester- CoFe₂O₄ nanocomposites followed the correlated barrier hopping (CBH) model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AC%20conductivity" title="AC conductivity">AC conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20permittivity" title=" dielectric permittivity"> dielectric permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20nanocomposites" title=" polyester nanocomposites"> polyester nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/166708/raman-and-dielectric-relaxation-investigations-of-polyester-cofe2o4-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4014</span> Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ben%20Khlifa">H. Ben Khlifa</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Cheikhrouhou"> W. Cheikhrouhou</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M%27nassri"> R. M'nassri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganites" title="manganites">manganites</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation%20methods" title=" preparation methods"> preparation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title=" magnetocaloric effect"> magnetocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20and%20dielectric" title=" electrical and dielectric"> electrical and dielectric</a> </p> <a href="https://publications.waset.org/abstracts/142916/structural-magnetic-electrical-and-dielectric-properties-of-pr08na02mno3-manganite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4013</span> Nonlinear Optics of Dirac Fermion Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Kumar">Vipin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20S.%20Setlur"> Girish S. Setlur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilayer%20graphene" title=" Bilayer graphene"> Bilayer graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabi%20oscillations" title=" Rabi oscillations"> Rabi oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20fermion%20systems" title=" Dirac fermion systems"> Dirac fermion systems</a> </p> <a href="https://publications.waset.org/abstracts/15507/nonlinear-optics-of-dirac-fermion-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4012</span> Comparison of Frequency-Domain Contention Schemes in Wireless LANs </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Feng">Li Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=802.11" title="802.11">802.11</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20LANs" title=" wireless LANs"> wireless LANs</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency-domain%20contention" title=" frequency-domain contention"> frequency-domain contention</a>, <a href="https://publications.waset.org/abstracts/search?q=T2F" title=" T2F"> T2F</a> </p> <a href="https://publications.waset.org/abstracts/42959/comparison-of-frequency-domain-contention-schemes-in-wireless-lans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4011</span> An AI Based Smart Conference Calling System Using Bluetooth Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Dixit">Ankita Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A conference call using a mobile refers to a telephonic call in which several people talks to each other simultaneously. This is one of the most eminent features nowadays. This concept is already existing using LTE technology for mobile phones supporting SIM cards. Hence, currently, a conference call is possible only with the support of a SIM card, i.e., a Mobile operator. Bluetooth is a short-range wireless technology that is used for exchanging data between devices placed over short distances (up to 240 meters). This is a booming technology that is easily and freely available and has no dependency on network operators. Our study work proposes a smart system to enable conference calls with more than two mobile users without SIM support to communicate with each other simultaneously. The AI-based proposed solution will be self–governed, self-learned and will be intelligent enough to smartly switch between all callers connected via Bluetooth in a conference call. This proposed solution system will greatly increase the potential of using Bluetooth technology from a wider applicability perspective of conference calls, which is currently only possible over LTE mobiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conference%20call" title="conference call">conference call</a>, <a href="https://publications.waset.org/abstracts/search?q=bluetooth" title=" bluetooth"> bluetooth</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title=" AI"> AI</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20hopping" title=" frequency hopping"> frequency hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=piconet" title=" piconet"> piconet</a>, <a href="https://publications.waset.org/abstracts/search?q=scatter%20net" title=" scatter net"> scatter net</a> </p> <a href="https://publications.waset.org/abstracts/168925/an-ai-based-smart-conference-calling-system-using-bluetooth-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4010</span> Experimental Investigation on the Optimal Operating Frequency of a Thermoacoustic Refrigerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriengkrai%20Assawamartbunlue">Kriengkrai Assawamartbunlue</a>, <a href="https://publications.waset.org/abstracts/search?q=Channarong%20Wantha"> Channarong Wantha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effects of the mean operating pressure on the optimal operating frequency based on temperature differences across stack ends in a thermoacoustic refrigerator. In addition to the length of the resonance tube, components of the thermoacoustic refrigerator have an influence on the operating frequency due to their acoustic properties, i.e. absorptivity, reflectivity and transmissivity. The interference of waves incurs and distorts the original frequency generated by the driver so that the optimal operating frequency differs from the designs. These acoustic properties are not parameters in the designs and it is very complicated to infer their responses. A prototype thermoacoustic refrigerator is constructed and used to investigate its optimal operating frequency compared to the design at various operating pressures. Helium and air are used as working fluids during the experiments. The results indicate that the optimal operating frequency of the prototype thermoacoustic refrigerator using helium is at 6 bar and 490Hz or approximately 20% away from the design frequency. The optimal operating frequency at other mean pressures differs from the design in an unpredictable manner, however, the optimal operating frequency and pressure can be identified by testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20properties" title="acoustic properties">acoustic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Carnot%E2%80%99s%20efficiency" title=" Carnot’s efficiency"> Carnot’s efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=interference%20of%20waves" title=" interference of waves"> interference of waves</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20pressure" title=" operating pressure"> operating pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20operating%20frequency" title=" optimal operating frequency"> optimal operating frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20performance" title=" stack performance"> stack performance</a>, <a href="https://publications.waset.org/abstracts/search?q=standing%20wave" title=" standing wave"> standing wave</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoacoustic%20refrigerator" title=" thermoacoustic refrigerator"> thermoacoustic refrigerator</a> </p> <a href="https://publications.waset.org/abstracts/23908/experimental-investigation-on-the-optimal-operating-frequency-of-a-thermoacoustic-refrigerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4009</span> Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khattab%20Al%20Qaisi">Khattab Al Qaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Bowring"> Nicholas Bowring</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSI" title="DSI">DSI</a>, <a href="https://publications.waset.org/abstracts/search?q=SVPWM" title=" SVPWM"> SVPWM</a>, <a href="https://publications.waset.org/abstracts/search?q=THD" title=" THD"> THD</a>, <a href="https://publications.waset.org/abstracts/search?q=DC-AC%20converter" title=" DC-AC converter"> DC-AC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/17856/investigation-of-the-effects-of-sampling-frequency-on-the-thd-of-3-phase-inverters-using-space-vector-modulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4008</span> Spatial Correlation of Channel State Information in Real Long Range Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdelghany">Ahmed Abdelghany</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Uguen"> Bernard Uguen</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Moy"> Christophe Moy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Lemur"> Dominique Lemur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=LPWAN" title=" LPWAN"> LPWAN</a>, <a href="https://publications.waset.org/abstracts/search?q=LoRa" title=" LoRa"> LoRa</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20signal%20power" title=" effective signal power"> effective signal power</a>, <a href="https://publications.waset.org/abstracts/search?q=onsite%20measurement" title=" onsite measurement"> onsite measurement</a> </p> <a href="https://publications.waset.org/abstracts/137827/spatial-correlation-of-channel-state-information-in-real-long-range-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4007</span> Determining Efficiency of Frequency Control System of Karkheh Power Plant in Main Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferydon%20Salehifar">Ferydon Salehifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Safarikia"> Hassan Safarikia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Boromandfar"> Hossein Boromandfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Karkheh plant in Iran's Khuzestan province and is located in the city Andimeshk. The plant has a production capacity of 400 MW units with water and three hours. One of the important parameters of each country's power grid stability is the stability of the power grid is affected by the voltage and frequency In plants, the amount of active power frequency control is done so that when the unit is placed in the frequency control their productivity is a function of frequency and output power varies with frequency. Produced by hydroelectric power plants with the water level behind the dam has a direct relationship And to decrease and increase the water level behind the dam in order to reduce the power output increases But these changes have a different interval is due to some mechanical problems such as turbine cavitation and vibration are limited. In this study, the range of the frequency control can be Karkheh manufacturing plants have been identified and their effectiveness has been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20power" title="Karkheh power">Karkheh power</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20control%20system" title=" frequency control system"> frequency control system</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20power" title=" active power"> active power</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/25787/determining-efficiency-of-frequency-control-system-of-karkheh-power-plant-in-main-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4006</span> Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singh">Manjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG%20%28electrocardiogram%29" title="ECG (electrocardiogram)">ECG (electrocardiogram)</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability%20%28HRV%29" title=" heart rate variability (HRV)"> heart rate variability (HRV)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20entropy" title=" multiscale entropy"> multiscale entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20frequency" title=" sampling frequency"> sampling frequency</a> </p> <a href="https://publications.waset.org/abstracts/78603/optimal-ecg-sampling-frequency-for-multiscale-entropy-based-hrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4005</span> Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tivani%20Phosa%20Mashamba-Thompson">Tivani Phosa Mashamba-Thompson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20S.%20Soliman"> Mahmoud E. S. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cathepsin%20B" title="cathepsin B">cathepsin B</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold%20hopping" title=" scaffold hopping"> scaffold hopping</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=binding-free%20energy" title=" binding-free energy"> binding-free energy</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegerative%20diseases" title=" neurodegerative diseases"> neurodegerative diseases</a> </p> <a href="https://publications.waset.org/abstracts/14127/insight-into-the-binding-theme-of-ca-074me-to-cathepsin-b-molecular-dynamics-simulations-and-scaffold-hopping-to-identify-potential-analogues-as-anti-neurodegenerative-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4004</span> Dynamic Response of Structure-Raft-Pile-Soil with Respect to System Frequency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Razmi">B. Razmi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rafiee"> F. Rafiee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Baziar"> M. Baziar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Saeedi%20Azizkandi"> A. Saeedi Azizkandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present research, a series of 3-D finite element numerical modeling was performed to study the effect of system frequency and excitation specifications on the internal forces of the piled raft (PR) system in a dry sand layer. The results of numerical simulations were first compared with those associated with centrifuge tests. The natural frequency of superstructure, modeled on the piled raft foundation, was smaller than the natural frequency of the fixed-base super-structure. This difference was greater for super-structures with higher frequencies. In PR systems, the excitation with a frequency close to the system frequency produced the largest responses. Furthermore, based on the results of presented numerical analyses, ignoring the interactions and characteristics of all components of a pile-raft-structure, may lead to highly uneconomical design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifuge%20test" title="centrifuge test">centrifuge test</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20frequency" title=" excitation frequency"> excitation frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency%20of%20super-structure" title=" natural frequency of super-structure"> natural frequency of super-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=piled%20raft%20foundation" title=" piled raft foundation"> piled raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20finite%20element%20model" title=" 3-D finite element model"> 3-D finite element model</a> </p> <a href="https://publications.waset.org/abstracts/150187/dynamic-response-of-structure-raft-pile-soil-with-respect-to-system-frequency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4003</span> Frequency Transformation with Pascal Matrix Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuoc%20Si%20Nguyen">Phuoc Si Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20transformation" title="frequency transformation">frequency transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20z-transformation" title=" bilinear z-transformation"> bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-warping%20frequency" title=" pre-warping frequency"> pre-warping frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20filters" title=" digital filters"> digital filters</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20filters" title=" analog filters"> analog filters</a>, <a href="https://publications.waset.org/abstracts/search?q=pascal%E2%80%99s%20triangle" title=" pascal’s triangle"> pascal’s triangle</a> </p> <a href="https://publications.waset.org/abstracts/34866/frequency-transformation-with-pascal-matrix-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4002</span> Dielectric Properties of Ni-Al Nano Ferrites Synthesized by Citrate Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Ravinder">D. Ravinder</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Nagaraju"> K. S. Nagaraju </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ni–Al ferrite with composition of NiAlxFe2-xO4 (x=0.2, 0.4 0.6, and 0.8, ) were prepared by citrate gel method. The dielectric properties for all the samples were investigated at room temperature as a function of frequency. The dielectric constant shows dispersion in the lower frequency region and remains almost constant at higher frequencies. The frequency dependence of dielectric loss tangent (tanδ) is found to be abnormal, giving a peak at certain frequency for mixed Ni-Al ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric loss tangent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrites" title="ferrites">ferrites</a>, <a href="https://publications.waset.org/abstracts/search?q=citrate%20method" title=" citrate method"> citrate method</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20parameter" title=" lattice parameter"> lattice parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20constant" title=" dielectric constant"> dielectric constant</a> </p> <a href="https://publications.waset.org/abstracts/57941/dielectric-properties-of-ni-al-nano-ferrites-synthesized-by-citrate-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4001</span> Revised Tower Earthing Design in High-Voltage Transmission Network for High-Frequency Lightning Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azwadi%20Mohamad">Azwadi Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauzi%20Yahaya"> Pauzi Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadiah%20Hudi"> Nadiah Hudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthing system for high-voltage transmission tower is designed to protect the working personnel and equipments, and to maintain the quality of supply during fault. The existing earthing system for transmission towers in TNB’s system is purposely designed for normal power frequency (low-frequency) fault conditions that take into account the step and touch voltages. This earthing design is found to be inapt for lightning (transient) condition to a certain extent, which involves a high-frequency domain. The current earthing practice of laying the electrodes radially in straight 60 m horizontal lines under the ground, in order to achieve the specified impedance value of less than 10 Ω, was deemed ineffective in reducing the high-frequency impedance. This paper introduces a new earthing design that produces low impedance value at the high-frequency domain, without compromising the performance of low-frequency impedance. The performances of this new earthing design, as well as the existing design, are simulated for various soil resistivity values at varying frequency. The proposed concentrated earthing design is found to possess low TFR value at both low and high-frequency. A good earthing design should have a fine balance between compact and radial electrodes under the ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthing%20design" title="earthing design">earthing design</a>, <a href="https://publications.waset.org/abstracts/search?q=high-frequency" title=" high-frequency"> high-frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=tower%20footing%20impedance" title=" tower footing impedance"> tower footing impedance</a> </p> <a href="https://publications.waset.org/abstracts/129491/revised-tower-earthing-design-in-high-voltage-transmission-network-for-high-frequency-lightning-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4000</span> Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomotaka%20Aoki">Tomotaka Aoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita"> Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conduction" title="electrical conduction">electrical conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20interference" title=" electron interference"> electron interference</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20spectrum" title=" frequency spectrum"> frequency spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=on-off%20ratio" title=" on-off ratio"> on-off ratio</a> </p> <a href="https://publications.waset.org/abstracts/145444/signal-on-off-ratio-and-output-frequency-analysis-of-semiconductor-electron-interference-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3999</span> Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Y.%20Danjuma">B. Y. Danjuma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Archibong-Eso"> A. Archibong-Eso</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20M.%20Aliyu"> Aliyu M. Aliyu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yeung"> H. Yeung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20densitometer" title="gamma densitometer">gamma densitometer</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20pattern" title=" flow pattern"> flow pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20gradient" title=" pressure gradient"> pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=slug%20frequency" title=" slug frequency"> slug frequency</a> </p> <a href="https://publications.waset.org/abstracts/36688/slugging-frequency-correlation-for-high-viscosity-oil-gas-flow-in-horizontal-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3998</span> Dielectric Properties in Frequency Domain of Main Insulation System of Printed Circuit Board</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xize%20Dai">Xize Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Hao"> Jian Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Claus%20Leth%20Bak"> Claus Leth Bak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Carlo%20Montanari"> Gian Carlo Montanari</a>, <a href="https://publications.waset.org/abstracts/search?q=Huai%20Wang"> Huai Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed Circuit Board (PCB) is a critical component applicable to power electronics systems, especially for high-voltage applications involving several high-voltage and high-frequency SiC/GaN devices. The insulation system of PCB is facing more challenges from high-voltage and high-frequency stress that can alter the dielectric properties. Dielectric properties of the PCB insulation system also determine the electrical field distribution that correlates with intrinsic and extrinsic aging mechanisms. Hence, investigating the dielectric properties in the frequency domain of the PCB insulation system is a must. The paper presents the frequency-dependent, temperature-dependent, and voltage-dependent dielectric properties, permittivity, conductivity, and dielectric loss tangents of PCB insulation systems. The dielectric properties mechanisms associated with frequency, temperature, and voltage are revealed from the design perspective. It can be concluded that the dielectric properties of PCB in the frequency domain show a strong dependence on voltage, frequency, and temperature. The voltage-, frequency-, and temperature-dependent dielectric properties are associated with intrinsic conduction behavior and polarization patterns from the perspective of dielectric theory. The results may provide some reference for the PCB insulation system design in high voltage, high frequency, and high-temperature power electronics applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20insulation%20system" title="electrical insulation system">electrical insulation system</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20and%20frequency" title=" high voltage and frequency"> high voltage and frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title=" printed circuit board"> printed circuit board</a> </p> <a href="https://publications.waset.org/abstracts/168071/dielectric-properties-in-frequency-domain-of-main-insulation-system-of-printed-circuit-board" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3997</span> Parabolic Impact Law of High Frequency Exchanges on Price Formation in Commodities Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Maiza">L. Maiza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cantagrel"> A. Cantagrel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Forestier"> M. Forestier</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Laucoin"> G. Laucoin</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Regali"> T. Regali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluation of High Frequency Trading (HFT) impact on financial markets is very important for traders who use market analysis to detect winning transaction opportunity. Analysis of HFT data on tobacco commodity market is discussed here and interesting linear relationship has been shown between trading frequency and difference between averaged trading prices above and below considered trading frequency. This may open new perspectives on markets data understanding and could provide possible interpretation of Adam Smith invisible hand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=financial%20market" title="financial market">financial market</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20trading" title=" high frequency trading"> high frequency trading</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=impacts" title=" impacts"> impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Smith%20invisible%20hand" title=" Adam Smith invisible hand"> Adam Smith invisible hand</a> </p> <a href="https://publications.waset.org/abstracts/35722/parabolic-impact-law-of-high-frequency-exchanges-on-price-formation-in-commodities-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=134">134</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=135">135</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=frequency%20hopping&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>