CINXE.COM

Search results for: Maxwell model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Maxwell model</title> <meta name="description" content="Search results for: Maxwell model"> <meta name="keywords" content="Maxwell model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Maxwell model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Maxwell model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16843</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Maxwell model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16843</span> Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Guemmadi">M. Guemmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ouibrahim"> A. Ouibrahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=journal%20bearing" title="journal bearing">journal bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=lubrication" title=" lubrication"> lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20model" title=" Maxwell model"> Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20fluids" title=" viscoelastic fluids"> viscoelastic fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20modelling" title=" computational modelling"> computational modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20capacity" title=" load capacity"> load capacity</a> </p> <a href="https://publications.waset.org/abstracts/13167/pressure-distribution-load-capacity-and-thermal-effect-with-generalized-maxwell-model-in-journal-bearing-lubrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16842</span> Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sohail%20Khan">Muhammad Sohail Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Ali%20Shah"> Rehan Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l<sub>10</sub>, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corotational%20Maxwell%20model" title="corotational Maxwell model">corotational Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20homotopy%20asymptotic%20method" title=" optimal homotopy asymptotic method"> optimal homotopy asymptotic method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20homotopy%20perturbation%20method" title=" optimal homotopy perturbation method"> optimal homotopy perturbation method</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20coating%20die" title=" wire coating die"> wire coating die</a> </p> <a href="https://publications.waset.org/abstracts/54265/analytical-solutions-for-corotational-maxwell-model-fluid-arising-in-wire-coating-inside-a-canonical-die" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16841</span> Stability Analysis and Experimental Evaluation on Maxwell Model of Impedance Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Le%20Fu">Le Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui%20Wu"> Rui Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Feng%20Liu"> Gang Feng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Zhao"> Jie Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Normally, impedance control methods are based on a model that connects a spring and damper in parallel. The series connection, namely the Maxwell model, has emerged as a counterpart and draw the attention of robotics researchers. In the theoretical analysis, it turns out that the two pattern are both equivalents to some extent, but notable differences of response characteristics exist, especially in the effect of damping viscosity. However, this novel impedance control design is lack of validation on realistic robot platforms. In this study, stability analysis and experimental evaluation are achieved using a 3-fingered Barrett® robotic hand BH8-282 endowed with tactile sensing, mounted on a torque-controlled lightweight and collaborative robot KUKA® LBR iiwa 14 R820. Object handover and incoming objects catching tasks are executed for validation and analysis. Experimental results show that the series connection pattern has much better performance in natural impact or shock absorption, which indicate promising applications in robots’ safe and physical interaction with humans and objects in various environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impedance%20control" title="impedance control">impedance control</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20model" title=" Maxwell model"> Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20control" title=" force control"> force control</a>, <a href="https://publications.waset.org/abstracts/search?q=dexterous%20manipulation" title=" dexterous manipulation"> dexterous manipulation</a> </p> <a href="https://publications.waset.org/abstracts/79604/stability-analysis-and-experimental-evaluation-on-maxwell-model-of-impedance-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16840</span> Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugce%20Talay">Tugce Talay</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Erkan"> Kadir Erkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFPM" title="AFPM">AFPM</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20Maxwell" title=" ANSYS Maxwell"> ANSYS Maxwell</a>, <a href="https://publications.waset.org/abstracts/search?q=cogging%20torque" title=" cogging torque"> cogging torque</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimisation" title=" design optimisation"> design optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=NNTOOL" title=" NNTOOL"> NNTOOL</a> </p> <a href="https://publications.waset.org/abstracts/107516/axial-flux-permanent-magnet-motor-design-and-optimization-by-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16839</span> Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malika">M. Y. Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzana"> Farzana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rehman"> Abdul Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title="boundary layer flow">boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretched%20surface" title=" exponentially stretched surface"> exponentially stretched surface</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20fluid" title=" Maxwell fluid"> Maxwell fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/23186/magnetohydrodynamic-3d-maxwell-fluid-flow-towards-a-horizontal-stretched-surface-with-convective-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16838</span> Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alena%20Zemanov%C3%A1">Alena Zemanová</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Zeman"> Jan Zeman</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20%C5%A0ejnoha"> Michal Šejnoha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-strain%20Reissner%20model" title=" finite-strain Reissner model"> finite-strain Reissner model</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20multipliers" title=" Lagrange multipliers"> Lagrange multipliers</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20glass" title=" laminated glass"> laminated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20method" title=" Newton method"> Newton method</a>, <a href="https://publications.waset.org/abstracts/search?q=Williams-Landel-Ferry%20equation" title=" Williams-Landel-Ferry equation"> Williams-Landel-Ferry equation</a> </p> <a href="https://publications.waset.org/abstracts/22985/timetemperature-dependent-finite-element-model-of-laminated-glass-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16837</span> Simulation and Modeling of High Voltage Pulse Transformer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Emami">Zahra Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Reza%20Mesgarzade"> H. Reza Mesgarzade</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Morad%20Ghorbami"> A. Morad Ghorbami</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Reza%20Motahari"> S. Reza Motahari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method for calculation of parasitic elements consisting of leakage inductance and parasitic capacitance in a high voltage pulse transformer. The parasitic elements of pulse transformers significantly influence the resulting pulse shape of a power modulator system. In order to prevent the effects on the pulse shape before constructing the transformer an electrical model is needed. The technique procedures for computing these elements are based on finite element analysis. The finite element model of pulse transformer is created using software "Ansys Maxwell 3D". Finally, the transformer parasitic elements is calculated and compared with the value obtained from the actual test and pulse modulator is simulated and results is compared with actual test of pulse modulator. The results obtained are very similar with the test values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20transformer" title="pulse transformer">pulse transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%203D" title=" Maxwell 3D"> Maxwell 3D</a>, <a href="https://publications.waset.org/abstracts/search?q=modulator" title=" modulator"> modulator</a> </p> <a href="https://publications.waset.org/abstracts/12530/simulation-and-modeling-of-high-voltage-pulse-transformer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16836</span> A Guide for Using Viscoelasticity in ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fettahoglu">A. Fettahoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Prony%20series" title=" Prony series"> Prony series</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20material%20curve%20fitting" title=" viscoelastic material curve fitting"> viscoelastic material curve fitting</a> </p> <a href="https://publications.waset.org/abstracts/26863/a-guide-for-using-viscoelasticity-in-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16835</span> CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Kompiang%20Wirawan">Sang Kompiang Wirawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Purnomo"> Chandra Purnomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir" title=" Langmuir"> Langmuir</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell-Stefan" title=" Maxwell-Stefan"> Maxwell-Stefan</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20zeolite" title=" natural zeolite"> natural zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20diffusion" title=" surface diffusion"> surface diffusion</a> </p> <a href="https://publications.waset.org/abstracts/50699/co2-adsorption-on-the-activated-klaten-indonesian-natural-zeolite-in-a-packed-bed-adsorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16834</span> Effects of G-jitter Combined with Heat and Mass Transfer by Mixed Convection MHD Flow of Maxwell Fluid in a Porous Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Salah">Faisal Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Aziz"> Z. A. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Viswanathan"> K. K. Viswanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the effects of g-jitter induced and combined with heat and mass transfer by mixed convection of MHD Maxwell fluid in microgravity situation is investigated for a simple system. This system consists of two heated vertical parallel infinite flat plates held at constant but different temperatures and concentrations. By using modified Darcy’s law, the equations governing the flow are modelled. These equations are solved analytically for the induced velocity, temperature and concentration distributions. Many interesting available results in the relevant literature (i.e. Newtonian fluid) is obtained as the special case of the present general analysis. Finally, the graphical results for the velocity profile of the oscillating flow in the channel are presented and discussed for different values of the material constants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=g-jitter" title="g-jitter">g-jitter</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20fluid" title=" Maxwell fluid"> Maxwell fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a> </p> <a href="https://publications.waset.org/abstracts/35825/effects-of-g-jitter-combined-with-heat-and-mass-transfer-by-mixed-convection-mhd-flow-of-maxwell-fluid-in-a-porous-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16833</span> Kinetic Modeling of Colour and Textural Properties of Stored Rohu (Labeo rohita) Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pramod%20K.%20Prabhakar">Pramod K. Prabhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20P.%20Srivastav"> Prem P. Srivastav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rohu (Labeo rohita) is an Indian major carp and highly relished freshwater food for its unique flavor, texture, and culinary properties. It is highly perishable and, spoilage occurs as a result of series of complicated biochemical changes brought about by enzymes which are the function of time and storage temperature also. The influence of storage temperature (5, 0, and -5 °C) on colour and texture of fish were studied during 14 days storage period in order to analyze kinetics of colour and textural changes. The rate of total colour change was most noticeable at the highest storage temperature (5°C), and these changes were well described by the first order reaction. Texture is an important variable of quality of the fish and is increasing concern to aquaculture industries. Textural parameters such as hardness, toughness and stiffness were evaluated on a texture analyzer for the different day of stored fish. The significant reduction (P ≤ 0.05) in hardness was observed after 2nd, 4th and 8th day for the fish stored at 5, 0, and -5 °C respectively. The textural changes of fish during storage followed a first order kinetic model and fitted well with this model (R2 > 0.95). However, the textural data with respect to time was also fitted to modified Maxwell model and found to be good fit with R2 value ranges from 0.96 to 0.98. Temperature dependence of colour and texture change was adequately modelled with the Arrhenius type equation. This fitted model may be used for the determination of shelf life of Rohu Rohu (Labeo rohita) Fish. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=first%20order%20kinetics" title="first order kinetics">first order kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=biochemical%20changes" title=" biochemical changes"> biochemical changes</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20model" title=" Maxwell model"> Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=colour" title=" colour"> colour</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=Arrhenius%20type%20equation" title=" Arrhenius type equation"> Arrhenius type equation</a> </p> <a href="https://publications.waset.org/abstracts/57115/kinetic-modeling-of-colour-and-textural-properties-of-stored-rohu-labeo-rohita-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16832</span> Modified Fractional Curl Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawhy%20Ismail">Rawhy Ismail </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying fractional calculus in the field of electromagnetics shows significant results. The fractionalization of the conventional curl operator leads to having additional solutions to an electromagnetic problem. This work restudies the concept of the fractional curl operator considering fractional time derivatives in Maxwell’s curl equations. In that sense, a general scheme for the wave loss term is introduced and the degree of freedom of the system is affected through imposing the new fractional parameters. The conventional case is recovered by setting all fractional derivatives to unity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curl%20operator" title="curl operator">curl operator</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20curl%20operators" title=" fractional curl operators"> fractional curl operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20equations" title=" Maxwell equations"> Maxwell equations</a> </p> <a href="https://publications.waset.org/abstracts/35772/modified-fractional-curl-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16831</span> Supplemental VisCo-friction Damping for Dynamical Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharad%20Singh">Sharad Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Sinha"> Ajay Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hysteretic%20damping" title="hysteretic damping">hysteretic damping</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20model" title=" Kelvin model"> Kelvin model</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20model" title=" Maxwell model"> Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20coupling" title=" parallel coupling"> parallel coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20coupling" title=" series coupling"> series coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20damping" title=" viscous damping"> viscous damping</a> </p> <a href="https://publications.waset.org/abstracts/142635/supplemental-visco-friction-damping-for-dynamical-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16830</span> Visualization of Energy Waves via Airy Functions in Time-Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Sener">E. Sener</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Isik"> O. Isik</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Eroglu"> E. Eroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Sahin"> U. Sahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airy%20functions" title="airy functions">airy functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Klein-Gordon%20Equation" title=" Klein-Gordon Equation"> Klein-Gordon Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%E2%80%99s%20equations" title=" Maxwell’s equations"> Maxwell’s equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Surplus%20of%20energy" title=" Surplus of energy"> Surplus of energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20boundary%20operators" title=" wave boundary operators"> wave boundary operators</a> </p> <a href="https://publications.waset.org/abstracts/42403/visualization-of-energy-waves-via-airy-functions-in-time-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16829</span> Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arian%20Ebneyamini">Arian Ebneyamini</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Azimi"> Hoda Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jules%20Thibaults"> Jules Thibaults</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Handan%20Tezel"> F. Handan Tezel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butanol" title="butanol">butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membranes" title=" mixed matrix membranes"> mixed matrix membranes</a> </p> <a href="https://publications.waset.org/abstracts/55658/modelling-of-pervaporation-separation-of-butanol-from-aqueous-solutions-using-polydimethylsiloxane-mixed-matrix-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16828</span> Rheological Model for Describing Spunlace Nonwoven Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Ridene">Sana Ridene</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Sayeb"> Soumaya Sayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Houda%20Helali"> Houda Helali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ben%20Hassen"> Mohammed Ben Hassen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonwoven structures have a range of applications which include Medical, filtration, geotextile and recently this unconventional fabric is finding a niche in fashion apparel. In this paper, a modified form of Vangheluwe rheological model is used to describe the mechanical behavior of nonwovens fabrics in uniaxial tension. This model is an association in parallel of three Maxwell elements characterized by damping coefficients η1, η2 and η3 and E1, E2, E3 elastic modulus and a nonlinear spring C. The model is verified experimentally with two types of nonwovens (50% viscose /50% Polyester) and (40% viscose/60% Polyester) and a range of three square weights values. Comparative analysis of the theoretical model and the experimental results of tensile test proofs a high correlation between them. The proposed model can fairly well replicate the behavior of nonwoven fabrics during relaxation and sample traction. This allowed us to predict the mechanical behavior in tension and relaxation of fabrics starting only from their technical parameters (composition and weight). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title="mechanical behavior">mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20model" title=" rheological model"> rheological model</a> </p> <a href="https://publications.waset.org/abstracts/51742/rheological-model-for-describing-spunlace-nonwoven-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16827</span> Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fettahoglu">A. Fettahoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title="generalized Maxwell model">generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=prony%20series" title=" prony series"> prony series</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20step%20size" title=" time step size"> time step size</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/26862/error-amount-in-viscoelasticity-analysis-depending-on-time-step-size-and-method-used-in-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16826</span> Energy Conservation and H-Theorem for the Enskog-Vlasov Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eugene%20Benilov">Eugene Benilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Benilov"> Mikhail Benilov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Enskog-Vlasov (EV) equation is a widely used semi-phenomenological model of gas/liquid phase transitions. We show that it does not generally conserve energy, although there exists a restriction on its coefficients for which it does. Furthermore, if an energy-preserving version of the EV equation satisfies an H-theorem as well, it can be used to rigorously derive the so-called Maxwell construction which determines the parameters of liquid-vapor equilibria. Finally, we show that the EV model provides an accurate description of the thermodynamics of noble fluids, and there exists a version simple enough for use in applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enskog%20collision%20integral" title="Enskog collision integral">Enskog collision integral</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20spheres" title=" hard spheres"> hard spheres</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20equation" title=" kinetic equation"> kinetic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a> </p> <a href="https://publications.waset.org/abstracts/97730/energy-conservation-and-h-theorem-for-the-enskog-vlasov-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16825</span> Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bennoud">S. Bennoud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zergoug"> M. Zergoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eddy%20current" title="eddy current">eddy current</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20destructive%20testing" title=" non destructive testing"> non destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/7187/modeling-and-simulation-for-3d-eddy-current-testing-in-conducting-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16824</span> Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Watson">Mark Watson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.-F.%20Bousquet"> J.-F. Bousquet</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Forget"> Adam Forget</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell&rsquo;s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20induction" title="magnetic induction">magnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=FDTD" title=" FDTD"> FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20communication" title=" underwater communication"> underwater communication</a>, <a href="https://publications.waset.org/abstracts/search?q=Sommerfeld" title=" Sommerfeld"> Sommerfeld</a> </p> <a href="https://publications.waset.org/abstracts/135368/evaluating-the-feasibility-of-magnetic-induction-to-cross-an-air-water-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16823</span> Maxwell’s Economic Demon Hypothesis and the Impossibility of Economic Convergence of Developing Economies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firano%20Zakaria">Firano Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Filali%20Adib%20Fatine"> Filali Adib Fatine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The issue f convergence in theoretical models (classical or Keynesian) has been widely discussed. The results of the work affirm that most countries are seeking to get as close as possible to a steady state in order to catch up with developed countries. In this paper, we have retested this question whether it is absolute or conditional. The results affirm that the degree of convergence of countries like Morocco is very low and income is still far from its equilibrium state. Moreover, the analysis of financial convergence, of the countries in our panel, states that the pace in this sector is more intense: countries are converging more rapidly in financial terms. The question arises as to why, with a fairly convergent financial system, growth does not respond, yet the financial system should facilitate this economic convergence. Our results confirm that the degree of information exchange between the financial system and the economic system did not change significantly between 1985 and 2017. This leads to the hypothesis that the financial system is failing to serve its role as a creator of information in developing countries despite all the reforms undertaken, thus making the existence of an economic demon in the Maxwell prevail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20convergence" title="economic convergence">economic convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20convergence" title=" financial convergence"> financial convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20system" title=" financial system"> financial system</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a> </p> <a href="https://publications.waset.org/abstracts/158839/maxwells-economic-demon-hypothesis-and-the-impossibility-of-economic-convergence-of-developing-economies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16822</span> Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Rafetseder">David Rafetseder</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Bauer"> Walter Bauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Poltschak"> Florian Poltschak</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Amrhein"> Wolfgang Amrhein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equivalent%20circuit%20model" title="equivalent circuit model">equivalent circuit model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20induction%20motor" title=" linear induction motor"> linear induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20theory" title=" space vector theory"> space vector theory</a> </p> <a href="https://publications.waset.org/abstracts/31860/design-and-simulation-of-a-double-stator-linear-induction-machine-with-short-squirrel-cage-mover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16821</span> Electrohydrodynamic Study of Microwave Plasma PECVD Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Bouherine">Keltoum Bouherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Leroy"> Olivier Leroy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20density" title="electron density">electron density</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20field" title=" electric field"> electric field</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20plasma%20reactor" title=" microwave plasma reactor"> microwave plasma reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20velocity" title=" gas velocity"> gas velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=non-equilibrium%20plasma" title=" non-equilibrium plasma"> non-equilibrium plasma</a> </p> <a href="https://publications.waset.org/abstracts/87816/electrohydrodynamic-study-of-microwave-plasma-pecvd-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16820</span> A Bayesian Parameter Identification Method for Thermorheological Complex Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Anton%20Kraus">Michael Anton Kraus</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Schuster"> Miriam Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=Geralt%20Siebert"> Geralt Siebert</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Schneider"> Jens Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20parameter%20identification" title="bayesian parameter identification">bayesian parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20viscoelasticity" title=" linear viscoelasticity"> linear viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermorheological%20complex" title=" thermorheological complex "> thermorheological complex </a> </p> <a href="https://publications.waset.org/abstracts/93017/a-bayesian-parameter-identification-method-for-thermorheological-complex-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16819</span> Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volodymyr%20Rombakh">Volodymyr Rombakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic-proton%20reaction" title="atomic-proton reaction">atomic-proton reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=precursors%20of%20man-made%20disasters" title=" precursors of man-made disasters"> precursors of man-made disasters</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/158487/nondestructive-monitoring-of-atomic-reactions-to-detect-precursors-of-structural-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16818</span> Simulation of Reflectometry in Alborz Tokamak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kohestani">S. Kohestani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Amrollahi"> R. Amrollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Daryabor"> P. Daryabor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave diagnostics such as reflectometry are receiving growing attention in magnetic confinement fusionresearch. In order to obtain the better understanding of plasma confinement physics, more detailed measurements on density profile and its fluctuations might be required. A 2D full-wave simulation of ordinary mode propagation has been written in an effort to model effects seen in reflectometry experiment. The code uses the finite-difference-time-domain method with a perfectly-matched-layer absorption boundary to solve Maxwell’s equations.The code has been used to simulate the reflectometer measurement in Alborz Tokamak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reflectometry" title="reflectometry">reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20mode" title=" ordinary mode"> ordinary mode</a>, <a href="https://publications.waset.org/abstracts/search?q=tokamak" title=" tokamak"> tokamak</a> </p> <a href="https://publications.waset.org/abstracts/30953/simulation-of-reflectometry-in-alborz-tokamak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16817</span> Propellant Less Propulsion System Using Microwave Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradeep%20Mitra">D. Pradeep Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prafulla"> Prafulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propellant%20less" title="propellant less">propellant less</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20wave%20guide" title=" parabolic wave guide"> parabolic wave guide</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20system" title=" propulsion system"> propulsion system</a> </p> <a href="https://publications.waset.org/abstracts/15925/propellant-less-propulsion-system-using-microwave-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16816</span> MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jafar">K. Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nazar"> R. Nazar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ishak"> A. Ishak</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Pop"> I. Pop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20%28MHD%29" title="magnetohydrodynamic (MHD)">magnetohydrodynamic (MHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title=" boundary layer flow"> boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=UCM%20fluid" title=" UCM fluid"> UCM fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=stagnation%20point" title=" stagnation point"> stagnation point</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20sheet" title=" shrinking sheet"> shrinking sheet</a> </p> <a href="https://publications.waset.org/abstracts/8588/mhd-stagnation-point-flow-towards-a-shrinking-sheet-with-suction-in-an-upper-convected-maxwell-ucm-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16815</span> Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdikian">A. Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm&rsquo;s potential) and electron exchange-correlation potential in conjunction with Maxwell&rsquo;s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transverse%20magnetic" title="transverse magnetic">transverse magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=transverse%20electric" title=" transverse electric"> transverse electric</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20hydrodynamic%20model" title=" quantum hydrodynamic model"> quantum hydrodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20exchange-correlation%20potential" title=" electron exchange-correlation potential"> electron exchange-correlation potential</a>, <a href="https://publications.waset.org/abstracts/search?q=single-wall%20carbon%20nanotubes" title=" single-wall carbon nanotubes"> single-wall carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/69939/implication-of-the-exchange-correlation-on-electromagnetic-wave-propagation-in-single-wall-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16814</span> 3D Finite Element Analysis of Yoke Hybrid Electromagnet </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Fatih%20Ertu%C4%9Frul">Hasan Fatih Ertuğrul</a>, <a href="https://publications.waset.org/abstracts/search?q=Beytullah%20Okur"> Beytullah Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20%C3%9Cvet"> Huseyin Üvet</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Erkan"> Kadir Erkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to analyze a 4-pole hybrid magnetic levitation system by using 3D finite element and analytical methods. The magnetostatic analysis of the system is carried out by using ANSYS MAXWELL-3D package. An analytical model is derived by magnetic equivalent circuit (MEC) method. The purpose of magnetostatic analysis is to determine the characteristics of attractive force and rotational torques by the change of air gap clearances, inclination angles and current excitations. The comparison between 3D finite element analysis and analytical results are presented at the rest of the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoke%20hybrid%20electromagnet" title="yoke hybrid electromagnet">yoke hybrid electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20finite%20element%20analysis" title=" 3D finite element analysis"> 3D finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20levitation%20system" title=" magnetic levitation system"> magnetic levitation system</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetostatic%20analysis" title=" magnetostatic analysis"> magnetostatic analysis</a> </p> <a href="https://publications.waset.org/abstracts/11364/3d-finite-element-analysis-of-yoke-hybrid-electromagnet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">727</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=561">561</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=562">562</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Maxwell%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10