CINXE.COM
Search results for: water ballast tanks
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: water ballast tanks</title> <meta name="description" content="Search results for: water ballast tanks"> <meta name="keywords" content="water ballast tanks"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="water ballast tanks" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="water ballast tanks"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8756</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: water ballast tanks</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8756</span> A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20A.%20Oriaifo">Emmanuel A. Oriaifo</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Perera"> Noel Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Guy"> Alan Guy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pak.%20S.%20Leung"> Pak. S. Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kian%20T.%20Tan"> Kian T. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20test" title="corrosion test">corrosion test</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20cycling" title=" hygrothermal cycling"> hygrothermal cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20test%20protocols" title=" coating test protocols"> coating test protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks" title=" water ballast tanks"> water ballast tanks</a> </p> <a href="https://publications.waset.org/abstracts/10871/a-review-of-test-protocols-for-assessing-coating-performance-of-water-ballast-tank-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8755</span> Quality Evaluation of Treated Ballast Seawater for Potential Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Muhamad">Siti Nur Muhamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Abu%20Ubaidah%20Amir"> Mohamad Abu Ubaidah Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenen%20Shuhada%20Abdul%20Aziz"> Adenen Shuhada Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Sarah%20Mohd%20Isnan"> Siti Sarah Mohd Isnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainul%20Husna%20Abdul%20Rahman"> Ainul Husna Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Afiqah%20Rosly"> Nur Afiqah Rosly</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshamida%20Abd%20Jamil"> Roshamida Abd Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM Convention) will commencing on 8 September 2017 after ratified by 51 States in September 2016. However, there is no value recovered for the treated ballast water as it simply discharged during de-ballasting. In order to evaluate value creation of treated ballast water, three seawater applications which are seawater toilet flushing, cooling tower and desalination was studied and compared with treated ballast seawater. An exploratory study was conducted in Singapore as a case study as this country is facing water scarcity issues and a busy port in the world which received more than 28 billion m3 of ballast water in 2015. Surprisingly the treatment technology between seawater toilet flushing and ballast water management has similarity as both applications use screening and disinfection process and quality standard and analysis between treated ballast water with seawater applications found that seawater toilet flushing have the same quality parameter with treated ballast water. Thus, the treated ballast water can replace the raw seawater for seawater desalination. As such, with reduction of cost for screen unit, desalination water can exceed water production by NEWater in Singapore as the cost can recover the energy needed for desalination. It can conclude that treated ballast water has high recovery value and can be reused in seawater application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20treatment" title="ballast water treatment">ballast water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=BWM%20convention" title=" BWM convention"> BWM convention</a>, <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management" title=" ballast water management"> ballast water management</a> </p> <a href="https://publications.waset.org/abstracts/64168/quality-evaluation-of-treated-ballast-seawater-for-potential-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8754</span> Ballast Water Management Triad: Administration, Ship Owner and the Seafarer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajoo%20Balaji">Rajoo Balaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Yaakob"> Omar Yaakob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ballast Water Convention requires less than 5% of the world tonnage for ratification. Consequently, ships will have to comply with the requirements. Compliance evaluation and enforcement will become mandatory. Ship owners have to invest in treatment systems and shipboard personnel have to operate them and ensure compliance. The monitoring and enforcement will be the responsibilities of the Administrations. Herein, a review of the current status of the Ballast Water Management and the issues faced by these are projected. Issues range from efficacy and economics of the treatment systems to sampling and testing. Health issues of chemical systems, paucity of data for decision support etc., are other issues. It is emphasized that management of ballast water must be extended to ashore and sustainable solutions must be researched upon. An exemplar treatment system based on ship’s waste heat is also suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ballast%20Water%20Management" title="Ballast Water Management">Ballast Water Management</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance%20evaluation" title=" compliance evaluation"> compliance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance%20enforcement" title=" compliance enforcement"> compliance enforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/13591/ballast-water-management-triad-administration-ship-owner-and-the-seafarer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8753</span> Development of Database for Risk Assessment Appling to Ballast Water Managements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun-Chan%20Kim">Eun-Chan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hwan%20Oh"> Jeong-Hwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Guk%20Lee"> Seung-Guk Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Billions of tones of ballast water including various aquatic organisms are being carried around the world by ships. When the ballast water is discharged into new environments, some aquatic organisms discharged with ballast water may become invasive and severely disrupt the native ecology. Thus, International Maritime Organization (IMO) adopted the Ballast Water Management Convention in 2004. Regulation A-4 of the convention states that a government in waters under their jurisdiction may grant exemptions to any requirements to ballast water management, but only when they are granted to a ship or ships on a voyage or voyages between specified ports or locations, or to a ship which operates exclusively between specified ports or locations. In order to grant exemptions, risk assessment should be conducted based on the guidelines for risk assessment developed by the IMO. For the risk assessment, it is essential to collect the relevant information and establish a database system. This paper studies the database system for ballast water risk assessment. This database consists of the shipping database, ballast water database, port environment database and species database. The shipping database has been established based on the data collected from the port management information system of Korea Government. For the ballast water database, ballast water discharge has only been estimated by the loading/unloading of the cargoes as the convention has not come into effect yet. The port environment database and species database are being established based on the reference documents, and existing and newly collected monitoring data. This database system has been approved to be a useful system, capable of appropriately analyzing the risk assessment in the all ports of Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast%20water" title="ballast water">ballast water</a>, <a href="https://publications.waset.org/abstracts/search?q=IMO" title=" IMO"> IMO</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping" title=" shipping"> shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=species" title=" species"> species</a> </p> <a href="https://publications.waset.org/abstracts/14757/development-of-database-for-risk-assessment-appling-to-ballast-water-managements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8752</span> The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Aela">Peyman Aela</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zong"> Lu Zong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Jing"> Guoqing Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast" title="ballast">ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20model" title=" contact model"> contact model</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a> </p> <a href="https://publications.waset.org/abstracts/131827/the-influence-of-contact-models-on-discrete-element-modeling-of-the-ballast-layer-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8751</span> Optimization of the Rain Harvest Using Multi-Purpose Valley Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Hashad">Ahmad Hashad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Valley tanks are a kind of rain harvest which is used as ground water storage to overcome drought seasons in some countries. This research displays the rain harvest evolution and introduces some ideas to develop the valley tanks to be more than water storage. These ideas developed the current valley tanks design to become an integrated renaissance project. The suggested design has some changes making it different than the traditional design of valley tanks. These changes allow for the new design to be more flexible for adding additional capacity, water purification units and water pumping units. The suggested valley tanks project will be designed based on studying the rainfall and evaporation rates, as well as land topography and designed agricultural map linked to seasons of rain and drought. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=valley%20tanks" title="valley tanks">valley tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20harvest" title=" rain harvest"> rain harvest</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20nature" title=" volatile nature"> volatile nature</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20renaissance%20project" title=" integrated renaissance project"> integrated renaissance project</a> </p> <a href="https://publications.waset.org/abstracts/14152/optimization-of-the-rain-harvest-using-multi-purpose-valley-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8750</span> Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Trung%20Ngo">Ngoc Trung Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=Buddhima%20Indraratna"> Buddhima Indraratna</a>, <a href="https://publications.waset.org/abstracts/search?q=Cholachat%20Rujikiathmakjornr"> Cholachat Rujikiathmakjornr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20ballast" title="railway ballast">railway ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fouling" title=" coal fouling"> coal fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20modelling" title=" discrete element modelling"> discrete element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/34239/investigating-the-shear-behaviour-of-fouled-ballast-using-discrete-element-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8749</span> Investigating the Dynamic Response of the Ballast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Brinji">Osama Brinji</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing%20Kong%20Chiu"> Wing Kong Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Tew"> Graham Tew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast" title="ballast">ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=sleeper" title=" sleeper"> sleeper</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/35116/investigating-the-dynamic-response-of-the-ballast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8748</span> The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20A.%20Hussein">Haitham A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozi%20Abdullah"> Rozi Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Issa%20Saket"> Issa Saket</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Azlin"> Md. Azlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%2Fwater%20separator%20tanks" title="oil/water separator tanks">oil/water separator tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20baffles" title=" inlet baffles"> inlet baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/52725/the-effect-of-inlet-baffle-position-in-improving-the-efficiency-of-oil-and-water-gravity-separator-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8747</span> Railway Ballast Volumes Automated Estimation Based on LiDAR Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Salavati%20Vie%20Le%20Sage">Bahar Salavati Vie Le Sage</a>, <a href="https://publications.waset.org/abstracts/search?q=Isma%C3%AFl%20Ben%20Hariz"> Ismaïl Ben Hariz</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavien%20Viguier"> Flavien Viguier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirine%20Noura%20Kahil"> Sirine Noura Kahil</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Jacquin"> Audrey Jacquin</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Convert"> Maxime Convert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast" title="ballast">ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=railroad" title=" railroad"> railroad</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR "> LiDAR </a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20point" title=" cloud point"> cloud point</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20ballast" title=" track ballast"> track ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20point" title=" 3D point"> 3D point</a> </p> <a href="https://publications.waset.org/abstracts/164329/railway-ballast-volumes-automated-estimation-based-on-lidar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8746</span> Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Shavlakadze">Marine Shavlakadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganese" title="manganese">manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ballast" title=" non-ballast"> non-ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-%20fertilizers" title=" micro- fertilizers "> micro- fertilizers </a> </p> <a href="https://publications.waset.org/abstracts/76450/study-of-receiving-opportunity-of-water-soluble-and-non-ballast-micro-fertilizer-on-the-base-of-manganese-containing-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8745</span> Implementation of Chlorine Monitoring and Supply System for Drinking Water Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ugur%20Fidan">Ugur Fidan</a>, <a href="https://publications.waset.org/abstracts/search?q=Naim%20Karasekreter"> Naim Karasekreter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthy and clean water should not contain disease-causing micro-organisms and toxic chemicals and must contain the necessary minerals in a balanced manner. Today, water resources have a limited and strategic importance, necessitating the management of water reserves. Water tanks meet the water needs of people and should be regularly chlorinated to prevent waterborne diseases. For this purpose, automatic chlorination systems placed in water tanks for killing bacteria. However, the regular operation of automatic chlorination systems depends on refilling the chlorine tank when it is empty. For this reason, there is a need for a stock control system, in which chlorine levels are regularly monitored and supplied. It has become imperative to take urgent measures against epidemics caused by the fact that most of our country is not aware of the end of chlorine. The aim of this work is to rehabilitate existing water tanks and to provide a method for a modern water storage system in which chlorination is digitally monitored by turning the newly established water tanks into a closed system. A sensor network structure using GSM/GPRS communication infrastructure has been developed in the study. The system consists of two basic units: hardware and software. The hardware includes a chlorine level sensor, an RFID interlock system for authorized personnel entry into water tank, a motion sensor for animals and other elements, and a camera system to ensure process safety. It transmits the data from the hardware sensors to the host server software via the TCP/IP protocol. The main server software processes the incoming data through the security algorithm and informs the relevant unit responsible (Security forces, Chlorine supply unit, Public health, Local Administrator) by e-mail and SMS. Since the software is developed base on the web, authorized personnel are also able to monitor drinking water tank and report data on the internet. When the findings and user feedback obtained as a result of the study are evaluated, it is shown that closed drinking water tanks are built with GRP type material, and continuous monitoring in digital environment is vital for sustainable health water supply for people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks%20%28WSN%29" title="wireless sensor networks (WSN)">wireless sensor networks (WSN)</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine" title=" chlorine"> chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20tank" title=" water tank"> water tank</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/78971/implementation-of-chlorine-monitoring-and-supply-system-for-drinking-water-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8744</span> Experimental and Computational Investigations of Baffle Position Effects on the Performance of Oil and Water Separator Tanks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20A.%20Hussein">Haitham A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozi%20Abdullah%E2%80%8F%E2%80%8E"> Rozi Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20Azlin%20Md%20Said%20%E2%80%8E"> Md Azlin Md Said </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. In this study, the effect on hydraulic performance of different baffle structure positions inside a tank was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The measurements were compared with the result of the computational model. The results of the experimental and computational simulations indicate that the best location of a baffle structure is achieved when the standard deviation of the velocity profile and the volume of the circulation zone inside the tank are minimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20separator%20tanks" title="gravity separator tanks">gravity separator tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=baffle%20position" title=" baffle position"> baffle position</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=ADV" title=" ADV"> ADV</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20droplet" title=" oil droplet"> oil droplet</a> </p> <a href="https://publications.waset.org/abstracts/13318/experimental-and-computational-investigations-of-baffle-position-effects-on-the-performance-of-oil-and-water-separator-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8743</span> Waste from Drinking Water Treatment: The Feasibility for Application in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Correa">Marco Correa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing reduction of the volumes of surface water sources supplying most municipalities, as well as the rising demand for treated water, combined with the disposal of effluents from washing of decanters and filters of water treatment plants generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows alternatives for sludge dehydration from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, it is presented a case study for drainage in tanks geotextile, full-scale, which involve five sledge drainage tanks from WTP of the city of Rio Verde. Aiming to the reutilization of drained water from the sledge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to in the production of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dehydration" title="dehydration">dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=effluent%20discharges" title=" effluent discharges"> effluent discharges</a>, <a href="https://publications.waset.org/abstracts/search?q=re-use" title=" re-use"> re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=WTP%20sludge" title=" WTP sludge"> WTP sludge</a> </p> <a href="https://publications.waset.org/abstracts/26664/waste-from-drinking-water-treatment-the-feasibility-for-application-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8742</span> An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daianne%20Fernandes%20Diogenes">Daianne Fernandes Diogenes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title="digital image processing">digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20ballast" title=" railway ballast"> railway ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20properties" title=" shape properties"> shape properties</a> </p> <a href="https://publications.waset.org/abstracts/116860/an-analysis-of-the-relations-between-aggregates-shape-and-mechanical-properties-throughout-the-railway-ballast-service-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8741</span> Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdi%20S.%20Kolbadi">S. Mahdi S. Kolbadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramezan%20Ali%20Alvand"> Ramezan Ali Alvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Afrasiab%20Mirzaei"> Afrasiab Mirzaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title="dynamic behavior">dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20wall" title=" flexible wall"> flexible wall</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20storage%20tank" title=" water storage tank"> water storage tank</a> </p> <a href="https://publications.waset.org/abstracts/83646/three-dimensional-dynamic-analysis-of-water-storage-tanks-considering-fsi-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8740</span> Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Correa">Marco Correa</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavio%20Araujo"> Flavio Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Scalize"> Paulo Scalize</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Albuquerque"> Antonio Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=re-use" title="re-use">re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment%20plants" title=" water treatment plants"> water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a> </p> <a href="https://publications.waset.org/abstracts/22217/dehydration-of-residues-from-wtp-for-application-in-building-materials-and-reuse-of-water-from-the-waste-treatment-a-feasible-solution-to-complete-treatment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8739</span> Design Considerations for Solar Energy Application to Fish Pond Recirculating System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Ogunlela">A. O. Ogunlela</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Ayodele"> T. O. Ayodele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fish pond recirculating system was designed and constructed. The system consists of three plastic culture tanks (1000 litres each, filled up to 850 litres). It also consists of a sedimentation tank where the water filtration was carried out and a pump tank where the treated water partially settled before being pumped to the culture tanks. A pump of ½ hp capacity was selected to pump water round the system to enhance water recirculation. Following the design of the solar array that was done, a grid support of tilt angle 36.640 was constructed to offer the system an optimum, all-year-round, intense solar energy reception, which is specific to the location of the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20pond" title=" fish pond"> fish pond</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculation%20system" title=" recirculation system"> recirculation system</a>, <a href="https://publications.waset.org/abstracts/search?q=pump%20tank" title=" pump tank"> pump tank</a> </p> <a href="https://publications.waset.org/abstracts/14105/design-considerations-for-solar-energy-application-to-fish-pond-recirculating-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8738</span> Study of the Performance of Metal Tanks with a Floating Roof</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rezki%20Akkouche">Rezki Akkouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work exposes metal tanks in general and floating roofs in particular by listing the codes and standards which study this kind of structure. Initial research discusses the types of tanks, how they are designed, and the disadvantages and advantages that each type has. Then, in-depth research was carried out carefully in order to popularize the floating roof tank and the principles of its design and operation while defining the different types of this kind of roof, how and what they are designed, naming the main installation accessories for these roofs and the dangers that a malfunction of these accessories would cause, also exposing the problems likely to be encountered on these roofs and the considerable and important advantages that floating roof tanks bring. A simplification of the two API 650 and Eurocode 3 regulations - Tanks part - has been made by explaining and mentioning the design rules and laws of this type of structure. Thus a comparison of the two regulations is accomplished by exemplifying this with a study of an actual project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanks%20of%20metal" title="tanks of metal">tanks of metal</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20roof" title=" floating roof"> floating roof</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a> </p> <a href="https://publications.waset.org/abstracts/167127/study-of-the-performance-of-metal-tanks-with-a-floating-roof" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8737</span> Application of Ground Penetrating Radar and Light Falling Weight Deflectometer in Ballast Quality Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Cafiso">S. Cafiso</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Capace"> B. Capace</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Di%20Graziano"> A. Di Graziano</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20D%E2%80%99Agostino"> C. D’Agostino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systematic monitoring of the trackbed is necessary to assure safety and quality of service in the railway system. Moreover, to produce effective management of the maintenance treatments, the assessment of bearing capacity of the railway trackbed must include ballast, sub-ballast and subgrade layers at different depths. Consequently, there is an increasing interest in obtaining a consistent measure of ballast bearing capacity with no destructive tests (NDTs) able to work in the physical and time restrictions of railway tracks in operation. Moreover, in the case of the local railway with reduced gauge, the use of the traditional high-speed track monitoring systems is not feasible. In that framework, this paper presents results from in site investigation carried out on ballast and sleepers with Ground Penetrating Radar (GPR) and Light Falling Weight Deflectometer (LWD). These equipment are currently used in road pavement maintenance where they have shown their reliability and effectiveness. Application of such Non-Destructive Tests in railway maintenance is promising but in the early stage of the investigation. More specifically, LWD was used to estimate the stiffness of ballast and sleeper support, as well. LWD, despite the limited load (6 kN in the trial test) applied directly on the sleeper, was able to detect defects in the bearing capacity at the Sleeper/Ballast interface. A dual frequency GPR was applied to detect the presence of layers’ discontinuities at different depths due to fouling phenomena that are the main causes of changing in the layer dielectric proprieties within the ballast thickness. The frequency of 2000Mhz provided high-resolution data to approximately 0.4m depth, while frequency of 600Mhz showed greater depth penetration up to 1.5 m. In the paper literature review and trial in site experience are used to identify Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) of the application of GPR and LWD for the assessment of bearing capacity of railway track-bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=LWD" title=" LWD"> LWD</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20destructive%20test" title=" no destructive test"> no destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20track" title=" railway track"> railway track</a> </p> <a href="https://publications.waset.org/abstracts/108589/application-of-ground-penetrating-radar-and-light-falling-weight-deflectometer-in-ballast-quality-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8736</span> Determination of Geogrid Reinforced Ballast Behavior Using Finite Element Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bu%C4%9Fra%20Sinmez">Buğra Sinmez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some countries, such as China, Turkey, andseveralEuropeanUnionnations, the therailwaypavementstructuralsystem has recently undergonerapid growth as a vital element of the transportation infrastructure, particularlyfortheuse of high-speed trains. It is vitaltoconsiderthe High-SpeedInfrastructureDemandwhendevelopingandconstructingtherailwaypavementstructure. HSRL can create more substantial ldifficultiestotheballastorbaselayer of regularlyusedballastedrailwaypavementsthanstandardrailwaytrains. The deterioration of the theballastorbaselayermayleadtosubstructuredegradation, which might lead to safety concerns and catastrophicincidents. As a result, the efficiency of railways will be impactedbylargecargoesorhigh-speed trains. A railwaypavement construction can be strengthened using geosyntheticmaterials in theballastorfoundationlayer as a countermeasure. However, there is still a need in the literature to quantifytheinfluence of geosynthetic materials, particularlygeogrid, on the mechanical responses of railwaypavementstructuresto HSRL loads which is essential knowledge in supporting the selection of appropriate material and geogridinstallationposition. As a result, the purpose of this research is to see how a geogridreinforcementlayermayaffectthekeyfeatures of a ballastedrailwaypavementstructure, with a particular focus on the materialtypeandgeogridplacementpositionthatmayassistreducethe rate of degradation of the therailwaypavementstructuresystem. Thisstudyusesnumericalmodeling in a genuinerailwaycontexttovalidatethebenefit of geogrid reinforcement. The usage of geogrids in the railway system has been thoroughly researched in the technical literature. Three distinct types of geogrid installed at two distinct positions (i.e.,withintheballastlayer, betweentheballastandthesub-ballast layer) within a railwaypavementconstructionwereevaluatedunder a variety of verticalwheelloadsusing a three-dimensional (3D) finite element model. As a result, fouralternativegeogridreinforcementsystemsweremodeledtoreflectdifferentconditions in the ballastedrailwaysystems (G0: no reinforcement; G1: reinforcedwithgeogridhavingthelowestdensityandYoung'smodulus; G2: reinforcedwithgeogridhavingtheintermediateYoung'smodulusanddensity; G3: reinforcedwithgeogridhavingthegreatestdensityandYoung'smodulus). Themechanicalreactions of the railway, such as verticalsurfacedeflection, maximumprimarystressandstrain, andmaximumshearstress, werestudiedandcomparedbetweenthefourgeogridreinforcementscenariosandfourverticalwheelloadlevels (i.e., 75, 100, 150, and 200 kN). Differences in the mechanical reactions of railwaypavementconstructionsowingtotheuse of differentgeogridmaterialsdemonstratethebenefits of suchgeosynthetics in ballast. In comparison to a non-reinforcedrailwaypavementconstruction, thereinforcedconstructionsfeaturedecreasedverticalsurfacedeflection, maximum shear stress at the sleeper-ballast contact, and maximum main stress at the bottom of the ballast layer. As a result, addinggeogridtotheballastlayerandbetweentheballastandsub-ballast layer in a ballastedrailwaypavementconstruction has beenfoundtolowercriticalshearand main stresses as well as verticalsurfacedeflection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/142242/determination-of-geogrid-reinforced-ballast-behavior-using-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8735</span> The Pressure Distribution on the Rectangular and Trapezoidal Storage Tanks' Perimeters Due to Liquid Sloshing Impact</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Saghi">Hassan Saghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholam%20Reza%20Askarzadeh%20Garmroud"> Gholam Reza Askarzadeh Garmroud</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Ali%20Reza%20Emamian"> Seyyed Ali Reza Emamian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank’s perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing impact. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions are solved using coupled BEM-FEM. The code performance for sloshing modeling is validated against available data. Finally, this code is used for partially filled rectangular and trapezoidal storage tanks and the pressure distribution on the tanks’ perimeters due to liquid sloshing impact is estimated. The results show that the maximum pressure on the perimeter of the rectangular and trapezoidal storage tanks was decreased along the sidewalls from the top to the bottom. Furthermore, the period of the pressure distribution is different for different points on the tank’s perimeter and it is bigger in the trapezoidal tanks compared to the rectangular ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressure%20distribution" title="pressure distribution">pressure distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20sloshing%20impact" title=" liquid sloshing impact"> liquid sloshing impact</a>, <a href="https://publications.waset.org/abstracts/search?q=sway%20motion" title=" sway motion"> sway motion</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20storage%20tank" title=" trapezoidal storage tank"> trapezoidal storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20BEM-FEM" title=" coupled BEM-FEM"> coupled BEM-FEM</a> </p> <a href="https://publications.waset.org/abstracts/20717/the-pressure-distribution-on-the-rectangular-and-trapezoidal-storage-tanks-perimeters-due-to-liquid-sloshing-impact" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8734</span> Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Ren">Zhijun Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lin"> Zhang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Ye"> Zhao Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuo%20Xiangyu"> Zuo Xiangyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Dongxing"> Mei Dongxing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for <em>Escherichia coli</em> (<em>E. </em><em>coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HGMS" title="HGMS">HGMS</a>, <a href="https://publications.waset.org/abstracts/search?q=particulates" title=" particulates"> particulates</a>, <a href="https://publications.waset.org/abstracts/search?q=superoxide%20dismutase%20%28SOD%29%20activity" title=" superoxide dismutase (SOD) activity"> superoxide dismutase (SOD) activity</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20wool%20magnetic%20medium" title=" steel wool magnetic medium"> steel wool magnetic medium</a> </p> <a href="https://publications.waset.org/abstracts/58997/effects-and-mechanization-of-a-high-gradient-magnetic-separation-process-for-particulate-and-microbe-removal-from-ballast-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8733</span> Study of Biofouling Wastewater Treatment Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangho%20Park">Sangho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoo%20Kim"> Mansoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyujung%20Chae"> Kyujung Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhyuk%20Yang"> Junhyuk Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Maritime Organization (IMO) recognized the problem of invasive species invasion and adopted the "International Convention for the Control and Management of Ships' Ballast Water and Sediments" in 2004, which came into force on September 8, 2017. In 2011, the IMO approved the "Guidelines for the Control and Management of Ships' Biofouling to Minimize the Transfer of Invasive Aquatic Species" to minimize the movement of invasive species by hull-attached organisms and required ships to manage the organisms attached to their hulls. Invasive species enter new environments through ships' ballast water and hull attachment. However, several obstacles to implementing these guidelines have been identified, including a lack of underwater cleaning equipment, regulations on underwater cleaning activities in ports, and difficulty accessing crevices in underwater areas. The shipping industry, which is the party responsible for understanding these guidelines, wants to implement them for fuel cost savings resulting from the removal of organisms attached to the hull, but they anticipate significant difficulties in implementing the guidelines due to the obstacles mentioned above. Robots or people remove the organisms attached to the hull underwater, and the resulting wastewater includes various species of organisms and particles of paint and other pollutants. Currently, there is no technology available to sterilize the organisms in the wastewater or stabilize the heavy metals in the paint particles. In this study, we aim to analyze the characteristics of the wastewater generated from the removal of hull-attached organisms and select the optimal treatment technology. The organisms in the wastewater generated from the removal of the attached organisms meet the biological treatment standard (D-2) using the sterilization technology applied in the ships' ballast water treatment system. The heavy metals and other pollutants in the paint particles generated during removal are treated using stabilization technologies such as thermal decomposition. The wastewater generated is treated using a two-step process: 1) development of sterilization technology through pretreatment filtration equipment and electrolytic sterilization treatment and 2) development of technology for removing particle pollutants such as heavy metals and dissolved inorganic substances. Through this study, we will develop a biological removal technology and an environmentally friendly processing system for the waste generated after removal that meets the requirements of the government and the shipping industry and lays the groundwork for future treatment standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofouling" title="biofouling">biofouling</a>, <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20treatment%20system" title=" ballast water treatment system"> ballast water treatment system</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=sterilization" title=" sterilization"> sterilization</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/166797/study-of-biofouling-wastewater-treatment-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8732</span> Numerical Modelling and Soil-structure Interaction Analysis of Rigid Ballast-less and Flexible Ballast-based High-speed Rail Track-embankments Using Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokirhusen%20Iqbalbhai%20Shaikh">Tokirhusen Iqbalbhai Shaikh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Shah"> M. V. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With an increase in travel demand and a reduction in travel time, high-speed rail (HSR) has been introduced in India. Simplified 3-D finite element modelling is necessary to predict the stability and deformation characteristics of railway embankments and soil structure interaction behaviour under high-speed design requirements for Indian soil conditions. The objective of this study is to analyse the rigid ballast-less and flexible ballast-based high speed rail track embankments for various critical conditions subjected to them, viz. static condition, moving train condition, sudden brake application, and derailment case, using software. The input parameters for the analysis are soil type, thickness of the relevant strata, unit weight, Young’s modulus, Poisson’s ratio, undrained cohesion, friction angle, dilatancy angle, modulus of subgrade reaction, design speed, and other anticipated, relevant data. Eurocode 1, IRS-004(D), IS 1343, IRS specifications, California high-speed rail technical specifications, and the NHSRCL feasibility report will be followed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title="soil structure interaction">soil structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20rail" title=" high speed rail"> high speed rail</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS3D" title=" PLAXIS3D"> PLAXIS3D</a> </p> <a href="https://publications.waset.org/abstracts/166467/numerical-modelling-and-soil-structure-interaction-analysis-of-rigid-ballast-less-and-flexible-ballast-based-high-speed-rail-track-embankments-using-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8731</span> Comparative Study of Dynamic Effect on Analysis Approaches for Circular Tanks Using Codal Provisions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak%20Kumar">P. Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishwarya%20Alok"> Aishwarya Alok</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Maiti"> P. R. Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid storage tanks have become widespread during the recent decades due to their extensive usage. Analysis of liquid containing tanks is known to be complex due to hydrodynamic force exerted on tank which makes the analysis a complex one. The objective of this research is to carry out analysis of liquid domain along with structural interaction for various geometries of circular tanks considering seismic effects. An attempt has been made to determine hydrodynamic pressure distribution on the tank wall considering impulsive and convective components of liquid mass. To get a better picture, a comparative study of Draft IS 1893 Part 2, ACI 350.3 and Eurocode 8 for Circular Shaped Tank has been performed. Further, the differences in the magnitude of shear and moment at base as obtained from static (IS 3370 IV) and dynamic (Draft IS 1892 Part 2) analysis of ground supported circular tank highlight the need for us to mature from the old code to a newer code, which is more accurate and reliable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20filled%20containers" title="liquid filled containers">liquid filled containers</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20tanks" title=" circular tanks"> circular tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=IS%201893%20%28part%202%29" title=" IS 1893 (part 2)"> IS 1893 (part 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a> </p> <a href="https://publications.waset.org/abstracts/28169/comparative-study-of-dynamic-effect-on-analysis-approaches-for-circular-tanks-using-codal-provisions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8730</span> Influence of Some Chemical Drinking Water Parameters on Germ Count in Nalout Region, Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dukali%20Abujnah">Dukali Abujnah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Blgacem%20Halbuda"> Mokhtar Blgacem Halbuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is one of the world's natural resources. It is an essential source for the maintenance of human, animal, and plant life. It has a significant impact on the country's economy and all human activities. Over the past twenty years, pressure on water resources has increased due to population and industrial growth and increasing demand for agricultural and household products, which has become a major concern of the international community. The aim of this study is the physical and bacteriological analysis of drinking water in the city of Value. The study covered different locations in the city. Thirty-six groundwater samples were taken from wells and various tanks owned by the State and private wells, and the Ain Thalia spring and other samples were taken from underground water tanks. It fills up with rainwater during the rainy season. These samples were analyzed for their physical, chemical, and biological status and the results were compared to Libyan and World Health Organization drinking water specifications to assess the quality of drinking water in the city of Value. Physical and chemical analysis of water samples showed acceptable values for acidity and electrical conductivity, and turbidity was found in water samples collected from underground reservoirs compared to Libyan and World Health Organization standards. The highest levels of electrical conductivity and alkalinity, TDS, and water hardness in the samples collected were below the maximum acceptable levels for drinking water as recommended by Libyan and World Health Organization specifications. The biological test results also showed that the water samples were free of intestinal bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality" title="quality">quality</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=region" title=" region"> region</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/154910/influence-of-some-chemical-drinking-water-parameters-on-germ-count-in-nalout-region-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8729</span> Ceramic Ware Waste Potential as Co-Ballast in Dense Masonry Unit Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ajayi-Banji">A. A. Ajayi-Banji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Adegbile"> M. A. Adegbile</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Akpenpuun"> T. D. Akpenpuun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bello"> J. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Omobowale"> O. Omobowale</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20A.%20Jenyo"> D. A. Jenyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic ware waste applicability as coarse aggregate was considered in this study for dense masonry unit production. The waste was crushed into 1.4 mm particle size and mixed with natural fine aggregate in the ratio 2:3. Portland ordinary cement, aggregate, and water mix ratio was 1:7:0.5. Masonry units produced were cured for 7, 21 and 28 days prior to compressive test. The result shows that curing age have a significant effect on all the compressive strength indices inspected except for Young’s modulus. Crushing force and the compressive strength of the ceramic-natural fine aggregate blocks increased by 11.7 – 54.7% and 11.6 – 59.2% respectively. The highest ceramic-natural fine block compressive strength at yield and peak, 4.97 MPa, was obtained after 21 days curing age. Ceramic aggregate introduced into the dense blocks improved the suitability of the blocks for construction purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20ware%20waste" title="ceramic ware waste">ceramic ware waste</a>, <a href="https://publications.waset.org/abstracts/search?q=co-ballast" title=" co-ballast"> co-ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=dense%20masonry%20unit" title=" dense masonry unit"> dense masonry unit</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a> </p> <a href="https://publications.waset.org/abstracts/82381/ceramic-ware-waste-potential-as-co-ballast-in-dense-masonry-unit-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8728</span> Sewage Sludge Management: A Case Study of Monrovia, Montserrado County, Liberia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Emery%20%20David%20Jr">Victor Emery David Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20S.%20Hossain"> Md S. Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sewage sludge management has been a problem faced by most developing cities as in the case of Monrovia. The management of sewage sludge in Monrovia is still in its infant stage. The city is still struggling with poor sanitation, clogged pipes, shortage of septic tanks, lack of resources/human capacity, inadequate treatment facilities, open defecation, the absence of clear guidelines, etc. The rapid urban population growth of Monrovia has severely stressed Monrovia’s marginally functional urban WSS system caused by the civil conflict which led to break down in many sectors as well as infrastructure. The sewerage system which originally covered 17% of the population of Monrovia was down to serving about 7% because of bursts and blockages causing backflows in other areas. Prior to the Civil War, the average water production for Monrovia was about 68,000 m3/day but has now dropped to about 10,000 m3/day. Only small parts of Monrovia currently have direct access to the piped water supply while most areas depend on trucked water delivered to community collection points or household tanks, and/or on water from unprotected dug wells or hand pumps. There are only two functional treatment plants; The Fiamah Treatment plant and the White Plains Treatment Plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fiamah%20Treatment%20plant" title="Fiamah Treatment plant">Fiamah Treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=Monrovia%2FMontserrado%20County" title=" Monrovia/Montserrado County"> Monrovia/Montserrado County</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a> </p> <a href="https://publications.waset.org/abstracts/51613/sewage-sludge-management-a-case-study-of-monrovia-montserrado-county-liberia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8727</span> Titanium Alloys for Cryogenic Gas Bottle Applications: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Pant">Bhanu Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20H.%20Upadhyay"> Sanjay H. Upadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys, owing to their high specific strength coupled with excellent resistance to corrosion in many severe environments, find extensive usage in the aerospace sector. Alpha and beta lean Titanium alloys have an additional characteristic of exhibiting high toughness with an NTS/ UTS ratio greater than one down to liquid oxygen and liquid helium temperatures. The cryogenic stage of high-performance rockets utilizes cryo-fluid submerged pressurizing tanks to improve volume to mass performance factor. A superior volume-to-mass ratio is achieved for LH2-submerged pressurizing tanks as compared to those submerged in LOX. Such high-efficiency tanks for LH2 submerged application necessitate the use of difficult to process alpha type Ti5Al2.5Sn-ELI alloy, which requires close control of process parameters to develop the tanks. In the present paper, a comparison of this alpha-type cryogenic Titanium alloy has been brought out with conventional alpha-beta Ti6Al4V-ELI alloy, which is usable up to LOX temperatures. Specific challenges faced during the development of these cryogenic pressurizing tanks for a launch vehicle based on the author's experience are included in the paper on the comparatively lesser-studied alpha Ti5Al2.5Sn-ELI alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20tanks" title="cryogenic tanks">cryogenic tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20Alloys" title=" titanium Alloys"> titanium Alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=NTS%2FUTS%20ratio" title=" NTS/UTS ratio"> NTS/UTS ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20and%20alpha-beta%20ELI%20alloys" title=" alpha and alpha-beta ELI alloys"> alpha and alpha-beta ELI alloys</a> </p> <a href="https://publications.waset.org/abstracts/184964/titanium-alloys-for-cryogenic-gas-bottle-applications-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=291">291</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=292">292</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>