CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–12 of 12 results for author: <span class="mathjax">Liu, H X</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&query=Liu%2C+H+X">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Liu, H X"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Liu%2C+H+X&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Liu, H X"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08667">arXiv:2404.08667</a> <span> [<a href="https://arxiv.org/pdf/2404.08667">pdf</a>, <a href="https://arxiv.org/format/2404.08667">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Traffic State Estimation and Uncertainty Quantification at Signalized Intersections with Low Penetration Rate Vehicle Trajectory Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wang%2C+X">Xingmin Wang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Z">Zihao Wang</a>, <a href="/search/eess?searchtype=author&query=Jerome%2C+Z">Zachary Jerome</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08667v1-abstract-short" style="display: inline;"> This paper studies the traffic state estimation problem at signalized intersections with low penetration rate vehicle trajectory data. While many existing studies have proposed different methods to estimate unknown traffic states and parameters (e.g., penetration rate, queue length) with this data, most of them only provide a point estimation without knowing the uncertainty of these estimated valu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08667v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08667v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08667v1-abstract-full" style="display: none;"> This paper studies the traffic state estimation problem at signalized intersections with low penetration rate vehicle trajectory data. While many existing studies have proposed different methods to estimate unknown traffic states and parameters (e.g., penetration rate, queue length) with this data, most of them only provide a point estimation without knowing the uncertainty of these estimated values. It is important to quantify the estimation uncertainty caused by limited available data since it can explicitly inform us whether the available data is sufficient to satisfy the desired estimation accuracy. To fill this gap, we formulate the partially observable system as a hidden Markov model (HMM) based on the recently developed probabilistic time-space (PTS) model. The PTS model is a stochastic traffic flow model that is designed for modeling traffic flow dynamics near signalized intersections. Based on the HMM formulation, a single recursive program is developed for the Bayesian estimation of both traffic states and parameters. As a Bayesian approach, the proposed method provides the distributional estimation outcomes and directly quantifies the estimation uncertainty. We validate the proposed method with simulation studies and showcase its applicability to real-world vehicle trajectory data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08667v1-abstract-full').style.display = 'none'; document.getElementById('2404.08667v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05290">arXiv:2310.05290</a> <span> [<a href="https://arxiv.org/pdf/2310.05290">pdf</a>, <a href="https://arxiv.org/format/2310.05290">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> MSight: An Edge-Cloud Infrastructure-based Perception System for Connected Automated Vehicles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rusheng Zhang</a>, <a href="/search/eess?searchtype=author&query=Meng%2C+D">Depu Meng</a>, <a href="/search/eess?searchtype=author&query=Shen%2C+S">Shengyin Shen</a>, <a href="/search/eess?searchtype=author&query=Zou%2C+Z">Zhengxia Zou</a>, <a href="/search/eess?searchtype=author&query=Li%2C+H">Houqiang Li</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05290v1-abstract-short" style="display: inline;"> As vehicular communication and networking technologies continue to advance, infrastructure-based roadside perception emerges as a pivotal tool for connected automated vehicle (CAV) applications. Due to their elevated positioning, roadside sensors, including cameras and lidars, often enjoy unobstructed views with diminished object occlusion. This provides them a distinct advantage over onboard perc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05290v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05290v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05290v1-abstract-full" style="display: none;"> As vehicular communication and networking technologies continue to advance, infrastructure-based roadside perception emerges as a pivotal tool for connected automated vehicle (CAV) applications. Due to their elevated positioning, roadside sensors, including cameras and lidars, often enjoy unobstructed views with diminished object occlusion. This provides them a distinct advantage over onboard perception, enabling more robust and accurate detection of road objects. This paper presents MSight, a cutting-edge roadside perception system specifically designed for CAVs. MSight offers real-time vehicle detection, localization, tracking, and short-term trajectory prediction. Evaluations underscore the system's capability to uphold lane-level accuracy with minimal latency, revealing a range of potential applications to enhance CAV safety and efficiency. Presently, MSight operates 24/7 at a two-lane roundabout in the City of Ann Arbor, Michigan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05290v1-abstract-full').style.display = 'none'; document.getElementById('2310.05290v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE T-ITS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17302">arXiv:2306.17302</a> <span> [<a href="https://arxiv.org/pdf/2306.17302">pdf</a>, <a href="https://arxiv.org/format/2306.17302">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Robust Roadside Perception: an Automated Data Synthesis Pipeline Minimizing Human Annotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rusheng Zhang</a>, <a href="/search/eess?searchtype=author&query=Meng%2C+D">Depu Meng</a>, <a href="/search/eess?searchtype=author&query=Bassett%2C+L">Lance Bassett</a>, <a href="/search/eess?searchtype=author&query=Shen%2C+S">Shengyin Shen</a>, <a href="/search/eess?searchtype=author&query=Zou%2C+Z">Zhengxia Zou</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17302v2-abstract-short" style="display: inline;"> Recently, advancements in vehicle-to-infrastructure communication technologies have elevated the significance of infrastructure-based roadside perception systems for cooperative driving. This paper delves into one of its most pivotal challenges: data insufficiency. The lacking of high-quality labeled roadside sensor data with high diversity leads to low robustness, and low transfer-ability of curr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17302v2-abstract-full').style.display = 'inline'; document.getElementById('2306.17302v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17302v2-abstract-full" style="display: none;"> Recently, advancements in vehicle-to-infrastructure communication technologies have elevated the significance of infrastructure-based roadside perception systems for cooperative driving. This paper delves into one of its most pivotal challenges: data insufficiency. The lacking of high-quality labeled roadside sensor data with high diversity leads to low robustness, and low transfer-ability of current roadside perception systems. In this paper, a novel solution is proposed to address this problem that creates synthesized training data using Augmented Reality. A Generative Adversarial Network is then applied to enhance the reality further, that produces a photo-realistic synthesized dataset that is capable of training or fine-tuning a roadside perception detector which is robust to different weather and lighting conditions. Our approach was rigorously tested at two key intersections in Michigan, USA: the Mcity intersection and the State St./Ellsworth Rd roundabout. The Mcity intersection is located within the Mcity test field, a controlled testing environment. In contrast, the State St./Ellsworth Rd intersection is a bustling roundabout notorious for its high traffic flow and a significant number of accidents annually. Experimental results demonstrate that detectors trained solely on synthesized data exhibit commendable performance across all conditions. Furthermore, when integrated with labeled data, the synthesized data can notably bolster the performance of pre-existing detectors, especially in adverse conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17302v2-abstract-full').style.display = 'none'; document.getElementById('2306.17302v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE Transactions on Intelligent Vehicles</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00563">arXiv:2303.00563</a> <span> [<a href="https://arxiv.org/pdf/2303.00563">pdf</a>, <a href="https://arxiv.org/format/2303.00563">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> ROCO: A Roundabout Traffic Conflict Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Meng%2C+D">Depu Meng</a>, <a href="/search/eess?searchtype=author&query=Sayer%2C+O">Owen Sayer</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rusheng Zhang</a>, <a href="/search/eess?searchtype=author&query=Shen%2C+S">Shengyin Shen</a>, <a href="/search/eess?searchtype=author&query=Li%2C+H">Houqiang Li</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00563v2-abstract-short" style="display: inline;"> Traffic conflicts have been studied by the transportation research community as a surrogate safety measure for decades. However, due to the rarity of traffic conflicts, collecting large-scale real-world traffic conflict data becomes extremely challenging. In this paper, we introduce and analyze ROCO - a real-world roundabout traffic conflict dataset. The data is collected at a two-lane roundabout… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00563v2-abstract-full').style.display = 'inline'; document.getElementById('2303.00563v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00563v2-abstract-full" style="display: none;"> Traffic conflicts have been studied by the transportation research community as a surrogate safety measure for decades. However, due to the rarity of traffic conflicts, collecting large-scale real-world traffic conflict data becomes extremely challenging. In this paper, we introduce and analyze ROCO - a real-world roundabout traffic conflict dataset. The data is collected at a two-lane roundabout at the intersection of State St. and W. Ellsworth Rd. in Ann Arbor, Michigan. We use raw video dataflow captured from four fisheye cameras installed at the roundabout as our input data source. We adopt a learning-based conflict identification algorithm from video to find potential traffic conflicts, and then manually label them for dataset collection and annotation. In total 557 traffic conflicts and 17 traffic crashes are collected from August 2021 to October 2021. We provide trajectory data of the traffic conflict scenes extracted using our roadside perception system. Taxonomy based on traffic conflict severity, reason for the traffic conflict, and its effect on the traffic flow is provided. With the traffic conflict data collected, we discover that failure to yield to circulating vehicles when entering the roundabout is the largest contributing reason for traffic conflicts. ROCO dataset will be made public in the short future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00563v2-abstract-full').style.display = 'none'; document.getElementById('2303.00563v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by TRBAM 2023 presentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00517">arXiv:2212.00517</a> <span> [<a href="https://arxiv.org/pdf/2212.00517">pdf</a>, <a href="https://arxiv.org/format/2212.00517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TITS.2023.3317078">10.1109/TITS.2023.3317078 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adaptive Safety Evaluation for Connected and Automated Vehicles with Sparse Control Variates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yang%2C+J">Jingxuan Yang</a>, <a href="/search/eess?searchtype=author&query=Sun%2C+H">Haowei Sun</a>, <a href="/search/eess?searchtype=author&query=He%2C+H">Honglin He</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+S">Shuo Feng</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00517v1-abstract-short" style="display: inline;"> Safety performance evaluation is critical for developing and deploying connected and automated vehicles (CAVs). One prevailing way is to design testing scenarios using prior knowledge of CAVs, test CAVs in these scenarios, and then evaluate their safety performances. However, significant differences between CAVs and prior knowledge could severely reduce the evaluation efficiency. Towards addressin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00517v1-abstract-full').style.display = 'inline'; document.getElementById('2212.00517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00517v1-abstract-full" style="display: none;"> Safety performance evaluation is critical for developing and deploying connected and automated vehicles (CAVs). One prevailing way is to design testing scenarios using prior knowledge of CAVs, test CAVs in these scenarios, and then evaluate their safety performances. However, significant differences between CAVs and prior knowledge could severely reduce the evaluation efficiency. Towards addressing this issue, most existing studies focus on the adaptive design of testing scenarios during the CAV testing process, but so far they cannot be applied to high-dimensional scenarios. In this paper, we focus on the adaptive safety performance evaluation by leveraging the testing results, after the CAV testing process. It can significantly improve the evaluation efficiency and be applied to high-dimensional scenarios. Specifically, instead of directly evaluating the unknown quantity (e.g., crash rates) of CAV safety performances, we evaluate the differences between the unknown quantity and known quantity (i.e., control variates). By leveraging the testing results, the control variates could be well designed and optimized such that the differences are close to zero, so the evaluation variance could be dramatically reduced for different CAVs. To handle the high-dimensional scenarios, we propose the sparse control variates method, where the control variates are designed only for the sparse and critical variables of scenarios. According to the number of critical variables in each scenario, the control variates are stratified into strata and optimized within each stratum using multiple linear regression techniques. We justify the proposed method's effectiveness by rigorous theoretical analysis and empirical study of high-dimensional overtaking scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00517v1-abstract-full').style.display = 'none'; document.getElementById('2212.00517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09259">arXiv:2207.09259</a> <span> [<a href="https://arxiv.org/pdf/2207.09259">pdf</a>, <a href="https://arxiv.org/format/2207.09259">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Testing for Connected and Automated Vehicles with Sparse Control Variates in Overtaking Scenarios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yang%2C+J">Jingxuan Yang</a>, <a href="/search/eess?searchtype=author&query=He%2C+H">Honglin He</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+S">Shuo Feng</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09259v1-abstract-short" style="display: inline;"> Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs). Due to the black-box property and various types of CAVs, how to test and evaluate CAVs adaptively remains a major challenge. Many approaches have been proposed to adaptively generate testing scenarios during the testing process. However, most existing approaches cannot be applied… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09259v1-abstract-full').style.display = 'inline'; document.getElementById('2207.09259v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09259v1-abstract-full" style="display: none;"> Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs). Due to the black-box property and various types of CAVs, how to test and evaluate CAVs adaptively remains a major challenge. Many approaches have been proposed to adaptively generate testing scenarios during the testing process. However, most existing approaches cannot be applied to complex scenarios, where the variables needed to define such scenarios are high dimensional. Towards filling this gap, the adaptive testing with sparse control variates method is proposed in this paper. Instead of adaptively generating testing scenarios, our approach evaluates CAVs' performances by adaptively utilizing the testing results. Specifically, each testing result is adjusted using multiple linear regression techniques based on control variates. As the regression coefficients can be adaptively optimized for the CAV under test, using the adjusted results can reduce the estimation variance, compared with using the testing results directly. To overcome the high dimensionality challenge, sparse control variates are utilized only for the critical variables of testing scenarios. To validate the proposed method, the high-dimensional overtaking scenarios are investigated, and the results demonstrate that our approach can further accelerate the evaluation process by about 30 times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09259v1-abstract-full').style.display = 'none'; document.getElementById('2207.09259v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.02602">arXiv:2102.02602</a> <span> [<a href="https://arxiv.org/pdf/2102.02602">pdf</a>, <a href="https://arxiv.org/format/2102.02602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> A Learning-based Stochastic Driving Model for Autonomous Vehicle Testing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Liu%2C+L">Lin Liu</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+S">Shuo Feng</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+Y">Yiheng Feng</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+X">Xichan Zhu</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.02602v1-abstract-short" style="display: inline;"> In the simulation-based testing and evaluation of autonomous vehicles (AVs), how background vehicles (BVs) drive directly influences the AV's driving behavior and further impacts the testing result. Existing simulation platforms use either pre-determined trajectories or deterministic driving models to model the BVs' behaviors. However, pre-determined BV trajectories can not react to the AV's maneu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02602v1-abstract-full').style.display = 'inline'; document.getElementById('2102.02602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.02602v1-abstract-full" style="display: none;"> In the simulation-based testing and evaluation of autonomous vehicles (AVs), how background vehicles (BVs) drive directly influences the AV's driving behavior and further impacts the testing result. Existing simulation platforms use either pre-determined trajectories or deterministic driving models to model the BVs' behaviors. However, pre-determined BV trajectories can not react to the AV's maneuvers, and deterministic models are different from real human drivers due to the lack of stochastic components and errors. Both methods lead to unrealistic traffic scenarios. This paper presents a learning-based stochastic driving model that meets the unique needs of AV testing, i.e. interactive and human-like. The model is built based on the long-short-term-memory (LSTM) architecture. By incorporating the concept of quantile-regression to the loss function of the model, the stochastic behaviors are reproduced without any prior assumption of human drivers. The model is trained with the large-scale naturalistic driving data (NDD) from the Safety Pilot Model Deployment(SPMD) project and then compared with a stochastic intelligent driving model (IDM). Analysis of individual trajectories shows that the proposed model can reproduce more similar trajectories to human drivers than IDM. To validate the ability of the proposed model in generating a naturalistic driving environment, traffic simulation experiments are implemented. The results show that the traffic flow parameters such as speed, range, and headway distribution match closely with the NDD, which is of significant importance for AV testing and evaluation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.02602v1-abstract-full').style.display = 'none'; document.getElementById('2102.02602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.02828">arXiv:2101.02828</a> <span> [<a href="https://arxiv.org/pdf/2101.02828">pdf</a>, <a href="https://arxiv.org/format/2101.02828">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Distributionally Consistent Simulation of Naturalistic Driving Environment for Autonomous Vehicle Testing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yan%2C+X">Xintao Yan</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+S">Shuo Feng</a>, <a href="/search/eess?searchtype=author&query=Sun%2C+H">Haowei Sun</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.02828v2-abstract-short" style="display: inline;"> Microscopic traffic simulation provides a controllable, repeatable, and efficient testing environment for autonomous vehicles (AVs). To evaluate AVs' safety performance unbiasedly, the probability distributions of environment statistics in the simulated naturalistic driving environment (NDE) need to be consistent with those from the real-world driving environment. However, although human driving b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02828v2-abstract-full').style.display = 'inline'; document.getElementById('2101.02828v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.02828v2-abstract-full" style="display: none;"> Microscopic traffic simulation provides a controllable, repeatable, and efficient testing environment for autonomous vehicles (AVs). To evaluate AVs' safety performance unbiasedly, the probability distributions of environment statistics in the simulated naturalistic driving environment (NDE) need to be consistent with those from the real-world driving environment. However, although human driving behaviors have been extensively investigated in the transportation engineering field, most existing models were developed for traffic flow analysis without considering the distributional consistency of driving behaviors, which could cause significant evaluation biasedness for AV testing. To fill this research gap, a distributional consistent NDE modeling framework is proposed in this paper. Using large-scale naturalistic driving data, empirical distributions are obtained to construct the stochastic human driving behavior models under different conditions. To address the error accumulation problem during the simulation, an optimization-based method is further designed to refine the empirical behavior models. Specifically, the vehicle state evolution is modeled as a Markov chain and its stationary distribution is twisted to match the distribution from the real-world driving environment. The framework is evaluated in the case study of a multi-lane highway driving simulation, where the distributional accuracy of the generated NDE is validated and the safety performance of an AV model is effectively evaluated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02828v2-abstract-full').style.display = 'none'; document.getElementById('2101.02828v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04753">arXiv:2010.04753</a> <span> [<a href="https://arxiv.org/pdf/2010.04753">pdf</a>, <a href="https://arxiv.org/format/2010.04753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Impact Evaluation of Falsified Data Attacks on Connected Vehicle Based Traffic Signal Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Huang%2C+S+E">Shihong Ed Huang</a>, <a href="/search/eess?searchtype=author&query=Wong%2C+W">Wai Wong</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+Y">Yiheng Feng</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Q+A">Qi Alfred Chen</a>, <a href="/search/eess?searchtype=author&query=Mao%2C+Z+M">Z. Morley Mao</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04753v1-abstract-short" style="display: inline;"> Connected vehicle (CV) technology enables data exchange between vehicles and transportation infrastructure and therefore has great potentials to improve current traffic signal control systems. However, this connectivity might also bring cyber security concerns. As the first step in investigating the cyber security of CV-based traffic signal control (CV-TSC) systems, potential cyber threats need to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04753v1-abstract-full').style.display = 'inline'; document.getElementById('2010.04753v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04753v1-abstract-full" style="display: none;"> Connected vehicle (CV) technology enables data exchange between vehicles and transportation infrastructure and therefore has great potentials to improve current traffic signal control systems. However, this connectivity might also bring cyber security concerns. As the first step in investigating the cyber security of CV-based traffic signal control (CV-TSC) systems, potential cyber threats need to be identified and corresponding impact needs to be evaluated. In this paper, we aim to evaluate the impact of cyber attacks on CV-TSC systems by considering a realistic attack scenario in which the control logic of a CV-TSC system is unavailable to attackers. Our threat model presumes that an attacker may learn the control logic using a surrogate model. Based on the surrogate model, the attacker may launch falsified data attacks to influence signal control decisions. In the case study, we realistically evaluate the impact of falsified data attacks on an existing CV-TSC system (i.e., I-SIG). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04753v1-abstract-full').style.display = 'none'; document.getElementById('2010.04753v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03712">arXiv:2003.03712</a> <span> [<a href="https://arxiv.org/pdf/2003.03712">pdf</a>, <a href="https://arxiv.org/format/2003.03712">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TITS.2020.3023668">10.1109/TITS.2020.3023668 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing Scenario Library Generation for Connected and Automated Vehicles: An Adaptive Framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Feng%2C+S">Shuo Feng</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+Y">Yiheng Feng</a>, <a href="/search/eess?searchtype=author&query=Sun%2C+H">Haowei Sun</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03712v3-abstract-short" style="display: inline;"> How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03712v3-abstract-full').style.display = 'inline'; document.getElementById('2003.03712v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03712v3-abstract-full" style="display: none;"> How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the generation of suboptimal scenario libraries. In this paper, an adaptive testing scenario library generation (ATSLG) method is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive process. To compensate the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques are applied with classification-based Gaussian Process Regression and a new-designed acquisition function. Comparing with a pre-determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the proposed method, a cut-in case study was performed and the results demonstrate that the proposed method can further accelerate the evaluation process by a few orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03712v3-abstract-full').style.display = 'none'; document.getElementById('2003.03712v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Intelligent Transportation Systems, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.03419">arXiv:1905.03419</a> <span> [<a href="https://arxiv.org/pdf/1905.03419">pdf</a>, <a href="https://arxiv.org/format/1905.03419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TITS.2020.2972211">10.1109/TITS.2020.2972211 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing Scenario Library Generation for Connected and Automated Vehicles, Part I: Methodology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Feng%2C+S">Shuo Feng</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+Y">Yiheng Feng</a>, <a href="/search/eess?searchtype=author&query=Yu%2C+C">Chunhui Yu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.03419v3-abstract-short" style="display: inline;"> Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs), and yet there is no systematic framework to generate testing scenario library. This study aims to provide a general framework for the testing scenario library generation (TSLG) problem with different operational design domains (ODDs), CAV models, and performance metrics. Given an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03419v3-abstract-full').style.display = 'inline'; document.getElementById('1905.03419v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.03419v3-abstract-full" style="display: none;"> Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs), and yet there is no systematic framework to generate testing scenario library. This study aims to provide a general framework for the testing scenario library generation (TSLG) problem with different operational design domains (ODDs), CAV models, and performance metrics. Given an ODD, the testing scenario library is defined as a critical set of scenarios that can be used for CAV test. Each testing scenario is evaluated by a newly proposed measure, scenario criticality, which can be computed as a combination of maneuver challenge and exposure frequency. To search for critical scenarios, an auxiliary objective function is designed, and a multi-start optimization method along with seed-filling is applied. The proposed framework is theoretically proved to obtain accurate evaluation results with much fewer number of tests, if compared with the on-road test method. In part II of the study, three case studies are investigated to demonstrate the proposed methodologies. Reinforcement learning based technique is applied to enhance the searching method under high-dimensional scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.03419v3-abstract-full').style.display = 'none'; document.getElementById('1905.03419v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages,3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Intelligent Transportation Systems, 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02692">arXiv:1806.02692</a> <span> [<a href="https://arxiv.org/pdf/1806.02692">pdf</a>, <a href="https://arxiv.org/format/1806.02692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.trb.2018.07.004">10.1016/j.trb.2018.07.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Traffic state estimation using stochastic Lagrangian dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zheng%2C+F">Fangfang Zheng</a>, <a href="/search/eess?searchtype=author&query=Jabari%2C+S+E">Saif Eddin Jabari</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+H+X">Henry X. Liu</a>, <a href="/search/eess?searchtype=author&query=Lin%2C+D">DianChao Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02692v1-abstract-short" style="display: inline;"> This paper proposes a new stochastic model of traffic dynamics in Lagrangian coordinates. The source of uncertainty is heterogeneity in driving behavior, captured using driver-specific speed-spacing relations, i.e., parametric uncertainty. It also results in smooth vehicle trajectories in a stochastic context, which is in agreement with real-world traffic dynamics and, thereby, overcoming issues w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02692v1-abstract-full').style.display = 'inline'; document.getElementById('1806.02692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02692v1-abstract-full" style="display: none;"> This paper proposes a new stochastic model of traffic dynamics in Lagrangian coordinates. The source of uncertainty is heterogeneity in driving behavior, captured using driver-specific speed-spacing relations, i.e., parametric uncertainty. It also results in smooth vehicle trajectories in a stochastic context, which is in agreement with real-world traffic dynamics and, thereby, overcoming issues with aggressive oscillation typically observed in sample paths of stochastic traffic flow models. We utilize ensemble filtering techniques for data assimilation (traffic state estimation), but derive the mean and covariance dynamics as the ensemble sizes go to infinity, thereby bypassing the need to sample from the parameter distributions while estimating the traffic states. As a result, the estimation algorithm is just a standard Kalman-Bucy algorithm, which renders the proposed approach amenable to real-time applications using recursive data. Data assimilation examples are performed and our results indicate good agreement with out-of-sample data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02692v1-abstract-full').style.display = 'none'; document.getElementById('1806.02692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Transportation Research Part B: Methodological Volume 115, September 2018, Pages 143-165 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>