CINXE.COM

Search results for: nitrogen concentration

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nitrogen concentration</title> <meta name="description" content="Search results for: nitrogen concentration"> <meta name="keywords" content="nitrogen concentration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nitrogen concentration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nitrogen concentration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5878</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nitrogen concentration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5878</span> Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogita%20Mishra">Yogita Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Roy"> Arijit Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhruval%20Bhavsar"> Dhruval Bhavsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title="hyperspectral">hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=NDNI" title=" NDNI"> NDNI</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration" title=" nitrogen concentration"> nitrogen concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20value" title=" regression value"> regression value</a> </p> <a href="https://publications.waset.org/abstracts/74753/estimation-of-foliar-nitrogen-in-selected-vegetation-communities-of-uttrakhand-himalayas-using-hyperspectral-satellite-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5877</span> Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakura%20Yoshii">Sakura Yoshii</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Abe"> Masakazu Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Iijima"> Akihiro Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition" title="atmospheric deposition">atmospheric deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20accumulation" title=" nitrogen accumulation"> nitrogen accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20ecosystems" title=" forest ecosystems"> forest ecosystems</a> </p> <a href="https://publications.waset.org/abstracts/3246/current-status-of-nitrogen-saturation-in-the-upper-reaches-of-the-kanna-river-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5876</span> The Usage of Nitrogen Gas and Alum for Sludge Dewatering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Yousef%20Saleh">Mamdouh Yousef Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20Hosny%20El-Zahar"> Medhat Hosny El-Zahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shymaa%20El-Dosoky"> Shymaa El-Dosoky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In most cases, the associated processing cost of dewatering sludge increase with the solid particles concentration. All experiments in this study were conducted on biological sludge type. All experiments help to reduce the greenhouse gases in addition, the technology used was faster in time and less in cost compared to other methods. First, the bubbling pressure was used to dissolve N₂ gas into the sludge, second alum was added to accelerate the process of coagulation of the sludge particles and facilitate their flotation, and third nitrogen gas was used to help floating the sludge particles and reduce the processing time because of the nitrogen gas from the inert gases. The conclusions of this experiment were as follows: first, the best conditions were obtained when the bubbling pressure was 0.6 bar. Second, the best alum dose was determined to help the sludge agglomerate and float. During the experiment, the best alum dose was 80 mg/L. It increased concentration of the sludge by 7-8 times. Third, the economic dose of nitrogen gas was 60 mg/L with separation efficiency of 85%. The sludge concentration was about 8-9 times. That happened due to the gas released tiny bubbles which adhere to the suspended matter causing them to float to the surface of the water where it could be then removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20gas" title="nitrogen gas">nitrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=alum" title=" alum"> alum</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering%20sludge" title=" dewatering sludge"> dewatering sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a> </p> <a href="https://publications.waset.org/abstracts/104794/the-usage-of-nitrogen-gas-and-alum-for-sludge-dewatering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5875</span> The Comparison between Modelled and Measured Nitrogen Dioxide Concentrations in Cold and Warm Seasons in Kaunas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mi%C5%A1kinyt%C4%97">A. Miškinytė</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C4%97del%C4%97"> A. Dėdelė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Road traffic is one of the main sources of air pollution in urban areas associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered as traffic-related air pollutant, which concentrations tend to be higher near highways, along busy roads and in city centres and exceedances are mainly observed in air quality monitoring stations located close to traffic. Atmospheric dispersion models can be used to examine emissions from many various sources and to predict the concentration of pollutants emitted from these sources into the atmosphere. The study aim was to compare modelled concentrations of nitrogen dioxide using ADMS-Urban dispersion model with air quality monitoring network in cold and warm seasons in Kaunas city. Modelled average seasonal concentrations of nitrogen dioxide for 2011 year have been verified with automatic air quality monitoring data from two stations in the city. Traffic station is located near high traffic street in industrial district and background station far away from the main sources of nitrogen dioxide pollution. The modelling results showed that the highest nitrogen dioxide concentration was modelled and measured in station located near intensive traffic street, both in cold and warm seasons. Modelled and measured nitrogen dioxide concentration was respectively 25.7 and 25.2 µg/m3 in cold season and 15.5 and 17.7 µg/m3 in warm season. While the lowest modelled and measured NO2 concentration was determined in background monitoring station, respectively 12.2 and 13.3 µg/m3 in cold season and 6.1 and 7.6 µg/m3 in warm season. The difference between monitoring station located near high traffic street and background monitoring station showed that better agreement between modelled and measured NO2 concentration was observed at traffic monitoring station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20dioxide" title=" nitrogen dioxide"> nitrogen dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ADMS-Urban%20model" title=" ADMS-Urban model"> ADMS-Urban model</a> </p> <a href="https://publications.waset.org/abstracts/16108/the-comparison-between-modelled-and-measured-nitrogen-dioxide-concentrations-in-cold-and-warm-seasons-in-kaunas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5874</span> Comparison of Nitrogen Dioxide Pollution for Different Commuting Modes in Kaunas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C4%97del%C4%97">A. Dėdelė</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mi%C5%A1kinyt%C4%97"> A. Miškinytė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The assessment of air pollution exposure in different microenvironments is important for better understanding the relationship between health effects caused by air pollution. The recent researches revealed that the level of air pollution in transport microenvironment contributes considerably to the total exposure of air pollution. The aim of the study was to determine air pollution of nitrogen dioxide and to assess the exposure of NO2 dependence on the chosen commuting mode using a global positioning system (GPS). The same travel destination was chosen and 30 rides in three different commuting modes: cycling, walking, and public transport were made. Every different mean of transport is associated with different route. GPS device and travel diary data were used to track all routes of different commuting modes. Air pollution of nitrogen dioxide was determined using the ADMS-Urban dispersion model. The average annual concentration of nitrogen dioxide was modeled for 2011 year in Kaunas city. The geographical information systems were used to visualize the travel routes, to create maps indicating the route of different commuting modes and to combine modelled nitrogen dioxide data. The results showed that there is a significant difference between the selected commuting mode and the exposure of nitrogen dioxide. The concentrations in the microenvironments were 22.4 μg/m3, 21.4 μg/m3, and 25.9 μg/m3 for cycling, walking and public transport respectively. Of all the modes of commuting, the highest average exposure of nitrogen dioxide was found travelling by public transport, while the lowest average concentration of NO2 was determined by walking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20dioxide" title="nitrogen dioxide">nitrogen dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20model" title=" dispersion model"> dispersion model</a>, <a href="https://publications.waset.org/abstracts/search?q=commuting%20mode" title=" commuting mode"> commuting mode</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS "> GPS </a> </p> <a href="https://publications.waset.org/abstracts/16106/comparison-of-nitrogen-dioxide-pollution-for-different-commuting-modes-in-kaunas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5873</span> Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjing%20Ding">Wenjing Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Shan"> Weiwei Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zijuan"> Zijuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang"> Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20He"> Chao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is &plusmn;1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen%20spray" title="liquid nitrogen spray">liquid nitrogen spray</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20regulating%20system" title=" temperature regulating system"> temperature regulating system</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/73604/numerical-simulation-and-analysis-on-liquid-nitrogen-spray-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5872</span> Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratanaporn%20Leesing">Ratanaporn Leesing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thidarat%20Papone"> Thidarat Papone</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiyaporn%20Puangbut"> Mutiyaporn Puangbut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixotrophic%20cultivation" title="mixotrophic cultivation">mixotrophic cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipid" title=" microalgal lipid"> microalgal lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20sp.%20KKU-S2" title=" Chlorella sp. KKU-S2"> Chlorella sp. KKU-S2</a> </p> <a href="https://publications.waset.org/abstracts/5171/effect-of-nitrogen-and-carbon-sources-on-growth-and-lipid-production-from-mixotrophic-growth-of-chlorella-sp-kku-s2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5871</span> Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pragnyashree%20Mishra">Pragnyashree Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shradhanjali%20Mohapatra"> Shradhanjali Mohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calendula" title="calendula">calendula</a>, <a href="https://publications.waset.org/abstracts/search?q=golden%20emporer" title=" golden emporer"> golden emporer</a>, <a href="https://publications.waset.org/abstracts/search?q=GA3" title=" GA3"> GA3</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20and%20gibberellic%20acid" title=" nitrogen and gibberellic acid "> nitrogen and gibberellic acid </a> </p> <a href="https://publications.waset.org/abstracts/19334/effect-of-nitrogen-and-gibberellic-acid-at-different-level-and-their-interaction-on-calendula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5870</span> Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Sepitka">Josef Sepitka</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Vlcak"> Petr Vlcak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Horazdovsky"> Tomas Horazdovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Vratislav%20Perina"> Vratislav Perina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2&middot;10<sup>17</sup> and 4&middot;10<sup>17</sup> cm<sup>-2</sup> and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20ion%20implantation" title="nitrogen ion implantation">nitrogen ion implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium-based%20nanolayer" title=" titanium-based nanolayer"> titanium-based nanolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20modulus" title=" storage modulus"> storage modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/58576/nanomechanical-characterization-of-titanium-alloy-modified-by-nitrogen-ion-implantation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5869</span> Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Plo%C5%A1ek">Lukáš Plošek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Hyn%C5%A1t"> Jaroslav Hynšt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Z%C3%A1hora"> Jaroslav Záhora</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elbl"> Jakub Elbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%C3%ADn%20Kintl"> Antonín Kintl</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Charousov%C3%A1"> Ivana Charousová</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Kov%C3%A1csov%C3%A1"> Silvia Kovácsová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20production" title=" biomass production"> biomass production</a>, <a href="https://publications.waset.org/abstracts/search?q=lysimeter" title=" lysimeter "> lysimeter </a> </p> <a href="https://publications.waset.org/abstracts/7531/mineral-nitrogen-retention-nitrogen-availability-and-plant-growth-in-the-soil-influenced-by-addition-of-organic-and-mineral-fertilizers-lysimetric-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5868</span> A Study of Anoxic - Oxic Microbiological Technology for Treatment of Heavy Oily Refinery Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Di%20Wang">Di Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Fang"> Li Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shengyu%20Fang"> Shengyu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianhua%20Li"> Jianhua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghong%20Dong"> Honghong Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongzhi%20Zhang"> Zhongzhi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy oily refinery wastewater with the characteristics of high concentration of toxic organic pollutant, poor biodegradability and complicated dissolved recalcitrant compounds is intractable to be degraded. In order to reduce the concentrations of COD and total nitrogen pollutants which are the major pollutants in heavy oily refinery wastewater, the Anoxic - Oxic microbiological technology relies mainly on anaerobic microbial reactor which works with methanogenic archaea mainly that can convert organic pollutants to methane gas, and supplemented by aerobic treatment. The results of continuous operation for 2 months with a hydraulic retention time (HRT) of 60h showed that, the COD concentration from influent water of anaerobic reactor and effluent water from aerobic reactor were 547.8mg/L and 93.85mg/L, respectively. The total removal rate of COD was up to 84.9%. Compared with the 46.71mg/L of total nitrogen pollutants in influent water of anaerobic reactor, the concentration of effluent water of aerobic reactor decreased to 14.11mg/L. In addition, the average removal rate of total nitrogen pollutants reached as high as 69.8%. Based on the data displayed, Anoxic - Oxic microbial technology shows a great potential to dispose heavy oil sewage in energy saving and high-efficiency of biodegradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anoxic%20-%20oxic%20microbiological%20technology" title="anoxic - oxic microbiological technology">anoxic - oxic microbiological technology</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20oily%20refinery%20wastewater" title=" heavy oily refinery wastewater"> heavy oily refinery wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20nitrogen%20pollutant" title=" total nitrogen pollutant"> total nitrogen pollutant</a> </p> <a href="https://publications.waset.org/abstracts/41908/a-study-of-anoxic-oxic-microbiological-technology-for-treatment-of-heavy-oily-refinery-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5867</span> Phytoremediation Rates of Water Hyacinth in an Aquaculture Effluent Hydroponic System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Kiridi">E. A. Kiridi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Ogunlela"> A. O. Ogunlela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional wastewater treatment plants of activated carbon, electrodialysis, ion exchange, reverse osmosis etc. are expensive to install, operate and maintain especially in developing countries; therefore, the use of aquatic macrophytes for wastewater purification is a viable alternative. On the first day of experimentation, approximately 100g of water hyacinth was introduced into the hydroponic units in four replicates. The water quality parameters measured were total suspended solids (TSS), pH and electrical conductivity (EC). Others were concentration of ammonium&ndash;nitrogen (NH<sub>4</sub><sup>+</sup>-N), nitrite-nitrogen (NO<sub>2</sub><sup>-</sup>-N), nitrate-nitrogen (NO<sub>3</sub><sup>-</sup>-N), phosphate&ndash;phosphorus (PO<sub>4</sub><sup>3-</sup>-P), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 438.2 g, 600.7 g, 688.2 g and 725.7 g. Water hyacinth was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 1.9% to 14.7%, EC from 49.8% to 97.0%, TDS from 50.4% to 97.6%, TSS from 34.0% to 78.3%, NH<sub>4</sub><sup>+</sup>-N from 38.9% to 85.2%, NO<sub>2</sub><sup>-</sup>-N from 0% to 84.6%, NO<sub>3</sub><sup>-</sup>-N from 63.2% to 98.8% and PO<sub>4</sub><sup>3-</sup>-P from 10% to 88.0%. Paired sample t-test shows that at 95% confidence level, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests that the use of water hyacinth is valuable in the design and operation of aquaculture effluent treatment and should therefore be adopted by environmental and wastewater managers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture%20effluent" title="aquaculture effluent">aquaculture effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant" title=" pollutant"> pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hyacinth" title=" water hyacinth"> water hyacinth</a> </p> <a href="https://publications.waset.org/abstracts/46963/phytoremediation-rates-of-water-hyacinth-in-an-aquaculture-effluent-hydroponic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5866</span> Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Tomar">Swati Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Gupta"> Sunil Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anammox" title="anammox">anammox</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20removal" title=" nitrogen removal"> nitrogen removal</a> </p> <a href="https://publications.waset.org/abstracts/35439/investigating-the-process-kinetics-and-nitrogen-gas-production-in-anammox-hybrid-reactor-with-special-emphasis-on-the-role-of-filter-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5865</span> Effects of Reclamation on Seasonal Dynamic of Carbon, Nitrogen and Phosphorus Stoichiometry in Suaeda salsa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yajun%20Qiao">Yajun Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaner%20Yan"> Yaner Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Li"> Ning Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuqing%20An"> Shuqing An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to relieve the pressure on a land resource from a huge population, reclamation has occurred in many coastal wetlands. Plants can maintain their elemental composition within normal limits despite the variations of external conditions. Reclamation may affect carbon (C), nitrogen (N) and phosphorus (P) stoichiometry in the plant to some extent by altering physical and chemical properties of soil in a coastal wetland. We reported the seasonal dynamic of C, N and P stoichiometry in root, stem and leaf of Suaeda salsa (L.) Pall. and in soil between reclamation plots and natural plots. Our results of three-way ANOVA indicated that sampling season always had significant effect on C, N, P concentrations and their ratios; organ had no significant effect on N, P concentration and N:P; plot type had no significant effect on N concentration and C:N. Sampling season explained the most variability of tissue N and P contents, C:N, C:P and N:P, while it’s organ for C using the restricted maximum likelihood (REML) method. By independent sample T-test, we found that reclamation affect more on C, N and P stoichiometry of stem than that of root or leaf on the whole. While there was no difference between reclamation plots and natural plots for soil in four seasons. For three organs, C concentration had peak values in autumn and minimum values in spring while N concentration had peak values in spring and minimum values in autumn. For P concentration, three organs all had peak values in spring; however, the root had minimum value in winter, the stem had that in autumn, and leaf had that in summer. The seasonal dynamic of C, N and P stoichiometry in a leaf of Suaeda salsa were much steadier than that in root or stem under the drive of reclamation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title="nitrogen">nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=reclamation" title=" reclamation"> reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonal%20dynamic" title=" seasonal dynamic"> seasonal dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=Suaeda%20salsa" title=" Suaeda salsa"> Suaeda salsa</a> </p> <a href="https://publications.waset.org/abstracts/29581/effects-of-reclamation-on-seasonal-dynamic-of-carbon-nitrogen-and-phosphorus-stoichiometry-in-suaeda-salsa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5864</span> Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20Marsh">Brian Marsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen fertilizer is the most used and often the most mismanaged nutrient input. Nitrogen management has tremendous implications on crop productivity, quality and environmental stewardship. Sufficient nitrogen is needed to optimum yield and quality. Soil and in-season plant tissue testing for nitrogen status are a time consuming and expensive process. Real time sensing of plant nitrogen status can be a useful tool in managing nitrogen inputs. The objectives of this project were to assess the reliability of remotely sensed non-destructive plant nitrogen measurements compared to wet chemistry data from sampled plant tissue, develop in-season nitrogen recommendations based on remotely sensed data for improved nitrogen use efficiency and assess the potential for determining yield and quality from remotely sensed data. Very good correlations were observed between early-season remotely sensed crop nitrogen status and plant nitrogen concentrations and subsequent in-season fertilizer recommendations. The transmittance/absorbance type meters gave the most accurate readings. Early in-season fertilizer recommendation would be to apply 40 kg nitrogen per hectare plus 16 kg nitrogen per hectare for each unit difference measured with the SPAD meter between the crop and reference area or 25 kg plus 13 kg per hectare for each unit difference measured with the CCM 200. Once the crop was sufficiently fertilized meter readings became inconclusive and were of no benefit for determining nitrogen status, silage yield and quality and grain yield and protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fertilization" title=" nitrogen fertilization"> nitrogen fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll%20meter" title=" chlorophyll meter"> chlorophyll meter</a> </p> <a href="https://publications.waset.org/abstracts/18164/use-of-chlorophyll-meters-to-assess-in-season-wheat-nitrogen-fertilizer-requirements-in-the-southern-san-joaquin-valley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5863</span> Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhenxiang%20Zhou">Zhenxiang Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triose%20phosphate%20utilization" title="triose phosphate utilization">triose phosphate utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=sink%20limitation" title=" sink limitation"> sink limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=panicle%20pruning" title=" panicle pruning"> panicle pruning</a>, <a href="https://publications.waset.org/abstracts/search?q=oryza%20sativa" title=" oryza sativa"> oryza sativa</a> </p> <a href="https://publications.waset.org/abstracts/164372/triose-phosphate-utilisation-at-the-subfoliar-scale-is-modulated-by-whole-plant-source-sink-ratios-and-nitrogen-budgets-in-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5862</span> The Effects of Phenolic Compounds in Brown Iranian Propolis Extracts on Ruminal Nitrogen Ammonia Concentration in in Vitro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Vakili">Alireza Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Ehtesham"> Shahab Ehtesham</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Danesh%20Mesgaran"> Mohsen Danesh Mesgaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Paktinat"> Mahdi Paktinat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study is to determine the chemical compounds of brown Iranian propolis(BIP) extracts and to show flavonoids and phenol effects on nitrogen ammonia (NH3-N) in in vitro. Experimental samples were including two diets with different concentrate: forage ratio (80:20 and 60:40) with eight treatments (1:Control diet 60:40 without BIP,2: 60:40 diet with 25% BIP, 3:60:40 diet with 50% BIP, 4: 60:40 diet with 75% BIP,5: Control diet 80:20 without BIP,6: 80:20 diet with 25% BIP,7: 80:20 diet with 50% BIP and 8: 80:20 diet with 75% BIP) and eight repeats. The trial was analyzed considering a completely randomized design by the GLM procedure of SAS 9.1. Means among treatment were compared by Tukey test. The results of this study showed that in food with 80:20 (concentrate: forage), adding BIP 25% did not statistically change NH3-N (p > 0.05) compared to the control treatment but there was a significant difference (p < 0.05) between the effect of BIP 50% on NH3-N compared to the BIP 25% and the control. In diet with 60:40 (concentrate: forage), there was no significant difference between the effect of BIP 25% on NH3-N and the control, nor was there a significant difference between the effect of BIP 50% and 75%, while a significant difference (p < 0.05) between BIP 50% and 75% and the rest was observed. The propolis extract makes nitrogen ammonia decrease. This may help the nitrogen retain longer in ruminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brown%20Iranian%20propolis" title="brown Iranian propolis">brown Iranian propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20ammonia" title=" nitrogen ammonia"> nitrogen ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminant" title=" ruminant"> ruminant</a> </p> <a href="https://publications.waset.org/abstracts/50895/the-effects-of-phenolic-compounds-in-brown-iranian-propolis-extracts-on-ruminal-nitrogen-ammonia-concentration-in-in-vitro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5861</span> Study of Biological Denitrification using Heterotrophic Bacteria and Natural Source of Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benbelkacem%20Ouerdia">Benbelkacem Ouerdia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from wastewater and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables the transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on the initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=dates%20nodes" title=" dates nodes"> dates nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20denitrification" title=" heterotrophic denitrification"> heterotrophic denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite "> nitrite </a> </p> <a href="https://publications.waset.org/abstracts/28572/study-of-biological-denitrification-using-heterotrophic-bacteria-and-natural-source-of-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5860</span> Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouerdia%20Benbelkacem%20Belouanas">Ouerdia Benbelkacem Belouanas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20source" title=" carbon source"> carbon source</a>, <a href="https://publications.waset.org/abstracts/search?q=dates%20nodes" title=" dates nodes"> dates nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20denitrification" title=" heterotrophic denitrification"> heterotrophic denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite" title=" nitrite"> nitrite</a> </p> <a href="https://publications.waset.org/abstracts/19044/valorization-of-dates-nodes-as-a-carbon-source-using-biological-denitrification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5859</span> Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Lamichhane">Pradeep Lamichhane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma-assisted%20nitrogen%20fixation" title="plasma-assisted nitrogen fixation">plasma-assisted nitrogen fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20plasma" title=" nitrogen plasma"> nitrogen plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20excitation%20of%20water" title=" UV excitation of water"> UV excitation of water</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia%20synthesis" title=" ammonia synthesis"> ammonia synthesis</a> </p> <a href="https://publications.waset.org/abstracts/118194/plasma-assisted-nitrogen-fixation-for-the-elevation-of-seed-germination-and-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5858</span> Selective Oxidation of Ammonia to Nitrogen over Nickel Oxide-hydroxide /Graphite Prepared with an Electro Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Joda">Marzieh Joda</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Fallah"> Narges Fallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Afsham"> Neda Afsham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite-supported two different of morphology α and β -Ni (OH)₂ electrodes were prepared by electrochemical deposition at appropriate potentials with regard to Ni (II)/Ni (III) redox couple under alkaline and acidic conditions, respectively, for selective oxidation of ammonia to nitrogen in the direct electro-oxidation process. Cyclic voltammetry (CV) of the electrolyte containing NH₃ indicated mediation of electron transfer by Ni (OH)₂ and the electrode surface was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectrometer (RS), and X-ray photoelectron spectroscopy (XPS). Results of surface characterization indicated the presence of α polymorphs which is the stable phase of Ni (OH)₂ /Graphite. Cyclic voltammograms gave information on the nature of electron transfer between nitrogen species and working electrode and revealed that the potential has depended on both nature ammonia oxidation and that of concentration. The mechanism of selective ammonia conversion to nitrogen and byproducts, namely NO₂- and NO₃- was established by Cyclic voltammograms and current efficiency. The removal efficiency and selective conversion of ammonia (0.1 M KNO₃ + 0.01 M Ni(NO₃)₂, pH 11, 250°C) on Nickel Oxide-hydroxide /Graphite was determined based on potential controlled experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electro%20deposition" title="Electro deposition">Electro deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=Nickel%20oxide-hydroxide" title=" Nickel oxide-hydroxide"> Nickel oxide-hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitrogen%20selectivity" title=" Nitrogen selectivity"> Nitrogen selectivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammonia%20oxidation" title=" Ammonia oxidation"> Ammonia oxidation</a> </p> <a href="https://publications.waset.org/abstracts/132084/selective-oxidation-of-ammonia-to-nitrogen-over-nickel-oxide-hydroxide-graphite-prepared-with-an-electro-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5857</span> The Measurements of Nitrogen Dioxide Pollution in Street Canyons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aukse%20Miskinyte">Aukse Miskinyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrius%20Dedele"> Audrius Dedele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20dioxide" title=" nitrogen dioxide"> nitrogen dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20sampler" title=" passive sampler"> passive sampler</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20canyon" title=" street canyon"> street canyon</a> </p> <a href="https://publications.waset.org/abstracts/61184/the-measurements-of-nitrogen-dioxide-pollution-in-street-canyons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5856</span> Ecosystem Restoration: Remediation of Crude Oil-Polluted Soil by Leuceana leucocephala (Lam.) de Wit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayodele%20Adelusi%20Oyedeji">Ayodele Adelusi Oyedeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was carried out under a controlled environment with the aim of examining remediation of crude oil polluted soil. The germination rate, heights and girths, number of leaves and nodulation was determined following standard procedures. Some physicochemical (organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium and sodium) characteristics of soil used were determined using standard protocols. Results showed that at varying concentration of crude oil i.e 0 ml, 25 ml, 50 ml, 75 ml and 100 ml, Leuceana leucocephala had germination rate of 92%, 90%, 84%, 62% and 56% respectively, mean height of 73.70cm, 58.30cm, 49.50cm, 46.45cm and 41.80cm respectively after 16 weeks after planting (WAP), mean girth of 0.54mm, 0.34mm, 0.33mm, 0.21mm and 0.19mm respectively at 16 WAP, number of nodules 18, 10, 10, 6 and 2 respectively and number of leaves 24.00, 16.00, 13.00, 10.00 and 6.00 respectively. The organic matter, pH, nitrogen, phosphorous, potassium, calcium, magnesium, and sodium decreased with the increase in the concentration of crude oil. Furthermore, as the concentration of crude oil increased the germination rate, height, girth, and number of leaves and nodules decreased, suggesting the effect of crude oil on Leuceana leucocephala. The plant withstands the varying concentration of the crude oil means that it could be used for the remediation of crude oil contaminated soil in the Niger Delta region of Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20conservation" title="ecosystem conservation">ecosystem conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=Leuceana%20leucocephala" title=" Leuceana leucocephala"> Leuceana leucocephala</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/111043/ecosystem-restoration-remediation-of-crude-oil-polluted-soil-by-leuceana-leucocephala-lam-de-wit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5855</span> Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friday%20Godwin%20Okibe">Friday Godwin Okibe</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaoyi%20David%20Paul"> Elaoyi David Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladayo%20Thomas%20Ojekunle"> Oladayo Thomas Ojekunle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20and%20phosphorous%20co-doped%20Zno" title="nitrogen and phosphorous co-doped Zno">nitrogen and phosphorous co-doped Zno</a>, <a href="https://publications.waset.org/abstracts/search?q=p-nitrophenol" title=" p-nitrophenol"> p-nitrophenol</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20degradation" title=" photocatalytic degradation"> photocatalytic degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design%20of%20experimental" title=" factorial design of experimental "> factorial design of experimental </a> </p> <a href="https://publications.waset.org/abstracts/73455/optimization-of-photocatalytic-degradation-of-para-nitrophenol-in-visible-light-by-nitrogen-and-phosphorus-co-doped-zinc-oxide-using-factorial-design-of-experimental" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5854</span> Modeling of Nitrogen Solubility in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ghali">Saeed Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20El-Faramawy"> Hoda El-Faramawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Eissa"> Mamdouh Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Mishreky"> Michael Mishreky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solubility" title="solubility">solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Schaeffler" title=" Schaeffler"> Schaeffler</a> </p> <a href="https://publications.waset.org/abstracts/155322/modeling-of-nitrogen-solubility-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5853</span> Toxicity Depletion Rates of Water Lettuce (Pistia stratoites) in an Aquaculture Effluent Hydroponic System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Kiridi">E. A. Kiridi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Ogunlela"> A. O. Ogunlela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of ammonia build-up and its by-product is a limiting factor for a successful commercial aquaculture in a developing country like Nigeria. The technology for an advanced treatment of fish tank effluent is uneconomical to local fish farmers which have led to indiscriminate disposal of aquaculture wastewater, thereby increasing the concentrations of these nitrogenous compound and other contaminants in surface and groundwater above the permissible level. Phytoremediation using water lettuce could offer cheaper and sustainable alternative. On the first day of experimentation, approximately 100 g of water lettuce were replicated in four hydroponic units containing aquaculture effluents. The water quality parameters measured were concentration of ammonium&ndash;nitrogen (NH<sub>4</sub><sup>+</sup>-N), nitrite-nitrogen (NO<sub>2</sub><sup>-</sup>-N), nitrate-nitrogen (NO<sub>3</sub><sup>-</sup>-N), and phosphate&ndash;phosphorus (PO<sub>4</sub><sup>3-</sup>-P). Others were total suspended solids (TSS), pH, electrical conductivity (EC), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 361.2 g, 498.7 g, 561.2 g, and 623.7 g. Water lettuce was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 3.9% to 14.4%, EC from 49.8% to 96.2%, TDS from 50.4% to 96.2%, TSS from 38.3% to 81.7%, NH<sub>4</sub><sup>+</sup>-N from 38.9% to 90.7%, NO<sub>2</sub><sup>-</sup>-N from 0% to 74.9%, NO<sub>3</sub><sup>-</sup>-N from 63.2% to 95.9% and PO<sub>4</sub><sup>3-</sup>-P from 0% to 76.3%. At 95% confidence level, the analysis of variance shows that F(critical) is less than F(cal) and p &lt; 0.05; therefore, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests the potency of water lettuce for remediation of aquaculture effluent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture%20effluent" title="aquaculture effluent">aquaculture effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification" title=" nitrification"> nitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20lettuce" title=" water lettuce"> water lettuce</a> </p> <a href="https://publications.waset.org/abstracts/46959/toxicity-depletion-rates-of-water-lettuce-pistia-stratoites-in-an-aquaculture-effluent-hydroponic-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5852</span> Influence of Applied Inorganic and Organic Nitrogen Fertilizers on Nitrogen Forms in Biochar-Treated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20H.%20El-Gamal">Eman H. El-Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20E.%20Saleh"> Maher E. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Rashad"> Mohamed Rashad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Elsokkary"> Ibrahim Elsokkary</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20M.%20Abd%20El-Latif"> Mona M. Abd El-Latif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biochar application to calcareous soils could potentially influence the nitrogen dynamics that affect the bioavailability of plants. This study was carried out to investigate the effect of incubation periods on the changes of nitrogen levels (total nitrogen TN and exchangeable ammonium NH₄⁺ and nitrate NO₃⁻) in biochar-treated calcareous soil. The incubation course was extended to 144 days at 30 ± 3 ℃ and at 50% of soil water holding capacity (WHC). Two types of biochars were obtained by pyrolysis at 500 ℃ from rice husk (RHB) and sugarcane bagasse (SCBB). The experiment was planned in a factorial experimental design with three factors (6 periods '24 days for each period' × 3 biochar types 'un-amended, RHB and SCBB' × 3 nitrogen fertilizers 'control, ammonium nitrate; AN and animal manure; AM') in a completely randomized design. The results obtained showed that the highest level of TN was found in the first 24 days of the incubation period in all treatments. However, the amount of TN was decreased with proceeding incubation period up to 144 days and reached to the lowest level at the end of incubation with values of change rate was 17.5, 16.6, and 14.6 g kg⁻¹ day⁻¹ for the un-amended, RHB and SCBB treated soil, respectively. The values of change rate in biochar-soils treated with nitrogen fertilizers were decreased gradually through the whole incubation time from 127.22 to 12.45 g kg⁻¹ day⁻¹ and from 65.00 to 13.43 g kg⁻¹ day⁻¹ for AN and AM respectively, in the case of RHB-soil. While in SCBB-soil, these values were decreased from 70.83 to 12.13 g kg⁻¹ day⁻¹ and from 59.17 to 11.48 g kg⁻¹ day⁻¹ for AN and AM treatments, respectively. The lowest concentration of exchangeable NH₄⁺ was generally found through the period from 24-48 days of incubation. However, the addition of nitrogen fertilizers, enhanced NH₄⁺ production through incubation periods. In the case of RHB-soil, the value of change rate in NH₄⁺ level in the first 24 days of incubation was 0.43 mg kg⁻¹ day⁻¹ and with the addition of AN and AM this value increased to 1.54 and 4.38 mg kg⁻¹ day⁻¹, respectively. In the case of SCBB-soil, the value of change rate in NH₄⁺ level was 0.29 mg kg⁻¹ day⁻¹ which increased to 1.04 mg kg⁻¹ day⁻¹ at the end of incubation, and due to the addition of AN and AM this value increased to 2.78 and 1.90 mg kg⁻¹ day⁻¹ in the first 24 days of incubation period, respectively. However, as compared to the control treatment, the lowest rate of change in NH₄⁺ level was found at the end of incubation. On the other hand, incubation of all biochars-amended soil and treated with AN and AM decreased the concentration levels of NO₃⁻, especially through the first 24-72 days of incubation period. As a result, the values of change rate in NO₃⁻ concentrations in all treatments were almost negative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrate" title="ammonium nitrate">ammonium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20manure" title=" animal manure"> animal manure</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title=" sugarcane bagasse"> sugarcane bagasse</a> </p> <a href="https://publications.waset.org/abstracts/103277/influence-of-applied-inorganic-and-organic-nitrogen-fertilizers-on-nitrogen-forms-in-biochar-treated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5851</span> Effect of Nitrogen Management on Nitrogen Uptake, Dry Matter Production and Some Yield Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Tayefe">Mandana Tayefe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Amiri"> Ebrahim Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Nasrollah%20Zade"> Azin Nasrollah Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of nitrogen (N) fertilizer levels on nitrogen uptake, dry matter production, yield and some yield components of rice (Hashemi, Kazemi, Khazar) was investigated in an experiment as factorial in RCBD with 3 replications in a paddy light soil at Guilan province, Iran, 2008-2009. In this experiment, four treatments including: N1-control (no N fertilizer); N2- 30 kgN/ha; N3- 60 kgN/ha; N4- 90 kgN/ha were compared. Results showed that total biomass (8386 kg/ha), grain yield (3662 kg/ha), panicles m-2 (235.8) and total grain per panicle (103.8) were reached the highest value at high nitrogen level. Among the varieties the highest total biomass (7734 kg/ha), grain yield (3414 kg/ha) and total grain per panicle (78.2) belonged to Khazar. Dry matter, total N uptake was varied in different cultivars significantly and Khazar variety had the highest contents. Total biomass and total N uptake was varied significantly with the increasement of the amount of nitrogen applied. As total biomass and total N uptake increased with increasing in N fertilizing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20uptake" title=" nitrogen uptake"> nitrogen uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20matter" title=" dry matter"> dry matter</a> </p> <a href="https://publications.waset.org/abstracts/27769/effect-of-nitrogen-management-on-nitrogen-uptake-dry-matter-production-and-some-yield-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5850</span> The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Bagherzadeh">Elham Bagherzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fadaee"> Mohammad Fadaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Keykhosravi"> Rouhollah Keykhosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20yield" title=" biological yield"> biological yield</a> </p> <a href="https://publications.waset.org/abstracts/45828/the-effect-of-nitrogen-fertilizer-use-efficiency-in-corn-yield-and-yield-components-in-cultivars-ksc-704" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5849</span> Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Shih">Yu-Jen Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan-Zhang%20Lou"> Juan-Zhang Lou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title="electrochemical oxidation">electrochemical oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20oxyhydroxide" title=" nickel oxyhydroxide"> nickel oxyhydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20framework" title=" metal-organic framework"> metal-organic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium" title=" ammonium"> ammonium</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a> </p> <a href="https://publications.waset.org/abstracts/177586/nickel-oxide-nitrogen-doped-carbon-ninioxnc-derived-from-pyrolysis-of-2-aminoterephthalic-acid-for-electrocatalytic-oxidation-of-ammonia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=195">195</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=196">196</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10